CN106497854A - 乳杆菌d8及其应用 - Google Patents

乳杆菌d8及其应用 Download PDF

Info

Publication number
CN106497854A
CN106497854A CN201710039037.9A CN201710039037A CN106497854A CN 106497854 A CN106497854 A CN 106497854A CN 201710039037 A CN201710039037 A CN 201710039037A CN 106497854 A CN106497854 A CN 106497854A
Authority
CN
China
Prior art keywords
lactobacilluss
intestinal
lamina propria
culture
intestinal organoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710039037.9A
Other languages
English (en)
Other versions
CN106497854B (zh
Inventor
庾庆华
侯起航
杨倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201710039037.9A priority Critical patent/CN106497854B/zh
Publication of CN106497854A publication Critical patent/CN106497854A/zh
Application granted granted Critical
Publication of CN106497854B publication Critical patent/CN106497854B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0635B lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0679Cells of the gastro-intestinal tract
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了乳杆菌D8及其应用。本发明的乳杆菌D8,是从健康猪群中分离得到,分类命名为乳杆菌(Lactobacillus sp.),其保藏编号为CGMCC No. 13112。通过体外乳杆菌‑肠道类器官‑固有层淋巴细胞共培养模型的构建,我们发现乳杆菌 D8可以有效促进肠道干细胞的增殖分化进而维护肠黏膜屏障的完整性。进一步动物试验证实,口服乳杆菌 D8可以显著提高小肠绒毛的长度和小肠隐窝的深度,降低肠炎症状。因此,该菌株有望开发为预防和/或治疗肠炎的益生菌。

Description

乳杆菌D8及其应用
技术领域
本发明涉及生物防控技术,具体涉及乳杆菌D8及其应用,乳杆菌D8可以有效促进肠道干细胞的增殖分化,修复TNF-α诱导的损伤;口服动物乳杆菌D8可以显著改善肠炎症状。
背景技术
1.乳杆菌的研究现状及其免疫学作用
乳杆菌属(Lactobacillus)在分类学上归属于硬菌门(Firmicutes),杆菌纲(Bacilli),乳杆菌目(lactobacillales),乳杆菌科(lactobacillaceae),是一种革兰氏阳性杆菌,不形成芽抱,分解糖能够产生乳酸。乳杆菌是人和动物肠道的正常菌,与宿主营养物质的吸收、肠道黏膜免疫***的发育都有着密切的关系。研究表明乳杆菌作为益生菌,在抑制肠道病原微生物的定植、促进肠道健康等方面起重要作用;乳杆菌也可作为黏膜免疫佐剂,促进黏膜免疫***对抗原的反应,以提高疫苗的作用效果。除此之外,乳杆菌还可以成为药物和抗原分子的活载体。
乳杆菌可引导非特异性免疫调节作用,刺激肠道免疫细胞,加强肠道自身的免疫***功能,特别是增强巨唾细胞的功能,并通过刺激特异性免疫应答,增加血清中IgA、IgG和IgM水平,促进T淋巴细胞和B淋巴细胞成熟,从而增强细胞免疫,提高肠道免疫力和抗病力,抵抗肠道肿瘤、炎症等疾病。研究证实约氏乳杆菌和双歧乳杆菌在体外能增强吞唾细胞对大肠杆菌的吞嗟作用。乳杆菌的免疫促健康功能离不开其表面的配体和肠道上的受体,外源乳杆菌进入肠道后,只有其表面物质与肠上皮细胞表面的特异受体相结合,并通过信息转导,才能激活机体的免疫应答。近年来研究证实,乳杆菌表面成分在增强宿主免疫中起着重要的作用,如脂碟壁酸(LTA)、细胞壁肽聚糖(PG)、细胞表面蛋白(S-protein)以及一些未知的细胞表面提取物。乳杆菌表面物质作为配体被受体识别后激活免疫信号通路,产生细胞因子和趋化因子。有关乳杆菌表面蛋白在胜附肠道上皮中的作用研究得较多,而对于表面蛋白在免疫调节中的作用还知之甚少。研究发现,约氏乳杆菌(L.johnsonii NCC533)细胞表面的热应激蛋白能够促进该菌对细胞和肠枯膜的牲附,并能促进肠道上皮和巨嗟细胞产生细胞因子。研究同时发现,slpA基因能促进IL-1β、IL-6、IL-12和TNF-α的生成。脂磷壁酸(LTA)普遍存在于***中,并大量存在于乳杆菌的细胞表面,不仅能够介导细菌的枯附,还作为细胞表面受体的配体,与受体结合后刺激机体产生免疫因子,如TNF-α和白细胞介素(IL-1)。研究表明,在体外实验中乳杆菌细胞壁肽聚糖能刺激巨噬细胞的成熟,并能诱导细胞因子的产生,产生免疫学效应。
2.肠道类器官的研究现状及其应用
肠类器官培养(organoid culture)是将肠上皮的单个干细胞或含有干细胞的隐窝分离出来,在体外进行培养。在培养基中加入必要的生长因子(R-spondin1、Noggin和EGF等),使单个Lgr5干细胞或者隐窝逐渐增殖分化为具有类似肠器官的结构,通过类器官的生长出芽,体外模拟肠上皮的增殖分化过程,该结构不但具有“肠腔”,还具有肠黏膜的各种功能细胞。其较为单一的微环境为不同因素对肠上皮的发育影响研究提供了一个便利的平台,已经逐渐成为人们探索肠的生长发育及肠炎肠癌最为有力的研究模型。这种类器官具有与正常肠道上皮类似的结构与功能。目前小肠类器官培养技术己经被广泛应用于干细胞、疾病模型W及再生药物等相关研究。
目前,还没有任何关于从健康猪群中分离出该乳杆菌D8分离鉴定的报道,也没有任何关于体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的建立的报道,更没有关于采用该乳杆菌D8探究乳杆菌的免疫学作用以及对肠黏膜的作用。
发明内容
发明目的:本发明所要解决的第一个技术问题是提供了一种乳杆菌D8。该乳杆菌D8可以有效缓解肠炎。可以有效促进肠道干细胞的增殖分化,修复TNF-α诱导的损伤;口服动物乳杆菌D8可以显著改善肠炎症状。
本发明所要解决的第二个技术问题是提供了一种体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型。
本发明所要解决的第三个技术问题是提供了体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的构建方法。
本发明所要解决的第四个技术问题是提供了乳杆菌D8或体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型在制备预防或治疗肠道疾病药物方面的应用。
本发明所要解决的第五个技术问题是提供了一种益生菌,所述益生菌包含所述的乳杆菌D8。
技术方案:为了解决上述技术问题,本发明所采用的技术方案为:一种乳杆菌D8,所述乳杆菌D8的分类命名为乳杆菌(Lactobacillus sp.),于2016年10月14日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.13112;地址:北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所,邮编:100101。
本发明内容还包括一种体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型,所述共培养模型是通过将分离得到的固有层淋巴细胞和肠道类器官混合培养,然后加入所述的乳杆菌D8构建形成的体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型。
本发明内容还包括体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的构建方法,包括以下步骤:
1)肠道类器官的分离培养;
2)固有层淋巴细胞的分离培养;
3)乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的建立。
其中,上述的步骤3)中固有层淋巴细胞和肠道类器官的体积比为3:1~10:1。
作为优选,本发明的步骤3)中固有层淋巴细胞和肠道类器官的体积比为7:1。
其中,上述的步骤3)中的乳杆菌为乳杆菌D8,所述乳杆菌D8加入量为每孔1×103CFU~1×104CFU。
作为优选,本发明的步骤3)中的乳杆菌为乳杆菌D8,所述乳杆菌D8加入量为每孔1×104CFU。
本发明的乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的构建具体步骤参见具体实施例方式中的实施例2~4。
本发明内容还包括所述的乳杆菌D8或所述的体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型在制备预防或治疗肠道疾病药物方面的应用。
其中,上述肠道疾病为肠炎或结肠炎。
其中,上述药物剂型为片剂、胶囊、缓释片、控释片、口服液、糖浆、滴丸、注射液剂型或冻干粉针剂型中的一种。
本发明内容还包括一种益生菌,所述益生菌包含所述的乳杆菌D8。
有益效果:与现有技术相比,本发明具有如下的特色和优点:
1)本发明首次分离鉴定获得了乳杆菌D8;该菌株的特点:革兰氏染色阳性,呈杆状;口服乳杆菌D8可以显著提高小肠绒毛的长度和小肠隐窝的深度,降低肠炎症状;
2)本发明首次构建了一种体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型;该模型可以用来探究乳杆菌的免疫学作用以及对肠黏膜的作用;乳杆菌D8可以有效促进肠道干细胞的增殖分化进而维护肠黏膜屏障的完整性,提升肠道黏膜免疫水平。
3)本发明首次证明了乳杆菌D8可以有效促进肠道干细胞的增殖分化,修复TNF-α诱导的损伤。
4)本发明分离得到的乳杆菌D8直接饲喂动物,可以减轻动物肠炎症状,维护肠道健康;该菌有望开发成预防肠炎的益生菌。
附图说明
图1:乳杆菌D8光学显微镜革兰氏染色观察图;
图2:体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型光学显微镜观察图;a:乳杆菌(D8)-肠道类器官(intestinal organoids)-固有层淋巴细胞(LPLs)共培养模型模式图;b:光学显微镜下乳杆菌-肠道类器官-固有层淋巴细胞共培养模型照片;c:乳杆菌-肠道类器官-固有层淋巴细胞共培养模型中肠道类器官1到6天生长发育光学显微镜观察图;
图3:乳杆菌D8能够促进肠道类器官生长,改善由TNF-α引起的肠道类器官损伤;Ctrl:阴性对照,正常培养基培养,不做任何处理;乳杆菌D8组:每孔加1×104CFU乳杆菌D8;TNF-α损伤组:每孔加入30ng的TNF-α;乳杆菌D8修复组(D8+TNF-α):每孔先加入30ng的TNF-α作用6h引起损伤后加入1×104CFU乳杆菌D8;
图4:乳杆菌D8能够提高肠道类器官BrdU阳性细胞面积;分组同图3;
图5:乳杆菌D8能够提高肠道类器官Ki67阳性细胞面积;分组同图3;
图6:乳杆菌D8能够提高空肠隐窝深度和绒毛高度,改善DSS引起的小肠黏膜损伤;Ctrl:阴性对照,每天灌胃100ul的PBS;D8:小鼠每天灌胃1×108CFU乳杆菌D8,连续饲喂27天;DSS:饲喂的第21天在饮水中添加质量百分比5%的葡聚糖硫酸钠(DSS);D8+DSS:对小鼠每天灌胃1×108CFU乳杆菌D8,连续饲喂27天,在第21天的饮水中添加质量百分比5%的葡聚糖硫酸钠(DSS);
图7:小鼠口服乳杆菌D8后结肠炎的组织病理症状减轻;饲喂磷酸缓冲盐溶液(PBS,pH=7.4)的小鼠用DSS诱导结肠炎,表现出明显的组织病理变化;上皮细胞脱落,黏膜下和肠腔中出血,黏膜下和固有层炎性细胞浸润,肠壁增生变厚;饲喂乳杆菌D8后肠炎组织病理变化明显减轻;无明显可见出血点和炎性细胞浸润,上皮细胞较为完整,肠壁无明显增生;分组同图6;
图8:小鼠口服乳杆菌D8后结肠炎症状减轻。表现为结肠长度增加,出血减轻;分组同图6;
图9:乳杆菌D8能够促进共培养模型分泌白细胞介素22(IL-22);Ctrl:阴性对照;乳杆菌D8组:每孔加1×104CFU乳杆菌D8;TNF-α损伤组:每孔加入30ng的TNF-α;乳杆菌D8修复组(D8+TNF-α):先加入30ng的TNF-α作用6h引起损伤后加入1×104CFU乳杆菌D8;
图10:乳杆菌D8能够刺激共培养模型分泌IL-22改善由TNF-α引起的肠道类器官损伤;Ctrl:阴性对照;TNF-α损伤组:每孔加入30ng的TNF-α;乳杆菌D8修复组(D8+TNF-α):先加入30ng的TNF-α作用6h引起损伤后加入1×104CFU乳杆菌D8共同培养;IL-22抗体中和组:先加入30ng的TNF-α作用6h引起损伤后,同时加入1×104CFU乳杆菌D8和白细胞介素22中和抗体(anti-IL-22)(Sigma,美国)共同培养。
具体实施方式
下面通过具体的实施例和附图对本发明进一步说明。下述实施例中所用方法如无特别说明,均为常规试剂和常规方法。
实施例1 乳杆菌D8的分离鉴定
1.1样品的来源与菌株的初步筛选
样品来自30日龄杜洛克小猪,购买于江苏省农业科学院,仔猪屠宰后打开腹腔,用灭菌棉绳将十二指肠的两头扎好,剪断后立即放入预冷的生理盐水中,30min内送至实验室作菌种分离,分菌操作在超净工作台内进行,用无菌剪刀将肠段纵向剪开,接着用无菌PBS缓冲液冲洗肠表面的内容物,然后用刀片轻轻刮取肠壁黏膜约0.5g左右,放置装有玻璃珠的三角锥瓶内充分振荡,室温静置2-3min后,取100μl悬液涂布MRS琼脂培养基(pH 5.8)表面,37℃烛缸培养24-36h。样品挑选疑似菌落进行革兰氏染色,如图1所示乳杆菌D8的光学显微镜观察图。
1.2乳杆菌属特异PCR鉴定
挑选初步筛选的菌株,加入MRS培养基(乳杆菌选择性培养基,购买于青岛海博生物,中国)扩增培养后,用细菌基因组DNA提取试剂盒(Tiangen,中国)提取细菌基因组,用一对乳杆菌属16s通用引物P1和P2将提取的细菌基因组进行PCR扩增。
P1:AGAGTTTGATCCTGGCTCAG
P2:GGTTACCTTGTTACGACTT(该序列参见序列表中的SEQ ID NO:2和SEQ ID NO:3)
以上引物由南京金斯瑞公司合成,反应采用25μl体系(12.5μl BU-Taq 2×MasterPCR mix(Takara,中国),2μl模板DNA(细菌基因组),上下游引物各1μl,9.5μl ddH2O)在Biometra PCR仪(Bio-Rad,美国)进行,反应程序为:95℃预变性3min,94℃30s,72℃1min,共执行30个循环,最后72℃延伸15min。反应产物测序所得的SEQ ID NO:1序列经过Blast比对,发现与Lactobacillus reuteri strain CTI0324-RS-018 16S ribosomal RNA gene,partial sequence(GenBank:KU754503.1)相似性达到99%,从而确定为乳杆菌D8,该菌株保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.13112。
实施例2 体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的建立
2.1肠道类器官的分离培养
2.1.1小鼠购买于扬州大学实验动物中心,四周龄C57小鼠,取小肠约15cm,纵向剖开后,用预冷的加有质量百分比为1%青霉素和质量百分比为1%链霉素的无菌PBS缓冲溶液清洗数次;
2.1.2将洗净的小肠剪成3-5mm左右的片段,转移至50ml无菌离心管内,加入10mL的20mM预冷的EDTA,冰上消化20min,用移液枪吸取液体丢弃,保留小肠组织;
2.1.3在小肠组织中加入预冷的PBS,用移液枪轻柔持续吹打,并及时通过光学显微镜镜检,弃去含有大量绒毛的上清,直至视野中出现大量小肠隐窝,开始收集上清;
2.1.4将带有小肠隐窝的上清用70μM细胞过滤器过滤,上清液用800rpm,4℃离心5min收集沉淀;
2.1.5用预冷的PBS重悬沉淀,再用600rpm离心、收集,反复3-4次直至洗净多余的绒毛碎片得到小肠隐窝;
2.1.6用50μl Matrigel基质胶(Corning,美国)重悬小肠隐窝,混合均匀后接种到24孔培养板培养孔中央;待Matrigel凝固后添加DMEM/F-12培养基(每孔加入500μl)(Gibco,美国),每孔培养基中加入0.25μl(浓度为100μg/mL)的重组小鼠的EGF(Peprotech,美国)、每孔培养基中加入1μl(浓度为50μg/ml)的重组小鼠的Noggin(Peprotech,美国)和每孔培养基中加入1μl(浓度为250μg/ml)的重组人的R-spondin(Peprotech,美国),隔天换液;即培养获得肠道类器官(intestinal organoids)(包含肠干细胞等各种类型的3D立体培养模型)。
2.2固有层淋巴细胞的分离培养
2.2.1在无Ca2+、Mg2+的100ml的Hanks平衡液(源培,中国)中加入5g牛血清白蛋白(Sigma,美国),58mg EDTA,15.4mg二硫苏糖醇(Sigma,美国),配制分离液。在100mlPBS中加入5g牛血清白蛋白,0.15gⅧ型胶原酶(Sigma,美国),100U的DNaseⅠ(Sigma,美国),于37℃下孵育5min,配制消化液。Percoll细胞分离液(联科,中国)与10×PBS按体积比9:1混合,配制100%等渗Percoll母液。用Percoll母液,DMEM高糖溶液和FCS分别按体积比8:1:1和4:5:1混合,配制80%等渗Percoll溶液和40%等渗Percoll溶液。
2.2.2颈椎脱臼法处死小鼠,立即取出约7-8cm结肠和回肠组织,置于预冷不含钙、镁PBS(PBS-/-)中,去除脂肪、肠系膜***及小肠的集合***;沿肠系膜一侧将肠管纵向剖开,在不含钙镁预冷PBS中轻轻漂洗,直至粪便完全漂洗干净,横向切成约0.5-1.0cm的肠组织片段。
2.2.3将肠组织片段移入50ml离心管中,加入5ml分离液,置于恒温振荡箱中,于37℃下震荡(250r/min)15min;置于旋涡混合器上,涡旋30s,然后将涡旋后的肠组织片段通过100μm尼龙滤网过滤,此时滤液为肠上皮内淋巴细胞和肠上皮细胞;将过滤后的肠组织片段重新移入50ml离心管中,加入5ml分离液,重复上述震荡、涡旋和过滤步骤。
2.2.4将过滤处理后的肠组织片段移入新的50ml离心管中,加入5ml消化液,置于恒温振荡箱中,于37℃下震荡(250r/min)45min;置于旋涡混合器上,涡旋30s,将涡旋后的肠组织片段通过100μm尼龙滤网过滤,收集滤液于15ml离心管中,于4℃下离心(400g)10min,弃去上清液,此时沉淀包含固有层淋巴细胞(lamina propria lymphocytes,LPLs)。
2.2.5将80%等渗Percoll溶液4ml铺于新的15ml离心管底部;用40%等渗Percoll溶液8ml重悬上述沉淀,充分吹打均匀后铺在80%等渗Percoll溶液上,将离心管倾斜180度使液体缓慢沿着管壁加入,两层液体间可见清晰的分界面;在20℃下行零加减速密度梯度离心(500×g)20min;弃去上层液体至剩余体积为7ml,吸出两层界面间的不透明细胞层,移入新的15ml离心管中,加入PBS-/-至体积为15ml,充分混匀后,于4℃下离心(400×g)8min,弃去上清液,用5ml含质量百分比为10%胎牛血清的RPMI1640培养液重悬沉淀,充分吹打均匀制备细胞悬液即得固有层淋巴细胞。
2.3乳杆菌-肠道类器官-固有层淋巴细胞的共培养
本实验将分离得到的固有层淋巴细胞(lamina propria lymphocytes)和肠道类器官(intestinal organoids)按照体积比为7:1的比例进行混合(具体量是7μl固有层淋巴细胞和1μl肠道类器官),加入Matrigel基质胶(每孔50μl)重悬,铺于24孔板中,每孔加入50μl Matrigel基质胶,待Matrigel凝固后每孔中加入500μl的DMEM/F-12培养基(Gibco,美国)(含有25ng的重组小鼠的EGF、50ng的重组小鼠的Noggin和125ng的重组人的R-spondin),放置于细胞培养箱中进行培养。需要乳杆菌处理组每孔加入1×104CFU的乳杆菌D8,构建出一种体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型,探究乳杆菌的免疫学作用以及对肠黏膜的作用。如图2所示。
实施例3 体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的建立
与实施例2基本一致,所不同的在于,固有层淋巴细胞(lamina proprialymphocytes)和肠道类器官(intestinal organoids)按照体积比为3:1的比例进行混合(具体量是3μl固有层淋巴细胞和1μl肠道类器官),加入(每孔50μl)Matrigel重悬,铺于24孔板中,每孔加入50μl Matrigel,待Matrigel凝固后每孔中加入500μl的DMEM/F-12培养基(Gibco,美国)(含有25ng的重组小鼠的EGF、50ng的重组小鼠的Noggin和125ng的重组人的R-spondin),放置于细胞培养箱中进行培养。需要乳杆菌处理组每孔加入1×103CFU的乳杆菌D8,构建出一种体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型。
实施例4 体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的建立
与实施例2基本一致,所不同的在于,固有层淋巴细胞(lamina proprialymphocytes)和肠道类器官(intestinal organoids)按照体积比为10:1的比例进行混合(具体量是10μl固有层淋巴细胞和1μl肠道类器官),加入(每孔50μl)Matrigel重悬,铺于24孔板中,每孔加入50μl Matrigel,待Matrigel凝固后每孔中加入500μl的DMEM/F-12培养基(Gibco,美国)(含有25ng的重组小鼠的EGF、50ng的重组小鼠的Noggin和125ng的重组人的R-spondin),放置于细胞培养箱中进行培养。需要乳杆菌处理组每孔加入1×103CFU的乳杆菌D8,构建出一种体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型。
实施例5 检测乳杆菌D8对肠道类器官的作用
实验组分为四组。对照组(图3中Ctrl组),乳杆菌D8组(图3中D8组),TNF-α损伤组(图3中TNF-α组),TNF-α引起损伤加入乳杆菌修复组(图3中D8+TNF-α组)。乳杆菌D8组是往实施例2构建的共培养模型每孔中加入1×104CFU乳杆菌D8,持续作用24h以上;TNF-α组是往实施例2构建的共培养模型中每孔加入30ng的TNF-α,持续作用24h;TNF-α引起损伤加入乳杆菌D8修复组往实施例2构建的共培养模型先每孔加入30ng的TNF-α作用6h引起损伤后加入1×104CFU乳杆菌D8,持续作用24h以上;对照组是实施例2构建的共培养模型,正常培养基培养,不做任何处理。普通光学显微镜观察各组肠道类器官的表面积,发芽率以及损伤程度。分别通过BrdU和Ki67免疫荧光染色观察肠道类器官的增值情况。
5.1普通显微镜观察肠道类器官形态指数变化
将肠道类器官直接放置于显微镜镜下观察肠道类器官的表面积,发芽率以及损伤程度。发现乳杆菌D8能够促进肠道类器官生长,提升肠道类器官的表面积以及发芽率,改善由TNF-α引起的肠道类器官损伤。如图3所示。
5.2 BrdU和Ki67免疫荧光染色观察肠道类器官的增值情况
BrdU染色前2h每孔加入300μl的BrdU染料(终浓度为30μg/L)作用2h。弃去上清,4%的甲醛4℃固定过夜。1×PBS洗3次,每次10min。0.4%Triton X-100透化5分钟;1×PBS洗3次,每次10min;质量百分比为5%BSA室温封闭30min;分别加入Brdu的一抗(Arigo,中国台湾)或者Ki-67抗体(Arigo,中国台湾)(用1%BSA稀释1:100)放在湿盒里,4度过夜;1×PBS洗3次,每次10min;分别加入100μl荧光标记的Brdu二抗(用1%BSA稀释1:200)或100μl荧光标记的Ki-67二抗(联科,中国)(用1%BSA稀释1:200)30分钟,闭光;1×PBS洗3次,每次10min。用共聚焦显微镜(Zeiss)观察肠道类器官染色情况。发现乳杆菌D8能够提高肠道类器官BrdU和Ki67阳性细胞面积。如图4和图5所示。乳酸杆菌组相较于对照组,肠道类器官BrdU和Ki67阳性细胞面积分别提升50.8%和34.4%。乳酸杆菌修复组相较于损伤组,肠道类器官BrdU和Ki67阳性细胞面积分别提升118.2%和146.3%。
实施例6 检测口服乳杆菌D8后对小鼠小肠以及结肠炎的影响
对小鼠每天灌胃1×108CFU乳杆菌D8,连续饲喂21天后在饮水中添加质量百分比为5%葡聚糖硫酸钠(DSS)诱导结肠炎。7天后颈椎脱臼处死小鼠观察结肠长度变化,并对空场、结肠进行HE染色,评价隐窝深度绒毛高度以及组织病理变化。
发现乳杆菌D8能够提高空肠隐窝深度和绒毛高度,改善DSS引起的小肠黏膜损伤。Ctrl:阴性对照,每天灌胃100μl的PBS;D8:小鼠每天灌胃1×108CFU乳杆菌D8,连续饲喂27天;DSS:饲喂的第21天在饮水中添加质量百分比5%的葡聚糖硫酸钠(DSS);D8+DSS:对小鼠每天灌胃1×108CFU乳杆菌D8,连续饲喂27天,在第21天的饮水中添加质量百分比5%的葡聚糖硫酸钠(DSS);如图6所示。乳杆菌D8组相较于PBS对照组,小肠绒毛高度提升35.7%左右,隐窝深度提升33.4%左右。乳杆菌D8修复组相较于DSS损伤组,小肠绒毛高度提升83.2%左右,隐窝深度增加21.4%左右。如图6所示,小鼠口服乳杆菌D8后结肠炎的组织病理症状减轻。损伤组小鼠饲喂DSS后,表现出明显的肠炎组织病理变化:上皮细胞脱落,黏膜下和肠腔中出血,黏膜下和固有层炎性细胞浸润,肠壁增生变厚。乳酸杆菌修复组饲喂乳杆菌D8后肠炎组织病理变化明显减轻:无可见出血点和炎性细胞浸润,上皮细胞较为完整,肠壁无明显增生。如图7所示。小鼠口服乳杆菌D8后结肠炎症状减轻:表现为结肠长度增加,出血减轻。如图8所示。乳酸杆菌组相较于对照组,结肠长度无变化。乳酸杆菌修复组相较于损伤组,结肠长度提升33.3%左右。
实施例7 乳杆菌D8刺激共培养模型分泌IL-22改善肠炎症状
7.1乳杆菌D8能够促进共培养模型分泌IL-22
实验组分为四组。对照组(图9中Ctrl组),乳杆菌D8组(图9中D8组),TNF-α损伤组(图9中TNF-α组),TNF-α引起损伤加入乳杆菌修复组(图9中D8+TNF-α组)。乳杆菌D8组是往实施例2构建的共培养模型每孔中加入1×104CFU乳杆菌D8,持续作用24h以上;TNF-α损伤组是往实施例2构建的共培养模型中每孔加入30ng的TNF-α,持续作用24h;TNF-α引起损伤加入乳杆菌D8修复组往实施例2构建的共培养模型先每孔加入30ng的TNF-α作用6h引起损伤后加入1×104CFU乳杆菌D8,持续作用24h以上;对照组不做任何处理,正常培养基培养。收集上清,应用ELISA试剂盒(eBioscience,美国)检测培养液中IL-22浓度。结果发现乳杆菌D8能够显著提高肠类器官上清中IL-22浓度。相对于对照组中IL-22浓度为198pg/ml,乳杆菌D8组中IL-22浓度为2253pg/ml,显著增加10.3倍。相对于TNF-α损伤组中IL-22浓度为980pg/ml,乳杆菌修复组中IL-22浓度为1230pg/ml,显著提高了25.5%。
7.2乳杆菌D8能够刺激共培养模型分泌IL-22改善肠道类器官损伤
实验组分为四组。对照组(图10中Ctrl组),TNF-α损伤组(图10中TNF-α组):每孔加入30ng的TNF-α;乳杆菌D8修复组(图10中的D8+TNF-α):每孔先加入30ng的TNF-α作用6h引起损伤后加入1×104CFU乳杆菌D8共同培养;IL-22抗体中和组(图10中的D8+TNF-α+anti-IL-22):每孔先加入30ng的TNF-α作用6h引起损伤后,同时加入1×104CFU乳杆菌D8和白细胞介素22中和抗体(每孔加2.5ng)(anti-IL-22)(Sigma,美国)共同培养;对照组不做任何处理,正常培养基培养。发现TNF-α可诱导78.1%的肠类器官死亡,IL-22抗体中和组中肠类器官死亡率为80.8%。相对于TNF-α损伤组,乳杆菌D8修复组中肠类器官死亡率仅为20.2%,肠类器官死亡率下降达57.9%。结果证实乳杆菌D8可以刺激实施例2构建的共培养模型分泌IL-22,维护肠类器官的完整性。
上述仅为本发明优选的实施例,这里无需也无法对所有的实施例来举例说明。对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出其它不同形式的变化或变动,这些也应属于本发明的保护范围。
SEQUENCE LISTING
<110> 南京农业大学
<120> 乳杆菌D8及其应用
<130> SG2017001
<160> 1
<170> PatentIn version 3.3
<210> 1
<211> 1424
<212> DNA
<213> Lactobacillus
<400> 1
aatggttagg ccaccgactt tgggcgttac aaactcccat ggtgtgacgg gcggtgtgta 60
caaggcccgg gaacgtattc accgcggcat gctgatccgc gattactagc gattccgact 120
tcgtgtaggc gagttgcagc ctacagtccg aactgagaac ggctttaaga gattagctta 180
ctctcgcgag cttgcgactc gttgtaccgt ccattgtagc acgtgtgtag cccaggtcat 240
aaggggcatg atgatctgac gtcgtcccca ccttcctccg gtttgtcacc ggcagtctca 300
ctagagtgcc caacttaatg ctggcaacta gtaacaaggg ttgcgctcgt tgcgggactt 360
aacccaacat ctcacgacac gagctgacga cgaccatgca ccacctgtca ttgcgtcccc 420
gaagggaacg ccttatctct aaggttagcg caagatgtca agacctggta aggttcttcg 480
cgtagcttcg aattaaacca catgctccac cgcttgtgcg ggcccccgtc aattcctttg 540
agtttcaacc ttgcggtcgt actccccagg cggagtgctt aatgcgttag ctccggcact 600
gaagggcgga aaccctccaa cacctagcac tcatcgttta cggcatggac taccagggta 660
tctaatcctg ttcgctaccc atgctttcga gcctcagcgt cagttgcaga ccagacagcc 720
gccttcgcca ctggtgttct tccatatatc tacgcattcc accgctacac atggagttcc 780
actgtcctct tctgcactca agtcgcccgg tttccgatgc acttcttcgg ttaagccgaa 840
ggctttcaca tcagacctaa gcaaccgcct gcgctcgctt tacgcccaat aaatccggat 900
aacgcttgcc acctacgtat taccgcggct gctggcacgt agttagccgt gactttctgg 960
ttggataccg tcactgcgtg aacagttact ctcacgcacg ttcttctcca acaacagagc 1020
tttacgagcc gaaacccttc ttcactcacg cggtgttgct ccatcaggct tgcgcccatt 1080
gtggaagatt ccctactgct gcctcccgta ggagtatgga ccgtgtctca gttccattgt 1140
ggccgatcag tctctcaact cggctatgca tcatcgcctt ggtaagccgt taccttacca 1200
actagctaat gcaccgcagg tccatcccag agtgatagcc aaagccatct ttcaaacaaa 1260
agccatgtgg cttttgttgt tatgcggtat tagcatctgt ttccaaatgt tatcccccgc 1320
tccggggcag gttgcctacg tgttactcac ccgtccgcca ctcactggtg atccatcgtc 1380
aatcaggtgc aagcaccatc aatcagttgg gccagtgcgt acga 1424
<210> 2
<211> 20
<212> DNA
<213> 上游引物P1
<400> 2
agagtttgat cctggctcag 20
<210> 3
<211> 19
<212> DNA
<213> 下游引物P2
<400> 3
ggttaccttg ttacgactt 19

Claims (9)

1. 一种乳杆菌D8,其特征在于,所述乳杆菌 D8的分类命名为乳杆菌(Lactobacillus sp.),于2016年10月14日保藏于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No. 13112。
2.一种体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型,其特征在于,所述共培养模型是通过将分离得到的固有层淋巴细胞和肠道类器官混合培养,然后加入权利要求1所述的乳杆菌D8构建形成的体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型。
3.权利要求2所述的体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的构建方法,其特征在于,包括以下步骤:
1)肠道类器官的分离培养;
2)固有层淋巴细胞的分离培养;
3)乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的建立。
4.根据权利要求3所述的体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的构建方法,其特征在于,所述步骤3)中固有层淋巴细胞和肠道类器官的体积比为3:1~10:1。
5.根据权利要求3所述的体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型的构建方法,其特征在于,所述步骤3)中的乳杆菌为乳杆菌D8,所述乳杆菌D8加入量为每孔1×103CFU~ 1×104 CFU。
6.权利要求1所述的乳杆菌D8或权利要求2所述的体外乳杆菌-肠道类器官-固有层淋巴细胞共培养模型在制备预防或治疗肠道疾病药物方面的应用。
7.根据权利要求6所述的应用,其特征在于,所述肠道疾病为肠炎或结肠炎。
8.根据权利要求6所述的应用,其特征在于,所述药物剂型为片剂、胶囊、缓释片、控释片、口服液、糖浆、滴丸、注射液剂型或冻干粉针剂型中的一种。
9.一种益生菌,其特征在于,所述益生菌包含权利要求1所述的乳杆菌D8。
CN201710039037.9A 2017-01-19 2017-01-19 乳杆菌d8及其应用 Active CN106497854B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710039037.9A CN106497854B (zh) 2017-01-19 2017-01-19 乳杆菌d8及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710039037.9A CN106497854B (zh) 2017-01-19 2017-01-19 乳杆菌d8及其应用

Publications (2)

Publication Number Publication Date
CN106497854A true CN106497854A (zh) 2017-03-15
CN106497854B CN106497854B (zh) 2019-10-22

Family

ID=58345330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710039037.9A Active CN106497854B (zh) 2017-01-19 2017-01-19 乳杆菌d8及其应用

Country Status (1)

Country Link
CN (1) CN106497854B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107582573A (zh) * 2017-08-23 2018-01-16 江苏微康生物科技有限公司 一种益生菌滴剂及其制备方法
CN109486700A (zh) * 2018-08-31 2019-03-19 石家庄君乐宝乳业有限公司 副干酪乳杆菌n1115预防结肠炎的应用及相应的益生菌粉、应用
CN111195258A (zh) * 2020-02-06 2020-05-26 上海交通大学医学院附属瑞金医院北院 托吡酯在制备用于治疗炎性疾病的药物中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101575582A (zh) * 2008-05-08 2009-11-11 景岳生物科技股份有限公司 具有抗炎活性的乳杆菌分离株及其用途
CN102115721A (zh) * 2008-05-08 2011-07-06 景岳生物科技股份有限公司 具有抗炎活性的乳杆菌分离株及其用途
CN104080903A (zh) * 2011-07-14 2014-10-01 Gt生物制剂有限公司 从猪分离的菌株
CN105343133A (zh) * 2015-12-08 2016-02-24 东北农业大学 一种治疗溃疡性结肠炎的复合益生菌、药物及其制备方法
CN105543126A (zh) * 2015-12-25 2016-05-04 西北农林科技大学 一种植物乳杆菌jm113及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101575582A (zh) * 2008-05-08 2009-11-11 景岳生物科技股份有限公司 具有抗炎活性的乳杆菌分离株及其用途
CN102115721A (zh) * 2008-05-08 2011-07-06 景岳生物科技股份有限公司 具有抗炎活性的乳杆菌分离株及其用途
CN104080903A (zh) * 2011-07-14 2014-10-01 Gt生物制剂有限公司 从猪分离的菌株
CN105343133A (zh) * 2015-12-08 2016-02-24 东北农业大学 一种治疗溃疡性结肠炎的复合益生菌、药物及其制备方法
CN105543126A (zh) * 2015-12-25 2016-05-04 西北农林科技大学 一种植物乳杆菌jm113及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PRIDMORE RD,ET AL: "The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 433", 《PROC NATL ACAD SCI USA》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107582573A (zh) * 2017-08-23 2018-01-16 江苏微康生物科技有限公司 一种益生菌滴剂及其制备方法
CN109486700A (zh) * 2018-08-31 2019-03-19 石家庄君乐宝乳业有限公司 副干酪乳杆菌n1115预防结肠炎的应用及相应的益生菌粉、应用
CN111195258A (zh) * 2020-02-06 2020-05-26 上海交通大学医学院附属瑞金医院北院 托吡酯在制备用于治疗炎性疾病的药物中的应用

Also Published As

Publication number Publication date
CN106497854B (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
Ofek et al. Resistance of Neisseria gonorrhoeae to phagocytosis: relationship to colonial morphology and surface pili
Dekeyser et al. Acute enteritis due to related vibrio: first positive stool cultures
KR100758614B1 (ko) 라우소니아 인트라셀룰라리스의 배양, 항-라우소니아 인트라셀룰라리스 백신 및 진단시약
US20090227025A1 (en) Ex vivo human lung/immune system model using tissue engineering for studying microbial pathogens with lung tropism
KR20060054352A (ko) 유럽 기원의 로소니아 인트라셀룰라리스, 및 이의 백신,진단제 및 사용 방법
CN106497854A (zh) 乳杆菌d8及其应用
Wang et al. Isolation of adhesive strains and evaluation of the colonization and immune response by Lactobacillus plantarum L2 in the rat gastrointestinal tract
CN110982733A (zh) 一株防治乳腺炎的鼠李糖乳杆菌及其应用
CN102884174B (zh) 肠道免疫抑制剂的筛选方法
Tsuruta et al. Intestinal organoids generated from human pluripotent stem cells
Cortes-Perez et al. Intragastric administration of Lactobacillus casei BL23 induces regulatory FoxP3+ RORγt+ T cells subset in mice
CN103436461A (zh) 新颖乳酸菌株及其调节免疫反应的用途
Bridger et al. Primary bovine colonic cells: a model to study strain-specific responses to Escherichia coli
CN101503662B (zh) 用于抗过敏症状的微生物株、其组合物和以此微生物株刺激细胞产生干扰素-γ的方法
CN110859956B (zh) 一种犬细小病毒灭活疫苗及其制备方法
CN110846284B (zh) 一种犬细小病毒CPV-HuN1703株及其应用
CN102899261B (zh) 长双歧杆菌长亚种br022菌株的用途
CN107022501A (zh) 婴儿型双歧杆菌在防治食物过敏食品或者药物中的应用
Collins et al. Replication of Australian porcine isolates of Ileal symbiont intracellularis in tissue culture
Ma et al. Akkermansia muciniphila identified as key strain to function in pathogen invasion and intestinal stem cell proliferation through Wnt signaling pathway
JP4388660B2 (ja) 特定細菌を腸内菌叢として有する実験用動物及びその作出方法
Cox et al. In vitro adhesion of K88ab-, K88ac-and K88ad-positive Escherichia coli to intestinal villi, to buccal cells and to erythrocytes of weaned piglets
Nietfeld et al. Isolation of cilia-associated respiratory (CAR) bacillus from pigs and calves and experimental infection of gnotobiotic pigs and rodents
KR100621882B1 (ko) 돼지 증식성 회장염 감염돈에서 로소니아인트라셀룰라리스 균을 분리하는 방법
Fedorchenko et al. Medical microbiology: guide for preparing for the licensed integrated exam “Krok 1

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant