CN106977692A - 无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法 - Google Patents

无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法 Download PDF

Info

Publication number
CN106977692A
CN106977692A CN201710244571.3A CN201710244571A CN106977692A CN 106977692 A CN106977692 A CN 106977692A CN 201710244571 A CN201710244571 A CN 201710244571A CN 106977692 A CN106977692 A CN 106977692A
Authority
CN
China
Prior art keywords
nano
attapulgite
solvent type
preparation
attapulgite clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710244571.3A
Other languages
English (en)
Inventor
吕斌
徐欣欣
沈连根
程坤
赵舜华
高党鸽
马建中
马养民
石磊
刘欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIAXING HEXIN CHEMICAL INDUSTRY CO LTD
Shaanxi University of Science and Technology
Original Assignee
JIAXING HEXIN CHEMICAL INDUSTRY CO LTD
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIAXING HEXIN CHEMICAL INDUSTRY CO LTD, Shaanxi University of Science and Technology filed Critical JIAXING HEXIN CHEMICAL INDUSTRY CO LTD
Priority to CN201710244571.3A priority Critical patent/CN106977692A/zh
Publication of CN106977692A publication Critical patent/CN106977692A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法,取聚乙二醇和凹凸棒土纳米粒子加热搅拌,超声或乳化分散均匀;待复合乳液冷却至室温,加入甲苯二异氰酸酯高速搅拌均匀;将复合乳液涂布于固定在水平板的离型纸上;取下离型纸,烘箱中烘干成膜。本发明制备的无溶剂型纳米凹凸棒土复合聚氨酯,代替了传统有机溶剂生产工艺和水性生产工艺,杜绝生产过程中使用的大量有机溶剂的挥发造成严重的生态环境污染问题;引入纳米凹凸棒土材料,使其阻燃性能显著提升。

