CN106800921A - 广温高矿化度调堵用全能冻胶 - Google Patents

广温高矿化度调堵用全能冻胶 Download PDF

Info

Publication number
CN106800921A
CN106800921A CN201611094011.6A CN201611094011A CN106800921A CN 106800921 A CN106800921 A CN 106800921A CN 201611094011 A CN201611094011 A CN 201611094011A CN 106800921 A CN106800921 A CN 106800921A
Authority
CN
China
Prior art keywords
agent
frozen glue
weight portion
wide temperature
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611094011.6A
Other languages
English (en)
Other versions
CN106800921B (zh
Inventor
陈立峰
付美龙
朱晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze University
Original Assignee
Yangtze University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze University filed Critical Yangtze University
Priority to CN201611094011.6A priority Critical patent/CN106800921B/zh
Publication of CN106800921A publication Critical patent/CN106800921A/zh
Application granted granted Critical
Publication of CN106800921B publication Critical patent/CN106800921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了广温高矿化度调堵用全能冻胶,属于油田化学技术领域,其重量份组成如下:丙烯酰胺/2‑丙烯酰胺基‑2‑甲基丙磺酸共聚物0.3份~1份,低分子聚乙烯亚胺或/和高分子聚乙烯亚胺0.4份~1.0份,氨基纳米二氧化硅溶胶与氧化石墨烯为0.2份~1份,亚硫酸钠或/和硫脲0.05份~0.45份,羟基膦酸盐0.05份~0.5份,余量为水,各组分重量份之和为100。其中低分子聚乙烯亚胺相对分子质量为3000‑3800,高分子量聚乙烯亚胺相对分子质量为18000‑25000。本发明所提供的冻胶堵剂的成胶性能优异,热稳定性强,粘弹性好,成胶时间在15‑96h可调,可用于温度为30‑170℃、矿化度为0‑100000mg/L的油田开采堵水调剖。

Description

广温高矿化度调堵用全能冻胶
技术领域
本发明涉及油田开采用堵剂,具体是广温高矿化度调堵用全能冻胶。
背景技术
油田在进行三次开采的过程中,往往会存在油井出水的问题。油井出水会降低原油采收率,消耗地层能量,并加剧设备腐蚀和结垢,同时开采出的原油含水率的增加使得后续脱水站负荷加重,不合格的原油外排造成环境污染,因此如何有效堵水是提高原油采收率的突破点。常用的堵水剂有无机盐类堵水剂,聚合物冻胶类堵水剂,树脂类堵水剂,泡沫调剖堵水剂等,其中聚合物冻胶类堵水剂具有选择性堵水作用,可有效降低产出原油中的含水率。
由于油藏的地域分布广,所在地质环境相差较大,不同的油藏的温度差异较大:普通油藏的温度在50-70℃之间,少数油藏温度较低,可低至30℃,也有油藏温度会较高,高达150℃以上。同时,不同油藏的矿化度也不同。当使用聚合物冻胶类堵水剂时,往往需要聚合物冻胶能适应不同的温度和矿化度,但不同的温度或不同的矿化度对聚合物冻胶的成胶性能和稳定性影响显著。针对不同温度或不同矿化度的油藏环境,已有多种冻胶问世。
CN103409120A的专利公开了聚合物纳米插层复合材料堵剂及其制备方法,该复合堵剂由聚丙烯酰胺与有机膨润土插层材料以及酚醛树脂交联剂或有机铬交联剂复配组成,主要用于温度范围为50~140℃的油井堵水调剖,其可用于矿化度为0~40000mg/L的油田堵水。该堵剂使用的交联剂酚醛树脂和有机铬稳定性较差,特别是温度较高时(>25℃),易发生变质分层,给运输及现场施工带来不便;且该堵剂只适用于低盐度的油田堵水。
CN103614123A的专利公开了一种聚乙烯亚胺冻胶调剖堵水剂,由阴离子聚丙烯酰胺0.3~0.8%,交联剂聚乙烯亚胺0.2~0.5%,添加剂亚硫酸钠、亚硫酸氢钠、硫代硫酸钠或硫脲的一种或其任意几种的混合物0.3~0.8%,余量为水,各组分之和为100%,能封堵110℃下、NaCl矿化度50000mg/L的地层水,其耐温性好,120天不脱水。该堵剂虽可用于矿化度更高的地层水,但温度适应性差。
除以上冻胶之外,还有许多专利(CN103980872A、CN103614123A、CN102807849B等)公开了不同类型的冻胶,但这些专利公开的冻胶调剖堵水剂均不能同时满足广温、高矿化度的油田开采调剖堵水的需要。因此,研制一种新型的全能冻胶堵剂对开采不同温度或矿化度的油藏具有重要的意义。
发明内容
本发明的目的就是提供一种广温高矿化度调堵用全能冻胶,该冻胶可满足温度为30~170℃、矿化度为0~10×104mg/L的不同油田开采堵水调剖的需要,冻胶稳定性好,在170℃之内老化6个月脱水率均小于10%。
为实现上述目的,本发明采用的技术方案是:
广温高矿化度调堵用全能冻胶,该冻胶由聚合物主剂0.3份~1份、交联剂0.4份~1.0份、促进剂0.2份~1份、增稳剂0.05份~0.45份、成胶调节剂0.05份~0.5份、余量水组成,用量为重量份,上述组分的重量份之和为100;所述聚合物主剂为丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物,所述交联剂为聚乙烯亚胺,所述促进剂为氨基纳米二氧化硅溶胶:氧化石墨烯按氨基纳米二氧化硅溶胶=1~3:1,所述增稳剂为硫脲与亚硫酸钠之一或组合,组合时硫脲:亚硫酸钠=2~3:1;所述成胶调节剂为羟基膦酸盐。
在上述技术方案中,所述冻胶由聚合物主剂0.3份~0.7份、交联剂0.4份~0.75份、促进剂0.2份~0.5份、增稳剂0.05份~0.3份、成胶调节剂0.05份~0.3份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂0.3份~0.4份、交联剂0.4份~0.5份、促进剂0.2份~0.3份、增稳剂0.05份~0.1份、成胶调节剂0.05份~0.1份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂0.3份、交联剂0.5份、促进剂0.2份、增稳剂0.05份、成胶调节剂0.05份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂0.5份、交联剂0.6份、促进剂0.4份、增稳剂0.2份、成胶调节剂0.15份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂0.3份、交联剂0.5份、促进剂0.2份、增稳剂0.05份、成胶调节剂0.05份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂0.7份、交联剂0.75份、促进剂0.5份、增稳剂0.3份、成胶调节剂0.3份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂1.0份、交联剂1.0份、促进剂1.0份、增稳剂0.45份、成胶调节剂0.5份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物的相对分子质量为100×104~1000×104,离子度为5%~30%,所述余量水为矿化度0~10×104mg/L的氯化钠水溶液。。
在上述技术方案中,所述交联剂为低分子量聚乙烯亚胺与高分子量聚乙烯亚胺之一或组合,组合时低分子量聚乙烯亚胺:高分子量聚乙烯亚胺=1~2:1,其中所述低分子量聚乙烯亚胺的相对分子质量为3000-3800,所述高分子量聚乙烯亚胺的相对分子质量为18000-25000。
上述调堵用全能冻胶调堵剂的制备方法如下:
1、将丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物在一定矿化度的水中充分溶解,备用;按配比将交联剂、促进剂、增稳剂、成胶调节剂以及余量水混合搅拌均匀;将上述两种溶液混合搅拌均匀即得到成胶液。
2、将成胶液置于安瓿瓶中,用酒精喷灯烧结密封,置于一定温度的烘箱中老化即得上述冻胶,成胶温度可选30℃~170℃,不同的成胶温度对应不同的成胶时间,最终使得成胶时间在15~96h之间可调。
与现有技术相比,本发明的有益效果是:
1、本发明的冻胶可用于30~170℃不同温度下的油田开采的堵水调剖,其在低温常温高温油田中均具有优异的成胶能力,且封堵性能优异;本发明可用于0-10×104mg/L的矿化度的油田,耐盐性较好。
2、本发明的冻胶拥有交叉互穿的网格结构,其强度高、稳定性好。
3、本发明的冻胶的成胶温度可选30℃~170℃,不同的成胶温度对应不同的成胶时间,最终使得成胶时间在15~96h之间可调。
具体实施方式
为了更加清楚地理解本发明,现对本发明的具体实施方案进行详细的阐述,但本发明所保护的范围不局限于下述实施例。
本发明广温高矿化度调堵用全能冻胶,该冻胶由聚合物主剂0.3份~1份、交联剂0.4份~1.0份、促进剂0.2份~1份、增稳剂0.05份~0.45份、成胶调节剂0.05份~0.5份、余量水组成,用量为重量份,上述组分的重量份之和为100;所述聚合物主剂为丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物,所述交联剂为聚乙烯亚胺,所述促进剂为氨基纳米二氧化硅溶胶:氧化石墨烯按氨基纳米二氧化硅溶胶=1~3:1,所述增稳剂为硫脲与亚硫酸钠之一或组合,组合时硫脲:亚硫酸钠=2~3:1;所述成胶调节剂为羟基膦酸盐。
在上述技术方案中,所述冻胶由聚合物主剂0.3份~0.7份、交联剂0.4份~0.75份、促进剂0.2份~0.5份、增稳剂0.05份~0.3份、成胶调节剂0.05份~0.3份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂0.3份~0.4份、交联剂0.4份~0.5份、促进剂0.2份~0.3份、增稳剂0.05份~0.1份、成胶调节剂0.05份~0.1份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂0.3份、交联剂0.5份、促进剂0.2份、增稳剂0.05份、成胶调节剂0.05份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂0.5份、交联剂0.6份、促进剂0.4份、增稳剂0.2份、成胶调节剂0.15份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂0.3份、交联剂0.5份、促进剂0.2份、增稳剂0.05份、成胶调节剂0.05份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂0.7份、交联剂0.75份、促进剂0.5份、增稳剂0.3份、成胶调节剂0.3份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述冻胶由聚合物主剂1.0份、交联剂1.0份、促进剂1.0份、增稳剂0.45份、成胶调节剂0.5份、余量水组成,用量为重量份,上述组分的重量份之和为100。
在上述技术方案中,所述丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物的相对分子质量为100×104~1000×104,离子度为5%~30%,所述余量水为矿化度0~10×104mg/L的氯化钠水溶液。。
在上述技术方案中,所述交联剂为低分子量聚乙烯亚胺与高分子量聚乙烯亚胺之一或组合,组合时低分子量聚乙烯亚胺:高分子量聚乙烯亚胺=1~2:1,其中所述低分子量聚乙烯亚胺的相对分子质量为3000-3800,所述高分子量聚乙烯亚胺的相对分子质量为18000-25000。
本发明解决技术问题所采用的技术方案中关键组分的作用原理和添加理由如下所述:
1、采用的交联剂聚乙烯亚胺中的亲核体氮原子交联活性高,在低温下即可与丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物反应生成共价键,因而聚乙烯亚胺与丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物在低温下也具有优异的成胶性能;同时,采用的氨基二氧化硅溶胶和氧化石墨烯纳米粒子表面带有大量的羟基,具有优异的亲水能力,有助于增强交联体系的亲水性能,进而促进低温条件下冻胶的形成。因而该冻胶可用于温度较低的油田开采调堵。
采用的纳米粒子通过氢键、静电吸引等作用与聚合物之间通过形成缔合结构,抑制冻胶中的水从冻胶中脱出,因此冻胶耐温性能增强,热稳定性优异,可用于一般温度或更高温度的油田开采过程的堵水。综合所述,本发明所提供的全能冻胶堵剂可以在低温常温高温油田均表现出优异的封堵性能。
采用的丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物含有阴离子基团磺酸基,由于磺酸基体积较大,会产生较大的空间位阻效应,此外,磺酸基的水化能力较强,使得聚合物分子形成较厚的水化层,从而降低了溶液中离子对聚合物的影响,因此冻胶耐盐能力显著增强。
2、采用的交联剂聚乙烯亚胺绿色无污染,有利于保护油田及地层环境。同时,聚乙烯亚胺为液态,溶解性优异,有利于成胶液的配制。高/低分子量的聚乙烯亚胺复配使用使得其与丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物形成交叉互穿的网格结构,因而冻胶强度高、粘弹性好、稳定性强。
3、本发明通过添加成胶调节剂羟基膦酸盐的量控制冻胶成胶速度,使得成胶时间在15~96h之间可调,因此该冻胶既可作为近井地带的封堵剂,又可用于远井地带的深部调剖。
实施例1:
在49.2份的100000mg/L氯化钠溶液中加入0.5份高分子量聚乙烯亚胺、0.15份氨基纳米二氧化硅溶胶、0.05份氧化石墨烯、0.05份硫脲、0.05份羟基膦酸盐,搅拌均匀,使其充分溶解,再将50份用100000mg/L氯化钠溶液配制的质量浓度为0.6%的丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物与上述溶液混合,搅拌均匀,即得到本发明的成胶液。该成胶液在30℃下成胶时间为96h,采用突破真空度法测得冻胶强度为0.066MPa,30℃下老化6个月没有脱水现象。其中,冻胶强度超过0.06MPa较为优秀。
实施例2:
在49.1份的50000mg/L氯化钠溶液中加入0.4份高分子量聚乙烯亚胺、0.2份纳米二氧化硅溶胶、0.1份氧化石墨烯、0.1份硫脲、0.1份羟基膦酸盐,搅拌均匀,使其充分溶解,再将50份用50000mg/L氯化钠溶液配制的质量浓度为0.8%的丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物与上述溶液混合,搅拌均匀,即得到本发明的成胶液。该成胶液在60℃下成胶时间为48h,获得的冻胶强度为0.072MPa,60℃下老化6个月没有脱水现象。
实施例3:
在48.65份的40000mg/L氯化钠溶液中加入0.6份高分子量聚乙烯亚胺、0.3份纳米二氧化硅溶胶、0.1份氧化石墨烯、0.2份硫脲、0.15份羟基膦酸盐,搅拌均匀,使其充分溶解,再将50份用40000mg/L氯化钠溶液配制的质量浓度为1%的丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物与上述溶液混合,搅拌均匀,即得到本发明的成胶液。该成胶液在90℃下成胶时间为36h,获得的冻胶强度为0.069MPa,90℃下老化6个月脱水率为1.2%。
实施例4:
在48.15份的20000mg/L氯化钠溶液中加入0.5份高分子量聚乙烯亚胺、0.25份低分子量聚乙烯亚胺、0.3份纳米二氧化硅溶胶、0.2份氧化石墨烯、0.3份亚硫酸钠、0.3份羟基膦酸盐,搅拌均匀,使其充分溶解,再将50份用20000mg/L氯化钠溶液配制的质量浓度为1.4%的丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物与上述溶液混合,搅拌均匀,即得到本发明的成胶液。该成胶液在130℃下成胶时间为32h,获得的冻胶强度为0.071MPa,130℃下老化6个月脱水率为3.4%。
实施例5:
在47.6份的10000mg/L氯化钠溶液中加入0.4份高分子量聚乙烯亚胺、0.4份低分子量聚乙烯亚胺、0.4份纳米二氧化硅溶胶、0.4份氧化石墨烯、0.1份亚硫酸钠、0.3份硫脲、0.4份羟基膦酸盐,搅拌均匀,使其充分溶解,再将50份用10000mg/L氯化钠溶液配制的质量浓度为1.8%的丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物与上述溶液混合,搅拌均匀,即得到本发明的成胶液。该成胶液在150℃下成胶时间为20h,获得的冻胶强度为0.065MPa,150℃下老化6个月脱水率为6.2%。
实施例6:
在47.05份的10000mg/L氯化钠溶液中加入0.5份高分子量聚乙烯亚胺、0.5份低分子量聚乙烯亚胺、0.5份纳米二氧化硅溶胶、0.5份氧化石墨烯、0.15份亚硫酸钠、0.3份硫脲、0.5份羟基膦酸盐,搅拌均匀,使其充分溶解,再将50份用10000mg/L氯化钠溶液配制的质量浓度为2%的丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物与上述溶液混合,搅拌均匀,即得到本发明的成胶液。该成胶液在170℃下成胶时间为15h,获得的冻胶强度为0.061MPa,170℃下老化6个月脱水率为9.7%。
上述实施例1~实施例6广温高矿化度调堵用全能冻胶各个组分配比汇总如表1所示。
实施例7:
以“实施例1-6”中获得的冻胶为研究对象,考察本发明所提供的冻胶在的封堵能力及耐冲刷性能。具体实验过程如下:将内径为2.5cm、长度为20cm的6根填砂管分别填充石英砂粒制得模拟岩心,记作1#~6#,水驱至压力稳定后得到原始渗透率k1,然后分别将“实施例1-6”中的成胶液反向注入填砂管中,注入体积为0.5PV(岩心孔隙体积),然后注入0.3PV水进行顶替,冻胶成胶后,分别水驱至压力稳定,测得模拟岩心的堵后渗透率k2,并按公式E=(k1-k2)/k1×100%,计算岩心封堵率E1;继续注入15PV水,通过冲刷后渗透率k3计算封堵率E2考察冻胶的耐冲刷性能,实验结果如表2所示。
表1
由表1可知,实施例中的冻胶由丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物0.3份~1份;高分子量聚乙烯亚胺或/和低分子量聚乙烯亚胺0.4份~1.0份,组合时低分子量聚乙烯亚胺:高分子量聚乙烯亚胺=1~2:1;氨基纳米二氧化硅溶胶和氧化石墨烯0.2份~1份,并且氨基纳米二氧化硅溶胶:氧化石墨烯按氨基纳米二氧化硅溶胶=1~3:1;硫脲或/和亚硫酸钠0.05份~0.45份,组合时硫脲:亚硫酸钠=2~3:1;羟基膦酸盐0.05份~0.5份、有一定矿化度的余量水组成,用量为重量份,所有组分的重量份之和为100。
同时,冻胶的成胶温度在30℃~170℃可调,对应的成胶时间在15~96h之间可调,可用于油田温度为30℃~170℃时的油田堵水调剖。各冻胶在温度由30℃增加至170℃的油田中老化6个月,脱水率逐渐增高,但均小于10%,在可接受范围内。考虑到冻胶的稳定性,老化温度不可继续提高。
表2
由表2可知,本发明冻胶在温度为30℃~170℃的环境下,岩心封堵率E1均大于90%,表明本发明冻胶在不同温度的油藏环境中具有较强的封堵能力;封堵率E2则在温度增高时逐渐变低,但均高于85%,说明本发明冻胶在不同温度的油藏环境中具有较强的耐冲刷能力,使得封堵有效期得以保证。
以上实验结果表明:本发明提供的冻胶堵剂在低温30℃至高温170℃,在矿化度为0~10×104mg/L的油田开采中具有优异的调剖堵水性能,可有效封堵水驱原油过程中出现的高渗层,同时,该冻胶堵剂的成胶温度在30℃~170℃可调,不同的成胶温度对应的成胶时间在15~96h之间可调。
其它未详细说明的均属于现有技术。

Claims (10)

1.广温高矿化度调堵用全能冻胶,其特征在于:所述冻胶由聚合物主剂0.3份~1份、交联剂0.4份~1.0份、促进剂0.2份~1份、增稳剂0.05份~0.45份、成胶调节剂0.05份~0.5份、余量水组成,用量为重量份,上述组分的重量份之和为100;所述聚合物主剂为丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物,所述交联剂为聚乙烯亚胺,所述促进剂为氨基纳米二氧化硅溶胶:氧化石墨烯按氨基纳米二氧化硅溶胶=1~3:1,所述增稳剂为硫脲与亚硫酸钠之一或组合,组合时硫脲:亚硫酸钠=2~3:1;所述成胶调节剂为羟基膦酸盐。
2.根据权利要求1所述的广温高矿化度调堵用全能冻胶,其特征在于:所述冻胶由聚合物主剂0.3份~0.7份、交联剂0.4份~0.75份、促进剂0.2份~0.5份、增稳剂0.05份~0.3份、成胶调节剂0.05份~0.3份、余量水组成,用量为重量份,上述组分的重量份之和为100。
3.根据权利要求1所述的广温高矿化度调堵用全能冻胶,其特征在于:所述冻胶由聚合物主剂0.3份~0.4份、交联剂0.4份~0.5份、促进剂0.2份~0.3份、增稳剂0.05份~0.1份、成胶调节剂0.05份~0.1份、余量水组成,用量为重量份,上述组分的重量份之和为100。
4.根据权利要求1所述的广温高矿化度调堵用全能冻胶,其特征在于:所述冻胶由聚合物主剂0.3份、交联剂0.5份、促进剂0.2份、增稳剂0.05份、成胶调节剂0.05份、余量水组成,用量为重量份,上述组分的重量份之和为100。
5.根据权利要求1所述的广温高矿化度调堵用全能冻胶,其特征在于:所述冻胶由聚合物主剂0.5份、交联剂0.6份、促进剂0.4份、增稳剂0.2份、成胶调节剂0.15份、余量水组成,用量为重量份,上述组分的重量份之和为100。
6.根据权利要求1所述的广温高矿化度调堵用全能冻胶,其特征在于:所述冻胶由聚合物主剂0.3份、交联剂0.5份、促进剂0.2份、增稳剂0.05份、成胶调节剂0.05份、余量水组成,用量为重量份,上述组分的重量份之和为100。
7.根据权利要求1所述的广温高矿化度调堵用全能冻胶,其特征在于:所述冻胶由聚合物主剂0.7份、交联剂0.75份、促进剂0.5份、增稳剂0.3份、成胶调节剂0.3份、余量水组成,用量为重量份,上述组分的重量份之和为100。
8.根据权利要求1所述的广温高矿化度调堵用全能冻胶,其特征在于:所述冻胶由聚合物主剂1.0份、交联剂1.0份、促进剂1.0份、增稳剂0.45份、成胶调节剂0.5份、余量水组成,用量为重量份,上述组分的重量份之和为100。
9.根据权利要求1所述的广温高矿化度调堵用全能冻胶,其特征在于:所述丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物的相对分子质量为100×104~1000×104,离子度为5%~30%;所述水或余量水为矿化度0~10×104mg/L的氯化钠水溶液。
10.根据权利要求1所述的广温高矿化度调堵用全能冻胶,其特征在于:所述交联剂为低分子量聚乙烯亚胺与高分子量聚乙烯亚胺之一或组合,组合时低分子量聚乙烯亚胺:高分子量聚乙烯亚胺=1~2:1,其中所述低分子量聚乙烯亚胺的相对分子质量为3000-3800,所述高分子量聚乙烯亚胺的相对分子质量为18000-25000。
CN201611094011.6A 2016-12-02 2016-12-02 广温高矿化度调堵用冻胶 Active CN106800921B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611094011.6A CN106800921B (zh) 2016-12-02 2016-12-02 广温高矿化度调堵用冻胶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611094011.6A CN106800921B (zh) 2016-12-02 2016-12-02 广温高矿化度调堵用冻胶

Publications (2)

Publication Number Publication Date
CN106800921A true CN106800921A (zh) 2017-06-06
CN106800921B CN106800921B (zh) 2019-06-07

Family

ID=58983940

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611094011.6A Active CN106800921B (zh) 2016-12-02 2016-12-02 广温高矿化度调堵用冻胶

Country Status (1)

Country Link
CN (1) CN106800921B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107267127A (zh) * 2017-06-28 2017-10-20 常州力纯数码科技有限公司 一种堵水剂及其制备方法
CN109837072A (zh) * 2017-11-28 2019-06-04 中国石油化工股份有限公司 一种适用于页岩地层的强抑制强封堵性水基钻井液及其制备方法
CN110982502A (zh) * 2019-12-18 2020-04-10 中国石油大学(华东) 一种含膦酸结构的耐温耐盐冻胶泡沫及其制备方法与应用
CN111019619A (zh) * 2019-11-26 2020-04-17 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种用于井筒隔离的液体胶塞暂堵段塞及制备方法
CN111040750A (zh) * 2019-11-01 2020-04-21 中国石油大学(华东) 复合耐温冻胶堵剂及其制备方法和在超深层油藏调剖堵水中的应用
CN111574978A (zh) * 2020-06-24 2020-08-25 中国石油大学(华东) 一种冻胶堵剂、制备方法及其应用
CN112708405A (zh) * 2020-12-30 2021-04-27 宁波锋成先进能源材料研究院有限公司 一种一体化调驱剂及其制备方法和应用
CN112760088A (zh) * 2021-02-06 2021-05-07 宁夏宁聚油田材料科技有限公司 一种粘弹自调调驱剂及其制备方法
CN113249102A (zh) * 2021-04-09 2021-08-13 中国石油大学(华东) 一种中高温油藏调剖用缓慢交联冻胶及其制备方法
CN117247771A (zh) * 2023-11-10 2023-12-19 中国石油大学(华东) 一种颗粒复合冻胶强化泡沫体系及其制备方法和应用
CN117264118A (zh) * 2023-11-21 2023-12-22 四川大学 一种耐超高温超高盐聚合物水凝胶及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102876A (zh) * 2012-12-31 2013-05-15 哈尔滨工业大学 一种无机有机复合型调剖剂的制备方法
AU2012203119B2 (en) * 2011-06-29 2013-05-16 Halliburton Energy Services, Inc. Gellable treatment fluids comprising quaternary ammonium salt gel-time modifiers and methods for use thereof
CN103865008A (zh) * 2014-03-28 2014-06-18 西南石油大学 聚酰胺-胺杂化纳米二氧化硅超支化聚合物及其制备方法
CN104212423A (zh) * 2014-08-17 2014-12-17 无棣华信石油技术服务有限公司 一种油井复合型堵水剂及其制备方法
WO2015060823A1 (en) * 2013-10-22 2015-04-30 Halliburton Energy Services, Inc. Gellable treatment fluids with clay-based gel retarders and related methods
CN104629699A (zh) * 2015-01-19 2015-05-20 中国石油大学(华东) 一种低交联剂用量的耐温耐盐冻胶
US20150284622A1 (en) * 2011-06-29 2015-10-08 Halliburton Energy Services, Inc. Gellable treatment fluids comprising amino group gel-time modifiers
CN105368423A (zh) * 2015-10-15 2016-03-02 东营方立化工有限公司 一种采油用无铬复合树脂凝胶类调剖剂及制备方法与用途
CN105440233A (zh) * 2015-12-10 2016-03-30 中国石油天然气股份有限公司 一种火驱封窜剂及其制备方法
CN106047324A (zh) * 2016-06-30 2016-10-26 中国石油大学(华东) 适用于低渗透高温高盐油藏的强化冻胶分散体深部调驱剂

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012203119B2 (en) * 2011-06-29 2013-05-16 Halliburton Energy Services, Inc. Gellable treatment fluids comprising quaternary ammonium salt gel-time modifiers and methods for use thereof
US20150284622A1 (en) * 2011-06-29 2015-10-08 Halliburton Energy Services, Inc. Gellable treatment fluids comprising amino group gel-time modifiers
CN103102876A (zh) * 2012-12-31 2013-05-15 哈尔滨工业大学 一种无机有机复合型调剖剂的制备方法
WO2015060823A1 (en) * 2013-10-22 2015-04-30 Halliburton Energy Services, Inc. Gellable treatment fluids with clay-based gel retarders and related methods
CN103865008A (zh) * 2014-03-28 2014-06-18 西南石油大学 聚酰胺-胺杂化纳米二氧化硅超支化聚合物及其制备方法
CN104212423A (zh) * 2014-08-17 2014-12-17 无棣华信石油技术服务有限公司 一种油井复合型堵水剂及其制备方法
CN104629699A (zh) * 2015-01-19 2015-05-20 中国石油大学(华东) 一种低交联剂用量的耐温耐盐冻胶
CN105368423A (zh) * 2015-10-15 2016-03-02 东营方立化工有限公司 一种采油用无铬复合树脂凝胶类调剖剂及制备方法与用途
CN105440233A (zh) * 2015-12-10 2016-03-30 中国石油天然气股份有限公司 一种火驱封窜剂及其制备方法
CN106047324A (zh) * 2016-06-30 2016-10-26 中国石油大学(华东) 适用于低渗透高温高盐油藏的强化冻胶分散体深部调驱剂

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN, LIFENG,等: "Mechanism of sodium tripolyphosphate inhibiting the syneresis of HPAM hydrogel", 《RSC ADVANCES》 *
LIFENG CHEN,等: "Ultrastable Hydrogel for Enhanced Oil Recovery Based on Double-Groups Cross-Linking", 《ENERGY & FUELS》 *
刘瑞琼,等: "高弹性聚丙烯酞胺/氧化石墨烯纳米复合水凝胶制备及性能", 《2012年全国高分子材料科学与工程研讨会学术论文集(下册)》 *
刘锦霞: "高温下PAM/PEI体系延缓成胶技术研究", 《油田化学》 *
吴运强: "适用于高温高矿化度条件的聚乙烯亚胺冻胶堵水剂", 《石油钻采工艺》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107267127B (zh) * 2017-06-28 2019-09-10 山东科兴化工有限责任公司 一种堵水剂及其制备方法
CN107267127A (zh) * 2017-06-28 2017-10-20 常州力纯数码科技有限公司 一种堵水剂及其制备方法
CN109837072A (zh) * 2017-11-28 2019-06-04 中国石油化工股份有限公司 一种适用于页岩地层的强抑制强封堵性水基钻井液及其制备方法
CN111040750A (zh) * 2019-11-01 2020-04-21 中国石油大学(华东) 复合耐温冻胶堵剂及其制备方法和在超深层油藏调剖堵水中的应用
CN111040750B (zh) * 2019-11-01 2020-11-03 中国石油大学(华东) 复合耐温冻胶堵剂及其制备方法和在超深层油藏调剖堵水中的应用
CN111019619A (zh) * 2019-11-26 2020-04-17 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种用于井筒隔离的液体胶塞暂堵段塞及制备方法
CN110982502B (zh) * 2019-12-18 2022-02-01 中国石油大学(华东) 一种含膦酸结构的耐温耐盐冻胶泡沫及其制备方法与应用
CN110982502A (zh) * 2019-12-18 2020-04-10 中国石油大学(华东) 一种含膦酸结构的耐温耐盐冻胶泡沫及其制备方法与应用
CN111574978A (zh) * 2020-06-24 2020-08-25 中国石油大学(华东) 一种冻胶堵剂、制备方法及其应用
CN112708405A (zh) * 2020-12-30 2021-04-27 宁波锋成先进能源材料研究院有限公司 一种一体化调驱剂及其制备方法和应用
CN112760088A (zh) * 2021-02-06 2021-05-07 宁夏宁聚油田材料科技有限公司 一种粘弹自调调驱剂及其制备方法
CN112760088B (zh) * 2021-02-06 2023-01-20 宁夏宁聚油田材料科技有限公司 一种粘弹自调调驱剂及其制备方法
CN113249102A (zh) * 2021-04-09 2021-08-13 中国石油大学(华东) 一种中高温油藏调剖用缓慢交联冻胶及其制备方法
CN113249102B (zh) * 2021-04-09 2022-12-27 中国石油大学(华东) 一种中高温油藏调剖用缓慢交联冻胶及其制备方法
CN117247771A (zh) * 2023-11-10 2023-12-19 中国石油大学(华东) 一种颗粒复合冻胶强化泡沫体系及其制备方法和应用
CN117247771B (zh) * 2023-11-10 2024-03-29 中国石油大学(华东) 一种颗粒复合冻胶强化泡沫体系及其制备方法和应用
CN117264118A (zh) * 2023-11-21 2023-12-22 四川大学 一种耐超高温超高盐聚合物水凝胶及其制备方法
CN117264118B (zh) * 2023-11-21 2024-03-01 四川大学 一种耐超高温超高盐聚合物水凝胶及其制备方法

Also Published As

Publication number Publication date
CN106800921B (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN106800921B (zh) 广温高矿化度调堵用冻胶
CN103013480A (zh) 改性石油胶颗粒复合调剖堵水剂及多轮次双向调堵技术
CN102618246B (zh) 一种适用于油田开发的泡沫复合驱油方法
CN105086967A (zh) 一种防窜堵窜剂以及用其进行调堵封窜的施工方法
CN106947450B (zh) 一种具有低初始粘度的深部调驱剂及其制备方法
CN104109514B (zh) 一种用于永久性封堵多层低压大孔道油层的封堵剂体系及工艺技术
CN102816558A (zh) 一种深部调剖堵水用堵剂及其制备方法
CN106188403A (zh) 一种高温高盐油藏防co2气窜堵剂及其制备方法
CN105586024A (zh) 用于高温高矿化度油藏调剖堵水的调堵剂及调剖堵水方法
CN106590559B (zh) 稠油热采封窜纳米复合冻胶
US20220162935A1 (en) Methods of strengthening and consolidating subterranean formations with silicate-aluminum geopolymers
CN109971443B (zh) 一种三相泡沫封窜剂及其制备方法、稠油开采调堵方法
CN105985762B (zh) 一种压裂液及其制备方法
CN111087998B (zh) 一种缓膨颗粒及其制备方法
CN108531153A (zh) 一种耐高温石油树脂分散体堵剂及其制备方法与应用
CN104650842B (zh) 一种调驱组合物及调驱方法
CN105368423A (zh) 一种采油用无铬复合树脂凝胶类调剖剂及制备方法与用途
CN110484229A (zh) 一种用于低渗透油藏的复合驱油体系及其制备和应用方法
CN108119092A (zh) 一种水淹油藏火驱生产井选择性封窜剂及其应用
Chen et al. Experimental study on fiber balls for bridging in fractured-vuggy reservoir
Fu et al. Application of environmentally stimuli-responsive materials in the development of oil and gas field
CN105385429A (zh) 一种用于非均质油藏调驱或调剖的非均相体系及制备方法
CN104962264A (zh) 选择性可控五段塞凝胶调剖堵水剂及调剖堵水方法
Qing et al. Study and application of gelled foam for in-depth water shutoff in a fractured oil reservoir
CN105089587A (zh) 一种油田采油后期提高地下油藏中原油采收率的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant