CN106575700B - 铁电体陶瓷及其制造方法 - Google Patents

铁电体陶瓷及其制造方法 Download PDF

Info

Publication number
CN106575700B
CN106575700B CN201580038020.0A CN201580038020A CN106575700B CN 106575700 B CN106575700 B CN 106575700B CN 201580038020 A CN201580038020 A CN 201580038020A CN 106575700 B CN106575700 B CN 106575700B
Authority
CN
China
Prior art keywords
film
pzt
ferroelectric ceramic
pzo
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580038020.0A
Other languages
English (en)
Other versions
CN106575700A (zh
Inventor
木岛健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Christo Co Ltd
Original Assignee
Youtec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co Ltd filed Critical Youtec Co Ltd
Publication of CN106575700A publication Critical patent/CN106575700A/zh
Application granted granted Critical
Publication of CN106575700B publication Critical patent/CN106575700B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/472Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on lead titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials
    • H10N30/878Conductive materials the principal material being non-metallic, e.g. oxide or carbon based
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Semiconductor Memories (AREA)

Abstract

以提高压电特性为课题。本发明的一个方式是铁电体陶瓷,其特征在于,具备Pb(Zr1‑ATiA)O3膜和形成在所述Pb(Zr1‑ATiA)O3膜上的Pb(Zr1‑ xTix)O3膜,所述A以及所述x满足下述式1~式3。0≤A≤0.1…式1;0.1<x<1…式2;A<x…式3。