Description

无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法
技术领域
本发明涉及一种聚氨酯膜的生产工艺,具体涉及一种无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法。
背景技术
传统的溶剂型聚氨酯膜生产工艺,其生产过程中使用的大量有机溶剂的挥发造成严重的生态环境污染,且具有聚氨酯自增稠性差、固含量低、耐高温性能不佳、耐水性差且成本较高等缺陷。
发明内容
本发明的目的是提供一种无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法,克服现有聚氨酯/纳米复合膜制备技术缺陷,并更大程度地提高成膜的阻燃性。
本发明所采用的技术方案为:
无溶剂型聚氨酯纳米凹凸棒土复合膜的制备方法,其特征在于:
由以下步骤实现:
称取5质量份的聚乙二醇和4~8质量份的凹凸棒土纳米粒子加入到装有搅拌装置和回流冷凝装置的三口烧瓶中,40℃~65℃下加热搅拌1h~1.5h,用超声波细胞粉碎机超声分散或乳化机乳化分散5min~15min,使纳米粒子均匀分散;
待复合乳液冷却至室温,加入3质量份的甲苯二异氰酸酯,高速搅拌均匀;
将复合乳液涂布于固定在水平板的离型纸上;
取下离型纸,在100℃~110℃的烘箱中烘干成膜。
凹凸棒土纳米粒子是凹凸棒土经过提纯、热活化、酸性改性步骤得到的直径为20-80nm、长度为500nm的纳米凹凸棒土。
如所述的制备方法制得的无溶剂型聚氨酯纳米凹凸棒土复合膜。
本发明具有以下优点:
本发明制备的无溶剂型纳米凹凸棒土复合聚氨酯,代替了传统有机溶剂生产工艺和水性生产工艺,杜绝生产过程中使用的大量有机溶剂的挥发造成严重的生态环境污染问题;同时水性聚氨酯生产工艺中,聚氨酯自增稠性差、固含量低、耐高温性能不佳、耐水性差且成本较高,解决了合成革工业的环境污染和产品安全问题,杜绝污染源的产生,实现从生产到使用整个流程绿色环保,将纳米凹凸棒土材料引入聚氨酯(PU)中,制备出一种环保无溶剂聚氨酯/纳米凹凸棒土复合膜,其阻燃性能显著提升,垂直燃烧提升142.04%,极限氧指数提升44.58%。
具体实施方式
下面结合具体实施方式对本发明进行详细的说明。
无溶剂聚氨酯合成革制造技术依据的基本原理为快速反应注射成型(RM),这种工艺采用的原料不是聚合物,而是将2种或2种以上的液态聚氨酯预聚物,以一定的比例分别输送到混合头,在加压下混合均匀,并立即注射在基材上,通过刮涂的方式涂布成膜,然后进入烘道,此时液态预聚物之间的反应迅速进行,聚合物分子质量急剧增加,以极快的速度生成含有新的特性基团结构的聚氨酯,知道完成最后的熟化成型。
纳米凹凸棒土是一种新型的天然纳米材料,对其性质进行研究,发现经过改性后凹凸棒土具有很好的分散性,表面由亲水性变成了亲油性,通过疏水化改性使其有阻燃特性得到更好的发挥。近年来凹凸棒土纳米材料已被广泛的研究,并将其与有机物结合形成有机无机纳米复合膜,其兼具了无机物与有机聚合物的优点,凹凸棒土的阻燃性能在聚氨酯膜上得以充分发挥,其复合膜的力学性能也大大提高。
本发明涉及的无溶剂型聚氨酯纳米凹凸棒土复合膜的制备方法,由以下步骤实现:
称取5质量份的聚乙二醇(PEG)和4~8质量份的凹凸棒土纳米粒子加入到装有搅拌装置和回流冷凝装置的三口烧瓶中,40℃~65℃下加热搅拌1h~1.5h,用超声波细胞粉碎机超声分散或乳化机乳化分散5min~15min,使纳米粒子均匀分散;
待复合乳液冷却至室温,加入3质量份的甲苯二异氰酸酯(TDI),高速搅拌均匀;
将复合乳液涂布于固定在水平板的离型纸上;
取下离型纸,在100℃~110℃的烘箱中烘干成膜。
凹凸棒土纳米粒子是凹凸棒土经过提纯、热活化、酸性改性步骤得到的直径为20-80nm、长度为500nm的纳米凹凸棒土。
实例1
称取5质量份的聚乙二醇(PEG)和5质量份的凹凸棒土加入到装有搅拌装置和回流冷凝装置的三口烧瓶中,45℃下加热搅拌65min,用超声波细胞粉碎机超声分散或乳化机乳化分散10min,使凹凸棒土纳米粒子均匀分散。待复合乳液冷却至室温,加入3质量份的甲苯二异氰酸酯(TDI),高速搅拌均匀。将复合乳液涂布于固定在水平板的离型纸上。取下离型纸,在105℃的烘箱中烘干成膜。
实例2
称取5质量份的聚乙二醇(PEG)和6质量份的凹凸棒土加入到装有搅拌装置和回流冷凝装置的三口烧瓶中,50℃下加热搅拌70min,用超声波细胞粉碎机超声分散或乳化机乳化分散15min,使凹凸棒土纳米粒子均匀分散。待复合乳液冷却至室温,加入3质量份的甲苯二异氰酸酯(TDI),高速搅拌均匀。将复合乳液涂布于固定在水平板的离型纸上。取下离型纸,在110℃的烘箱中烘干成膜。
实例3
称取5质量份的聚乙二醇(PEG)和7质量份的凹凸棒土分别加入到装有搅拌装置和回流冷凝装置的三口烧瓶中,55℃下加热搅拌75min,用超声波细胞粉碎机超声分散或乳化机乳化分散15min,使凹凸棒土纳米粒子均匀分散。待复合乳液冷却至室温,加入3质量份的甲苯二异氰酸酯(TDI),高速搅拌均匀。将复合乳液涂布于固定在水平板的离型纸上。取下离型纸,在110℃的烘箱中烘干成膜。
本发明制得的环保无溶剂聚氨酯/纳米凹凸棒土复合膜,其阻燃性能显著提升,垂直燃烧提升142.04%,极限氧指数提升44.58%。
本发明的内容不限于实施例所列举,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

Claims (3)

1.无溶剂型聚氨酯纳米凹凸棒土复合膜的制备方法,其特征在于:
由以下步骤实现:
称取5质量份的聚乙二醇和4~8质量份的凹凸棒土纳米粒子加入到装有搅拌装置和回流冷凝装置的三口烧瓶中,40℃~65℃下加热搅拌1h~1.5h,用超声波细胞粉碎机超声分散或乳化机乳化分散5min~15min,使纳米粒子均匀分散;
待复合乳液冷却至室温,加入3质量份的甲苯二异氰酸酯,高速搅拌均匀;
将复合乳液涂布于固定在水平板的离型纸上;
取下离型纸,在100℃~110℃的烘箱中烘干成膜。
2.根据权利要求1所述的无溶剂型聚氨酯纳米凹凸棒土复合膜的制备方法,其特征在于:
凹凸棒土纳米粒子是凹凸棒土经过提纯、热活化、酸性改性步骤得到的直径为20-80nm、长度为500nm的纳米凹凸棒土。
3.如权利要求1所述的制备方法制得的无溶剂型聚氨酯纳米凹凸棒土复合膜。
CN201710244571.3A 2017-04-14 2017-04-14 无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法 Pending CN106977692A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710244571.3A CN106977692A (zh) 2017-04-14 2017-04-14 无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710244571.3A CN106977692A (zh) 2017-04-14 2017-04-14 无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法

Publications (1)

Publication Number Publication Date
CN106977692A true CN106977692A (zh) 2017-07-25

Family

ID=59344471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710244571.3A Pending CN106977692A (zh) 2017-04-14 2017-04-14 无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106977692A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110387023A (zh) * 2019-07-01 2019-10-29 浙江温州轻工研究院 一种改性玄武岩纤维/聚氨酯发泡材料及其制备方法
CN112322022A (zh) * 2020-11-17 2021-02-05 西北民族大学 聚氨酯纳米复合材料的制备工艺
CN113337096A (zh) * 2021-06-23 2021-09-03 西北师范大学 一种凹凸棒石-氧化石墨烯复合粉体及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443129A (zh) * 2011-10-24 2012-05-09 常州奥特纳新材料科技有限公司 一种凹凸棒石/聚氨酯复合材料的制备方法
CN102838870A (zh) * 2012-09-26 2012-12-26 南京大学 大豆油基聚氨酯/凹凸棒土纳米复合材料及其制备方法
CN105727880A (zh) * 2016-02-19 2016-07-06 甘肃工业技术研究院 一种环保凹凸棒石吸附/干燥剂的制备工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443129A (zh) * 2011-10-24 2012-05-09 常州奥特纳新材料科技有限公司 一种凹凸棒石/聚氨酯复合材料的制备方法
CN102838870A (zh) * 2012-09-26 2012-12-26 南京大学 大豆油基聚氨酯/凹凸棒土纳米复合材料及其制备方法
CN105727880A (zh) * 2016-02-19 2016-07-06 甘肃工业技术研究院 一种环保凹凸棒石吸附/干燥剂的制备工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吴键儒等: "聚氨酯(PU)/凹凸棒土(AT)原位复合材料制备及表征", 《化工新型材料》 *
段会正等: "凹凸棒土填充聚氨酯弹性体力学性能的研究", 《特种橡胶制品》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110387023A (zh) * 2019-07-01 2019-10-29 浙江温州轻工研究院 一种改性玄武岩纤维/聚氨酯发泡材料及其制备方法
CN110387023B (zh) * 2019-07-01 2021-06-25 浙江温州轻工研究院 一种改性玄武岩纤维/聚氨酯发泡材料及其制备方法
CN112322022A (zh) * 2020-11-17 2021-02-05 西北民族大学 聚氨酯纳米复合材料的制备工艺
CN113337096A (zh) * 2021-06-23 2021-09-03 西北师范大学 一种凹凸棒石-氧化石墨烯复合粉体及其制备方法和用途

Similar Documents

Publication Publication Date Title
CN101250375B (zh) 一种poss/聚氨酯水性复合涂料及其制备方法
CN102926211B (zh) 一种基于分子胶体的剪切增稠流体及其制备方法和用途
CN101831167B (zh) 一种聚氨酯基石头纸的制备方法
Chen et al. Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites thereof via click chemistry
CN105524300B (zh) 一种改性纳米二氧化硅及其制备方法
CN106977692A (zh) 无溶剂型聚氨酯纳米凹凸棒土复合膜及其制备方法
CN107698748A (zh) 一种杂化交联网络的动态聚合物及其应用
CN107216845A (zh) 一种环保型端硅氧烷基聚氨酯密封胶及其制备方法
CN106221346A (zh) 一种自修复型钢结构防火涂料及其制备方法
CN107674475B (zh) 一种低温固化水性环氧地坪漆的制备方法
CN105297448B (zh) 一种碳纤维用界面增强型纳米二氧化硅改性环氧树脂上浆剂
CN105131227B (zh) 一种合成革用uv固化阻燃聚氨酯及其制备方法
CN106977683A (zh) 无溶剂型聚氨酯纳米TiO2复合膜及其制备方法
Verma et al. Experimental characterization of modified epoxy resin assorted with almond shell particles
CN109535375A (zh) 一种高度剥离的二维纳米片增强聚氨酯复合材料的制备方法
CN107573832A (zh) 一种聚氨酯双组份防水涂料及其制备方法
Li et al. Underwater polyurethane adhesive with enhanced cohesion by postcrosslinking of glycerol monomethacrylate
Ma et al. Preparation of isocyanate microcapsules as a high-performance adhesive for PLA/WF
CN110272679A (zh) 紫外光固化漆酚基超支化超双疏防腐涂料及其制备方法
CN105131821A (zh) 一种水性聚氨酯涂料及其制备方法
CN109206627A (zh) 一种杂化交联动态聚合物
CN102166839A (zh) 干式转离型法聚氨酯微多孔防水透湿薄膜及其制备方法
Ahmadi-Khaneghah et al. PEG-based epoxy and epoxy/silica networks: Thermal, mechanical, and thermo-mechanical investigations
CN109082184A (zh) 一种高附着力的弹性乳胶漆
CN104327493B (zh) 纳米二氧化硅改性pva-ep-pu互穿聚合物网络复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170725