WO2016127364A1 - 细胞分析仪、粒子分类方法及装置 - Google Patents

细胞分析仪、粒子分类方法及装置 Download PDF

Info

Publication number
WO2016127364A1
WO2016127364A1 PCT/CN2015/072907 CN2015072907W WO2016127364A1 WO 2016127364 A1 WO2016127364 A1 WO 2016127364A1 CN 2015072907 W CN2015072907 W CN 2015072907W WO 2016127364 A1 WO2016127364 A1 WO 2016127364A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
scattered light
particles
pulse width
optical signal
Prior art date
Application number
PCT/CN2015/072907
Other languages
English (en)
French (fr)
Inventor
叶波
王官振
狄建涛
章颖
祁欢
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201580039384.0A priority Critical patent/CN106662572B/zh
Priority to EP21194141.4A priority patent/EP3943912A1/en
Priority to CN201910468524.6A priority patent/CN110244032B/zh
Priority to PCT/CN2015/072907 priority patent/WO2016127364A1/zh
Priority to EP15881526.6A priority patent/EP3258263B1/en
Publication of WO2016127364A1 publication Critical patent/WO2016127364A1/zh
Priority to US15/675,079 priority patent/US10330584B2/en
Priority to US16/414,023 priority patent/US10627332B2/en
Priority to US16/801,501 priority patent/US10883916B2/en
Priority to US16/801,544 priority patent/US10983042B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • G01N2015/016White blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1402Data analysis by thresholding or gating operations performed on the acquired signals or stored data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing

Definitions

  • the invention relates to a medical device, in particular to a cell analyzer, a particle sorting method and a device.
  • the blood cell analyzer is an instrument that can detect cells in the blood, and can count and classify cells such as white blood cells (WBC), red blood cells, platelets, nucleated red blood cells, and reticulocytes.
  • WBC white blood cells
  • red blood cells red blood cells
  • platelets platelets
  • nucleated red blood cells and reticulocytes.
  • the collected optical signals may include three kinds of optical signals such as forward scattered light, side scattered light, and fluorescent signal.
  • the forward scattered light can reflect the size information of the cells, and the side scattered light can reflect the complexity of the internal structure of the cells.
  • the fluorescent signal reflects the content of DNA, RNA and the like which can be stained by the fluorescent dye. Using these light signals, white blood cells can be classified and the count value of white blood cells can be obtained.
  • the detection process is divided into different detection channels, such as DIFF channel, BASO channel and NRBC channel, wherein BASO channel is used to classify and count white blood cells, After the blood sample is treated with a chemical reagent, the total number of white blood cells is generally counted using side scattered light and forward scattered light, and the count value of basophils in the white blood cells is also given.
  • the NRBC channel can be used to classify nucleated red blood cells after treatment with a fluorescent reagent.
  • the NRBC channel can give white blood cell counts and nucleated red blood cell counts.
  • the two particles are not clearly distinguishable, thereby affecting the classification results of the particles.
  • the interfering particles may be lipid particles or PLT (blood platelet) aggregated particles, PLT is part of the blood shadow, and the blood shadow is
  • PLT blood platelet
  • the blood sample is subjected to pre-treatment of the sample, and the cells such as red blood cells or platelets are broken by the low-permeability or reagent treatment, and the cell debris structure is formed, usually The sub-volume is small and the forward scattered light signal is small.
  • PLT aggregation occurs, which interferes with the detection of white blood cells. These interfering particles overlap with the leukocyte scattergram in the scatter plot.
  • the NRBC channel is detected.
  • the platelet aggregation group A1 overlaps with the leukocyte cluster B1 on the forward scattered light and the fluorescent signal.
  • the results of BASO channel detection white blood cells are classified into basophilic granulocyte group A2 and other white blood cell clusters B2, other white blood cell clusters including lymphocytes, monocytes, neutrophils and eosinophils cell.
  • the lipid particle group C2 overlaps the other white blood cell clusters B2 at the lower end of the forward scattered light and the side scattered light signal, which interferes with the white blood cell count. It can be seen that when these interfering particles are present in the blood sample, the accuracy of the detection result is affected.
  • an embodiment provides a particle classification method, including:
  • an optical signal generated by light irradiation of each particle in the sample when the blood sample passes through the detection area including at least two of forward scattered light, side scattered light, and fluorescence;
  • the other signals being at least one of the other enhancement signals and the optical signals different from the combined optical signals, ie, at least one dimension of the new scatter plot is the enhancement signal;
  • the first type of particles and the second type of particles are distinguished according to a new scatter plot.
  • Another particle classification method comprising:
  • an optical signal generated by light irradiation of each particle in the sample when the blood sample passes through the detection area including at least two of forward scattered light, side scattered light, and fluorescence;
  • the first type of particles and the second type of particles are distinguished according to a new scatter plot.
  • an embodiment provides a particle sorting apparatus, including:
  • An optical signal acquiring unit configured to acquire an optical signal generated by light irradiation of each particle in the sample when the blood sample passes through the detection area, the optical signal including at least two of forward scattered light, side scattered light, and fluorescence;
  • a pulse width acquiring unit configured to acquire a pulse width of at least one optical signal
  • a calculating unit configured to select at least one optical signal as the combined optical signal, and combine the signal strengths of the combined optical signals with the pulse widths respectively to obtain at least one enhanced signal, where the combined calculation results in the first type of particles The difference in the enhanced signal from the second type of particles is increased compared to the difference in the combined optical signals between the two;
  • a new scattergram generating unit for composing a new scattergram based on the enhanced signal and other signals, the other signals being at least one of the other enhanced signals and the optical signals different from the combined optical signals;
  • a classification unit for distinguishing between the first type of particles and the second type of particles according to the new scatter plot.
  • an apparatus for classifying another particle comprising:
  • An optical signal acquiring unit configured to acquire an optical signal generated by light irradiation of each particle in the sample when the blood sample passes through the detection area, the optical signal including at least two of forward scattered light, side scattered light, and fluorescence;
  • a scattergram generating unit configured to generate an initial scattergram for classifying and/or counting the particles according to the light signal
  • a pulse width acquiring unit configured to acquire a pulse width of at least one optical signal when an overlapping region exists between the first type of particle group and the second type of particle group in the initial scattergram
  • a calculating unit configured to select at least one optical signal as the combined optical signal, and combine the signal strengths of the combined optical signals with the pulse widths respectively to obtain at least one enhanced signal, where the combined calculation results in the first type of particles The difference in the enhanced signal from the second type of particles is increased compared to the difference in the combined optical signals between the two;
  • a new scattergram generating unit for composing a new scattergram based on the enhanced signal and other signals, the other signals being at least one of the other enhanced signals and the optical signals different from the combined optical signals;
  • a classification unit for distinguishing between the first type of particles and the second type of particles according to the new scatter plot.
  • an embodiment provides a cell analyzer, comprising:
  • a conveying device for conveying the sample liquid to be tested into the optical detecting device
  • the optical detecting device is configured to perform light irradiation on the sample liquid to be tested flowing through the detection area thereof, collect various light information generated by the light irradiation of the cells, and convert the light into a corresponding electrical signal output;
  • the particle sorting device described above is configured to receive and process an electrical signal output by the optical detecting device.
  • the present invention forms a new enhanced signal by combining a function of a certain optical signal and a pulse width signal, so that the difference between the first type of particles and the second type of particles on the enhanced signal is increased, and a new scatter is generated based on the enhanced signal.
  • the first type of particles and the second type of particles are distinguished by using the difference between the first type of particles and the second type of particles in enhancing the signal, thereby improving the accuracy of particle classification.
  • Figure 1 is a scatter plot of the NRBC channel of a platelet aggregation sample
  • Figure 2 is a scatter plot of the BASO channel of a lipid particle sample
  • Figure 3 is a schematic diagram of the detected pulse
  • Figure 4a is a scatter width-forward scattering scatter plot of the lipid particle sample
  • Figure 4b is a scatter width-side scattering light scatter plot of the lipid particle sample
  • Figure 5 is a schematic structural view of a blood cell analyzer
  • FIG. 6 is a schematic structural view of a particle sorting device in an embodiment
  • FIG. 7 is a schematic structural view of a particle sorting device in another embodiment
  • Figure 8 is a scatter plot of the NRBC channel of a normal sample
  • Figure 9 is a flow chart of classification of NRBC channel particles
  • Figure 10 is a scattergram of the NRBC channel fluorescence signal enhanced by the front scatter pulse width
  • Figure 11 is a scatter diagram of the forward scattered pulse signal of the NRBC channel after the forward scattered pulse width is enhanced
  • Figure 12 is a scattergram of the NRBC channel fluorescence signal enhanced by lateral scatter width
  • Figure 13 is a scatter diagram of the NRBC channel forward scattered light signal enhanced by the side scattered pulse width
  • Figure 14 is a scattergram of the NRBC channel fluorescence signal enhanced by the fluorescence pulse width
  • Figure 15 is a scattergram of the NRBC channel forward scattered light signal enhanced by the fluorescence pulse width
  • Figure 16 is a scatter plot of the BASO channel of a normal sample
  • 17 is a flow chart of classification of BASO channel particles
  • Figure 18 is a scatter diagram of the forward scattered light signal of the BASO channel after the pre-scatter pulse width is enhanced
  • Figure 19 is a scatter plot of the BASO channel forward scattered light signal after the square of the front scattered pulse width.
  • the pulse width can reflect the time that the particle passes through the detection area, thereby indicating the size of the particle.
  • Figure 3 shows a schematic diagram of the detected pulse, which excites the pulse signal as it passes through the detection zone.
  • the pulse width is from the start of the pulse to the end of the pulse, and the pulse width signal is actually the time when the particle passes through the detection area.
  • the flow rate is constant, the smaller the particle, the shorter the time it passes through the detection zone, and the smaller the corresponding pulse width.
  • the larger the particle the longer the time it passes through the detection zone, and the corresponding pulse width will be larger. Therefore, it is theoretically possible to distinguish between different kinds of particles by pulse width.
  • the aggregated particles pass through the detection area, and the pulse width of the generated pulse is relatively large.
  • platelet aggregated particles and white blood cells can be distinguished by the size of the pulse width.
  • the particle size distribution of the platelet group is wider, and some large platelet aggregated particles and white blood cell populations There is overlap, so the use of pulse width does not distinguish well between white blood cells and platelet aggregation particles.
  • lipid particles in blood samples their volume shows a small to large change due to their different sizes.
  • the corresponding pulse width is smaller; for large diameter lipid particles
  • the particles have a corresponding pulse width.
  • the pulse width of the lipid particles and the white blood cells will be equal.
  • Fig. 4a and Fig. 4b it can be seen that the pulse width distribution of the lipid particle group A4 is from small to large, and the basophilic
  • the granulocyte group B4 and other white blood cell clusters C4 have overlapping regions in the small pulse width, so according to the pulse width, whether it is a scatter plot with forward scattered light or a scatter plot of side scattered light, The lipid particles and white blood cells are well separated.
  • a new enhanced signal is formed by using a combination of an optical signal and a pulse width signal, and the scattergram generated based on the enhanced signal can make the particle group
  • the separation effect is significantly enhanced.
  • FIG. 5 is a schematic structural diagram of a blood cell analyzer including an optical detecting device 20, a transport device 30, a data processing device 40, and a display device 50.
  • the conveying device 30 is configured to input the sample liquid (for example, the blood sample to be tested) after reacting with the reagent It is sent to the optical detecting device 20.
  • the delivery device 30 typically includes a delivery line and a control valve that is delivered to the optical detection device 20 through a delivery line and a control valve.
  • the optical detecting device 20 is configured to perform light irradiation on the sample liquid flowing through the detection area thereof, collect various light information (for example, scattered light information and/or fluorescence information) generated by the light irradiation of the cells, and convert the corresponding light signals into corresponding electrical signals. These information correspond to the characteristics of the cell particles, and can be used as the characteristic data of the cell particles.
  • the forward scattered light signal reflects the size information of the cells
  • the side scattered light signal reflects the complexity of the internal structure of the cell
  • the fluorescent signal reflects the DNA, RNA, etc. in the cell.
  • the content of the substance dyed by the fluorescent dye In the embodiment shown in FIG.
  • the optical detecting device 20 may include a light source 1025, a detection area 1021 as a detection area, a forward scattered light signal collecting means 1023 disposed on the optical axis, and a lateral direction disposed on the side of the optical axis.
  • the scattered light signal collecting device 1026 and the fluorescent signal collecting device 1027 do not require the use of the fluorescent signal collecting device 1027.
  • the blood sample is sampled as needed, and the sample liquid reacted with the different reagents passes through the detection area 1021 of the flow chamber 1022 under the sheath liquid, and the light beam emitted from the light source 1025 is irradiated to the detection area 1021, and each cell in the sample liquid
  • the particles emit scattered light after being irradiated by the light beam, and the light collecting device collects the scattered light, and the collected and shaped light is irradiated to the photoelectric sensor, and the photoelectric sensor converts the optical signal into a corresponding electrical signal and outputs it to the data processing device 40.
  • the data processing device 40 is configured to receive the optical information output by the optical detecting device, and use the optical information of each particle as a characteristic data group for characterizing the particle, and analyze the particle characteristic data to realize analysis of the blood sample to be tested.
  • the data processing device 40 includes a particle sorting device, and the particle sorting device generates a desired scattergram according to the feature data set of each particle, and classifies the particles according to the scattergram.
  • the particle sorting device For distinguishing white blood cells from interference particles, the interference particles may be platelet aggregation particles or lipid particles.
  • the scatter plot refers to a set of feature data sets of each cell particle, which may be stored in a digital form in a storage device, or may be presented in a visual form on a display interface.
  • the display device 50 is electrically coupled to the data processing device 40 for displaying the analysis results output by the data processing device 40.
  • the analysis results may be graphics, text descriptions or tables, and the like.
  • display device 50 can output various visualized scatter plots and/or various cell classification results.
  • the white blood cell particles and the interfering particles are distinguished by an enhanced signal of the optical signal and the pulse width signal, regardless of whether interfering particles are present and whether the interfering particles overlap with the white blood cells.
  • the particle sorting device includes an optical signal acquiring unit 41 and a pulse width. The acquisition unit 42, the calculation unit 43, the new scattergram generation unit 44, and the classification unit 45.
  • the optical signal acquisition unit 41 is configured to acquire an optical signal.
  • the light emitted by the optical detecting device 20 illuminates the detection area, and each particle in the sample is irradiated with light to generate a corresponding optical signal, and the optical detecting device 20 collects various light information generated by the light irradiation of each particle.
  • the light signal includes at least two of forward scattered light, side scattered light, and fluorescence, and may be, for example, forward scattered light and side scattered light, and may be forward scattered light, side scattered light, and fluorescent light.
  • the pulse width acquisition unit 42 is configured to acquire a pulse width of at least one optical signal.
  • the pulse width acquisition unit 42 selects an optical signal from the collected optical signals, and counts the pulse width of the optical signal. For example, the forward scattered light, the side scattered light, or the fluorescent pulse can be counted. width.
  • the pulse width acquiring unit 42 selects a plurality of optical signals from the collected optical signals, and separately counts pulse widths of the plurality of optical signals, for example, statistics of forward scattered light and fluorescent light signals. Pulse width.
  • the calculation unit 43 is configured to calculate the enhancement signal, and the enhancement signal is respectively obtained by function combination calculation according to the pulse width of the optical signal and the combined optical signal, and the combined optical signal may be any optical signal selected from the optical signal acquisition unit 41.
  • the combined calculation increases the difference in the enhanced signal between the white blood cell particles and the interfering particles compared to the difference in the combined optical signal between the two, for example the enhanced signal can be a function of the combined optical signal and the pulse width, the expression of which is as follows:
  • Z is a boosting signal
  • f is a function
  • X is a combined optical signal strength.
  • the optical signal strength may be a peak value of the optical pulse signal
  • Y is a pulse width.
  • the function f has the following characteristics:
  • the function f is monotonic to the combined optical signal or pulse width, ie when the combined optical signal is determined (or unchanged), the function is a monotonic function for the pulse width, eg the function is an increasing or decreasing function of the pulse width
  • the function is a monotonic function for the combined optical signal, for example, the function is an increasing or decreasing function of the combined optical signal.
  • the function f has the following property:
  • the function f is a non-linear combination function of the combined optical signal and the pulse width.
  • the calculation unit 43 may have one of the enhanced signals obtained by the combination calculation, for example, the enhancement signal is only the forward scattered light and the pulse width enhancement signal; and the calculation unit 43 calculates the obtained enhancement signal by the combination calculation.
  • the boosting signal may include a forward-scattered light and a pulse width enhancement signal, as well as side-scattered light and a pulse width enhancement signal.
  • the optical signal of the statistical pulse width and the combined optical signal may be the same optical signal or different optical signals.
  • the new scattergram generation unit 44 is configured to form a new scattergram based on the enhancement signal and other signals, and the other signals may be at least one of the optical signals different from the combined optical signals, or may be at least one of the other enhanced signals, or a combination of the two.
  • the new scatter plot can be two or three dimensional, with at least one dimension being a boost signal.
  • the new scatter plot selects the optical signal and the enhanced signal to form a new scatter plot, such as selecting a light signal and a boost signal to form a two-dimensional new scatter plot, or selecting an optical signal.
  • the two enhanced signals form a three-dimensional new scatter plot, or two optical signals and one enhanced signal are selected to form a three-dimensional new scatter plot.
  • the optical signal and the enhanced signal component different from the combined optical signal may be preferably used.
  • the new scatter plot for example, the combined optical signal that computes the boost signal is fluorescent, then the forward scattered light and the boosted signal are selected to form a new scatter plot.
  • the new scatter plot selects a certain enhancement signal and other enhancement signals to form a new scatter plot, and the other enhancement signals refer to a boost signal that is different from some enhancement signal.
  • a type A enhancement signal is selected from the at least one enhancement signal calculated by the calculation unit 43 as a dimension of the new scattergram, and another B enhancement signal different from the A enhancement signal is selected as the new scatter diagram.
  • One dimension, the new scatter plot selects two kinds of enhanced signals to form a two-dimensional new scatter plot, such as selecting the enhanced signal of forward scattered light and pulse width, and the enhanced signal of side scattered light and pulse width to form a two-dimensional new dispersion. Dot map.
  • the classification unit 45 is for distinguishing between white blood cell particles and interference particles according to a new scattergram.
  • the white blood cell particles and the interfering particles have some differences in the light signal and the pulse width, but the difference is insufficient to distinguish the white blood cell particles from the interference particles, and the difference can be increased by combining the optical signal and the pulse width. Since the signal is enhanced so that the difference in the enhanced signal between the white blood cell particle and the interference particle is increased compared to the difference in the combined light signal between the two, the white blood cell particle and the interference particle can be distinguished on the scattergram based on at least the enhanced signal. Come.
  • a conventional classification method is first employed, that is, a scattergram is generated based on an optical signal, which is referred to as an initial scattergram.
  • the particle sorting means includes an optical signal acquiring unit 51, a scattergram generating unit 52, a pulse width acquiring unit 53, a calculating unit 54, a new scattergram generating unit 55, and a sorting unit 56.
  • the optical signal acquisition unit 51, the calculation unit 54, and the new scattergram generation unit 55 are the same as the foregoing embodiment, and the scattergram generation unit 52 is configured to generate an initial scattergram for classifying and/or counting white blood cells based on the light signal.
  • Pulse width acquisition unit 53 is for obtaining a pulse width of at least one optical signal when an overlapping region exists between the white blood cell cluster and the interfering particle cluster in the initial scattergram.
  • the classification unit 56 is configured to distinguish the white blood cell particles and the interference particles according to the new scattergram, and count the number of white blood cells. When there is no overlapping region between the white blood cell particle group and the interference particle group in the initial scattergram, the classification unit 56 is further based on the initial scatter point. Figure statistics of white blood cell count.
  • a platelet aggregation sample is taken as an example, and a blood sample is measured by a blood cell analyzer, and a white blood cell count value can be obtained from the NRBC channel.
  • red blood cells and platelets are treated with a hemolytic agent, and cell debris is formed. After being measured by a blood cell analyzer, it is located in the blood shadow portion of the low-end signal in the NRBC channel.
  • a NRBC channel scatter plot of a normal sample is shown in Figure 8. It can be seen that the blood shadow A5 is significantly separated from the white blood cell mass B5, and the blood shadow does not interfere with the white blood cell count.
  • the hemolytic agent When platelets accumulate in the blood sample, the hemolytic agent does not dissolve the platelets well, and the accumulated platelets remain in the blood sample.
  • the aggregated platelets have a strong signal intensity and overlap with the white blood cell population, as shown in Fig. 1.
  • the platelet aggregation particle group A1 and the white blood cell group B1 overlap each other, affecting the white blood cell count of the NRBC channel.
  • the processing procedure of this embodiment is as shown in FIG. 9, and includes the following steps:
  • Step 61 Acquire an optical signal generated by light irradiation of each particle in the sample when the blood sample passes through the detection area.
  • the optical signal includes forward scattered light, side scattered light, and fluorescence.
  • the fluorescence is lateral fluorescence.
  • step 62 the pulse width of the forward scattered light (hereinafter referred to as the front scatter width) is counted.
  • Step 63 calculating a boost signal based on the pulse width.
  • the fluorescence signal is selected as the combined light signal, and the enhanced signal is the product of the fluorescence signal increasing function and the pulse width increasing function.
  • the calculation formula is as follows:
  • Z1 is the fluorescence-pre-scattering pulse width enhancement signal
  • fx is the increasing function of the fluorescence signal intensity
  • fy is the increasing function of the front scattered pulse width.
  • the signal intensity of the fluorescent signal is multiplied by the previous pulse width to obtain a fluorescence-pre-scatter pulse width enhancement signal.
  • Step 64 selecting forward scattered light and fluorescence-pre-scattering pulse width enhancement signal to form a new scatter plot, as shown in FIG. 10, the abscissa is a fluorescence-pre-scattered pulse width enhancement signal, and the ordinate is forward scattered light.
  • A1 is a platelet aggregation particle group, and B1 is a white blood cell particle group.
  • step 65 particle classification and/or counting is performed according to the new scatter plot.
  • white blood cell particles and interference particles are distinguished according to a new scatter plot.
  • the pulse width of the platelets tends to be larger than the pulse width of the leukocyte particles.
  • the platelet aggregation particle group A1 is located at the lower right of the white blood cell cluster B1, and in the fluorescence direction, in the case where the forward scattered light is the same, the fluorescence intensity of the platelet particles is larger than the fluorescence intensity of the leukocyte particles, or platelet aggregation.
  • the fluorescence intensity at the center of the particle group A1 is greater than the fluorescence intensity at the center of the white blood cell cluster B1.
  • the platelet aggregation particle group A1 is relative to the white blood cell cluster.
  • the shift to the right is further shifted, and the overlapping regions of the platelet-aggregated particle group A1 and the white blood cell cluster B1 are separated, so that it is easier and more accurate to distinguish the white blood cell particles from the platelets on the new scattergram. .
  • forward scattered light may also be selected as the combined optical signal, and the enhanced signal is a quotient of the forward scattered light increasing function and the pulse width increasing function, for example, the signal intensity of the forward scattered light is divided by the previous scattered pulse width, Pre-scatter-pre-scatter pulse width enhances the signal.
  • the side scatter fluorescence and the pre-scatter-pre-scatter pulse width enhancement signal are selected to form a new scatter plot, as shown in FIG. Similarly, in the overlap region, the pulse width of the platelets is larger than the pulse width of the leukocyte particles. As shown in Fig.
  • the forward scattered light intensity of the platelet particles is smaller than that of the leukocyte particles in the case of the same fluorescence.
  • the forward scattered light intensity, or the forward scattered light intensity at the center of the platelet aggregation particle group A1 is smaller than the forward scattered light intensity at the center of the white blood cell cluster B1, and the enhanced signal is the forward scattered light intensity except for the previous scattered pulse width.
  • the platelet aggregation particle group A1 will become smaller in the direction of the enhanced signal, and the white blood cell cluster B1 will become larger in the direction of the enhanced signal, so the difference between the white blood cell particles and the platelet aggregated particles is more Large, it is also easier and more accurate to distinguish between white blood cell particles and platelet aggregation particles.
  • the pulse width may also be the pulse width of the side scattered light or fluorescence.
  • the pulse width is the pulse width of the side scattered light (referred to as the side scattered pulse width)
  • the enhanced signal is the product of the fluorescence multiplied by the side scattered pulse width (referred to as the fluorescence-side scattered pulse width enhancement signal), before selection.
  • the scattered light and the fluorescence-side scattered pulse width enhancement signal constitute a new scattergram, and according to the new scattergram, the white blood cell cluster B1 and the platelet aggregated particle group A1 can be more easily and accurately distinguished.
  • the pulse width is the pulse width of the side scattered light (referred to as side scatter width), and the enhancement letter No. is the quotient of the forward scattered light except the side scattered pulse width (referred to as the front scattered side-side scattered pulse width enhanced signal), and the forward scattered light-side scattered pulse width enhanced signal and fluorescence are selected to form a new scatter plot, according to the new scattered
  • the dot pattern also makes it easier and more accurate to distinguish the white blood cell cluster B1 from the platelet aggregation particle group A1.
  • the pulse width is the pulse width of the fluorescence (referred to as the fluorescence pulse width)
  • the enhancement signal is the product of the fluorescence multiplied by the fluorescence pulse width (referred to as the fluorescence-fluorescence pulse width enhancement signal), and the forward scattered light and fluorescence are selected.
  • the fluorescence pulse width enhancement signal constitutes a new scattergram, and according to the new scattergram, it is also easier and more accurate to distinguish the white blood cell cluster B1 from the platelet aggregation particle group A1.
  • the boost signal is the product of the fluorescence multiplied by the fluorescence pulse width, so that the boost signal can be regarded as twice the area of the fluorescent pulse signal, that is, when the boost signal is calculated
  • the enhanced signal may be several times the area or area of the pulse signal of a certain light, which may be a special case of the enhanced signal. In this case, It will be understood by those skilled in the art that even a multiple of the area or area of the optical pulse signal should be considered as a combined calculation of the combined signal strength and pulse width of the combined optical signal.
  • the area of the optical pulse signal can be calculated by multiplying the pulse peak by the pulse width according to the triangle area formula, or by accumulating or integrating the optical signal within the pulse width.
  • the pulse width is the pulse width of the fluorescence (referred to as the fluorescence pulse width)
  • the enhancement signal is the quotient of the forward scattered light except the fluorescence pulse width (referred to as the front dispersion-fluorescence pulse width enhancement signal), and the forward scattered light is selected.
  • - Fluorescence pulse width enhancement signal and fluorescence constitute a new scatter plot, according to which the white blood cell cluster B1 and the platelet aggregation particle group A1 can be distinguished more easily and accurately.
  • a lipid particle sample is taken as an example, and a blood sample is measured by a blood cell analyzer, and a white blood cell count value is obtained from a BASO channel.
  • a scatter plot of a normal sample BASO channel is shown in Figure 16.
  • the abscissa is a side-scattered light signal and the ordinate is a forward-scattered light signal.
  • B6 is other leukocytes other than basophils, ie lymphocytes, monocytes, neutrophils, eosinophils, which are the main group of leukocytes;
  • A6 is basophils;
  • C6 is blood shadow, That is, red blood cells and platelet fragments after being treated with a hemolytic agent.
  • the normal sample has few blood shadow points and is located below the main cell of the white blood cell, which is separated from the main cell of the white blood cell and does not interfere with the white blood cell count.
  • the abscissa is a side scattered light signal
  • the ordinate is a forward scattered light signal.
  • B2 is other leukocytes other than basophils, ie lymphocytes, monocytes, neutrophils, eosinophils, which are the main group of leukocytes
  • A2 is basophils
  • C2 is blood shadow, That is, red blood cells and platelet fragments after being treated with a hemolytic agent.
  • the lipid particles overlap with the white blood cell population, affecting the white blood cell count. Therefore, the use of side scattered light and forward scattered light signals cannot distinguish between white blood cells and lipid particles.
  • Step 71 Acquire an optical signal generated by light irradiation of each particle in the sample when the blood sample is detected by the detection area, and the optical signal includes forward scattered light and side scattered light.
  • step 72 an initial scattergram is generated according to the forward scattered light and the side scattered light, the abscissa is side scattered light, and the ordinate is forward scattered light.
  • step 73 it is determined whether there is an overlap region between the lipid particles and the white blood cell population in the initial scattergram. If not, as shown in FIG. 16, step 74 is performed, and if present, as shown in FIG. 2, step 75 is performed.
  • white blood cells are sorted and/or counted according to an initial scatter plot.
  • step 75 the pulse width of the forward scattered light (hereinafter referred to as the front scattered pulse width) is counted.
  • the boost signal is calculated based on the pulse width.
  • the forward scattered light is selected as the combined light signal, and the enhanced signal is the product of the forward scattered light increasing function and the pulse width increasing function.
  • the intensity of the forward scattered light signal is multiplied by the previous scattered pulse width to obtain forward scattering.
  • the light-front scatter width enhances the signal.
  • Step 77 selecting side scattered light and forward scattered light-pre-scattering pulse width enhancement signal to form a new scatter plot, as shown in FIG. 18, the abscissa is side scattered light, and the ordinate is forward scattered light-pre-scattering Pulse width enhancement signal, A2 is a basophil population, B2 is a leukocyte main group, and C2 is a lipid particle.
  • step 78 particle classification and/or counting is performed based on the new scatter plot.
  • white blood cell particles and interference particles are distinguished according to a new scatter plot.
  • the lipid particles are located at the lower right side of the white blood cell main group B2, and in the direction of the forward scattered light, in the case where the side scattered light is the same, the fat The forward scattered light intensity of the plasmonic particles is less than the forward scattered light intensity of the white blood cell particles.
  • the pulse width of the lipid particle A4 is smaller than the pulse width of the white blood cell main group C4.
  • the large factors are multiplied, the product is larger, the small factors are multiplied, and the product is smaller, so the obtained lipid particles and The difference in white blood cell particle enhancement signal is greater, and the difference in the forward scattered light signal is increased compared to the two.
  • the lipid particle C2 is more shifted to the lower right side than the white blood cell main group B2.
  • step 75 is directly executed after step 71.
  • the intensity of the forward scattered light signal may be multiplied by the N-th power of the previous scattered pulse width, and N is greater than 1, to obtain the forward scattered light-pre-scattered pulse width.
  • the signal is enhanced, for example, by multiplying the intensity of the forward scattered light signal by the square of the previous scattered pulse width to obtain a boosted signal.
  • a new scattergram is generated from the side scattered light and the enhancement signal. As shown in FIG. 19, the lipid particle C2 is shifted to the lower right side relative to the white blood cell main group B2, and between the lipid particle C2 and the white blood cell main group B2. A blank area W is apparently present, as shown in the enlarged view on the right side of Fig. 19, so that the white blood cell particles and the lipid particles can be distinguished more easily and accurately according to the new scattergram.
  • the abscissa and the ordinate of the new scatter plot may be different boost signals, for example, the abscissa is a side-forward scatter-width-enhanced signal, and the ordinate is a pre-scatter-pre-scattered pulse width enhancement. signal.
  • the pulse width may also be the pulse width of the side scattered light.
  • forward scattered light may also be selected as the combined optical signal, and the enhanced signal is the product of the forward scattered light increasing function and the side scattered pulse width increasing function, for example, multiplying the signal intensity of the forward scattered light by the side dispersion.
  • the pulse width is obtained, and the front scattered-side scatter width enhancement signal is obtained.
  • the side scatter fluorescence and the front scattered-side scatter width enhancement signal are selected to form a new scattergram, and the white blood cell main group is relative to the lipid particle. It is also shifted to the upper left to distinguish leukocyte particles from lipid particles.
  • the boost signal can be a function of the combined light signal and pulse width; this function enables white blood cell particles and interference
  • the difference in the enhanced signal of the particles is increased compared to the difference in the combined optical signals.
  • the above examples illustrate the distinction between white blood cells and lipid particles or PLT aggregated particles, and those skilled in the art will appreciate that for different types of two types of particles, if they are present in overlapping regions, in accordance with the inventive concepts disclosed herein. The difference is that there are differences in the pulse width between the two types of particles in the overlapping region.
  • the above embodiment can also be used to distinguish the two types of particles, for example, when a white matter is routinely classified in a certain scene, when two types of particles exist.
  • overlapping regions for example, lymphocytes and monocyte clusters have overlapping regions, depending on the pulse width of the particles in the overlapping region of lymphocytes and monocytes, they can also be formed by a combination of optical signals and pulse width signals.
  • the new enhanced signal is then differentiated between lymphocytes and monocytes based on a scatter plot generated by the enhanced signal to obtain a more accurate five-category result.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Signal Processing (AREA)
  • Biophysics (AREA)
  • Ecology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种细胞分析仪、粒子分类方法及装置,根据检测的光信号获取至少一种光信号的脉宽,选取至少一种光信号作为组合光信号,将该组合光信号的信号强度分别与脉宽进行组合计算,得到至少一种加强信号,第一类粒子和第二类粒子在加强信号上的差异相较于两者在组合光信号上的差异增加;基于加强信号和其他信号组成新散点图,其他信号为其他加强信号和光信号中的至少一种,根据新散点图区分第一类粒子和第二类粒子。由于第一类粒子和第二类粒子在加强信号上的差异增加,从而使得第一类粒子和第二类粒子的分离效果得到显著加强。