Description

铁电体陶瓷及其制造方法
技术领域
本发明涉及铁电体陶瓷及其制造方法。
背景技术
对现有的Pb(Zr,Ti)O3(以下称作“PZT”)钙钛矿型铁电体陶瓷的制造方法进行说明。
在4英寸Si晶片上形成膜厚300nm的SiO2膜,在该SiO2膜上形成膜厚5nm的TiOX膜。接下来,在该TiOX膜上形成例如取向于(111)的膜厚150nm的Pt膜,在该Pt膜上用旋涂机旋转涂敷PZT溶胶凝胶溶液。这时的旋转条件是以1500rpm的旋转速度旋转30秒钟、以4000rpm的旋转速度旋转10秒钟的条件。
接下来,将该涂敷后的PZT溶胶凝胶溶液在250℃的热板上加热保持30秒钟来使其干燥,在除去水分后,进一步在保持于500℃的高温的热板上加热保持60秒钟,来进行预烧制。将这一过程重复多次来生成膜厚150nm的PZT无定形膜。
接下来,对PZT无定形膜使用加压式灯退火装置(RTA:rapidly thermal anneal)进行700℃的退火处理,来进行PZT结晶化。如此结晶化后的PZT膜由钙钛矿结构构成(例如参考专利文献1)。
现有技术文献
专利文献
专利文献1:WO2006/087777
发明内容
发明要解决的课题
本发明的一个方式以提高压电特性作为课题。
用于解决课题的手段
以下说明本发明的各种方式。
[1]铁电体陶瓷的特征在于,具备:Pb(Zr1-ATiA)O3膜;和形成在所述Pb(Zr1-ATiA)O3膜上的Pb(Zr1-xTix)O3膜,所述A以及所述x满足下述式1~式3。
0≤A≤0.1…式1
0.1<x<1…式2
A<x…式3
另外,Pb(Zr1-xTix)O3膜取向于(001)。
[2]在上述[1]的基础上,铁电体陶瓷的特征在于,所述A是0,所述Pb(Zr1-ATiA)O3是PbZrO3膜。
另外,Pb(Zr1-xTix)O3膜取向于(001)。
[3]在上述[1]或[2]的基础上,铁电体陶瓷的特征在于,所述Pb(Zr1-ATiA)O3膜形成在氧化膜上。
另外,所述氧化膜优选是钙钛矿结构的氧化物。
[4]在上述[3]的基础上,铁电体陶瓷的特征在于,所述氧化膜是Sr(Ti,Ru)O3膜。
另外,所述Sr(Ti,Ru)O3膜优选是Sr(Ti1-xRux)O3膜,所述x满足下述式4。
0.01≤x≤0.4…式4
[5]在上述[1]至[4]中任一项的基础上,铁电体陶瓷的特征在于,所述Pb(Zr1- ATiA)O3膜形成在电极膜上。
[6]在上述[5]的基础上,铁电体陶瓷的特征在于,所述电极膜由氧化物或金属构成。
另外,所述氧化物可以是Sr(Ti1-xRux)O3膜,所述x满足下述式4。
0.01≤x≤0.4…式4
[7]在上述[5]或[6]的基础上,铁电体陶瓷的特征在于,所述电极膜是Pt膜或Ir膜。
另外,Pt膜取向于(100)。
[8]在上述[5]至[7]中任一项的基础上,铁电体陶瓷的特征在于,所述电极膜形成在ZrO2膜上。
另外,ZrO2膜取向于(100)。
[9]在上述[5]至[8]中任一项的基础上,铁电体陶瓷的特征在于,所述电极膜形成在Si基板上。
另外,Si基板取向于(100)。
[10]铁电体陶瓷的制造方法是在Pb(Zr1-ATiA)O3膜上形成Pb(Zr1-xTix)O3膜的铁电体陶瓷的制造方法,该铁电体陶瓷的制造方法的特征在于,所述A以及所述x满足下述式1~式3。
0≤A≤0.1…式1
0.1<x<1…式2
A<x…式3
另外,Pb(Zr1-xTix)O3膜取向于(001)。
[11]在上述[10]的基础上,铁电体陶瓷的制造方法的特征在于,所述A是0,所述Pb(Zr1-ATiA)O3膜是PbZrO3膜。
另外,Pb(Zr1-xTix)O3膜取向于(001)。
[12]在上述[10]或[11]的基础上,铁电体陶瓷的制造方法的特征在于,将Pb(Zr1- ATiA)O3的前体溶液涂敷在基板上,在5atm以上(优选7.5气压以上)的氧气氛中进行结晶化,由此形成所述Pb(Zr1-ATiA)O3膜。
另外,在上述的本发明的各种方式中,当说在特定的B(以下称作“B”)上(或下)形成特定的C(以下称作“C”)(形成C)时,并不限定于在B上(或下)直接形成C(形成C)的情况,还包括在不妨碍本发明的一个方式的作用效果的范围内在B上(或下)隔着其他构成来形成C(形成C)的情况。
发明的效果
通过应用本发明的一个方式,能提高压电特性。
附图说明
图1是说明本发明的一个方式所涉及的铁电体陶瓷的制造方法的示意性剖面图。
图2是说明本发明的一个方式所涉及的铁电体陶瓷的制造方法的示意性剖面图。
图3(A)~(C)是用于说明基于实施例1的样本的制造方法的剖面图。
图4是基于实施例1的成膜至图3(A)所示的Pt膜13为止的样本的XRD(X-RayDiffraction)曲线图。
图5是表示图3(A)所示的样本的XRD衍射结果的曲线图。
图6是表示图3(C)所示的样本的XRD衍射结果的曲线图。
图7是表示作为(400)取向和(004)取向相混合的比较例的PZT膜的样本的XRD衍射结果的曲线图。
图8是用于说明基于实施例2的样本的制造方法的剖面图。
图9是用于说明基于比较例的样本的制造方法的剖面图。
图10是样本4(实施例)的XRD曲线图。
图11是样本6(实施例)的XRD曲线图。
图12是样本9(比较例)的XRD曲线图。
图13是样本1(实施例)的XRD曲线图。
图14是样本2(实施例)的XRD曲线图。
图15是样本3(实施例)的XRD曲线图。
图16是样本4(实施例)的XRD曲线图。
图17是样本5(实施例)的XRD曲线图。
图18是样本6(实施例)的XRD曲线图。
图19是用于说明半峰全宽(FWHM)的图。
图20是样本7(比较例)的XRD曲线图。
图21是样本8(比较例)的XRD曲线图。
图22是样本9(比较例)的XRD曲线图。
图23是表示PZO的结晶结构为斜方晶的图。
图24(A)是实施例3的PZT膜的XRD图谱,(B)是实施例3的PZO膜的XRD图谱。
具体实施方式
以下使用附图来详细说明本发明的实施方式以及实施例。但本发明并不限定于以下的说明,能不脱离本发明的趣旨以及其范围地对其形态以及详细进行各种变更,只要是本领域技术人员都能容易理解这一点。因此,本发明并不限定解释为以下所示的实施方式的记载内容以及实施例。
[第1实施方式]
图1是说明本发明的一个方式所涉及的铁电体陶瓷的制造方法的示意性剖面图。
准备基板(未图示)。作为该基板,能使用各种基板,例如能使用Si单晶或蓝宝石单晶等的单晶基板、在表面形成金属氧化物膜的单晶基板、在表面形成多晶硅膜或硅化物膜的基板等。另外,在本实施方式中使用取向于(100)的Si基板。
接下来,在Si基板(未图示)上以550℃以下的温度(优选500℃的温度)通过蒸镀法形成ZrO2膜(未图示)。该ZrO2膜取向于(100)。另外,若以750℃以上的温度通过蒸镀法形成ZrO2膜,则该ZrO2膜不取向于(100)。
在本说明书中,取向于(100)、取向于(200)和取向于(400)实质上相同,另外,取向于(001)、取向于(002)和取向于(004)实质上相同。
之后在ZrO2膜上形成下部电极103。下部电极103由金属或氧化物所构成的电极膜形成。作为金属所构成的电极膜,例如使用Pt膜或Ir膜。作为氧化物所构成的电极膜,例如是Sr(Ti1-xRux)O3膜,x满足下述式4。
0.01≤x≤0.4…式4
在本实施方式中,在ZrO2膜上以550℃以下的温度(优选400℃的温度)通过溅射(sputtering)形成基于外延生长的Pt膜103来作为下部电极。该Pt膜103取向于(200)。
接下来,在下部电极103上形成PbZrO3膜(以下也称作“PZO膜”)104。该PZO膜104能用各种方法形成,例如能用溶胶凝胶法、CVD法、溅射法形成。在用溶胶凝胶法形成PZO膜104的情况下,将PZO的前体溶液涂敷在基板上,在5atm以上(优选7.5气压以上)的氧气氛中进行结晶化即可。另外,PZO的晶格常数分别为a=8.232埃、b=11.776埃、c=5.882埃。a轴长度成为平均的钙钛矿(
Figure BDA0001208328670000051
埃)的约2倍,c轴长度成为
Figure BDA0001208328670000052
Figure BDA0001208328670000053
b轴长度成为
Figure BDA0001208328670000054
关于该PZO的晶格常数的变化,基本上是钙钛矿八面体结晶的旋转,在其中加进八面体的形变,b轴方向的周期成为2倍。
PZO如图23所示那样是斜方晶。因此,PZO看上去晶格常数变大。这是因为,钙钛矿纵旋转45°程度,正好将旋转后的结晶如虚线部分那样包围周围地像大的结晶那样对待。即,以看上去a、b、c轴的长度变得非常长的方式来对待是斜方晶的惯例。实际的PZO是实线那样的结晶,是通常的钙钛矿结晶。
接下来,在PZO膜104上形成PZT膜105。该PZT膜105是Pb(Zr1-xTix)O3膜,x满足下述式2。Pb(Zr1-xTix)O3膜取向于(001)。
0<x<1…式2’
另外,在本说明书中,“PZT膜”也包括在Pb(Zr,Ti)O3中含有杂质的构成,即使含有该杂质,只要不使PZT膜的压电体的功能消失,就可以含有各种杂质。
以下详细说明PZT膜的形成方法的一例。
作为PZT膜形成用溶胶凝胶溶液,使用以丁醇为溶媒的添加了不足70%~90%的量的铅的、浓度10重量%浓度的E1溶液。
在该溶胶凝胶溶液中将二甲基氨基乙醇这样的具有氨基的碱性乙醇按照体积比以E1溶胶凝胶溶液∶二甲基氨基乙醇=7∶3的比例添加,示出强到pH=12的强碱性。
使用上述本溶液来进行PZT无定形膜的旋涂形成。旋涂机使用“ミカサ株式会社”制MS-A200进行。首先,在以800rpm旋转5秒、以1500rpm旋转10秒后,逐渐以10秒使旋转上升到3000rpm,之后在150℃的热板(“アズワン株式会社”制陶瓷热板AHS-300)上在大气中放置5min,之后在300℃的热板(同AHS-300)上在相同的大气中放置10min,之后冷却到室温。通过将这一过程重复5次,从而在PZO膜104上形成所期望的膜厚200nm的PZT无定形膜。将其制作多片。
接下来,通过在加压氧气氛中对上述的PZT无定形膜进行热处理,从而在PZO膜104上形成使PZT无定形膜结晶化后的PZT膜105。另外,PZT的晶格常数的一例是0.401nm。
也可以在如上述那样形成了PZT膜105后对PZT膜105进行修整(polling:ポ一リング)处理。
另外,在本实施方式中,用溶胶凝胶法形成PZT膜105,但也可以用溅射法形成PZT膜。
根据本实施方式,通过将PZO膜104用作PZT膜105的初始核层(即缓冲层),能提高PZT膜105的压电特性。详细来说明,PbZrO3(PZO)是Pb(Zr1-xTix)O3(PZT)的相图中Ti比率0(零)的情况,是反铁电体,但由于在Pb(Zr1-xTix)O3之中c轴长最长,所以PZO在将全部PZT的c轴长拉长的方向上起作用,能容易得到该结构所能取得的最大的压电性能。即,通过使PZO作为初始核,PZT整体在PZO初始核的晶轴受到影响,在PZT膜整体中c晶轴变得易于拉长,即变得易于极化,能容易地取出压电性。
另外,在本实施方式中,在下部电极103上形成Pb(Zr,Ti)O3的相图中Ti比率0的PZO膜104,在PZO膜104上形成Pb(Zr1-xTix)O3膜105(0<x<1…式2’),但也可以在非常小的Ti比率的Pb(Zr1-ATiA)O3膜上形成Pb(Zr1-xTix)O3膜。其中,A以及x满足下述式1~式3。Pb(Zr1-xTix)O3膜取向于(001)。
0≤A≤0.1…式1
0.1<x<1…式2
A<x…式3
通过满足上述式1,即,通过使Ti比率为10%以下,用作初始核的Pb(Zr1-ATiA)O3膜就成为反铁电性斜方晶相的PZT(即Pb(Zr,Ti)O3的相图中斜方晶区域(ortho区域)的PZT),Pb(Zr1-ATiA)O3在将全部Pb(Zr1-xTix)O3(PZT)的c轴长拉长的方向上起作用,能得到与上述实施方式相同的效果。
[第2实施方式]
图2是说明本发明的一个方式所涉及的铁电体陶瓷的制造方法的示意性剖面图,对与图1相同部分标注同一标号。
由于直至Si基板(未图示)、ZrO2膜(未图示)以及下部电极103为止用与第1实施方式相同的方法来形成,因此省略说明。
接下来,在下部电极103上形成氧化膜106。该氧化膜106是钙钛矿结构的氧化物即可,例如是Sr(Ti,Ru)O3膜。该Sr(Ti,Ru)O3膜是Sr(Ti1-xRux)O3膜,x满足下述式4,通过溅射来形成。这时的溅射靶使用Sr(Ti1-xRux)O3的烧结体。其中,x满足下述式4。
0.01≤x≤0.4(优选0.05≤x≤0.2)…式4
另外,Sr(Ti1-xRux)O3膜的x为0.4以下是因为,若使x超过0.4,则Sr(Ti1-xRux)O3膜成为粉,无法充分凝固。
之后,在加压氧气氛中通过RTA(Rapid Thermal Anneal:快速热退火)使Sr(Ti1- xRux)O3膜结晶化。Sr(Ti1-xRux)O3膜是锶、钛和钌的复合氧化物,是取钙钛矿结构的化合物。
接下来,用与第1实施方式相同的方法在氧化膜106上形成PZO膜104。接下来,在PZO膜104上用与第1实施方式相同的方法形成PZT膜105。PZT膜105取向于(001)。
在本实施方式中也能得到与第1实施方式相同的效果。
另外,在本实施方式中,在氧化膜106上形成PZO膜104,在PZO膜104上形成PZT105,但也可以在非常小的Ti比率的Pb(Zr1-ATiA)O3膜上形成Pb(Zr1-xTix)O3膜。其中,A以及x满足下述式1~式3。Pb(Zr1-xTix)O3膜取向于(001)。
0≤A≤0.1…式1
0.1<x<1…式2
A<x…式3
通过满足上述式1而能得到与第1实施方式相同的效果。
另外,也可以将上述的第1以及第2实施方式适当组合来实施。
[实施例1]
图3(A)~(C)是用于说明基于实施例1的样本的制造方法的剖面图。
如图3(A)所示那样,在具有(100)的结晶面的6英寸的Si基板11上通过反应性蒸镀法对ZrO2膜12进行成膜。这时的蒸镀条件如表1所示。该ZrO2膜12取向于(100)。
接下来,在ZrO2膜12上通过溅射对膜厚100nm的Pt膜13进行成膜。这时的成膜条件如表1所示。该Pt膜13取向于(200)。图4示出这时的XRD图谱。
[表1]
实施例
工艺 蒸镀 DC-溅射
Depo Vac 6.90E-03 3.20E-02
Depo源 Zr+O<sub>2</sub> Pt
ACC/发射 7.5kV/1.50mA DC/100W
总厚度(nm) 13.4 100
Depo时间(sec) 930 720
SV deg(Tsub) 500℃ 400℃
MFC O<sub>2</sub> 5sccm Ar:16sccm
图4表示成膜至图3(A)所示的Pt膜13为止的样本的XRD衍射结果。从该XRD曲线图确认到,Pt膜取向于(400),2Θ=103.71°。另外,在图4中,纵轴是强度,横轴是2Θ。
接下来,在Pt膜13上形成将PbZrO3膜(以下称作“PZO膜”)和Pb(Zr0.55Ti0.45)O3膜(以下称作“PZT膜”)依次层叠而成的层叠膜15。详细地,在Pt膜13上用溶胶凝胶法涂敷膜厚250nm的PZO膜。这时的条件如以下。
将1.4mol/kg浓度的1.3PbZrO3形成用MOD溶液(“豊島製作所”制Lot.00050667-1)、乙醇、2-丁氧基乙醇调配在一起成为1000ml(分别以1∶1∶1的比例混合),在其中添加20g的聚乙烯吡咯烷酮(日本触媒K-30)这样的白色粉末,将以搅拌溶解后的溶液作为PZO250nm的原料溶液的、该溶液3ml滴下到6in晶片上,在以3000rpm进行10sec旋转涂敷后,在150℃热板上保持30sec,接下来在250℃热板上保持90sec,之后在1atm-O2气氛中以600℃烧结3min。
接下来,在PZO膜上用溅射法形成膜厚2500nm的PZT膜。这时的溅射条件与实施例2相同。图5示出这时的XRD图谱。
图5是表示图3(A)所示的样本的XRD衍射结果的曲线图。从该XRD曲线图确认到,层叠膜15的PZT膜取向于(004),2Θ=97.1°。另外,在图5中,纵轴是强度,横轴是2Θ。
接下来,如图3(B)所示,在对Si基板11全部进行研磨,并用ICP(InductiveCoupling Plasma:感应耦合等离子)蚀刻机除去ZrO2膜12后,如图3(C)所示,通过铣削将Pt膜13除去。由此,仅留下PZT/PZO的层叠膜15。图6示出这时的XRD图谱。
图6是表示图3(C)所示的样本的XRD衍射结果的曲线图。根据该XRD曲线图,层叠膜15的PZT膜在2Θ=96.97°得到仅(004)的峰值。由此,可知PZT/PZO的层叠膜15是(001)c轴单一取向膜。另外,在图6中,纵轴是强度,横轴是2Θ。
在此,PZT(400)存在于与Pt(400)相同的位置,在PZT膜是(400)取向和(004)取向的混合膜的情况下,图7所示的PZT(004)的峰值强度与图6所示的PZT(004)单一膜相比而更易于变弱。此外,图7所示的PZT大多是2Θ≥98°。另外,图7是表示作为(400)取向和(004)取向相混合的比较例的PZT膜的样本的XRD衍射结果的曲线图。
当然,在PZT(400)和(004)的混合膜的情况下,即使设为图3(C)所示那样的仅PZT的膜结构,也存在图7所示的PZT(400)的峰值。因此,根据图6所示的XRD曲线图,图3(C)所示的PZT膜可以说是(001)c轴单一取向膜。
根据本实施例,通过将PZO膜用作PZT膜的初始核层(即缓冲层),从而能得到单一取向于(001)的c轴的PZT膜,能提高PZT膜的压电特性。详细来说明,PbZrO3(PZO)是Pb(ZrxTi1-x)O3(PZT)的相图中Ti比率0(零)的情况,由于在Pb(ZrxTi1-x)O3之中c轴长最长,因此PZO在将全部PZT的c轴长拉长的方向上起作用,由此易于极化,其结果是能容易地取出压电性。
[实施例2]
图8是用于说明基于实施例2的样本的制造方法的剖面图。
图8所示的样本的Si基板11、ZrO2膜12以及Pt膜13用与图3(A)所示的基于实施例1的样本相同的方法来制作。
接下来,在Pt膜13上通过溅射形成Sr(Ti0.8Ru0.2)O3膜(以下称作“STRO膜”)14。这时的溅射的条件如以下。
[STRO膜14的溅射条件]
工艺:RF-溅射
靶:Sr(Ti0.8Ru0.2)O3
RF功率:400W/13.56MHz
工艺压力:4Pa
气体流量Ar/O2(sccm):30/10
基板温度:600℃
工艺时间:20sec
膜厚:50nm
之后,通过RTA在加压氧气氛中使STRO膜14结晶化。这时的RTA的条件如以下。
[RTA的条件]
退火温度:600℃
导入气体:氧气体
压力:9kg/cm2
升温速率:100℃/sec
退火时间:5分钟
接下来,在STRO膜14上通过旋涂法对膜厚50~400nm的PZO膜16进行成膜。这时的成膜条件如以下的(1)~(3)。
(1)将1.4mol/kg浓度的1.3PbZrO3形成用MOD溶液(“豊島製作所”制Lot.00050667-1)、乙醇、2-丁氧基乙醇调配在一起成为1000ml(分别以1∶1∶1的比例混合),在其中添加10g聚乙烯吡咯烷酮(日本触媒K-30)这样的白色粉末,将以搅拌溶解后的溶液作为PZO-50nm的原料溶液的、该溶液3ml滴下到6in晶片上,在以5000rpm进行10sec旋转涂敷后,在150℃热板上保持30sec,接下来在250℃热板上保持90sec,之后在1atm-O2气氛中以600℃烧结3min,形成厚度50nm的PZO膜。
(2)将1.4mol/kg浓度的1.3PbZrO3形成用MOD溶液(“豊島製作所”制Lot.00050667-1)、乙醇、2-丁氧基乙醇调配在一起成为1000ml(分别以1∶1∶1的比例混合),在其中添加20g聚乙烯吡咯烷酮(日本触媒K-30)这样的白色粉末,将以搅拌溶解后的溶液作为PZO-250nm的原料溶液的、该溶液3ml滴下到6in晶片上,在以3000rpm进行10sec旋转涂敷后,在150℃热板上保持30sec,接下来在250℃热板上保持90sec,之后在1atm-O2气氛中以600℃烧结3min,形成厚度250nm的PZO膜。
(3)将1.4mol/kg浓度的1.3PbZrO3形成用MOD溶液(“豊島製作所”制Lot.00050667-1)、乙醇、2-丁氧基乙醇调配在一起成为1000ml(分别以1∶1∶1的比例混合),在其中添加20g聚乙烯吡咯烷酮(日本触媒K-30)这样的白色粉末,将以搅拌溶解后的溶液作为PZO-400nm的原料溶液的、该溶液3ml滴下到6in晶片上,在以1000rpm进行10sec旋转涂敷后,在150℃热板上保持30sec,接下来在250℃热板上保持90sec,之后在1atm-O2气氛中以600℃烧结3min,形成厚度400nm的PZO膜。
接下来,在PZO膜16上用溅射法形成膜厚1000~4000nm的Pb(Zr0.55Ti0.45)O3膜(以下称作“PZT膜”)17。这时的溅射条件如以下。
[溅射条件]
装置:RF磁控溅射装置
功率:1500W
气体:Ar/O2
压力:0.14Pa
温度:600℃
成膜速度:0.63nm/秒
成膜时间:1.3分钟
图9是用于说明基于比较例的样本的制造方法的剖面图,对与图8相同的部分标注同一标号。
图9所示的样本从图8所示的样本中去掉了PZO膜16,除PZO膜16以外是与图8所示的样本相同的膜结构,各膜的形成方法也相同。
[表2]
XRD衍射数据比较
Figure BDA0001208328670000131
表2所示的样本1~6是基于实施例2的样本,具有图8所示的膜结构。表2所示的样本7~9是基于比较例的样本,具有图9所示的膜结构。样本1~6各自的PZO膜16的膜厚以及样本1~9各自的PZT膜17的膜厚如以下。
Figure BDA0001208328670000132
取得样本1~9的XRD数据,将由该XRD数据取出的详细的数据在表2中示出。
图10是样本4(实施例)的XRD曲线图,图11是样本6(实施例)的XRD曲线图,图12是样本9(比较例)的XRD曲线图。图10~图12分别示出15°≤2Θ≤50°的范围。
如图10~图12所示,样本4、6、9的任一者,在2Θ≤50°的范围内,在结晶性上几乎都看不到差异,都是良好的PZT结晶膜。
图13是样本1(实施例)的XRD曲线图,图14是样本2(实施例)的XRD曲线图,图15是样本3(实施例)的XRD曲线图。图13~图15分别表示90°≤2Θ≤110°的范围。
图16是样本4(实施例)的XRD曲线图,图17是样本5(实施例)的XRD曲线图,图18是样本6(实施例)的XRD曲线图。图16~图18分别表示90°≤2Θ≤110°的范围。
图20是样本7(比较例)的XRD曲线图,图21是样本8(比较例)的XRD曲线图,图22是样本9(比较例)的XRD曲线图。图20~图22分别表示90°≤2Θ≤110°的范围。
在样本1~3(实施例)中,在作为初始核的PZO膜16为50~400nm的全部情况下,如图13~图15所示,(004)峰值存在于低到2Θ≤97°的非常低的低角度域。此外,即使是在作为初始核的PZO膜16的上部以膜厚1000~4000nm形成了PZT(55/45)膜17的情况下的样本4~6(实施例),也如图16~图18所示,(004)峰值存在于低到2Θ≤97°的非常低的低角度域。另外,如表2所示,在样本4~6(实施例)中,是PZT(004)峰值强度每膜厚1000nm为175000cps以上这样非常良好的结晶性良好。另外,如表2所示,在样本4~6(实施例)中,PZT(004)/Pt(400)峰值强度比率是(004)/(400)>60%。另外,如表2所示,在样本4~6(实施例)中,|(400)-(004)|的ac轴长的2Θ差非常大,大到|(400)-(004)|>6.5°,足够预测到剩余极化值大这一情况。
另外,如表2所示,在样本4~6(实施例)中,对于半峰全宽FWHM、所谓的半宽度(半価幅)来说,若FWHM<0.8°,则具有与单晶的半峰全宽同等的数值。另外,半峰全宽(fullwidth at half maximum,FWHM)是指图19所示的宽度(来自***-半宽(半值幅))。
另外,若将样本4~6(实施例)与用图9所示的制造方法制作的比较例的样本7~9(参考图20~图22)进行比较,则可知样本4~6(实施例)的PZT膜是优异的结晶膜。
根据本实施例,通过将PZO膜用作PZT膜的初始核层(即缓冲层),能得到单一取向于(001)的c轴的PZT膜,能提高PZT膜的压电特性。
[实施例3]
Si基板、ZrO2膜以及Pt膜用与基于实施例1的样本相同的方法制作。然后,用旋涂法在5000rpm-10sec的旋转条件下将PZO前体溶液(与实施例1、2相同的溶液)在Pt膜上涂敷厚度40nm的PZO。之后,按升温速度为10℃/sec、烧结环境为O2、10atm在烧结温度650℃下进行1min的结晶化。之后,进行XRD衍射评价,得到如图24(B)那样(001)取向的厚度40nm的PZO膜。
接下来,在该厚度40nm的PZO膜上直接继续用溅射法形成厚度4μm的PZT膜。这时的XRD图谱如图24(A)那样,能得到具有与(001)取向的PZO膜的晶格常数同等的晶格常数的、即保持PZO的c轴长不变的、厚度4μn的PZT(Zr/Ti=55/45:XRF分析值)膜。
对于在图24(B)的厚度40nm的PZO膜的情况下能明确确认到存在的ZrO2来说,若涂敷图24(A)的厚度4μm的PZT膜,使PZT膜的膜厚也成为4μm,则PZT强度变得相当强,虽然是同一基板,但在该XRD评价条件的情况下,也已经不能确认到ZrO2的存在。
标号的说明
11 Si基板
12 ZrO2
13 Pt膜
14 Sr(Ti0.8Ru0.2)O3膜(STRO膜)
15 依次层叠PbZrO3膜(PZO膜)和Pb(Zr0.55Ti0.45)O3膜(PZT膜)而成的层叠膜
16 PZO膜
17 Pb(Zr0.55Ti0.45)O3膜(PZT膜)
103 下部电极
104 PbZrO3膜(PZO膜)
105 PZT膜
106 氧化膜

Claims (11)

1.一种铁电体陶瓷,其特征在于,具备:
Sr(Ti1-yRuy)O3膜;
形成在所述Sr(Ti1-yRuy)O3膜上的、(001)取向的Pb(Zr1-ATiA)O3膜;和
形成在所述Pb(Zr1-ATiA)O3膜上的、(001)取向的Pb(Zr1-xTix)O3膜,
所述A、所述x以及所述y满足下述式1~式4,
0≤A≤0.1…式1
0.1<x<1…式2
A<x…式3
0.01≤y≤0.4…式4。
2.根据权利要求1所述的铁电体陶瓷,其特征在于,
所述A是0,
所述Pb(Zr1-ATiA)O3是PbZrO3膜。
3.根据权利要求1所述的铁电体陶瓷,其特征在于,
所述Sr(Ti1-yRuy)O3膜形成在电极膜上。
4.根据权利要求3所述的铁电体陶瓷,其特征在于,
所述电极膜是Pt膜或Ir膜。
5.根据权利要求3所述的铁电体陶瓷,其特征在于,
所述电极膜形成在ZrO2膜上。
6.根据权利要求5所述的铁电体陶瓷,其特征在于
所述ZrO2膜形成在Si基板上。
7.根据权利要求1所述的铁电体陶瓷,其特征在于,
所述Pb(Zr1-ATiA)O3膜是所述Pb(Zr1-xTix)O3膜的膜厚的1/10以下。
8.一种铁电体陶瓷的制造方法,包括:
通过溅射法在基板上形成Sr(Ti1-yRuy)O3膜的步骤;
在加压氧气氛中通过加热退火将所述Sr(Til-yRuy)O3膜结晶化的步骤;
在所述Sr(Ti1-yRuy)O3膜上通过溅射法或溶胶凝胶法形成(001)取向的Pb(Zr1-ATiA)O3膜的步骤;
在所述Pb(Zr1-ATiA)O3膜上通过溅射法或溶胶凝胶法形成(001)取向的Pb(Zr1-xTix)O3膜的步骤,
该铁电体陶瓷的制造方法的特征在于,
所述A、所述x以及所述y满足下述式1~式4,
0≤A≤0.1…式1
0.1<x<1…式2
A<x…式3
0.01≤y≤0.4…式4。
9.根据权利要求8所述的铁电体陶瓷的制造方法,其特征在于,
所述A是0,
所述Pb(Zr1-ATiA)O3膜是PbZrO3膜。
10.根据权利要求8所述的铁电体陶瓷的制造方法,其特征在于,
将包含Pb(Zr,Ti)O3的前体溶液涂敷在所述基板上,在5atm以上的氧气氛中进行结晶化,由此形成所述Pb(Zr1-ATiA)O3膜或所述Pb(Zr1-xTix)O3膜。
11.根据权利要求8所述的铁电体陶瓷的制造方法,其特征在于,
所述Pb(Zr1-ATiA)O3膜是所述Pb(Zrl-xTix)O3膜的膜厚的1/10以下。
CN201580038020.0A 2014-07-16 2015-04-27 铁电体陶瓷及其制造方法 Active CN106575700B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014146250 2014-07-16
JP2014-146250 2014-07-16
PCT/JP2015/062647 WO2016009698A1 (ja) 2014-07-16 2015-04-27 強誘電体セラミックス及びその製造方法

Publications (2)

Publication Number Publication Date
CN106575700A CN106575700A (zh) 2017-04-19
CN106575700B true CN106575700B (zh) 2020-06-19

Family

ID=55078202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580038020.0A Active CN106575700B (zh) 2014-07-16 2015-04-27 铁电体陶瓷及其制造方法

Country Status (4)

Country Link
US (1) US20170158571A1 (zh)
JP (1) JP6598032B2 (zh)
CN (1) CN106575700B (zh)
WO (1) WO2016009698A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6596634B2 (ja) * 2014-10-23 2019-10-30 アドバンストマテリアルテクノロジーズ株式会社 強誘電体セラミックス、電子部品及び強誘電体セラミックスの製造方法
JP6677076B2 (ja) * 2016-05-24 2020-04-08 Tdk株式会社 積層膜、電子デバイス基板、電子デバイス及び積層膜の製造方法
TWI717498B (zh) 2016-06-21 2021-02-01 日商前進材料科技股份有限公司 膜構造體及其製造方法
JP6881790B2 (ja) * 2017-05-26 2021-06-02 アドバンストマテリアルテクノロジーズ株式会社 膜構造体及びその製造方法
SG10201805743TA (en) 2017-07-07 2019-02-27 Advanced Material Technologies Inc Film structure body and method for manufacturing the same
EP3712974A4 (en) 2017-11-13 2021-09-22 Advanced Material Technologies, Inc. FILM STRUCTURE AND ITS PRODUCTION PROCESS
WO2023122250A2 (en) * 2021-12-22 2023-06-29 University Of Maryland, College Park Vapor deposition systems and methods, and nanomaterials formed by vapor deposition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101327683A (zh) * 2006-10-11 2008-12-24 精工爱普生株式会社 致动器装置的制造方法以及致动器装置和液体喷射头
CN103456723A (zh) * 2012-06-04 2013-12-18 友技科株式会社 铁电晶体膜、电子元件、铁电晶体膜的制造方法和铁电晶体膜的制造装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156927A (ja) * 1995-11-30 1997-06-17 Mita Ind Co Ltd パターン化された複合酸化物膜の製造方法
US6523943B1 (en) * 1999-11-01 2003-02-25 Kansai Research Institute, Inc. Piezoelectric element, process for producing the piezoelectric element, and head for ink-jet printer using the piezoelectric element
JP2001196652A (ja) * 1999-11-01 2001-07-19 Kansai Research Institute 圧電体素子およびその製造方法ならびにそれを用いたインクジェット式プリンタヘッド
JP2003221229A (ja) * 2002-01-29 2003-08-05 Murata Mfg Co Ltd 膜の製造方法および膜状素子の製造方法
US7229662B2 (en) * 2003-12-16 2007-06-12 National University Of Singapore Heterolayered ferroelectric thin films and methods of forming same
JP4192794B2 (ja) * 2004-01-26 2008-12-10 セイコーエプソン株式会社 圧電素子、圧電アクチュエーター、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、周波数フィルタ、発振器、電子回路、薄膜圧電共振器、及び電子機器
JP4696754B2 (ja) * 2005-07-26 2011-06-08 Tdk株式会社 圧電薄膜振動子およびその製造方法、並びにそれを用いた駆動装置および圧電モータ
JP2012178506A (ja) * 2011-02-28 2012-09-13 Seiko Epson Corp 圧電素子の製造方法
JP5853753B2 (ja) * 2012-02-16 2016-02-09 Tdk株式会社 ペロブスカイト機能積層膜
CN103378286B (zh) * 2012-04-19 2017-12-01 新科实业有限公司 薄膜压电元件及其制造方法、磁头折片组合及磁盘驱动器
JP6141080B2 (ja) * 2012-04-19 2017-06-07 新科實業有限公司SAE Magnetics(H.K.)Ltd. 薄膜圧電素子およびその製造方法、マイクロアクチュエータ、ヘッドジンバルアセンブリおよびそれを備えたディスク駆動装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101327683A (zh) * 2006-10-11 2008-12-24 精工爱普生株式会社 致动器装置的制造方法以及致动器装置和液体喷射头
CN103456723A (zh) * 2012-06-04 2013-12-18 友技科株式会社 铁电晶体膜、电子元件、铁电晶体膜的制造方法和铁电晶体膜的制造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fatigue Behaviour of Pb(Zr,Ti)O3/PbZrO3 multilayer Ferroelectric Thin films;Sedat ALKOY 等;《Japanese Journal of Applied Physics》;20060922;第36卷;第7275-7278页 *
Sedat ALKOY 等.Fatigue Behaviour of Pb(Zr,Ti)O3/PbZrO3 multilayer Ferroelectric Thin films.《Japanese Journal of Applied Physics》.2006,第36卷 *

Also Published As

Publication number Publication date
JP6598032B2 (ja) 2019-10-30
CN106575700A (zh) 2017-04-19
US20170158571A1 (en) 2017-06-08
JPWO2016009698A1 (ja) 2017-04-27
WO2016009698A1 (ja) 2016-01-21

Similar Documents

Publication Publication Date Title
CN106575700B (zh) 铁电体陶瓷及其制造方法
JP6347086B2 (ja) 強誘電体セラミックス
US8956689B2 (en) Method for producing ferroelectric thin film
US8951603B2 (en) Method for producing ferroelectric thin film
TWI755444B (zh) 膜構造體及其製造方法
US10243134B2 (en) Piezoelectric film and piezoelectric ceramics
Brennecka et al. Reversibility of the perovskite‐to‐fluorite phase transformation in lead‐based thin and ultrathin films
US20180230603A1 (en) Electrode, ferroelectric ceramics and manufacturing method thereof
WO2022168800A1 (ja) 積層構造体及びその製造方法
US20180298484A1 (en) Ferroelectric film and manufacturing method thereof
JP2016086005A (ja) 強誘電体セラミックス、電子部品及び強誘電体セラミックスの製造方法
JP6481153B2 (ja) 強誘電体セラミックス及びその製造方法
JP2021185614A (ja) 成膜装置
TWI755445B (zh) 膜構造體及其製造方法
JP6813758B2 (ja) 強誘電体セラミックス及びその製造方法
TW200400550A (en) Vapor phase growth method of oxide dielectric film
Lin et al. Effects of excess Bi concentration, buffered Bi 2 O 3 layer, and Ta doping on the orientation and ferroelectricity of chemical-solution-deposited Bi 3.25 La 0.75 Ti 3 O 12 films
Garg et al. Electrical properties of RF sputtered PMN-PT thin films on LCMO buffered platinized glass substrate
Park et al. Effects of substrate pre-annealing on the preferred orientation of lead magnesium niobium titanate thin films by chemical solution deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Chiba County, Japan

Patentee after: ADVANCED MATERIAL TECHNOLOGIES Inc.

Address before: Chiba County, Japan

Patentee before: YOUTEC Co.,Ltd.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20220812

Address after: Yamaguchi Prefecture, Japan

Patentee after: Christo Co., Ltd.

Address before: Chiba County, Japan

Patentee before: ADVANCED MATERIAL TECHNOLOGIES Inc.

TR01 Transfer of patent right