CN106702423A - 一种二硫化铁/氮掺杂石墨烯纳米复合材料及制备和应用 - Google Patents

一种二硫化铁/氮掺杂石墨烯纳米复合材料及制备和应用 Download PDF

Info

Publication number
CN106702423A
CN106702423A CN201611036227.7A CN201611036227A CN106702423A CN 106702423 A CN106702423 A CN 106702423A CN 201611036227 A CN201611036227 A CN 201611036227A CN 106702423 A CN106702423 A CN 106702423A
Authority
CN
China
Prior art keywords
nitrogen
preparation
ferrous disulfide
nano composite
doped graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611036227.7A
Other languages
English (en)
Inventor
邱文达
黎彧
张泽敏
游遨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Industry Technical College
Original Assignee
Guangdong Industry Technical College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Industry Technical College filed Critical Guangdong Industry Technical College
Priority to CN201611036227.7A priority Critical patent/CN106702423A/zh
Publication of CN106702423A publication Critical patent/CN106702423A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于析氢电催化技术领域,公开了一种二硫化铁/氮掺杂石墨烯纳米复合材料及制备和应用。本发明制备方法包括以下步骤:将二硫化铁前驱体溶液和氧化石墨烯混合,水热法反应,得到二硫化铁/氮掺杂石墨烯纳米复合材料。本发明采用L‑半胱氨酸为硫源和还原剂,以氨水为氮源,乙酰丙酮铁为铁盐,通过水热法,使FeS2纳米立方体在NG表面上均匀成核生长,得到FeS2/NG纳米复合材料,含氮量为0.38~1.12wt%,借助二硫化铁优异的析氢电催化性能和氮掺杂石墨烯的高比表面积、高导电性,表现出优良的电催化水解制氢的效果,可应用于析氢电催化领域中,特别是制备析氢电催化材料,可直接作为电催化水解制氢的电极材料。

Description

一种二硫化铁/氮掺杂石墨烯纳米复合材料及制备和应用
技术领域
本发明属于析氢电催化技术领域,特别涉及一种二硫化铁/氮掺杂石墨烯纳米复合材料及其制备方法和应用。
背景技术
能源短缺和环境恶化是当今社会普遍关注的问题,寻找清洁能源和可再生能源已经成为世界各国共同关心的话题。随着社会的发展和科技的进步,各种新型能源的开发和利用要求研发不同种类的能量储存装置以实现新能源的高效转化和利用。氢气作为一种有前途的清洁化学燃料,是可再生能源应用的理想能源载体。电解水制氢是一些新兴清洁能源技术的重要组成部分,虽然Pt基催化剂在低的过电势可以取得较大的电流密度,但是高成本和稀缺性使得它不能得到广泛的应用。所以,亟需发展一种不含Pt的高效析氢催化剂。目前,过渡金属硫化物也表现出电催化水解析氢的性能,而二硫化铁因为资源丰富,价格便宜,被认为是最有前途的电催化水解析氢的材料之一。但是目前关于这方面的文献报道还比较少,而且主要是采用化学气相沉积、原子刻蚀等耗能又复杂的方法,所以需要发展一种简单而又能大规模生产的制备方法。
已有研究表明,催化剂与碳材料复合可以降低过电势以及提高催化的稳定性。尤其是具有高比表面积、高导电性的石墨烯更是纳米材料均匀生长的理想基底,它可以降低电解水析氢的过电势,提高整体的电催化性能。而且在石墨烯掺杂异质N原子可以进一步提高其导电性,改变石墨烯纳米片的电子密度,提高电催化的活性位点。在氮掺杂石墨烯表面上成核生长的二硫化铁电催化剂也可以产生强的界面接触效应,这可以进一步增加电催化活性位点的密度。因此,本发明通过温和的水热法使二硫化铁纳米立方体均匀在氮掺杂石墨烯表面上成核生长,形成氮掺杂石墨烯包覆二硫化铁纳米立方体的纳米复合材料,能 够将FeS2优异的电催化性能与NG大比表面积,高导电性和好的柔韧性整合,有效增多了活性位点,提高了电极的导电性和稳定性,进一步提高了电极的电催化性能。本发明所设计的方法为其进一步应用于析氢电催化领域打下了坚实的理论和实践基础。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种具有良好电催化性能的二硫化铁/氮掺杂石墨烯纳米复合材料。
本发明另一目的在于提供一种上述二硫化铁/氮掺杂石墨烯纳米复合材料的制备方法。
本发明制备方法采用L-半胱氨酸作为硫源和还原剂,通过水热法使FeS2纳米立方体在NG表面上均匀成核生长,最后得到FeS2/NG纳米复合材料,其表现出优异的电催化水解析氢的性能。本发明方法操作简单,易规模化,为日后工业化生产打下了坚实的理论和实践基础。
本发明再一目的在于提供上述二硫化铁/氮掺杂石墨烯纳米复合材料在析氢电催化领域中的应用。
本发明的目的通过下述方案实现:
一种二硫化铁/氮掺杂石墨烯(FeS2/NG)纳米复合材料的制备方法,包括以下步骤:将二硫化铁前驱体溶液和氧化石墨烯混合,水热法反应,得到FeS2/NG纳米复合材料。
所述的二硫化铁前驱体溶液由包括以下组分组成:乙酰丙酮铁、L-半胱氨酸、乙二胺四乙酸、酒石酸钠-酒石酸缓冲溶液、1-辛胺、乙醇。
作为一种实施方案,所述的二硫化铁前驱体溶液中,所述L-半胱氨酸的浓度为0.05~0.17mmol/L。
作为一种实施方案,所述的二硫化铁前驱体溶液中,所述乙酰丙酮铁的浓度为0.03~0.14mmol/L。
作为一种实施方案,所述的二硫化铁前驱体溶液中,所述乙二胺四乙酸的浓度为0.03~0.14mmol/L。
作为一种实施方案,所述的二硫化铁前驱体溶液中,所述1-辛胺和乙醇的体积比为1:2~1:5。
作为一种优选的实施方案,所述的二硫化铁前驱体溶液中,所述1-辛胺和酒石酸钠-酒石酸缓冲溶液的体积比为1:3。
作为一种优选的实施方案,所述的二氧化钛前驱体溶液中,所述乙酰丙酮铁和L-半胱氨酸的摩尔比为1:3。
所述二硫化铁前驱体溶液以酒石酸钠-酒石酸缓冲溶液为溶液体系。
作为一种实施方案,所述氧化石墨烯与乙酰丙酮铁的用量比为每120mg氧化石墨烯对应1~4mmol乙酰丙酮铁。
作为一种实施方案,所述的水热法为本领域常规的水热法,其反应温度优选为180~220℃,反应时间为6~24h。
本发明制备方法所用的氧化石墨烯优选为Hummers法制备得到的。
本发明制备方法采用乙酰丙酮铁作为铁源,其已被大规模商业化生产,成本低廉,来源广泛。
本发明制备方法将二氧化钛前驱体溶液和氧化石墨烯混合优选为采用搅拌和超声使溶液混合均匀。
本发明方法采用L-半胱氨酸作为硫源和还原剂,以氨水作为氮源,乙酰丙酮铁作为铁盐,通过水热法,一方面利用氨水将石墨烯氮化,另一方面利用L-半胱氨酸还原硫化铁盐,使FeS2纳米立方体在NG表面上均匀成核生长,得到NG包覆FeS2纳米立方体的复合材料(FeS2/NG),其表现出优异的电催化水解制氢的性能。本发明方法操作简单,易规模化,为日后工业化生产打下了坚实的理论和实践基础。
本发明方法得到的FeS2/NG纳米复合材料为NG包覆FeS2纳米立方体的复合材料,其中,FeS2纳米立方体的边长大约为500~800nm;NG的含氮量为0.38~1.12wt%。
本发明方法得到的FeS2/NG纳米复合材料借助二硫化铁优异的电催化析氢性能和氮掺杂石墨烯的高比表面积、高导电性,具有优良的电催化水解制氢的性能,可应用于析氢电催化领域中,特别是制备析氢电催化材料,可以直接 作为电催化水解制氢的电极材料。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)本发明使用资源丰富、价格便宜的乙酰丙酮铁作为铁源,采用L-半胱氨酸作为硫源和还原剂,通过温和的水热法制备了不含Pt的FeS2/NG纳米复合材料。
(2)FeS2与NG复合可以提高电极的导电性和稳定性,降低电解水析氢的过电势,提高整体的电催化性能,而且石墨烯掺杂异质N原子可以进一步提高其导电性,改变石墨烯纳米片的电子密度,提高电催化的活性位点。在氮掺杂石墨烯表面上成核生长的二硫化铁具有强的界面接触效应,可进一步增加电催化活性位点的密度。
(3)本发明制备方法工艺简单,成本低廉,适合大规模批量工业化生产。
(4)本发明制得的FeS2/NG纳米复合材料具有优良的电催化性能,在电催化水解析氢方面具有很大的应用前景。
附图说明
图1为FeS2/NG纳米复合材料的X-射线衍射(XRD)谱图;
图2为NG的扫描电镜(SEM)图片;
图3为FeS2纳米立方体的SEM图片;
图4为FeS2/NG纳米复合材料的SEM图片;
图5为Pt/C,FeS2/NG和FeS2的极化曲线;
图6为Pt/C,FeS2/NG和FeS2相应的塔菲尔曲线;
图7为FeS2/NG在恒定过电势(-0.19V)下经过60h的电流密度随时间变化的曲线;
图8为FeS2/NG在0.50M H2SO4电解液经过电压校准的第1圈和第5000圈的极化曲线。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限 于此。
下列实施例中使用的试剂均可从商业渠道获得。
实施例1
本实施例包括以下步骤:
(1)采用改性的Hummers法制备氧化石墨烯。
(2)将1mmol乙酰丙酮铁,5mmol L-半胱氨酸和1mmol EDTA在室温下溶解于15mL酒石酸钠-酒石酸缓冲溶液中(pH=3)。然后5mL 1-辛胺和10mL乙醇在磁性搅拌下加入到上述溶液中形成均匀的溶液,最后将120mg步骤1得到的氧化石墨烯,进一步搅拌并超声1h,使氧化石墨烯均匀分布在溶液中。
(3)将步骤2所得溶液加入到反应釜中,于220℃加热反应24h,然后让其自然冷却至室温。最后,通过离心分离收集黑色沉淀物,用去离子水和乙醇彻底洗涤六次,并在真空烘箱中于60℃干燥24h,得到FeS2/NG纳米复合材料。
(4)性能试验,结果见图1~图4:
对制备的FeS2/NG纳米复合材料进行了X射线粉末衍射测试,结果如图1所示,X射线粉末衍射图显示出所有的特征峰都可以归属于立方相黄铁矿(FeS2)(JCPDS***no.42-1340,空间群为Pa3),从而证明了所制备产物的纯度。值得注意的是,没有观察到NG(002)晶面的衍射峰,这表明NG均匀地分布和包覆FeS2。NG的形貌如图2所示。扫描电子显微镜图(图3)显示了FeS2样品具有均匀的立方体形状,边长大约为500nm。对包覆了NG后的材料也拍摄了扫描电子显微镜图,由图4可以看出NG能够均匀的包覆在FeS2立方体的表面。最后对所制备的FeS2/NG纳米复合材料进行了电化学性能测试,对其电催化性能进行了研究。采用了电化学方法中的线性扫描伏安法和电流密度随时间变化的测试来研究其电催化水解制氢性能,包括材料的起始电位、过电势、塔菲尔斜率和循环稳定性。通过极化曲线可以看出,其具有较小的起始电位、过电势和塔菲尔斜率,通过测试得到这种FeS2/NG纳米复合材料的起始电位为113mV vs.RHE,过电势为164mV vs.RHE,相应的塔菲尔 斜率为38mV/dec,电催化水解析氢性能优越于FeS2,而且很接近Pt/C催化剂。同样在恒电位下电流密度随时间变化的测试也展现出非常好的循环稳定性。经过60h的测试,其电流密度基本上没有发生变化。同时,经过5000次循环之后,其极化曲线也没有发生明显变化,这就证明了FeS2/NG纳米复合材料具有很好的循环稳定性。综上所述,本发明的FeS2/NG纳米复合材料展现出非常优良的电催化性能,在析氢电催化方面有很大的应用前景。
实施例2
本实施例包括以下步骤:
(1)采用改性的Hummers法制备氧化石墨烯。
(2)将4mmol乙酰丙酮铁,4mmol L-半胱氨酸和4mmol EDTA在室温下溶解于15mL酒石酸钠-酒石酸缓冲溶液中(pH=3)。然后5mL 1-辛胺和10mL乙醇在磁性搅拌下加入到上述溶液中形成均匀的溶液,最后将120mg步骤1得到的氧化石墨烯,进一步搅拌并超声1h,使氧化石墨烯均匀分布在溶液中。
(3)将步骤2所得溶液加入到反应釜中,于200℃加热反应20h,然后让其自然冷却至室温。最后,通过离心分离收集黑色沉淀物,用去离子水和乙醇彻底洗涤六次,并在真空烘箱中于60℃干燥24h,得到FeS2/NG纳米复合材料。
实施例3
本实施例包括以下步骤:
(1)采用改性的Hummers法制备氧化石墨烯。
(2)将3mmol乙酰丙酮铁,2mmol L-半胱氨酸和3mmol EDTA在室温下溶解于15mL酒石酸钠-酒石酸缓冲溶液中(pH=3)。然后5mL 1-辛胺和10mL乙醇在磁性搅拌下加入到上述溶液中形成均匀的溶液,最后将120mg步骤1得到的氧化石墨烯,进一步搅拌并超声1h,使氧化石墨烯均匀分布在溶液中。
(3)将步骤2所得溶液加入到反应釜中,于180℃加热反应6h,然后让其自然冷却至室温。最后,通过离心分离收集黑色沉淀物,用去离子水和乙醇彻底洗涤六次,并在真空烘箱中于60℃干燥24h,得到FeS2/NG纳米复合材料。
对比例1
本实施例包括以下步骤:
(1)采用改性的Hummers法制备氧化石墨烯。
(2)将3mmol乙酰丙酮铁,8mmol L-半胱氨酸和1mmol EDTA在室温下溶解于15mL酒石酸钠-酒石酸缓冲溶液中(pH=3)。然后5mL 1-辛胺和10mL乙醇在磁性搅拌下加入到上述溶液中形成均匀的溶液,最后将120mg步骤1得到的氧化石墨烯,进一步搅拌并超声1h,使氧化石墨烯均匀分布在溶液中。
(3)将步骤2所得溶液加入到反应釜中,于220℃加热反应24h,然后让其自然冷却至室温。最后,通过离心分离收集黑色沉淀物,用去离子水和乙醇彻底洗涤六次,并在真空烘箱中于60℃干燥24h。
本实施例制备得到的FeS2立方体团聚在一起,不能均匀的分布在NG的表面,不利于导电性的提高和活性位点的增多。
对比例2
本实施例包括以下步骤:
(1)采用改性的Hummers法制备氧化石墨烯。
(2)将1mmol乙酰丙酮铁,5mmol L-半胱氨酸和1mmol EDTA在室温下溶解于15mL酒石酸钠-酒石酸缓冲溶液中(pH=3)。然后5mL 1-辛胺和10mL乙醇在磁性搅拌下加入到上述溶液中形成均匀的溶液,最后将300mg步骤1得到的氧化石墨烯,进一步搅拌并超声1h,使氧化石墨烯均匀分布在溶液中。
(3)将步骤2所得溶液加入到反应釜中,于220℃加热反应24h,然后 让其自然冷却至室温。最后,通过离心分离收集黑色沉淀物,用去离子水和乙醇彻底洗涤六次,并在真空烘箱中于60℃干燥24h。
对比例3
本实施例包括以下步骤:
(1)采用改性的Hummers法制备氧化石墨烯。
(2)将1mmol乙酰丙酮铁,5mmol L-半胱氨酸和1mmol EDTA在室温下溶解于15mL酒石酸钠-酒石酸缓冲溶液中(pH=3)。然后5mL 1-辛胺和10mL乙醇在磁性搅拌下加入到上述溶液中形成均匀的溶液,最后将120mg步骤1得到的氧化石墨烯,进一步搅拌并超声1h,使氧化石墨烯均匀分布在溶液中。
(3)将步骤2所得溶液加入到反应釜中,于160℃加热反应24h,然后让其自然冷却至室温。最后,通过离心分离收集黑色沉淀物,用去离子水和乙醇彻底洗涤六次,并在真空烘箱中于60℃干燥24h。
对比例4
本实施例包括以下步骤:
(1)采用改性的Hummers法制备氧化石墨烯。
(2)将1mmol乙酰丙酮铁,5mmol L-半胱氨酸和1mmol EDTA在室温下溶解于15mL酒石酸钠-酒石酸缓冲溶液中(pH=3)。然后5mL 1-辛胺和10mL乙醇在磁性搅拌下加入到上述溶液中形成均匀的溶液,最后将120mg步骤1得到的氧化石墨烯,进一步搅拌并超声1h,使氧化石墨烯均匀分布在溶液中。
(3)将步骤2所得溶液加入到反应釜中,于220℃加热反应12h,然后让其自然冷却至室温。最后,通过离心分离收集黑色沉淀物,用去离子水和乙醇彻底洗涤六次,并在真空烘箱中于60℃干燥24h。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实 施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种二硫化铁/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于包括以下步骤:将二硫化铁铁前驱体溶液和氧化石墨烯混合,水热法反应,得到二硫化铁/氮掺杂石墨烯纳米复合材料。
2.根据权利要求1所述的二硫化铁/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的二硫化铁前驱体溶液由包括以下组分组成:乙酰丙酮铁、L-半胱氨酸、乙二胺四乙酸、酒石酸钠-酒石酸缓冲溶液、1-辛胺、乙醇。
3.根据权利要求1所述的二硫化铁/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的二硫化铁前驱体溶液中,所述L-半胱氨酸的浓度为0.05~0.17mmol/L。
4.根据权利要求1所述的二硫化铁/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的二硫化铁前驱体溶液中,所述乙酰丙酮铁的浓度为0.03~0.14mmol/L;所述乙二胺四乙酸的浓度为0.03~0.14mmol/L。
5.根据权利要求1所述的二硫化铁/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述1-辛胺和乙醇的体积比为1:2~1:5。
6.根据权利要求1所述的二硫化铁/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的二氧化钛前驱体溶液中,所述乙酰丙酮铁和L-半胱氨酸的摩尔比为1:3。
7.根据权利要求1所述的二硫化铁/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述氧化石墨烯与乙酰丙酮铁的用量比为每120mg氧化石墨烯对应1~4mmol乙酰丙酮铁。
8.根据权利要求1所述的二硫化铁/氮掺杂石墨烯纳米复合材料的制备方法,其特征在于:所述的水热法的反应温度为180~220℃,反应时间为6~24h。
9.一种二硫化铁/氮掺杂石墨烯纳米复合材料,其特征在于根据权利要求1~8任一项所述的制备方法得到。
10.权利要求9所述的二硫化铁/氮掺杂石墨烯纳米复合材料在析氢电催化领域中的应用。
CN201611036227.7A 2016-11-23 2016-11-23 一种二硫化铁/氮掺杂石墨烯纳米复合材料及制备和应用 Pending CN106702423A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611036227.7A CN106702423A (zh) 2016-11-23 2016-11-23 一种二硫化铁/氮掺杂石墨烯纳米复合材料及制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611036227.7A CN106702423A (zh) 2016-11-23 2016-11-23 一种二硫化铁/氮掺杂石墨烯纳米复合材料及制备和应用

Publications (1)

Publication Number Publication Date
CN106702423A true CN106702423A (zh) 2017-05-24

Family

ID=58940165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611036227.7A Pending CN106702423A (zh) 2016-11-23 2016-11-23 一种二硫化铁/氮掺杂石墨烯纳米复合材料及制备和应用

Country Status (1)

Country Link
CN (1) CN106702423A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107699919A (zh) * 2017-10-17 2018-02-16 上海应用技术大学 Fe2‑1.5xMoxS2‑RGO杂化催化剂及其制备方法和应用
CN108615862A (zh) * 2018-04-04 2018-10-02 中国科学院福建物质结构研究所 含金属离子液体作为媒介合成复合材料的方法及用途
CN110085435A (zh) * 2019-04-15 2019-08-02 东北大学 氮硫掺杂硫化铁/石墨烯气凝胶复合材料及其制备方法
US20200403226A1 (en) * 2017-09-15 2020-12-24 Sanoh Industrial Co., Ltd. Positive electrode active material, method for producing positive electrode active material, positive electrode, and secondary battery
CN113830837A (zh) * 2021-09-26 2021-12-24 青岛科技大学 表面含缺陷位的FeS2/Fe7S8异质结的制备方法
CN114029040A (zh) * 2021-11-15 2022-02-11 南开大学 一种二硫化铁树脂复合材料及其制备方法和应用
CN114351182A (zh) * 2021-12-23 2022-04-15 上海纳米技术及应用国家工程研究中心有限公司 生物质基氮掺杂石墨烯/纳米碳纤维轴向复合材料负载单原子铁的制备及产品和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760877A (zh) * 2012-07-23 2012-10-31 浙江大学 过渡金属硫化物/石墨烯复合材料及其制备方法和应用
CN103602362A (zh) * 2013-11-21 2014-02-26 镇江市高等专科学校 一种二硫化亚铁-石墨烯复合纳米润滑剂的制备方法
CN105932256A (zh) * 2016-06-20 2016-09-07 华南理工大学 一种石墨烯基FeS2纳米材料及制备与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760877A (zh) * 2012-07-23 2012-10-31 浙江大学 过渡金属硫化物/石墨烯复合材料及其制备方法和应用
CN103602362A (zh) * 2013-11-21 2014-02-26 镇江市高等专科学校 一种二硫化亚铁-石墨烯复合纳米润滑剂的制备方法
CN105932256A (zh) * 2016-06-20 2016-09-07 华南理工大学 一种石墨烯基FeS2纳米材料及制备与应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
LING FEI ET AL.,: "Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance", 《ACS APPLIED MATERIALS & INTERFACES》 *
MENGXIA SHEN ET AL.,: "Covalent Entrapment of Cobalt-Iron Sulfides in N-Doped Mesoporous Carbon: Extraordinary Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions", 《ACS APPLIED MATERIALS & INTERFACES》 *
NITISH ROY ET AL.,: "Nitrogen Doped Reduced Graphene Oxide Based Pt-TiO2 Nanocomposites for Enhanced Hydrogen Evolution", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *
RUI TAN ET AL.,: "Core–shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries", 《CHEM. COMMUN.》 *
W QIU ET AL.,: "L-Cysteine-Assisted Synthesis of Cubic Pyrite/Nitrogen-Doped Graphene Composite as Anode Material for Lithium-ion Batteries", 《ELECTROCHIMICA ACTA》 *
XUN WEN ET AL.,: "Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200403226A1 (en) * 2017-09-15 2020-12-24 Sanoh Industrial Co., Ltd. Positive electrode active material, method for producing positive electrode active material, positive electrode, and secondary battery
CN107699919A (zh) * 2017-10-17 2018-02-16 上海应用技术大学 Fe2‑1.5xMoxS2‑RGO杂化催化剂及其制备方法和应用
CN107699919B (zh) * 2017-10-17 2019-07-23 上海应用技术大学 Fe2-1.5xMoxS2-RGO杂化催化剂及其制备方法和应用
CN108615862A (zh) * 2018-04-04 2018-10-02 中国科学院福建物质结构研究所 含金属离子液体作为媒介合成复合材料的方法及用途
CN108615862B (zh) * 2018-04-04 2021-08-06 中国科学院福建物质结构研究所 含金属离子液体作为媒介合成复合材料的方法及用途
CN110085435A (zh) * 2019-04-15 2019-08-02 东北大学 氮硫掺杂硫化铁/石墨烯气凝胶复合材料及其制备方法
CN113830837A (zh) * 2021-09-26 2021-12-24 青岛科技大学 表面含缺陷位的FeS2/Fe7S8异质结的制备方法
CN114029040A (zh) * 2021-11-15 2022-02-11 南开大学 一种二硫化铁树脂复合材料及其制备方法和应用
CN114029040B (zh) * 2021-11-15 2023-12-29 南开大学 一种二硫化铁树脂复合材料及其制备方法和应用
CN114351182A (zh) * 2021-12-23 2022-04-15 上海纳米技术及应用国家工程研究中心有限公司 生物质基氮掺杂石墨烯/纳米碳纤维轴向复合材料负载单原子铁的制备及产品和应用

Similar Documents

Publication Publication Date Title
CN106702423A (zh) 一种二硫化铁/氮掺杂石墨烯纳米复合材料及制备和应用
CN109252180B (zh) 一种三元mof纳米片阵列材料、制备方法及其应用
CN109518222A (zh) 用于电催化co2还原至甲酸的铋基催化剂及其制备方法和应用
CN105826572B (zh) 一种N,S双掺杂碳纳米管包覆FexC催化剂、制备方法及其应用
Yue et al. Surface engineering of a nickel oxide–nickel hybrid nanoarray as a versatile catalyst for both superior water and urea oxidation
CN107362812B (zh) 一种硒硫化铼复合二维材料、制备方法及其应用
CN106025210A (zh) 一种硒化钼/石墨烯/碳纳米管复合材料及其制备方法
CN106563471B (zh) 一种核-壳CoS2@NG纳米复合材料及其制备与应用
CN107321372B (zh) CoS纳米颗粒/N掺杂RGO析氢复合材料的制备方法
CN109852994A (zh) 一种Co9S8与氮掺杂碳复合阵列电极的制备方法
CN108821257A (zh) 一种基于荷叶的二元介孔-微孔多级结构生物碳及其制备方法和应用
CN107746051A (zh) 一种氮掺杂石墨烯纳米带‑纳米四氧化三钴杂化材料及其制备方法
CN110711590B (zh) 一种一维钴硫化合物/硫化亚铜复合物纳米阵列@泡沫铜材料及其制备方法和应用
CN105498773A (zh) 一种掺杂氧化铁纳米棒催化剂的制备方法
CN110479340A (zh) 一种纳米钴/氮掺杂石墨烯复合材料及其制备方法
CN108704663A (zh) 一种双金属碳纳米复合电催化材料的制备方法
CN108479808A (zh) 一种3D自组装花球状钒修饰的Ni3S2的合成方法
CN113235104A (zh) 一种基于zif-67的镧掺杂氧化钴催化剂及其制备方法与应用
CN113019398B (zh) 一种高活性自支撑oer电催化剂材料及其制备方法与应用
CN106532040A (zh) 一种H‑MoS2/NG纳米复合材料及制备方法与应用
CN108654657B (zh) 一种镍磷铜电催化剂及其制备方法
CN109529849A (zh) 一种原位自牺牲模板合成镍铁水滑石纳米阵列复合结构的方法及应用
Xue et al. Spatially-controlled NiCo2O4@ MnO2 core–shell nanoarray with hollow NiCo2O4 cores and MnO2 flake shells: an efficient catalyst for oxygen evolution reaction
CN107680816B (zh) 多孔Ti负载空心针状NiCo2S4对电极的制备方法
CN113957456A (zh) 共掺杂结合异质结构的镍基碱性电解水催化剂及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170524