Description

细胞分析仪、粒子分类方法及装置 技术领域
本发明涉及一种医疗设备,具体涉及一种细胞分析仪、粒子分类方法及装置。
背景技术
血液细胞分析仪是一种可检测血液中细胞的一种仪器,可以对白细胞(WBC)、红细胞、血小板、有核红细胞、网织红细胞等细胞进行计数及分类。
血液细胞分析仪实现白细胞检测最常见的一种方法为激光散射法,通过光照射流经检测区域的细胞粒子,收集各类粒子反射或散射的光信号,然后通过对光信号进行处理和分析,从而对白细胞进行分类和计数。收集的光信号可以包括前向散射光、侧向散射光、荧光信号等三种光信号。前向散射光可反映细胞的大小信息,侧向散射光可反映细胞内部结构的复杂程度,荧光信号反映细胞内DNA、RNA等可被荧光染料染色物质的含量。利用这些光信号可对白细胞进行分类,同时可以得到白细胞的计数值。
根据对血液样本的前期处理不同(例如反应试剂不同),将其检测过程分为不同的检测通道,例如DIFF通道、BASO通道和NRBC通道,其中BASO通道用于对白细胞进行分类和计数,其在血液样本经化学试剂处理后,一般采用侧向散射光和前向散射光对白细胞总数进行计数,同时会给出白细胞中嗜碱性粒细胞的计数值。NRBC通道在血液样本加入荧光试剂处理后,可以对有核红细胞进行分类,NRBC通道可以给出白细胞计数值和有核红细胞计数值。
在血液细胞分析仪检测血液细胞的过程中,有些情况下两种粒子不能明显区分,从而影响对粒子的分类结果。例如在对白细胞进行计数时,可能受到干扰粒子的影响,无法对白细胞进行准确计数,干扰粒子可能是脂质颗粒或PLT(血小板,blood platelet)聚集粒子,PLT属于血影的一部分,血影是血液样本经过样本前处理,其中的红细胞或血小板等细胞经低渗透或试剂处理致细胞膜破裂后,形成的细胞碎片结构,通常粒 子体积较小,前向散射光信号较小。但在某些样本中,会发生PLT聚集,对白细胞的检测造成干扰。这些干扰粒子在散点图中会和白细胞散点图相交叠,如图1所示为NRBC通道的检测结果,血小板聚集团A1同白细胞团B1在前向散射光和荧光信号上存在交叠。如图2所示为BASO通道的检测结果,白细胞被分类成嗜碱性粒细胞团A2和其它白细胞粒子团B2,其它白细胞粒子团包括淋巴细胞、单核细胞、中性粒细胞和嗜酸性粒细胞。由于脂质颗粒的存在,脂质颗粒团C2与其它白细胞粒子团B2在前向散射光和侧向散射光信号低端相交叠区域D2,这会对白细胞计数产生干扰。可见,当血液样本中存在这些干扰粒子时,会影响检测结果的准确性。
发明内容
根据第一方面,一种实施例中提供一种粒子分类方法,包括:
获取血液样本经过检测区域时样本中各粒子经光照射产生的光信号,所述光信号包括前向散射光、侧向散射光和荧光中的至少两种;
获取至少一种光信号的脉宽;
选取至少一种光信号作为组合光信号,将该组合光信号的信号强度分别与所述脉宽进行组合计算,得到至少一种加强信号,所述组合计算使得第一类粒子和第二类粒子在加强信号上的差异相较于两者在组合光信号上的差异增加;
基于加强信号和其它信号组成新散点图,其它信号为其它加强信号和不同于组合光信号的光信号中的至少一种,即新散点图的至少一个维度是加强信号;
根据新散点图区分第一类粒子和第二类粒子。
根据第二方面,一种实施例中提供另一种粒子分类方法,包括:
获取血液样本经过检测区域时样本中各粒子经光照射产生的光信号,所述光信号包括前向散射光、侧向散射光和荧光中的至少两种;
根据光信号生成用于对粒子进行分类和/或计数的初始散点图;
当散点图中第一类粒子团和第二类粒子团存在交叠区域时,获取至少一种光信号的脉宽;
选取至少一种光信号作为组合光信号,将该组合光信号的信号强度分别与所述脉宽进行组合计算,得到至少一种加强信号,所述组合计算 使得第一类粒子和第二类粒子在加强信号上的差异相较于两者在组合光信号上的差异增加;
基于加强信号和其它信号组成新散点图,其它信号为其它加强信号和不同于组合光信号的光信号中的至少一种;
根据新散点图区分第一类粒子和第二类粒子。
根据第三方面,一种实施例中提供一种粒子分类装置,包括:
光信号获取单元,用于获取血液样本经过检测区域时样本中各粒子经光照射产生的光信号,所述光信号包括前向散射光、侧向散射光和荧光中的至少两种;
脉宽获取单元,用于获取至少一种光信号的脉宽;
计算单元,用于选取至少一种光信号作为组合光信号,将该组合光信号的信号强度分别与所述脉宽进行组合计算,得到至少一种加强信号,所述组合计算使得第一类粒子和第二类粒子在加强信号上的差异相较于两者在组合光信号上的差异增加;
新散点图生成单元,用于基于加强信号和其它信号组成新散点图,其它信号为其它加强信号和不同于组合光信号的光信号中的至少一种;
分类单元,用于根据新散点图区分第一类粒子和第二类粒子。
根据第四方面,一种实施例中提供另一种粒子分类装置,包括:
光信号获取单元,用于获取血液样本经过检测区域时样本中各粒子经光照射产生的光信号,所述光信号包括前向散射光、侧向散射光和荧光中的至少两种;
散点图生成单元,用于根据光信号生成用于对粒子进行分类和/或计数的初始散点图;
脉宽获取单元,用于当初始散点图中第一类粒子团和第二类粒子团存在交叠区域时获取至少一种光信号的脉宽;
计算单元,用于选取至少一种光信号作为组合光信号,将该组合光信号的信号强度分别与所述脉宽进行组合计算,得到至少一种加强信号,所述组合计算使得第一类粒子和第二类粒子在加强信号上的差异相较于两者在组合光信号上的差异增加;
新散点图生成单元,用于基于加强信号和其它信号组成新散点图,其它信号为其它加强信号和不同于组合光信号的光信号中的至少一种;
分类单元,用于根据新散点图区分第一类粒子和第二类粒子。
根据第五方面,一种实施例中提供一种细胞分析仪,包括:
输送设备,用于将被测样本液输送到光学检测设备中;
光学检测设备,用于对流经其检测区域的被测样本液进行光照射,收集细胞因光照射所产生的各种光信息,并转换成对应的电信号输出;
上述的粒子分类装置,用于接收光学检测设备输出的电信号并进行处理。
本发明由于利用某一光学信号和脉宽信号的函数组合形成新的加强信号,使得第一类粒子和第二类粒子在加强信号上的差异增加,并基于该该加强信号生成新的散点图,利用第一类粒子和第二类粒子在加强信号上的较大的差异,得以区分第一类粒子和第二类粒子,从而提高了粒子分类的准确性。
附图说明
图1为血小板聚集样本的NRBC通道的散点图;
图2为脂质颗粒样本的BASO通道的散点图;
图3为检测到的脉冲示意图;
图4a为脂质颗粒样本前散脉宽-前向散射光散点图;
图4b为脂质颗粒样本前散脉宽-侧向散射光散点图;
图5为血液细胞分析仪的结构示意图;
图6为一种实施例中粒子分类装置的结构示意图;
图7为另一种实施例中粒子分类装置的结构示意图;
图8为正常样本的NRBC通道散点图;
图9为NRBC通道粒子分类流程图;
图10为NRBC通道荧光信号经前散脉宽加强后的散点图;
图11为NRBC通道前向散射光信号经前散脉宽加强后的散点图;
图12为NRBC通道荧光信号经侧散脉宽加强后的散点图;
图13为NRBC通道前向散射光信号经侧散脉宽加强后的散点图;
图14为NRBC通道荧光信号经荧光脉宽加强后的散点图;
图15为NRBC通道前向散射光信号经荧光脉宽加强后的散点图;
图16为正常样本的BASO通道散点图;
图17为BASO通道粒子分类流程图;
图18为BASO通道前向散射光信号经前散脉宽加强后的散点图;
图19为BASO通道前向散射光信号经前散脉宽的平方加强后的散点图。
具体实施方式
研究发现,粒子通过检测区域会形成一个脉冲,脉冲的宽度(以下简称脉宽)可反映粒子通过检测区域的时间,从而可表征粒子的大小。如图3所示为检测到的脉冲示意图,当粒子通过检测区域时,激发脉冲信号。脉冲宽度为从脉冲起始位置开始,到脉冲结束为止,脉宽信号实际为粒子通过检测区域的时间。当流速一定时,粒子越小,其通过检测区域的时间越短,对应的脉宽便会越小;粒子越大,其通过检测区域的时间越长,对应的脉宽便会越大。因此,理论上可通过脉宽来区分不同种类的粒子。
在出现血小板聚集的样本中,聚集粒子通过检测区域,产生的脉冲的脉宽会比较大。理论上可通过脉宽的大小来区分血小板聚集粒子和白细胞,但由于发生聚集的血小板的个数不同,血小板群的粒子大小的分布范围较宽,一些体积较大的血小板聚集粒子会与白细胞群存在交叠,因此利用脉宽无法很好地区分白细胞和血小板聚集粒子。
对于血液样本中的脂质颗粒,由于其大小不一,其体积分别呈现出从小到大的变化,对于直径小的脂质颗粒粒子,其对应的脉宽较小;对于直径大的脂质颗粒粒子,其对应的脉宽较大。对于小脉宽的情况,脂质颗粒与白细胞的脉宽会有相等的情况,如图4a、图4b所示,可以看到脂质颗粒团A4的脉宽分布从小到大都有,与嗜碱性粒细胞团B4和其它白细胞粒子团C4在小脉宽部分有重叠区域,因此根据脉宽,无论是与前向散射光的散点图还是与侧向散射光的散点图,都无法较好地分离脂质颗粒与白细胞。
因此,本发明实施例中,根据干扰粒子同白细胞粒子在脉宽上的差异,利用光学信号和脉宽信号的函数组合形成新的加强信号,基于加强信号生成的散点图可使粒子群的分离效果得到显著加强。
请参考图5,图5所示为血液细胞分析仪的结构示意图,血液细胞分析仪包括光学检测设备20、输送设备30、数据处理装置40和显示设备50。
输送设备30用于将与试剂反应后的样本液(例如被测血液样本)输 送到光学检测设备20中。输送设备30通常包括输送管路和控制阀,样本液通过输送管路和控制阀输送到光学检测设备20中。
光学检测设备20用于对流经其检测区域的样本液进行光照射,收集细胞因光照射所产生的各种光信息(例如散射光信息和/或荧光信息),并转换成对应的电信号,这些信息与细胞粒子的特征对应,可作为细胞粒子特征数据,前向散射光信号反映细胞的大小信息,侧向散射光信号反映细胞内部结构的复杂程度,荧光信号反映细胞内DNA、RNA等可被荧光染料染色物质的含量。图5所示的实施例中,光学检测设备20可包括光源1025、作为检测区域的检测区域1021、设置在光轴上的前向散射光信号收集装置1023、设置在光轴侧边的侧向散射光信号收集装置1026和荧光信号收集装置1027,在有的实施例中,不需要用到荧光信号收集装置1027。
血液样本根据需要进行分样,经与不同试剂反应后的样本液先后在鞘液的裹挟下通过流动室1022的检测区域1021,光源1025发射的光束照射到检测区域1021,样本液中的各细胞粒子经光束照射后发出散射光,光收集装置对散射光进行收集,经收集整形后的光照射到光电感应器,光电感应器将光信号转换成对应的电信号输出至数据处理装置40。
数据处理装置40用于接收光学检测设备输出的光信息,将每个粒子的光信息作为表征该粒子的特征数据组,通过对粒子特征数据的分析处理从而实现对被测血液样本的分析。本实施例中,数据处理装置40包括粒子分类装置,粒子分类装置根据各粒子的特征数据组生成所需要的散点图,根据散点图对粒子进行分类,本发明实施例中,粒子分类装置用于将白细胞和干扰粒子区分开来,干扰粒子可以是血小板聚集粒子,也可以是脂质颗粒。本发明实施例中,散点图是指由各细胞粒子的特征数据组组成的集合,其可以数字化的形式存储在存储装置中,也可以可视化的形式呈现在显示界面上。
显示设备50与数据处理装置40电耦合,用于显示数据处理设备40输出的分析结果,分析结果可以是图形、文字描述或表格等。本实施例中,显示设备50可以输出各种可视化的散点图和/或各种细胞分类结果。
在一种实施例中,不管是否存在干扰粒子,以及干扰粒子是否与白细胞存在交叠,都利用光学信号和脉宽信号的加强信号区分白细胞粒子与干扰粒子。如图6所示,粒子分类装置包括光信号获取单元41、脉宽 获取单元42、计算单元43、新散点图生成单元44和分类单元45。
光信号获取单元41用于获取光信号。当血液样本经过检测区域时,光学检测设备20发射的光照射检测区域,样本中各粒子经光照射产生相应的光信号,光学检测设备20收集各粒子因光照射所产生的各种光信息,光信号包括前向散射光、侧向散射光和荧光中的至少两种,例如可以是前向散射光和侧向散射光,也可以是前向散射光、侧向散射光和荧光。
脉宽获取单元42用于获取至少一种光信号的脉宽。在一种具体实施例中,脉宽获取单元42从收集的光信号中选择一种光信号,并统计该光信号的脉宽,例如可以统计前向散射光、侧向散射光或者荧光的脉宽。在另一种具体实施例中,脉宽获取单元42从收集的光信号中选择多种光信号,并分别统计多种光信号的脉宽,例如统计前向散射光和荧光两种光信号的脉宽。
计算单元43用于计算加强信号,加强信号分别根据一种光信号的脉宽和组合光信号通过函数组合计算获得,组合光信号可以是选自光信号获取单元41获得的任一种光信号,该组合计算使得白细胞粒子和干扰粒子在加强信号上的差异相较于两者在组合光信号上的差异增加,例如加强信号可以是组合光信号和脉宽的函数,其表达式如下:
Z=f(X,Y).....................(1)
其中,Z为加强信号,f为函数,X为组合光信号强度,本发明实施例中,光信号强度可以是光脉冲信号的峰值,Y为脉宽。
根据上述表达式(1),函数f具有以下特性:
函数f对组合光信号或脉宽而言是单调的,即:当组合光信号确定(或者不变)时,函数对脉宽而言是单调函数,例如函数是脉宽的增函数或减函数;当脉宽确定时,函数对组合光信号是单调函数,例如函数是组合光信号的增函数或减函数。
或者,函数f具有以下特性:函数f是组合光信号和脉宽的非线性组合函数。
在具体实施例中,计算单元43通过组合计算所获得的加强信号可以有一种,例如,加强信号仅是前向散射光和脉宽的加强信号;计算单元43通过组合计算所获得的加强信号也可以有多种,例如加强信号可以包括前向散射光和脉宽的加强信号,以及侧向散射光和脉宽的加强信号。 在具体实施例中,统计脉宽的光信号和组合光信号可以是相同的光信号,也可以是不同的光信号。
新散点图生成单元44用于基于加强信号和其它信号组成新散点图,其它信号可以为不同于组合光信号的至少一种光信号,也可以为其它加强信号中的至少一种,或者两者的组合。新散点图可以是二维或三维,其中至少一个维度是加强信号。在一种具体实施例中,新散点图选取光信号和加强信号组成新散点图,例如选取一种光信号和一种加强信号组成二维的新散点图,或选取一种光信号和两种加强信号组成三维的新散点图,或选取两种光信号和一种加强信号组成三维的新散点图,具体实施时,可优选不同于组合光信号的光信号和加强信号组成新散点图,例如计算加强信号的组合光信号为荧光,则选择前向散射光和加强信号组成新散点图。在另一种具体实施例中,新散点图选取某种加强信号和其它加强信号组成新散点图,其它加强信号是指不同于某种加强信号的加强信号。例如从上述计算单元43计算出的至少一种加强信号中选择A种加强信号作为新散点图的一个维度,另外再选择不同于A种加强信号的B种加强信号作为新散点图的另一个维度,即新散点图选取两种加强信号组成二维新散点图,例如选取前向散射光和脉宽的加强信号,以及侧向散射光和脉宽的加强信号组成二维新散点图。
分类单元45用于根据新散点图区分白细胞粒子和干扰粒子。白细胞粒子和干扰粒子在光信号和脉宽上有些差异,但差异不足以区分白细胞粒子和干扰粒子,通过将光信号和脉宽进行组合计算,可使得该差异增加。由于加强信号使得白细胞粒子和干扰粒子在加强信号上的差异相较于两者在组合光信号上的差异增加,因此,在至少基于加强信号的散点图上可将白细胞粒子和干扰粒子区分开来。
在另一种实施例中,先采用通常的分类方法,即基于光信号生成散点图,该散点图被称为初始散点图。当初始散点图中白细胞粒子团和干扰粒子团存在交叠区域时,再利用光学信号和脉宽信号的加强信号来区分白细胞粒子与干扰粒子。如图7所示,粒子分类装置包括光信号获取单元51、散点图生成单元52、脉宽获取单元53、计算单元54、新散点图生成单元55和分类单元56。光信号获取单元51、计算单元54和新散点图生成单元55与前述实施例相同,散点图生成单元52用于根据光信号生成用于对白细胞进行分类和/或计数的初始散点图。脉宽获取单元 53用于当初始散点图中白细胞粒子团和干扰粒子团存在交叠区域时获取至少一种光信号的脉宽。分类单元56用于根据新散点图区分白细胞粒子和干扰粒子,并统计白细胞数量,当初始散点图中白细胞粒子团和干扰粒子团不存在交叠区域时,分类单元56还根据初始散点图统计白细胞数量。
下面以具体血液样本的实施例方式进行详细说明。
实施例1:
本实施例以血小板聚集样本为例,利用血液细胞分析仪对血液样本进行测量,由NRBC通道可以得到白细胞的计数值。
一般红细胞、血小板经过溶血剂处理后,会形成细胞碎片,经过血液细胞分析仪测量后,在NRBC通道中位于低端信号的血影部分。一例正常样本的NRBC通道散点图如图8所示,可见血影A5与白细胞团B5分离显著,血影不会干扰白细胞计数。
当血液样本中存在血小板聚集时,溶血剂不能很好的将血小板溶解,从而会在血液样本中残留聚集的血小板,聚集的血小板信号强度较大,会与白细胞群相重叠,如图1所示,血小板聚集粒子群A1与白细胞群B1相互交叠,影响NRBC通道的白细胞计数。
因此,本实施例的处理过程如图9所示,包括以下步骤:
步骤61,获取血液样本经过检测区域时样本中各粒子经光照射产生的光信号,光信号包括前向散射光、侧向散射光和荧光,本实施例中,荧光为侧向荧光。
步骤62,统计前向散射光的脉宽(以下简称前散脉宽)。
步骤63,基于脉宽计算加强信号。选取荧光信号作为组合光信号,加强信号为荧光信号增函数和脉宽增函数的乘积,其计算式如下:
Z1=fx·fy.....................(2)
其中,Z1为荧光-前散脉宽加强信号,fx为荧光信号强度的增函数,fy为前散脉宽的增函数。
具体实施例中,将荧光信号的信号强度乘以前散脉宽,得到荧光-前散脉宽加强信号。
步骤64,选取前向散射光和荧光-前散脉宽加强信号组成新散点图,如图10所示,横坐标为荧光-前散脉宽加强信号,纵坐标为前向散射光, A1为血小板聚集粒子群,B1为白细胞粒子团。
步骤65,根据新散点图进行粒子分类和/或计数。本实施例中,根据新散点图区分白细胞粒子和干扰粒子。通常情况下,在交叠区域,血小板的脉宽趋向于大于白细胞粒子的脉宽。根据图1所示,血小板聚集粒子群A1位于白细胞粒子团B1的右下方,在荧光方向上,在前向散射光相同的情况下,血小板粒子的荧光强度大于白细胞粒子的荧光强度,或者血小板聚集粒子群A1的中心的荧光强度大于白细胞粒子团B1的中心的荧光强度,在分别将血小板和白细胞粒子的荧光强度乘以脉宽后,大的因子相乘,积会更大,小的因子相乘,积会更小,因此得到的血小板和白细胞粒子加强信号的差异更大,相较于两者在荧光信号上的差异增加,如图10所示,血小板聚集粒子群A1相对于白细胞粒子团B1而言更向右偏移,血小板聚集粒子群A1和白细胞粒子团B1的交叠区域已分开,因此,在新的散点图上更容易、也能够更准确地将白细胞粒子和血小板区分开。
在步骤63中,也可以选取前向散射光作为组合光信号,加强信号为前向散射光增函数和脉宽增函数的商,例如将前向散射光的信号强度除以前散脉宽,得到前散-前散脉宽加强信号。在步骤64中,选取侧向散射荧光和前散-前散脉宽加强信号组成新散点图,如图11所示。同样,在交叠区域,血小板的脉宽大于白细胞粒子的脉宽,根据图1所示,在前向散射光方向上,在荧光相同的情况下,血小板粒子的前向散射光强度小于白细胞粒子的前向散射光强度,或者血小板聚集粒子群A1的中心的前向散射光强度小于白细胞粒子团B1的中心的前向散射光强度,而加强信号为前向散射光强度除以前散脉宽,因此在新散点图上,血小板聚集粒子群A1在加强信号方向上将变得更小,而白细胞粒子团B1在加强信号方向上将变得更大,因此白细胞粒子和血小板聚集粒子的差异更大,也能够更容易、更准确地将白细胞粒子和血小板聚集粒子区分开。
在另外的实施例中,脉宽还可以是侧向散射光或荧光的脉宽。
如图12所示,脉宽为侧向散射光的脉宽(简称侧散脉宽),加强信号为荧光乘以侧散脉宽的乘积(简称荧光-侧散脉宽加强信号),选取前向散射光和荧光-侧散脉宽加强信号组成新散点图,根据该新散点图,也可更容易、更准确地将白细胞粒子团B1和血小板聚集粒子群A1区分开。
如图13所示,脉宽为侧向散射光的脉宽(简称侧散脉宽),加强信 号为前向散射光除侧散脉宽的商(简称前散-侧散脉宽加强信号),选取前向散射光-侧散脉宽加强信号和荧光组成新散点图,根据该新散点图,也可更容易、更准确地将白细胞粒子团B1和血小板聚集粒子群A1区分开。
如图14所示,脉宽为荧光的脉宽(简称荧光脉宽),加强信号为荧光乘以荧光脉宽的乘积(简称荧光-荧光脉宽加强信号),选取前向散射光和荧光-荧光脉宽加强信号组成新散点图,根据该新散点图,也可更容易、更准确地将白细胞粒子团B1和血小板聚集粒子群A1区分开。
由于脉冲信号可看作一近似三角形,在本实施例中,加强信号为荧光乘以荧光脉宽的乘积,因此可将加强信号看作为是荧光脉冲信号的面积的2倍,即当计算加强信号的组合光信号强度和脉宽属于同一种光信号时,加强信号有可能是某种光的脉冲信号的面积或面积的若干倍,这可以作为加强信号的一种特例,这种情况下,本领域技术人员应当理解,即使将光脉冲信号的面积或面积的若干倍作为加强信号也应看作是组合光信号的信号强度与脉宽的组合计算。另外,光脉冲信号的面积可以根据三角形面积公式将脉冲峰值乘以脉宽计算得出,也可以通过对脉冲宽度内的光信号进行累加或积分得出。
如图15所示,脉宽为荧光的脉宽(简称荧光脉宽),加强信号为前向散射光除荧光脉宽的商(简称前散-荧光脉宽加强信号),选取前向散射光-荧光脉宽加强信号和荧光组成新散点图,根据该新散点图,也可更容易、更准确地将白细胞粒子团B1和血小板聚集粒子群A1区分开。
实施例2:
本实施例以脂质颗粒样本为例,利用血液细胞分析仪对血液样本进行测量,由BASO通道得到白细胞的计数值。
正常样本在BASO通道中不存在脂质颗粒,白细胞计数准确。一例正常样本BASO通道的散点图如图16所示,横坐标为侧向散射光信号,纵坐标为前向散射光信号。其中B6为除嗜碱性粒细胞外的其他白细胞,即淋巴细胞、单核细胞、中性粒细胞、嗜酸性粒细胞,为白细胞主团;A6为嗜碱性粒细胞;C6为血影,即经过溶血剂处理后的红细胞、血小板碎片。从图16中可以看出,正常样本血影点极少,且位于白细胞主团的下方,与白细胞主团分离程度大,不会干扰白细胞计数。
当血液样本中存在脂质颗粒时,会在BASO通道中形成S形的曲线,如图2所示,横坐标为侧向散射光信号,纵坐标为前向散射光信号。其中B2为除嗜碱性粒细胞外的其他白细胞,即淋巴细胞、单核细胞、中性粒细胞、嗜酸性粒细胞,为白细胞主团;A2为嗜碱性粒细胞;C2为血影,即经过溶血剂处理后的红细胞、血小板碎片。特别是在侧向散射光信号和前向散射光信号的低端,脂质颗粒同白细胞群相交叠,影响白细胞计数。所以采用侧向散射光和前向散射光信号,不能将白细胞和脂质颗粒区分开。
为减少脂质颗粒对白细胞计数的影响,本实施的处理过程如图17所示,包括以下步骤:
步骤71,获取血液样本经过检测区域检测时样本中各粒子经光照射产生的光信号,光信号包括前向散射光和侧向散射光。
步骤72,根据前向散射光和侧向散射光生成初始散点图,横坐标为侧向散射光,纵坐标为前向散射光。
步骤73,判断初始散点图中脂质颗粒同白细胞群是否存在交叠区域,如果不存在,如图16所示,则执行步骤74,如果存在,如图2所示,则执行步骤75。
步骤74,根据初始散点图对白细胞进行分类和/或计数。
步骤75,统计前向散射光的脉宽(以下简称前散脉宽)。
步骤76,基于脉宽计算加强信号。选取前向散射光作为组合光信号,加强信号为前向散射光增函数和脉宽增函数的乘积,具体实施例中,将前向散射光信号的强度乘以前散脉宽,得到前向散射光-前散脉宽加强信号。
步骤77,选取侧向散射光和前向散射光-前散脉宽加强信号组成新散点图,如图18所示,横坐标为侧向散射光,纵坐标为前向散射光-前散脉宽加强信号,A2为嗜碱性粒细胞群,B2为白细胞主团,C2为脂质颗粒。
步骤78,根据新散点图进行粒子分类和/或计数。本实施例中,根据新散点图区分白细胞粒子和干扰粒子。根据图2可知,在脂质颗粒同白细胞群相交叠的区域D2,脂质颗粒位于白细胞主团B2的偏右下方,在前向散射光方向上,在侧向散射光相同的情况下,脂质颗粒的前向散射光强度小于白细胞粒子的前向散射光强度。而根据图4a、4b所示,在 前向散射光信号低端,脂质颗粒A4的脉宽比白细胞主团C4的脉宽偏小。在分别将脂质颗粒和白细胞粒子的前向散射光强度乘以脉宽后,大的因子相乘,积会更大,小的因子相乘,积会更小,因此得到的脂质颗粒和白细胞粒子加强信号的差异更大,相较于两者在前向散射光信号上的差异增加,如图18所示,脂质颗粒C2相对于白细胞主团B2而言更向右下方偏移,脂质颗粒C2和白细胞主团B2之间已明显存在一个空白区域W,如图18右边放大图所示,因此,在新的散点图上避免了脂质颗粒与白细胞团交叠,更容易、也能够更准确地将白细胞粒子和脂质颗粒区分开,从而可以较好的分类。
本实施例中,也可以不通过初始散点图判断是否存在交叠区,而在步骤71后直接执行步骤75。
在步骤76中,选取前向散射光作为组合光信号后,也可以将前向散射光信号的强度乘以前散脉宽的N次方,N大于1,得到前向散射光-前散脉宽加强信号,例如将前向散射光信号的强度乘以前散脉宽的平方,得到加强信号。由侧向散射光和加强信号生成新散点图,如图19所示,脂质颗粒C2相对于白细胞主团B2而言更向右下方偏移,脂质颗粒C2和白细胞主团B2之间已明显存在一个空白区域W,如图19右边放大图所示,因此,根据新的散点图也能够更容易、更准确地将白细胞粒子和脂质颗粒区分开。
在另外的实施例中,新散点图的横坐标和纵坐标可以是不同的加强信号,例如,横坐标是侧散-前散脉宽加强信号,纵坐标是前散-前散脉宽加强信号。
在另外的实施例中,脉宽还可以是侧向散射光的脉宽。在步骤76中,也可以选取前向散射光作为组合光信号,加强信号为前向散射光增函数和侧散脉宽增函数的乘积,例如将前向向散射光的信号强度乘以侧散脉宽,得到前散-侧散脉宽加强信号,在步骤77中,选取侧向散射荧光和前散-侧散脉宽加强信号组成新散点图,白细胞主团相对于脂质颗粒而言更向左上方偏移,也可将白细胞粒子和脂质颗粒区分开。
根据上述公开的内容,为了得到可将白细胞粒子和干扰粒子区分开的散点图,本领域技术人员应当理解,加强信号可以是组合光信号和脉宽的函数;该函数能够使白细胞粒子和干扰粒子在加强信号上的差异相较于两者在组合光信号上的差异增加即可。
上述实施例阐述了白细胞和脂质颗粒或PLT聚集粒子的区分,根据本申请中公开的发明构思,本领域技术人员应当理解,对于不同种类的两类粒子,如果它们在交叠区域存在大小上的区别,即交叠区域的两类粒子在脉宽上存在差异,上述实施例也可以用于区分该两类粒子,例如当某种场景下白细胞常规的五分类检测,当某两类粒子存在交叠区域时,例如淋巴细胞和单核细胞团有交叠区域时,根据淋巴细胞和单核细胞在交叠区域的粒子的脉宽不同,也可利用光学信号和脉宽信号的函数组合形成新的加强信号,然后基于加强信号生成的散点图来区分淋巴细胞和单核细胞,从而得到更准确的五分类结果。
本领域技术人员可以理解,上述实施方式中各种方法的全部或部分步骤可以通过程序来指令相关硬件完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (14)

  1. 一种粒子分类方法,其特征在于包括:
    获取血液样本经过检测区域时样本中各粒子经光照射产生的光信号,所述光信号包括前向散射光、侧向散射光和荧光中的至少两种;
    获取至少一种光信号的脉宽;
    选取至少一种光信号作为组合光信号,将该组合光信号的信号强度分别与所述脉宽进行组合计算,得到至少一种加强信号,所述组合计算使得第一类粒子和第二类粒子在加强信号上的差异相较于两者在组合光信号上的差异增加;
    基于加强信号和其它信号组成新散点图,其它信号为其它加强信号和不同于组合光信号的光信号中的至少一种;
    根据新散点图区分第一类粒子和第二类粒子。
  2. 一种粒子分类方法,其特征在于包括:
    获取血液样本经过检测区域时样本中各粒子经光照射产生的光信号,所述光信号包括前向散射光、侧向散射光和荧光中的至少两种;
    根据光信号生成用于对粒子进行分类和/或计数的初始散点图;
    当散点图中第一类粒子团和第二类粒子团存在交叠区域时,获取至少一种光信号的脉宽;
    选取至少一种光信号作为组合光信号,将该组合光信号的信号强度分别与所述脉宽进行组合计算,得到至少一种加强信号,所述组合计算使得第一类粒子和第二类粒子在加强信号上的差异相较于两者在组合光信号上的差异增加;
    基于加强信号和其它信号组成新散点图,其它信号为其它加强信号和不同于组合光信号的光信号中的至少一种;
    根据新散点图区分第一类粒子和第二类粒子。
  3. 如权利要求1或2所述的方法,其特征在于,所述脉宽为前向散射光脉宽。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述加强信号是组合光信号和脉宽的非线性组合函数;或者所述加强信号是组合光信号和脉宽的函数,所述函数是组合光信号或脉宽的单调函数。
  5. 如权利要求4所述的方法,其特征在于,第一类粒子为白细胞粒子,第二类粒子为对白细胞计数形成干扰的干扰粒子。
  6. 如权利要求5所述的方法,其特征在于,所述光信号通过BASO通道测得,所述光信号包括前向散射光和侧向散射光,所述脉宽为前向散射光或侧向散射光的脉宽;优选的,组合光信号为前向散射光,所述加强信号为前向散射光增函数和脉宽增函数的乘积。
  7. 如权利要求5所述的方法,其特征在于,所述光信号通过NRBC通道测得,所述光信号包括荧光和散射光,散射光包括前向散射光和侧向散射光中的至少一种,所述脉宽为前向散射光、侧向散射光或荧光的脉宽;优选的,组合光信号为前向散射光,所述加强信号为前向散射光增函数和脉宽增函数的商;或者组合光信号为荧光,所述加强信号为荧光增函数和脉宽增函数的乘积。
  8. 一种粒子分类装置,其特征在于包括:
    光信号获取单元,用于获取血液样本经过检测区域时样本中各粒子经光照射产生的光信号,所述光信号包括前向散射光、侧向散射光和荧光中的至少两种;
    脉宽获取单元,用于获取至少一种光信号的脉宽;
    计算单元,用于选取至少一种光信号作为组合光信号,将该组合光信号的信号强度分别与所述脉宽进行组合计算,得到至少一种加强信号,所述组合计算使得第一类粒子和第二类粒子在加强信号上的差异相较于两者在组合光信号上的差异增加;
    新散点图生成单元,用于基于加强信号和其它信号组成新散点图,其它信号为其它加强信号和不同于组合光信号的光信号中的至少一种;
    分类单元,用于根据新散点图区分第一类粒子和第二类粒子。
  9. 一种粒子分类装置,其特征在于包括:
    光信号获取单元,用于获取血液样本经过检测区域时样本中各粒子经光照射产生的光信号,所述光信号包括前向散射光、侧向散射光和荧光中的至少两种;
    散点图生成单元,用于根据光信号生成用于对粒子进行分类的初始散点图;
    脉宽获取单元,用于当初始散点图中第一类粒子团和第二类粒子团存在交叠区域时获取至少一种光信号的脉宽;
    计算单元,用于选取至少一种光信号作为组合光信号,将该组合光信号的信号强度分别与所述脉宽进行组合计算,得到至少一种加强信 号,所述组合计算使得第一类粒子和第二类粒子在加强信号上的差异相较于两者在组合光信号上的差异增加;
    新散点图生成单元,用于基于加强信号和其它信号组成新散点图,其它信号为其它加强信号和不同于组合光信号的光信号中的至少一种;
    分类单元,用于根据新散点图区分第一类粒子和第二类粒子。
  10. 如权利要求8或9所述的装置,其特征在于,所述加强信号是组合光信号和脉宽的非线性组合函数;或者所述加强信号是组合光信号和脉宽的函数,所述函数是组合光信号或脉宽的单调函数。
  11. 如权利要求10所述的装置,其特征在于,第一类粒子为白细胞粒子,第二类粒子为对白细胞计数形成干扰的干扰粒子。
  12. 如权利要求11所述的装置,其特征在于,所述光信号通过BASO通道测得,所述光信号包括前向散射光和侧向散射光,所述脉宽为前向散射光或侧向散射光的脉宽;优选的,组合光信号为前向散射光,所述加强信号为前向散射光增函数和脉宽增函数的乘积。
  13. 如权利要求11所述的装置,其特征在于,所述光信号通过NRBC通道测得,所述光信号包括荧光和散射光,散射光包括前向散射光和侧向散射光中的至少一种,所述脉宽为前向散射光、侧向散射光或荧光的脉宽;优选的,组合光信号为前向散射光,所述加强信号为前向散射光增函数和脉宽增函数的商;或者组合光信号为荧光,所述加强信号为荧光增函数和脉宽增函数的乘积。
  14. 一种细胞分析仪,其特征在于包括:
    输送设备,用于将被测样本液输送到光学检测设备中;
    光学检测设备,用于对流经其检测区域的被测样本液进行光照射,收集细胞因光照射所产生的各种光信息,并转换成对应的电信号输出;
    如权利要求8-13中任意一项所述的粒子分类装置,用于接收光学检测设备输出的电信号并进行处理。
PCT/CN2015/072907 2015-02-12 2015-02-12 细胞分析仪、粒子分类方法及装置 WO2016127364A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201580039384.0A CN106662572B (zh) 2015-02-12 2015-02-12 细胞分析仪、粒子分类方法及装置
EP21194141.4A EP3943912A1 (en) 2015-02-12 2015-02-12 Cell analyzer and particle sorting method and device
CN201910468524.6A CN110244032B (zh) 2015-02-12 2015-02-12 细胞分析仪及细胞分析仪的分类方法
PCT/CN2015/072907 WO2016127364A1 (zh) 2015-02-12 2015-02-12 细胞分析仪、粒子分类方法及装置
EP15881526.6A EP3258263B1 (en) 2015-02-12 2015-02-12 Cell analyzer and particle sorting method and device
US15/675,079 US10330584B2 (en) 2015-02-12 2017-08-11 Cell analyzer and particle sorting method and device
US16/414,023 US10627332B2 (en) 2015-02-12 2019-05-16 Cell analyzer and sorting method therefor
US16/801,501 US10883916B2 (en) 2015-02-12 2020-02-26 Cell analyzer and sorting method therefor
US16/801,544 US10983042B2 (en) 2015-02-12 2020-02-26 Cell analyzer and sorting method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072907 WO2016127364A1 (zh) 2015-02-12 2015-02-12 细胞分析仪、粒子分类方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/675,079 Continuation US10330584B2 (en) 2015-02-12 2017-08-11 Cell analyzer and particle sorting method and device

Publications (1)

Publication Number Publication Date
WO2016127364A1 true WO2016127364A1 (zh) 2016-08-18

Family

ID=56614033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072907 WO2016127364A1 (zh) 2015-02-12 2015-02-12 细胞分析仪、粒子分类方法及装置

Country Status (4)

Country Link
US (4) US10330584B2 (zh)
EP (2) EP3943912A1 (zh)
CN (2) CN110244032B (zh)
WO (1) WO2016127364A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644041A4 (en) * 2017-06-20 2020-06-24 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. METHOD AND DEVICE FOR IDENTIFYING PLATELET AGGREGATION AND CELL ANALYZER
WO2020223938A1 (zh) * 2019-05-08 2020-11-12 深圳迈瑞生物医疗电子股份有限公司 全血样本分析仪、全血样本分析方法及其装置和存储介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684263A (zh) * 2018-04-28 2020-09-18 深圳迈瑞生物医疗电子股份有限公司 血液分析***、血液分析仪、血液分析方法及存储介质
EP3867625A4 (en) 2018-10-17 2022-08-24 Becton, Dickinson and Company ADAPTIVE SORTING FOR PARTICLE ANALYZERS
CN109580550A (zh) * 2018-12-03 2019-04-05 迪瑞医疗科技股份有限公司 一种白细胞的分类处理方法及其装置
CN113227757B (zh) * 2018-12-28 2024-04-16 深圳迈瑞生物医疗电子股份有限公司 一种血液细胞参数修正方法、血液样本检测仪和存储介质
CN114450590A (zh) * 2019-07-25 2022-05-06 首尔伟傲世有限公司 光照射装置
CN111274949B (zh) * 2020-01-19 2023-05-30 重庆医科大学附属第一医院 一种基于结构分析的血液病白细胞散点图相似度分析方法
CN113959911B (zh) * 2020-07-20 2024-06-18 深圳迈瑞生物医疗电子股份有限公司 抗血小板聚集干扰的检测方法、试剂及其应用
JP2022039780A (ja) * 2020-08-28 2022-03-10 シスメックス株式会社 測定方法、測定装置、及び測定プログラム
CN112798769B (zh) * 2021-01-28 2022-02-18 深圳市科曼医疗设备有限公司 一种细胞分析仪的细胞分析方法、装置和细胞分析仪
CN113686759B (zh) * 2021-02-03 2023-11-24 深圳市帝迈生物技术有限公司 试剂盒、poct血细胞分析仪
CN115219392A (zh) * 2021-04-14 2022-10-21 深圳迈瑞生物医疗电子股份有限公司 样本分析仪和样本分析方法
CN114544469B (zh) * 2022-04-25 2022-10-21 深圳市帝迈生物技术有限公司 粒子分类方法及血细胞分析仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159584A (zh) * 1995-12-19 1997-09-17 东亚医用电子株式会社 尿液中有形成分分析装置
US20080176274A1 (en) * 2002-06-24 2008-07-24 Sysmex Corporation Method of classifying and counting leucocytes
CN101498646A (zh) * 2008-02-03 2009-08-05 深圳迈瑞生物医疗电子股份有限公司 前向散射光信号探测装置与方法及细胞或粒子分析仪
CN101620223A (zh) * 2008-06-30 2010-01-06 希森美康株式会社 试样分析仪、粒子分布图显示方法及计算机***
CN101842688A (zh) * 2007-10-29 2010-09-22 希森美康株式会社 细胞分析仪及细胞分析方法
CN102156088A (zh) * 2009-11-30 2011-08-17 希森美康株式会社 粒子分析仪及粒子拍摄方法
US20120295339A1 (en) * 2011-05-19 2012-11-22 Abbott Laboratories Method and Apparatus for Detection, Analysis, and Collection of Rare Cellular Events

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE793185A (fr) * 1971-12-23 1973-04-16 Atomic Energy Commission Appareil pour analyser et trier rapidement des particules telles que des cellules biologiques
US5559037A (en) * 1994-12-15 1996-09-24 Abbott Laboratories Method for rapid and simultaneous analysis of nucleated red blood cells
US5861950A (en) * 1997-07-10 1999-01-19 Particle Measuring Systems, Inc. Particle detection system utilizing an inviscid flow-producing nozzle
US6734965B2 (en) * 2000-09-18 2004-05-11 Douglas G. Talley Optical patternation method
JP4598766B2 (ja) * 2003-04-29 2010-12-15 エス3アイ, エル エル シィ 生物学的微粒子及び非生物学的微粒子を検出し且つ分類するためのマルチスペクトル光学方法及びシステム
JP2007024844A (ja) * 2005-07-21 2007-02-01 Sysmex Corp 血液分析方法及び血液分析装置
JP4976038B2 (ja) * 2006-03-29 2012-07-18 シスメックス株式会社 血液学的試料の測定方法
JP4994920B2 (ja) * 2007-02-01 2012-08-08 シスメックス株式会社 検体分析装置
JP5006107B2 (ja) * 2007-05-30 2012-08-22 シスメックス株式会社 表示方法および血液分析装置
US8628976B2 (en) * 2007-12-03 2014-01-14 Azbil BioVigilant, Inc. Method for the detection of biologic particle contamination
US8081303B2 (en) * 2008-03-21 2011-12-20 Abbott Point Of Care, Inc. Method and apparatus for analyzing individual cells or particulates using fluorescent quenching and/or bleaching
JP5399647B2 (ja) * 2008-03-28 2014-01-29 シスメックス株式会社 試料分析装置及びコンピュータプログラム
CN101672759B (zh) * 2008-09-12 2013-01-23 深圳迈瑞生物医疗电子股份有限公司 一种粒子分类统计方法及装置
CN103091286B (zh) * 2011-10-31 2016-08-17 深圳迈瑞生物医疗电子股份有限公司 疟原虫感染的红细胞的识别方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159584A (zh) * 1995-12-19 1997-09-17 东亚医用电子株式会社 尿液中有形成分分析装置
US20080176274A1 (en) * 2002-06-24 2008-07-24 Sysmex Corporation Method of classifying and counting leucocytes
CN101842688A (zh) * 2007-10-29 2010-09-22 希森美康株式会社 细胞分析仪及细胞分析方法
CN101498646A (zh) * 2008-02-03 2009-08-05 深圳迈瑞生物医疗电子股份有限公司 前向散射光信号探测装置与方法及细胞或粒子分析仪
CN101620223A (zh) * 2008-06-30 2010-01-06 希森美康株式会社 试样分析仪、粒子分布图显示方法及计算机***
CN102156088A (zh) * 2009-11-30 2011-08-17 希森美康株式会社 粒子分析仪及粒子拍摄方法
US20120295339A1 (en) * 2011-05-19 2012-11-22 Abbott Laboratories Method and Apparatus for Detection, Analysis, and Collection of Rare Cellular Events

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3258263A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3644041A4 (en) * 2017-06-20 2020-06-24 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. METHOD AND DEVICE FOR IDENTIFYING PLATELET AGGREGATION AND CELL ANALYZER
US11609175B2 (en) 2017-06-20 2023-03-21 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Method and device for identifying platelet aggregation and cell analyzer
WO2020223938A1 (zh) * 2019-05-08 2020-11-12 深圳迈瑞生物医疗电子股份有限公司 全血样本分析仪、全血样本分析方法及其装置和存储介质

Also Published As

Publication number Publication date
CN106662572A (zh) 2017-05-10
US10983042B2 (en) 2021-04-20
EP3258263A1 (en) 2017-12-20
EP3258263A4 (en) 2018-09-12
CN106662572B (zh) 2019-07-05
US20200191701A1 (en) 2020-06-18
US20190277746A1 (en) 2019-09-12
US20170350804A1 (en) 2017-12-07
EP3943912A1 (en) 2022-01-26
EP3258263B1 (en) 2021-09-01
US10330584B2 (en) 2019-06-25
US10627332B2 (en) 2020-04-21
CN110244032B (zh) 2021-01-12
US10883916B2 (en) 2021-01-05
CN110244032A (zh) 2019-09-17
US20200191700A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2016127364A1 (zh) 细胞分析仪、粒子分类方法及装置
US11105742B2 (en) Nucleated red blood cell warning method and device, and flow cytometer using the same
EP2951557B1 (en) Methods and systems for assessing sample behavior in a flow cytometer
US8682810B2 (en) Method and system for analysis of flow cytometry data using support vector machines
US10222320B2 (en) Identifying and enumerating early granulated cells (EGCs)
US10337975B2 (en) Method and system for characterizing particles using a flow cytometer
CN111656161B (zh) 样本分析仪异常的报警方法、***及存储介质
CN105986003B (zh) 一种白细胞计数方法、装置及细胞分析仪
CN111684263A (zh) 血液分析***、血液分析仪、血液分析方法及存储介质
CN111801568B (zh) 测定血小板浓度的方法及***
CN115219392A (zh) 样本分析仪和样本分析方法
CN113227757A (zh) 一种血液细胞参数修正方法、血液样本检测仪和存储介质
EP3244191A1 (en) Method and system for characterizing particles using a flow cytometer
CN112789503B (zh) 分析有核红细胞的方法、血液细胞分析仪和存储介质
WO2021207894A1 (zh) 细胞分析方法、细胞分析仪及计算机可读存储介质
CN114414442A (zh) 样本检测方法、装置及计算机可读存储介质
CN112789503A (zh) 分析有核红细胞的方法、血液细胞分析仪和存储介质
CN115201155A (zh) 血液样本的检测方法和样本分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881526

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015881526

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE