CN106947472B - 一种氟硅酸盐基红色荧光陶瓷材料、制备方法和应用 - Google Patents

一种氟硅酸盐基红色荧光陶瓷材料、制备方法和应用 Download PDF

Info

Publication number
CN106947472B
CN106947472B CN201710053655.9A CN201710053655A CN106947472B CN 106947472 B CN106947472 B CN 106947472B CN 201710053655 A CN201710053655 A CN 201710053655A CN 106947472 B CN106947472 B CN 106947472B
Authority
CN
China
Prior art keywords
compound
ceramic material
ion
red fluorescence
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710053655.9A
Other languages
English (en)
Other versions
CN106947472A (zh
Inventor
乔学斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tongli Crystal Materials Research Institute Co., Ltd.
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN201710053655.9A priority Critical patent/CN106947472B/zh
Publication of CN106947472A publication Critical patent/CN106947472A/zh
Application granted granted Critical
Publication of CN106947472B publication Critical patent/CN106947472B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种氟硅酸盐基红色荧光陶瓷材料、制备方法和应用,化学式为Ca10‑ 10xEu10xSi3O15F2,其中x为Eu3+掺杂的化学计量分数,0.001≤x≤0.20,属于无机发光材料的技术领域。本发明制备得到的荧光陶瓷材料可以被200‑500纳米附近的近紫外光和蓝光有效激发,与近紫外LED芯片的发射波长非常吻合,在近紫外光激发下,该荧光陶瓷能够发射出明亮的红色荧光,发射波长以617nm为主,具有很宽的激发光谱和发光光谱;得到的荧光陶瓷材料其发光效率高,化学稳定性好,在紫外线辐射下不会产生硫化物等有毒气体,对环境友好,可应用于白光LED和其它发光领域;将含有合成生物材料所需元素的化合物按比例混合,采用高温固相法制备,制备该材料的工艺简单、无任何污染,对环境友好,适合工业化生产。

Description

一种氟硅酸盐基红色荧光陶瓷材料、制备方法和应用
技术领域
本发明涉及一种发光材料,特别涉及一种氟硅酸盐基红色荧光陶瓷材料、制备方法及应用,属于发光材料技术领域。
背景技术
在全球节能减排、能源紧张和强化环保的需求下,LED照明作为继白炽灯、荧光灯和高压气体放电灯之后的***照明光源正在逐步替换传统照明器件。近年来,用白光LED替代传统的白炽灯和荧光灯已逐渐成为一种趋势。白光LED照明已经显示出巨大的市场潜力,其在室内、室外、汽车照明和显示等领域的应用将极大的改变人类的生活方式,按照Philips公司的预测,LED照明占通用照明领域的比例在2015年将达到50%,到2020年将达到80%,并成为全球主要的照明方式。据预测,整个白光LED市场在2012年将达到204亿美金的市场规模,市场机遇极大。功率型白光LED器件由于具有附加值高、用途广等优点,是市场的焦点,也代表着该行业的发展趋势。飞利浦、日亚、欧司朗等行业巨头均对此市场尤为重视。我国尽管近年来投资了大量LED照明的相关项目,但是功率型LED方面我国占全世界的市场份额在2011年仅占2%!通过稀土离子掺杂,陶瓷荧光体可以实现在蓝光或者紫外光激发下的高效率发光,作为白光LED用荧光材料,最近在功率型白光LED和远程荧光体方面的应用引起了市场关注,比如Philips公司最近已经成功制备出120lm/W的高功率白光LED产品,并成功应用于奥迪A8汽车的前大灯。由于功率型LED在将来照明市场巨大的应用规模,陶瓷荧光体产品具有极大的市场需求。
目前,使用最广泛且技术很成熟的白光LED主要是以发蓝光的GaN基芯片搭配YAG:Ce的荧光粉,通过激发YAG:Ce来发射黄光与蓝光混合来实现的,其效率高、制造成本低,但由于其发射光谱中缺少绿色和红色成分,尤其在红色区域发光效率不高,导致它的显色指数比较低,色彩还原性差,色调偏冷色调,从而使得其应用受到一定的限制,另外其制取过程花费的成本也较高。因此研究性能好的红色荧光粉不仅具有一定的理论意义,更具有重要的实际应用意义。
发明内容
本发明的目的在于提供一种稳定性高、发光效率高,制备工艺简单易行、成本低廉,且对环境无污染的氟硅酸盐基红色荧光陶瓷材料,本发明的另一目的在于提供一种上述氟硅酸盐基红色荧光陶瓷材料的制备方法及氟硅酸盐基红色荧光陶瓷材料的应用。
为实现上述目的,本发明采用的技术方案是:一种氟硅酸盐基红色荧光陶瓷材料,化学式为Ca10-10xEu10xSi3O15F2,其中x为Eu3+掺杂的化学计量分数,0.001≤x≤0.20。
本发明还提供了一种氟硅酸盐基红色荧光陶瓷材料的制备方法,包括以下步骤:
(1)按照Ca10-10xEu10xSi3O15F2中各元素的化学计量比,其中0.001≤x≤0.20,分别称取含有钙离子Ca2+的化合物、含有硅离子Si4+的化合物、含有铕离子Eu3+的化合物、含有氟离子F-的化合物作为原料,并将含有钙离子Ca2+的化合物、含有硅离子Si4+的化合物、含有铕离子Eu3+的化合物混合并研磨均匀,得到混合物;
(2)将步骤(1)得到的混合物在空气气氛下进行煅烧,煅烧温度750~950℃,煅烧时间为3~10小时,煅烧完成后自然冷却,研磨混合均匀;
(3)将步骤(2)得到的粉体混合物与含有氟离子F-的化合物研磨均匀,压制成陶瓷片,压制压力为10MPa~15MPa,在空气气氛中再次煅烧,煅烧温度为900~1200℃,煅烧时间为3~15小时;自然冷却后研磨混合均匀,得到红色荧光陶瓷材料。
作为上述制备方法的一个优选方案:步骤(2)的煅烧温度为800~950℃,煅烧时间为4~10小时。
作为上述制备方法的一个优选方案:步骤(3)的煅烧温度为950~1200℃,烧结时间为5~10小时。
本发明制备方法中,所述的含有钙离子Ca2+的化合物为碳酸钙、硝酸钙、氢氧化钙、草酸钙、氧化钙的一种;所述含有硅离子Si4+的化合物为二氧化硅或硅酸中的一种;所述的含有铕离子Eu3+的化合物为氧化铕、硝酸铕、碳酸铕、硫酸铕、氯化铕中的一种,所述含有氟离子F-的化合物为氟化钙。
作为制备方法的优选方案,所述含有钙离子Ca2+的化合物有两种,其中一种是氟化钙,氟化钙提供的钙占总钙量的10vol%~40vol%,另一种来源于碳酸钙、硝酸钙、氢氧化钙、草酸钙、氧化钙中的一种。
最后,本发明公开了氟硅酸盐基红色荧光陶瓷材料的应用,将本文所述红色荧光陶瓷材料在250-500nm波长激发下,可以发射出红色荧光,可应用在被紫外光激发的各种照明设备及白光LED的色度调节中。
与现有技术相比,本发明具有如下有益效果:
1、本发明提供的氟硅酸酸盐基红色荧光陶瓷材料,有良好的物理和化学性能,颗粒度均匀、结晶度好,发光效率高,可以广泛应用于制备功率型LED;同时在紫外线辐射下不会产生硫化物等有毒气体,对环境友好,在光致发光方面有很大的应用价值。
2、所制备出的新型红色荧光陶瓷可以有效地吸收近紫外到蓝光区域(200~500纳米)的光,并将能量传递给掺杂在基质材料中的三价铕离子Eu3+,发射出617纳米附近的红光,色度纯正、亮度高,且激发光范围宽;将其配合适量的绿色、蓝色荧光粉,涂敷和封装于InGaN二极管外,可制备高效率的白光LED照明器件,还可以用于被紫外光激发的其他各种照明设备中,在照明、显示和检测等方面具有广泛的应用前景。
3、本发明提供的氟硅酸酸盐基红色荧光陶瓷,制备工艺简单、易于操作,方法安全可控、对生产条件和设备要求不高,无任何污染,适于工业化生产。
附图说明
图1是本发明实施例1制备样品Ca9.9Eu0.1Si3O15F2的X射线粉末衍射图谱;
图2是本发明实施例1制备样品Ca9.9Eu0.1Si3O15F2的扫描电子显微镜图;
图3是本发明实施例1制备样品Ca9.9Eu0.1Si3O15F2在617纳米波长监测下的激发光谱图;
图4是本发明实施例1制备样品Ca9.9Eu0.1Si3O15F2在392.5纳米波长激发下的发射光谱图;
图5是本发明实施例1制备样品Ca9.9Eu0.1Si3O15F2在313纳米波长激发、617纳米波长监测下的发光衰减曲线;
图6是本发明实施例4制备样品Ca8.5Eu1.5Si3O15F2在617纳米波长监测下的激发光谱图;
图7是本发明实施例4制备样品Ca8.5Eu1.5Si3O15F2在392.5纳米波长激发下的发射光谱图;
图8是本发明实施例4制备样品Ca8.5Eu1.5Si3O15F2在313纳米波长激发、617纳米波长监测下的发光衰减曲线;
图9是本发明实施例4制备样品Ca8.5Eu1.5Si3O15F2的扫描电子显微镜图。
具体实施方式
下面结合附图和实施例对本发明作进一步描述。
实施例1:
制备Ca9.9Eu0.1Si3O15F2,根据化学式Ca9.9Eu0.1Si3O15F2中各元素的化学计量比,称取碳酸钙CaCO3:8.908克,氧化硅SiO2:1.8024克,氧化铕Eu2O3:0.0018克,在玛瑙研钵中研磨并混合均匀后,选择空气气氛烧结,煅烧温度是800℃,煅烧时间10小时,然后冷却至室温,取出样品并研磨均匀;将煅烧过的原料再次与0.7808克氟化钙CaF2充分混合研磨均匀,将混合粉体进行压制成型,压力为10MPa,在空气气氛中再次煅烧,煅烧温度1200℃,煅烧时间5小时,自然冷却研磨混合均匀即得到氟硅酸钙荧光陶瓷。
参见附图1,它是本实施例技术方案制备样品的X射线粉末衍射图谱,XRD测试结果显示,所制备的Ca9.9Eu0.1Si3O15F2为单相材料,没有其它杂相存在,而且结晶度较好,表明三价铕离子Eu3+的掺杂对基质的结构无影响。
参见附图2,它是本实施例技术方案制备样品的扫描电子显微镜图谱,从图中可以看出,所得样品颗粒分散较为均匀。
参见附图3,它是按本实施例技术方案制备的样品在617纳米波长监测下的激发光谱图,在200~500纳米范围内有宽峰出现,在270纳米、392.5纳米和462纳米有强峰出现,表明该材料可有效地被近紫外到蓝光区域的光激发,适用于白光LED。
参见附图4,它是按本实施例技术方案制备的样品在392.5纳米波长激发下的发射光谱图,从图中可以看出,该材料的发射波长为617纳米波段范围的红光。
参见附图5,它是按本实施例技术方案制备的样品在313纳米波长激发、617纳米波长监测下的发光衰减曲线,计算可得衰减时间为1.99毫秒。
实施例2:
制备Ca9.99Eu0.01Si3O15F2,根据化学式Ca9.9Eu0.1Si3O15F2中各元素的化学计量比,分别称取氢氧化钙Ca(OH)2:5.1793克,硅酸H2SiO3:2.34克,氧化铕Eu2O3:0.0002克在玛瑙研钵中研磨并混合均匀后,选择空气气氛烧结,煅烧温度是950℃,煅烧时间3小时,然后冷却至室温,取出样品研磨混合均匀;将煅烧过的原料再次与2.3424克氟化钙CaF2充分混合研磨均匀,将混合粉体进行压制成型,压力为15MPa,在空气气氛中再次煅烧,煅烧温度900℃,煅烧时间15小时,自然冷却研磨均匀即得到氟硅酸钙荧光陶瓷。
本实施例制备的样品,其主要结构形貌、激发光谱、发射光谱以及发光衰减曲线与实施例1相似。
实施例3:
制备Ca9.5Eu0.5Si3O15F2,根据化学式Ca9.5Eu0.5Si3O15F2中各元素的化学计量比,分别称取草酸钙CaC2O4:9.608克,硅酸H2SiO3:2.34克,硝酸铕Eu(NO3)3·6H2O:0.0169克,在玛瑙研钵中研磨并混合均匀后,选择空气气氛烧结,煅烧温度是900℃,煅烧时间6小时,然后冷却至室温,取出样品;将煅烧过的原料再次与1.5616克氟化钙CaF2充分混合研磨均匀,将混合粉体进行压制成型,压力为12MPa,在空气气氛中再次煅烧,煅烧温度1000℃,煅烧时间9小时,自然冷却即得到氟硅酸钙荧光陶瓷。
本实施例制备的样品,其主要结构形貌、激发光谱、发射光谱以及发光衰减曲线与实施例1相似。
实施例4:
制备Ca8.5Eu1.5Si3O15F2,根据化学式Ca8.5Eu1.5Si3O15F2中各元素的化学计量比,分别称取氧化钙CaO:3.3646克,二氧化硅SiO2:1.8027克,碳酸铕Eu2(CO3)3·H2O:0.038克,在玛瑙研钵中研磨并混合均匀后,选择空气气氛烧结,煅烧温度是750℃,煅烧时间10小时,然后冷却至室温,取出样品研磨混合均匀;将预煅烧的原料再次与1.952克氟化钙CaF2充分混合研磨均匀,将混合粉体进行压制成型,压力为13MPa,在空气气氛中再次煅烧,煅烧温度1200℃,煅烧时间3小时,自然冷却后研磨混合均匀即得到氟硅酸钙荧光陶瓷。
参见附图6,是按本实施例技术方案制备的样品在617纳米波长监测下的激发光谱图,从图中可以看出,在200~500纳米范围内有宽峰出现,在270纳米、392.5纳米和462纳米有强峰出现,表明该材料可有效地被近紫外到蓝光区域的光激发,适用于白光LED。
参见附图7,它是按本实施例技术方案制备的样品在392.5纳米波长激发下的发射光谱图,从图中可以看出,该材料的发射波长为617纳米波段范围的红光。
参见附图8,它是按本实施例技术方案制备的样品在313纳米波长激发、617纳米波长监测下的发光衰减曲线,计算可得衰减时间为1.92毫秒。
参见附图9,它是本实施例技术方案制备样品的扫描电子显微镜图谱,从图中可以看出,所得样品颗粒分散较为均匀。
实施例5:
制备Ca9EuSi3O15F2,根据化学式Ca9EuSi3O15F2中各元素的化学计量比,分别称取称取硝酸钙Ca(NO3)2·4H2O:17.711克,氧化硅SiO2:1.8027克,氯化铕EuCl3:0.026克,在玛瑙研钵中研磨并混合均匀后,选择空气气氛烧结,煅烧温度是870℃,煅烧时间5小时,然后冷却至室温,取出样品研磨混合均匀;将预煅烧的原料再次与1.1712克氟化钙CaF2充分混合研磨均匀,将混合粉体进行压制成型,压力为14MPa,在空气气氛中再次煅烧,煅烧温度980℃,煅烧时间7小时,自然冷却即得到氟硅酸钙荧光陶瓷。
本实施例制备的样品,其主要结构形貌、激发光谱、发射光谱以及发光衰减曲线与实施例4相似。
实施例6:
制备Ca8Eu2Si3O15F2,根据化学式Ca8Eu2Si3O15F2中各元素的化学计量比,分别称取氧化钙CaO:3.365克,氧化硅SiO2:1.8027克,氯化铕EuCl3:0.052克,在玛瑙研钵中研磨并混合均匀后,选择空气气氛烧结,煅烧温度是920℃,煅烧时间7小时,然后冷却至室温,取出样品研磨混合均匀;将煅烧过的原料再次与3.1232克氟化钙CaF2充分混合研磨均匀,将混合粉体进行压制成型,压力为14MPa,在空气气氛中再次煅烧,煅烧温度1050℃,煅烧时间6小时,自然冷却即得到氟硅酸钙荧光陶瓷。
本实施例制备的样品,其主要结构形貌、激发光谱、发射光谱以及发光衰减曲线与实施例4相似。

Claims (5)

1.一种氟硅酸盐基红色荧光陶瓷材料,其特征在于:化学式为Ca10-10xEu10xSi3O15F2,其中x为Eu3+掺杂的化学计量分数,0.001≤x≤0.20。
2.一种如权利要求1所述的氟硅酸盐基红色荧光陶瓷材料的制备方法,其特征在于,采用高温固相法,包括以下步骤:
(1)按照Ca10-10xEu10xSi3O15F2中各元素的化学计量比,其中0.001≤x≤0.20,分别称取含有钙离子Ca2+的化合物、含有硅离子Si4+的化合物、含有铕离子Eu3+的化合物、含有氟离子F-的化合物作为原料,并将含有钙离子Ca2+的化合物、含有硅离子Si4+的化合物、含有铕离子Eu3+的化合物混合并研磨均匀,得到混合物;
(2)将步骤(1)得到的混合物在空气气氛下进行煅烧,煅烧温度750~950℃,煅烧时间为3~10小时,煅烧完成后自然冷却,研磨混合均匀;
(3)将步骤(2)得到的粉体混合物与含有氟离子F-的化合物研磨均匀,压制成陶瓷片,压制压力为10 MPa~15MPa,在空气气氛中再次煅烧,煅烧温度为900~1200℃,煅烧时间为3~15小时;自然冷却后研磨混合均匀,得到红色荧光陶瓷材料。
3.根据权利要求2所述的氟硅酸盐基红色荧光陶瓷材料的制备方法,其特征在于:步骤(2)的煅烧温度为800~950℃,煅烧时间为4~10小时。
4.根据权利要求2所述的氟硅酸盐基红色荧光陶瓷材料的制备方法,其特征在于:步骤(3)的煅烧温度为950~1200℃,烧结时间为5~10小时。
5.根据权利要求2所述的氟硅酸盐基红色荧光陶瓷材料的制备方法,其特征在于:所述的含有钙离子Ca2+的化合物为碳酸钙、硝酸钙、氢氧化钙、草酸钙、氧化钙的一种;所述含有硅离子Si4+的化合物为二氧化硅或硅酸中的一种;所述的含有铕离子Eu3+的化合物为氧化铕、硝酸铕、碳酸铕、硫酸铕、氯化铕中的一种,所述含有氟离子F-的化合物为氟化钙。
CN201710053655.9A 2017-01-24 2017-01-24 一种氟硅酸盐基红色荧光陶瓷材料、制备方法和应用 Active CN106947472B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710053655.9A CN106947472B (zh) 2017-01-24 2017-01-24 一种氟硅酸盐基红色荧光陶瓷材料、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710053655.9A CN106947472B (zh) 2017-01-24 2017-01-24 一种氟硅酸盐基红色荧光陶瓷材料、制备方法和应用

Publications (2)

Publication Number Publication Date
CN106947472A CN106947472A (zh) 2017-07-14
CN106947472B true CN106947472B (zh) 2019-06-07

Family

ID=59466193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710053655.9A Active CN106947472B (zh) 2017-01-24 2017-01-24 一种氟硅酸盐基红色荧光陶瓷材料、制备方法和应用

Country Status (1)

Country Link
CN (1) CN106947472B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609128A (zh) * 2018-12-29 2019-04-12 上海应用技术大学 一种绿色荧光粉及其制备方法
CN111138191B (zh) * 2019-12-27 2022-03-22 江苏师范大学 一种Eu3+离子激活的钽酸盐荧光陶瓷及其合成方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122349A (en) * 1976-02-05 1978-10-24 Rhone-Poulenc Industries Novel luminophores emitting ultraviolet radiation, and uses thereof
CN102373062A (zh) * 2011-12-12 2012-03-14 苏州大学 一种适于白光led应用的氟硅酸盐红色荧光粉及其制备方法
CN103173225A (zh) * 2013-04-03 2013-06-26 苏州大学 一种氟硅酸盐蓝色荧光粉、制备方法及应用
CN103242830A (zh) * 2013-05-16 2013-08-14 苏州大学 一种氟硅酸盐基蓝绿色荧光粉、制备方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122349A (en) * 1976-02-05 1978-10-24 Rhone-Poulenc Industries Novel luminophores emitting ultraviolet radiation, and uses thereof
CN102373062A (zh) * 2011-12-12 2012-03-14 苏州大学 一种适于白光led应用的氟硅酸盐红色荧光粉及其制备方法
CN103173225A (zh) * 2013-04-03 2013-06-26 苏州大学 一种氟硅酸盐蓝色荧光粉、制备方法及应用
CN103242830A (zh) * 2013-05-16 2013-08-14 苏州大学 一种氟硅酸盐基蓝绿色荧光粉、制备方法及应用

Also Published As

Publication number Publication date
CN106947472A (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
CN105219387B (zh) 一种锰掺杂的钛酸盐基红色发光材料及其制备方法和应用
CN115287068B (zh) 一种钠钇镓锗石榴石基近红外光荧光粉及其制备方法
CN105694886B (zh) 一种Eu2+掺杂的氟酸盐基发光材料的制备方法和应用
CN105694870B (zh) 一种Eu3+激活的正硅酸镁钠红色荧光粉及其制备方法和应用
CN103627392A (zh) 一种锑酸盐基红色荧光粉及其制备方法和应用
CN103725285B (zh) 一种用于白光led的单一基质白光荧光粉及其制备方法
CN106635017B (zh) 一种钛酸盐基红色荧光粉及其制备方法
CN106544022B (zh) 一种Eu3+掺杂的钽酸盐红色荧光粉、制备方法及用途
CN103242830B (zh) 一种氟硅酸盐基蓝绿色荧光粉、制备方法及应用
CN106947472B (zh) 一种氟硅酸盐基红色荧光陶瓷材料、制备方法和应用
CN102352244B (zh) 一种led红色荧光材料及其制备方法
CN109988575A (zh) 一种Eu3+离子激活的钒磷铌酸盐红色荧光粉、制备方法及其应用
CN103468249B (zh) 一种Eu2+激活的硅酸钠钙绿色荧光粉、制备及应用
CN106915955B (zh) 一种绿色荧光陶瓷材料、制备方法及其应用
CN106978173A (zh) 一种正硅酸盐基红色荧光粉及其制备方法
CN108034423B (zh) 一种Mn2+离子掺杂的硅酸盐红色荧光粉、制备方法及应用
CN103725284B (zh) 一种白光用单一基质白光荧光粉及其制备方法
CN103740367B (zh) 一种暖白光led用单一基质白光荧光粉及其制备方法
CN107099291B (zh) 一种可被近紫外光激发的红色荧光材料、制备方法及应用
CN104804731B (zh) 一种Eu2+激活的硅酸镁钾蓝绿色荧光粉及其制备方法和应用
CN105860971A (zh) 一种稀土离子掺杂的铌酸锆荧光粉及其制备方法
CN106566548B (zh) 一种白光led用绿色荧光粉及其制备方法
CN105419798A (zh) 一种橙红色锑酸盐荧光材料的制备方法及应用
CN106590652B (zh) 一种钽酸盐基蓝色荧光粉、制备方法及其用途
CN103497761A (zh) 一种Eu2+激活的氟硼酸铝钡荧光粉、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191122

Address after: 210000 No. 22 Jingang Road, Dongping Town, Lishui District, Nanjing City, Jiangsu Province

Patentee after: Nanjing Tongli Crystal Materials Research Institute Co., Ltd.

Address before: 221100 Shanghai Road, Copper Mt. New District, Jiangsu, No. 101, No.

Patentee before: Jiangsu Normal University

TR01 Transfer of patent right