CN106404642B - 一种流式细胞***荧光寿命高斯拟合测量方法 - Google Patents

一种流式细胞***荧光寿命高斯拟合测量方法 Download PDF

Info

Publication number
CN106404642B
CN106404642B CN201610935353.XA CN201610935353A CN106404642B CN 106404642 B CN106404642 B CN 106404642B CN 201610935353 A CN201610935353 A CN 201610935353A CN 106404642 B CN106404642 B CN 106404642B
Authority
CN
China
Prior art keywords
curve fitting
gauss curve
fluorescence
fluorescence signal
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610935353.XA
Other languages
English (en)
Other versions
CN106404642A (zh
Inventor
祝连庆
张文昌
娄小平
刘超
潘志康
董明利
孟晓辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Information Science and Technology University
Original Assignee
Beijing Information Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Science and Technology University filed Critical Beijing Information Science and Technology University
Priority to CN201610935353.XA priority Critical patent/CN106404642B/zh
Publication of CN106404642A publication Critical patent/CN106404642A/zh
Application granted granted Critical
Publication of CN106404642B publication Critical patent/CN106404642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供了一种流式细胞***荧光寿命高斯拟合测量方法,所述方法包括以下步骤:1)利用时间微元法求出瞬时散射光强度和荧光信号强度,2)利用卷积法对峰值位置的变化进行分析,3)利用高斯拟合对散射光信号与荧光信号进行表示,得到的脉冲信号进行高斯拟合。

Description

一种流式细胞***荧光寿命高斯拟合测量方法
技术领域
本发明涉及荧光检测及光谱分析领域,具体涉及流式细胞仪的荧光强度检测及荧光寿命时域估算领域。
背景技术
流式细胞仪是一种集激光技术、电子物理技术、光电测量技术、电子计算机技术、细胞荧光化学技术和单克隆抗体技术为一体的新型高科技仪器。对悬液中处于高速、直线流动的单细胞或其他颗粒,通过检测散射光信号和(或)标记的荧光信号,实现高速逐一的多参数定量分析。在细胞生物学、细胞周期动力学、免疫学、血液学及肿瘤学等领域具有广泛的应用。
流式细胞仪对悬液中处于高速、直线流动的单细胞或其他颗粒,通过检测散射光信号和(或)标记的荧光信号,实现高速逐一的多参数定量分析。在细胞生物学、细胞周期动力学、免疫学、血液学及肿瘤学等领域具有广泛的应用。流式细胞仪实现前向散射光(FS)、侧向散射光(SS)及各色荧光信号(FLn)的收集及光电转换,并对转换后的脉冲信号进行多参数提取,最终根据提取得到的多参数实现对细胞/微球的统计学分析。荧光寿命测量能够提供有机荧光素、荧光蛋白和其他可发荧光的无机分子相关的荧光弛豫、强度衰减等信息。并且荧光寿命不存在荧光强度测量过程中存在的非线性问题,所以荧光寿命被引入到流式细胞仪单细胞测量中作为一个多参数信息。
应用到流式分析的荧光寿命测量方法主要有频域方法和时域方法两种。频域方法***中,通过高频正弦信号对激发光源进行调制,从而使激发出的荧光信号与激发光具有相同的调制频率,并且两者之间存在一定的相移。时域方法***中,利用飞秒激光器作为激发光源对样品或细胞进行激发,通过单光子计数器及指数衰减模型对荧光衰减时间进行观测。频域方法和时域方法都会大大增加传统流式细胞仪的成本及复杂程度。
2014年C.Ruofan等人提出利用数字信号处理方法对传统流式细胞仪荧光信号时延进行分析,在不改变流式细胞仪结构的情况下采用250Mbps高速ADC芯片对荧光信号进行采样并利用(Direct method、Gaussian Fitting、Half Area)3种方法对荧光寿命进行计算,计算结果的时域分辨能力受限于ADC的采样频率。
发明内容
为了解决上述问题,本发明的目的在于提供一种流式细胞***荧光寿命高斯拟合测量方法,所述方法包括以下步骤:
1)利用时间微元法求出瞬时散射光强度和荧光信号强度,
由以下公式得出t时刻散射光强度:
其中,R为荧光微球的半径,dx为微元的宽度,x为微元距位置原点的距离;
由以下公式得出t时刻荧光信号强度:
其中,τ为衰减周期;
2)利用卷积法对峰值位置的变化进行分析:
3)利用高斯拟合对散射光信号与荧光信号进行表示,得到的脉冲信号进行高斯拟合。
优选地,所述步骤3)中对拟合结果的评价指标为:
均方分误差:RMSE(root-mean-square-error)
确定系数:R-square
预测数据与原始数据均值之差的平方和SSR。
原始数据和均值之差的平方和SST。
应当理解,前述大体的描述和后续详尽的描述均为示例性说明和解释,并不应当用作对本发明所要求保护内容的限制。
附图说明
参考随附的附图,本发明更多的目的、功能和优点将通过本发明实施方式的如下描述得以阐明,其中:
图1为散射光脉冲产生原理示意图;
图2为散射光产生机理示意图;其中图2(a)为第一个微元S1的散射光fs_S1产生过程示意图;图2(b)为最后一个微元Sn的散射光fs_Sn产生过程示意图;
图3为荧光产生机理示意图;
图4为利用卷积法与时间微元法进行分析的结果图;
图5为前向散射光信号fs及高斯拟合结果图;
图6为荧光信号fl1及高斯拟合结果图;
图7为荧光信号fl2及高斯拟合结果图;
图8为荧光信号fl3及高斯拟合结果图;
图9为三路荧光信号荧光时延直方图。
具体实施方式
通过参考示范性实施例,本发明的目的和功能以及用于实现这些目的和功能的方法将得以阐明。然而,本发明并不受限于以下所公开的示范性实施例;可以通过不同形式来对其加以实现。说明书的实质仅仅是帮助相关领域技术人员综合理解本发明的具体细节。
在下文中,将参考附图描述本发明的实施例。在附图中,相同的附图标记代表相同或类似的部件,或者相同或类似的步骤。
本发明提供了一种对荧光脉冲信号进行高斯拟合的时延估计方法,利用荧光脉冲信号与散射光脉冲信号之间的时延,实现对荧光寿命的测量。高斯拟合的时延估计方法具有:(1)硬件电路***结构简单,易于实现;(2)避免了光强调制及高速处理模块之间的同步等问题;(3)完全由数字信号处理芯片完成,计算速度快,灵活性好;(4)计算所得荧光寿命的时域分辨率不受ADC采样频率限制等优势。
在流式细胞仪检测过程中,散射光信号强度与光斑位置关系的产生原理如图1所示,将荧光微球分成n个径向等宽度的微元,宽度为dx,令微元距位置原点(l=0)的距离为x(0≤x≤2R),则该微元对应的表面积为
第一个微元S1的散射光fs_S1产生过程如图2(a)所示,在时间微元范围内散射光强度不存在衰减,故用矩形进行表示。fs_S1起始时刻为0,终止时刻为L/v。最后一个微元Sn的散射光fs_Sn产生过程如图2(b)所示。fs_Sn起始时刻为2R/v,终止时刻为(L+2R)/v。光斑范围内各个微元的散射光叠加可得对应时刻的瞬时散射光强度。t时刻散射光强度为:
荧光信号具有衰减特性,假定为单指数衰减其中τ为衰减周期(荧光信号衰减为初始值的1/e)。散射光信号fs(t)包含微球位置、相应的激发光斑强度分布等信息,故利用fs(t)作为荧光信号时间微元分析的初始时刻光强信号。图3为荧光信号按照时间微元分析得到的效果图。t时刻荧光信号强度为:
另外,利用卷积法对峰值位置的变化进行分析:
fl(t)与fs(t)的相频差即为的相频即,对应的时域时延为τ。散射光信号:荧光信号:
本发明的一个实施例激发光斑短轴长度L=22μm,沿短轴的强度分布为荧光微球半径R=10μm,微球流速v=10.5m/s。FS、FLm的采样频率为100MHz,即脉冲序列相邻数据点之间的时间间隔为10ns。
本发明利用卷积法及时间微元法计算得到的荧光信号强度曲线如图4所示。时间微元法曲线的包络与卷积法结果一致,两者峰值点相对于fs(t)峰值点时延均为衰减周期τ。散射光信号具有中心对称性,且对称中心为光斑中心位置l=L/2,对应时刻为t=(L+2R)/2。荧光信号相对于散射光信号的时延为衰减函数的衰减周期τ,同时衰减函数会引起荧光信号波形的非对称性,并且τ越大波形的非对称性越明显。由于荧光信号宽度约为τ的102~103倍,故引起的非对称性不是很显著。
本发明利用高斯拟合对散射光信号与荧光信号进行表示,对100MSPS得到的脉冲信号进行高斯拟合,拟合结果如表1所示。具体波形如图5~8所示。拟合结果的评价指标为:
均方分误差:RMSE(root-mean-square-error)
确定系数:R-square
SSR:Sum of squares of the regression.预测数据与原始数据均值之差的平方和。
SST:Total sum of squares.原始数据和均值之差的平方和。
拟合结果为:a1=10.51;b1=2.01;c1=0.5;评价指标:RMSE=2.21×10-5;R-square=1.000;即,包含单指数衰减特性的荧光信号可以用高斯模型进行有效的表征。
本发明分别对1000组脉冲数据进行高斯拟合分析。最终得到平均值及标准差及变异系数(CV,coefficient of variation),如表2所示,相应直方图如图9所示。
表1.高斯拟合结果及评价指标
表2荧光时延计算结果统计分析
结合这里披露的本发明的说明和实践,本发明的其他实施例对于本领域技术人员都是易于想到和理解的。说明和实施例仅被认为是示例性的,本发明的真正范围和主旨均由权利要求所限定。

Claims (1)

1.一种流式细胞***荧光寿命高斯拟合测量方法,所述方法包括以下步骤:
1)利用时间微元法求出瞬时散射光强度和荧光信号强度,
由以下公式得出t时刻散射光强度:
其中,R为荧光微球的半径,dx为微元的宽度,x为微元距位置原点的距离,fs(t)为t时刻散射光强度,v为荧光微球的流速,L为激发光斑短轴长度,σ为标准差;
由以下公式得出t时刻荧光信号强度:
其中,τ为衰减周期,fl(t)为t时刻荧光信号强度,δ为衰减幅度,t-nτ为衰减时间,n为荧光微球分成径向等宽度的微元的数量;
2)利用卷积法对峰值位置的变化进行分析:
3)利用高斯拟合对散射光信号与荧光信号进行表示,得到的脉冲信号进行高斯拟合;
其中对拟合结果的评价指标为:
均方根误差:RMSE(root-mean-square-error)
Xobs,i表示原始数据,Xmodel,i表示预测数据;n为样本数;确定系数:R-square
SSE预测数据与原始数据的误差平方和;
预测数据与原始数据均值之差的平方和SSR;
表示原始数据的均值;n为样本数;
原始数据和均值之差的平方和SST;
n为样本数。
CN201610935353.XA 2016-11-01 2016-11-01 一种流式细胞***荧光寿命高斯拟合测量方法 Active CN106404642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610935353.XA CN106404642B (zh) 2016-11-01 2016-11-01 一种流式细胞***荧光寿命高斯拟合测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610935353.XA CN106404642B (zh) 2016-11-01 2016-11-01 一种流式细胞***荧光寿命高斯拟合测量方法

Publications (2)

Publication Number Publication Date
CN106404642A CN106404642A (zh) 2017-02-15
CN106404642B true CN106404642B (zh) 2019-01-04

Family

ID=58013221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610935353.XA Active CN106404642B (zh) 2016-11-01 2016-11-01 一种流式细胞***荧光寿命高斯拟合测量方法

Country Status (1)

Country Link
CN (1) CN106404642B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107179303B (zh) * 2017-05-16 2019-11-08 广东永诺医疗科技有限公司 微滴荧光检测方法、装置、***、存储介质与计算机设备
CN108489947B (zh) * 2018-03-22 2021-02-09 深圳大学 一种荧光寿命的测量方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026205A (zh) * 2010-07-26 2013-04-03 奥林巴斯株式会社 使用发光探针检测溶液中稀疏颗粒的方法
CN103154708A (zh) * 2010-10-13 2013-06-12 奥林巴斯株式会社 利用单个发光粒子检测的粒子的扩散特性值的测量方法
CN103221806A (zh) * 2010-09-10 2013-07-24 奥林巴斯株式会社 使用两个以上的波长带的光的测量的光学分析方法
CN103954368A (zh) * 2014-05-21 2014-07-30 北京遥测技术研究所 一种基于光电探测阵列的窄带光解调***及其解调方法
CN104641233A (zh) * 2012-06-22 2015-05-20 麦考瑞大学 采用寿命编码的复合悬液分析/阵列
CN105823765A (zh) * 2016-03-21 2016-08-03 天津大学 可扩展荧光寿命探测范围的质心算法cmm

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032981A1 (ja) * 2010-09-10 2012-03-15 オリンパス株式会社 単一発光粒子の光強度を用いた光分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026205A (zh) * 2010-07-26 2013-04-03 奥林巴斯株式会社 使用发光探针检测溶液中稀疏颗粒的方法
CN103221806A (zh) * 2010-09-10 2013-07-24 奥林巴斯株式会社 使用两个以上的波长带的光的测量的光学分析方法
CN103154708A (zh) * 2010-10-13 2013-06-12 奥林巴斯株式会社 利用单个发光粒子检测的粒子的扩散特性值的测量方法
CN104641233A (zh) * 2012-06-22 2015-05-20 麦考瑞大学 采用寿命编码的复合悬液分析/阵列
CN103954368A (zh) * 2014-05-21 2014-07-30 北京遥测技术研究所 一种基于光电探测阵列的窄带光解调***及其解调方法
CN105823765A (zh) * 2016-03-21 2016-08-03 天津大学 可扩展荧光寿命探测范围的质心算法cmm

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
利用基于扫描相机的荧光寿命成像显微技术研究细胞周期;王岩 等;《中国激光》;20110331;第38卷(第3期);第0304002-1-0304002-6页
基于同步扫描相机的荧光寿命测量***研究;邵永红 等;《深圳大学学报理工版》;20091031;第26卷(第4期);第331-336页
测量分子荧光寿命的一种新方法;林美荣 等;《发光学报》;19880630;第9卷(第2期);第144-151页

Also Published As

Publication number Publication date
CN106404642A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
Wang et al. Standardization, calibration, and control in flow cytometry
JP6568362B2 (ja) 物体長を判定するための光の空間的変調
US7344890B2 (en) Method for discriminating platelets from red blood cells
US9074978B2 (en) Optical space-time coding technique in microfluidic devices
CA2474509C (en) Methods and algorithms for cell enumeration in a low-cost cytometer
US10451482B2 (en) Determination of color characteristics of objects using spatially modulated light
WO2016127364A1 (zh) 细胞分析仪、粒子分类方法及装置
JPS6183938A (ja) 高度粒子検出能のフラクチユエーシヨン分析法
CN106404642B (zh) 一种流式细胞***荧光寿命高斯拟合测量方法
Kiesel et al. Monitoring CD4 in whole blood with an opto‐fluidic detector based on spatially modulated fluorescence emission
CN103424540A (zh) 一种白细胞分类试剂盒及其分类方法
Nakamura et al. Theoretical and experimental analysis of the accuracy and reproducibility of cell tracking velocimetry
Thangawng et al. A hard microflow cytometer using groove-generated sheath flow for multiplexed bead and cell assays
JPH0593726A (ja) 検体測定の方法及び装置、並びにこれに用いる試薬
CN106680186B (zh) 一种流式细胞仪多类型散射光探测***
Wang et al. Sheathless microflow cytometer utilizing two bulk standing acoustic waves
Dey Diagnostic flow cytometry in cytology
WO2021087006A1 (en) Analyte detection and quantification by discrete enumeration of particle complexes
Watts et al. Scattering detection using a photonic‐microfluidic integrated device with on‐chip collection capabilities
WO2013105612A1 (ja) 血中の目的細胞の定量方法および該細胞を定量するシステムの評価方法
CN106092989B (zh) 一种通过计数量子点团聚比例定量肝素的方法
Palanisami et al. Simultaneous sizing and electrophoretic mobility measurement of sub‐micron particles using Brownian motion
CN111381029A (zh) 一种单分子多组分数字免疫分析方法
Azmayesh-Fard et al. Lab on a chip for measurement of particulate flow velocity using a single detector
KR20070102177A (ko) 세포표면 표지의 검출 및 계수 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant