CN106222799B - 一种双层嵌套纳米纤维及其制备方法 - Google Patents

一种双层嵌套纳米纤维及其制备方法 Download PDF

Info

Publication number
CN106222799B
CN106222799B CN201610628911.8A CN201610628911A CN106222799B CN 106222799 B CN106222799 B CN 106222799B CN 201610628911 A CN201610628911 A CN 201610628911A CN 106222799 B CN106222799 B CN 106222799B
Authority
CN
China
Prior art keywords
nanofiber
ammonium
layer
molecular weight
electrostatic spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610628911.8A
Other languages
English (en)
Other versions
CN106222799A (zh
Inventor
耿云花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi Fu Technology (Shanghai) Co., Ltd.
Original Assignee
Xi Fu Technology (shanghai) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi Fu Technology (shanghai) Co Ltd filed Critical Xi Fu Technology (shanghai) Co Ltd
Priority to CN201810594833.3A priority Critical patent/CN108728935A/zh
Priority to CN201610628911.8A priority patent/CN106222799B/zh
Priority to CN201810284958.6A priority patent/CN108301070A/zh
Publication of CN106222799A publication Critical patent/CN106222799A/zh
Application granted granted Critical
Publication of CN106222799B publication Critical patent/CN106222799B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent

Abstract

本发明通过不同分子量的聚合物和金属盐配置成均一溶胶前驱液,采用高压静电纺丝技术获得纳米纤维,结合梯度热处理过程,获得高质量的收缩的可调内结构的纳米材料,巧妙利用两个阶段不同的升温速率控制复合纤维的分解过程,准确且方便的控制形成嵌套结构、并且双层均向内的形貌。

Description

一种双层嵌套纳米纤维及其制备方法
技术领域
本发明属于纳米材料制备技术领域。
背景技术
随着科学的发展,重大的研究发现微观多级的结构能够使材料拥有许多优异的性质。由于现代合成技术和分析测试的发展,微观纳米材料也经历这从简单到复杂的结构演变。进而,在近几年拥有更加复杂的内结构的第三代微米/纳米材料极大地刺激了许多科学家的研究兴趣,因为这些结构拥有更加优异的性能。另外,一维纳米结构,因其独特的性质引起研究者的广泛兴趣,并取得了非常优异的电化学性能。在所有制备方法中静电纺丝具有明显优势。静电纺丝以其制造装置简单、纺丝成本低廉、可纺物质种类繁多、工艺可控等优点,已成为有效制备纳米纤维材料的主要途径之一。静电纺丝技术已经制备了种类丰富的纳米纤维,包括有机、有机/无机复合和无机纳米纤维。比如,Xiang等人同样利用该技术合成了CuO中空纤维,并在此基础上通过氢气还原工艺进一步获得了多孔的中空Cu纤维(CrystEngComm, 2011, 13(15): 4856-4860)。此外,串珠链状纳米纤维、疏松多孔纳米纤维以及流苏状纳米纤维也有过报道。然而,利用静电纺丝技术制备纳米纤维还面临一些需要解决的问题。首先,在制备有机纳米纤维方面,用于静电纺丝的天然高分子品种还十分有限,对所得产品结构和性能的研究不够完善,最终产品的应用大都只处于实验阶段,尤其是这些产品的产业化生产还存在较大的问题。其次,静电纺有机/无机复合纳米纤维的性能不仅与纳米粒子的结构有关,还与纳米粒子的聚集方式和协同性能、聚合物基体的结构性能、粒子与基体的界面结构性能及加工复合工艺等有关。如何制备出适合需要的、高性能、多功能的复合纳米纤维是研究的关键。此外,静电纺无机纳米纤维的研究基本处于起始阶段,无机纳米纤维在高温过滤、高效催化、生物组织工程、光电器件、航天器材等多个领域具有潜在的用途,但是,静电纺无机纳米纤维较大的脆性限制了其应用性能和范围,因此,开发具有生产工艺简单、柔韧性、连续性、结构一致性的纳米材料是一个技术难点。
发明内容
为了解决上述问题,本发明的技术方案如下:
本发明通过不同分子量的聚合物和金属盐配置成均一溶胶前驱液,高压静电纺丝获得纳米纤维,结合梯度热处理(梯度升温速率和梯度温度)过程,获得高质量的收缩的可调内结构的无机纳米材料,巧妙利用两个阶段不同的升温速率控制复合纤维的分解过程,准确且方便的控制形成嵌套结构、并且双层均向内的形貌。
所述纤维的制备方法,其特征在于:
1)分别称取0.3~1.5g的高分子量的聚丙烯酰胺、0.78~1g的中分子量的聚丙烯酰胺、0.4~0.8g的低分子量的聚丙烯酰胺,及2~3mmol的金属盐和4~7mmol的沉淀剂同时加入到28~39mL去离子水,将其放到70~88℃的恒温水浴锅中磁力搅拌6h使其全部溶解,形成透明的溶液;金属盐选自Mg、Al、Zn、Zr和Fe的硝酸盐、硫酸盐、乙酸盐、氯化物和草 酸盐中的一种或多种; 所述沉淀剂中选自磷酸、磷酸铵、磷酸二氢铵、磷酸氢二铵、氨水、氟化铵、碳酸铵、碳酸氢铵和草酸中的一种或多种;
2)将步骤1)前躯体溶液加入到注射剂中,在正高压17~20kV,负高压-1.1~1.9kV的条件下进行静电纺丝,用铝箔接收纳米纤维,针头与接收板的距离调整为13~18 cm,纺丝液推进速度1~1.5mL/h;
3)对步骤2)获得的纳米纤维放置于120℃烘箱中干燥5h;
4)将步骤3)中静电纺丝获得的复合物纳米纤维,在惰性气体气氛下先以20℃min-1快的升温速率到380℃,保温1.5h,再以2℃min-1慢的升温速率到550℃并保温4h,即可得到由微小的纳米颗粒组成的嵌套纳米纤维;
得到的纳米纤维长为5~15μm,由内外两个层嵌套而成,层与层之间为空心结构,外层直径为200~400 nm,内层的直径为80~120nm,内外层间距为40~70 nm,层壁厚度 20~30 nm。具有大于等于130m2/g的比表面积。
惰性气体优选为氮气。金属盐优选选自Mg、Fe的硝酸盐、硫酸盐、和草酸盐中的一种或多种; 所述沉淀剂中选自磷酸、磷酸铵、磷酸二氢铵、磷酸氢二铵。
高分子量的聚丙烯酰胺分子量为300—2200万、中分子量的聚丙烯酰胺分子量为100-200万、低分子量的聚丙烯酰胺的分子量为小于100万。
由于高、中、低 分子量聚丙稀铣胺具有不同的粘度和表面张力,在高压静电的作用下,三者在纳米线径向方向上呈层状分布,形成三同轴结构(即高分子量在最外层、低分子量在中心、中分子量在两者之间)。然而无机盐在纳米纤维中均匀分布。首先,电纺纳米纤维以20℃min-1快的升温速率到380℃,无机盐的结晶速率Vc低于聚合物热解速率Vp,这将导致移动方向由内层向外层,形成中空。然后,在380℃保温1.5h,因毛细管力和聚合物管软的本质将导致外层聚合物层收缩。最后以2℃min-1的升温速率加热到550℃,保温4h。因为在低的升温速率下Vp大于Vc,移动方向由中间向两边,形成双壳。最后,在高温下,无机物进一步结晶,形成收缩的纳米结构。
本发明中纳米纤维及其制备方法,相比于现有技术,具有如下的有益效果:
(1)本发明制备出了具有双层嵌套结构的复合金属氧化物纳米纤维,内外壁均向内收缩,可以整体提高纳米纤维的振实密度,径分布在较窄的区域,具有较好的结构一致性和一定的磁性;
(2)本发明通过不同分子量的聚合物和金属盐配置成均一溶胶前驱液,高压静电纺丝获得纳米纤维,结合梯度热处理(梯度升温速率和梯度温度)过程,获得高质量的收缩的可调内结构的无机纳米材料,巧妙利用两个阶段不同的升温速率控制复合纤维的分解过程,准确且方便的控制形成嵌套结构的形貌。
附图说明
图1为本发明纳米纤维扫描电镜照片
具体实施方式
实施例1
1)分别称取1.1g的高分子量的聚丙烯酰胺、0.8g的中分子量的聚丙烯酰胺、0.8g的低分子量的聚丙烯酰胺,及2.3mmol的金属盐和4.7mmol的沉淀剂同时加入到2.9mL去离子水,将其放到70~88℃的恒温水浴锅中磁力搅拌6h使其全部溶解,形成透明的溶液;金属盐选自硝酸铁;所述沉淀剂中选自磷酸;
2)将步骤1)前躯体溶液加入到注射剂中,在正高压18kV,负高压-1.8kV的条件下进行静电纺丝,用铝箔接收纳米纤维,针头与接收板的距离调整为18 cm,纺丝液推进速度1.4mL/h;
3)对步骤2)获得的纳米纤维放置于120℃烘箱中干燥5h;
4)将步骤3)中静电纺丝获得的复合物纳米纤维,在惰性气体气氛下先以20℃min-1快的升温速率到380℃,保温1.5h,再以2℃min-1慢的升温速率到550℃并保温4h,即可得到由微小的纳米颗粒组成的嵌套纳米纤维;
得到的纳米纤维长为13μm,由内外两个层嵌套而成,层与层之间为空心结构,外层直径为300nm,内层的直径为100nm,内外层间距为55 nm,层壁厚度 21 nm。
实施例2
1)分别称取1g的高分子量的聚丙烯酰胺、1g的中分子量的聚丙烯酰胺、0.8g的低分子量的聚丙烯酰胺,及2mmol的金属盐和5mmol的沉淀剂同时加入到30mL去离子水,将其放到70℃的恒温水浴锅中磁力搅拌6h使其全部溶解,形成透明的溶液;金属盐选自氯化镁;所述沉淀剂中选自磷酸氢二铵;
2)将步骤1)前躯体溶液加入到注射剂中,在正高压18kV,负高压-1.4kV的条件下进行静电纺丝,用铝箔接收纳米纤维,针头与接收板的距离调整为15 cm,纺丝液推进速度1mL/h;
3)对步骤2)获得的纳米纤维放置于120℃烘箱中干燥5h;
4)将步骤3)中静电纺丝获得的复合物纳米纤维,在惰性气体气氛下先以20℃min-1快的升温速率到380℃,保温1.5h,再以2℃min-1慢的升温速率到550℃并保温4h,即可得到由微小的纳米颗粒组成的嵌套纳米纤维;
得到的纳米纤维长为11μm,由内外两个层嵌套而成,层与层之间为空心结构,外层直径为255 nm,内层的直径为85nm,内外层间距为48nm,层壁厚度 25nm。
比较例1
1)分别称取1g的高分子量的聚乙烯醇、0.75g的中分子量的聚乙烯醇、0.35g的低分 子量的聚乙烯醇分子量,及1.5mmol的四水乙酸钴和3mmol的四水乙酸锰同时加入到20mL 去离子水,将其放到80℃的恒温水浴锅中磁力搅拌6h使其全部溶解,形成透明的溶液;
2)将步骤1)前躯体溶液加入到注射剂中,在正高压15kV,负高压-2kV的条件下进行 静电纺丝,用铝箔接收纳米纤维;
3)对步骤2)获得的纳米纤维放置于120℃烘箱中干燥5h;
4)将步骤3)中静电纺丝获得的复合物纳米纤维,在空气气氛下先以1℃min-1慢的升 温速率到280℃,保温1h,再以10℃min-1快的升温速率到500℃并保温3h,即可得到 由微小的纳米颗粒组成的收缩的纳米纤维。
比较例2
(1)分别称取0.4000g Fe2(SO4)3和0.36g 50wt%的Mn(NO3)2溶液加入盛有6 mLDMF的烧杯中,搅拌直至全部溶解得到透明均匀的溶液,再加入1g PVP,混合搅拌均匀,得到透明粘稠的纺丝溶液;
(2)将步骤(1)制备的纺丝溶液倒入带有外径为0.8 mm的不锈钢针头的注射器中进行静电纺丝,将室内温度和相对湿度分别控制在15℃和35%左右,针头与接收板的距离调整为20 cm,纺丝液推进速度为0.9 mL/h,静电纺丝过程的电压为16 kV,采用接收板收集得到铁锰金属盐与聚乙烯吡咯烷酮的复合纳米纤维;
(3)将步骤(2)制备的复合纤维进行分段煅烧,第一阶段以1℃/min的升温速率,升温至250℃,第二阶段从250℃升温至600℃,采用10℃/min的升温速率,保温时间为4 h,然后随炉冷却至室温,即得到铁-锰复合金属氧化物磁性纳米纤维。
本发明制备的材料作为活性物质,按照活性物质:乙炔黑: 氧化石墨烯(粘结剂)的质量比为7:2.5:0.5。考虑到电极反应的双通道过程(离子和电子) 和更好地发挥其结构优势,氧化石墨烯被用来代替绝缘的黏结剂,仅占整个电极的5%却能增加电极的电导率。首先将活性物质与乙炔黑充分混合,同时加入适量的异丙醇研磨均匀,最后加入氧化石墨烯使活性物质与乙炔黑粘结在一起。然后在对辊机上将混合物压成厚度均匀的膜片,再剪切成大小一致、面积约为0.8cm2的小片,放入70℃的烘箱中干燥24h。以压片后的膜片为正极、金属锂片为负极、不锈钢网为集流体,外壳为CR2016型电池壳,隔膜纸为Celgard2400微孔聚丙烯膜,电解液为1.0mol/LLiPF6的碳酸乙烯脂(EC)/碳酸二甲脂 (DMC)(VEC:VDMC=1:1)溶液,在充满氩气的手套箱(水分控制在8ppm以下)中组装锂 离子电池并封口,将所制备的电池静置一天后便可进行电化学性能测试。
表1 不同电流密度下平均容量
实验结果表明本发明具有优异的倍率性能。
表2 200mA g-1的电流密度下循环性能,经过140次循环后,放电容量200mA g-1的 电流密度下循环性能
实施例1 实施例2 比较例1 比较例2
放电容量(mAh/g) 938 940 924 925

Claims (1)

1.一种双层纳米纤维,其特征在于:纤维具有内外两层,所述纤维的制备方法为:
1)分别称取0.3~1.5g的高分子量聚丙烯酰胺、0.78~1g的中分子量聚丙烯酰胺、0.4~0.8g的低分子量聚丙烯酰胺,及2~3mmol的金属盐和4~7mmol的沉淀剂同时加入28~39mL去离子水,然后放到70~88℃的恒温水浴锅中磁力搅拌6h使其全部溶解,形成透明的溶液;金属盐选自Mg、Al、Zn、Zr和Fe的硝酸盐、硫酸盐、乙酸盐、氯化物和草酸盐中的一种或多种;所述沉淀剂中选自磷酸、磷酸铵、磷酸二氢铵、磷酸氢二铵、氨水、氟化铵、碳酸铵、碳酸氢铵和草酸中的一种或多种;
2)将步骤1)前驱 体溶液加入到注射剂中,在正高压17~20kV,负高压-1.1~1.9kV的条件下进行静电纺丝,用铝箔接收纳米纤维,针头与接收板的距离调整为13~18 cm,纺丝液推进速度1~1.5mL/h;
3)对步骤2)获得的纳米纤维放置于120℃烘箱中干燥5h;
4)将步骤3)中静电纺丝获得的复合物纳米纤维,在惰性气体气氛下先以20℃min-1的升温速率升温到380℃,保温1.5h,再以2℃min-1的升温速率升温到550℃并保温4h,即可得到由微小的纳米颗粒组成的嵌套纳米纤维;
得到的纳米纤维长为5~15μm,由内外两个层嵌套而成,层与层之间为空心结构,外层直径为200~400 nm,内层的直径为80~120nm,内外层间距为40~70 nm,层壁厚度 20~30nm。
CN201610628911.8A 2016-08-03 2016-08-03 一种双层嵌套纳米纤维及其制备方法 Active CN106222799B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810594833.3A CN108728935A (zh) 2016-08-03 2016-08-03 一种复合金属氧化物纳米纤维
CN201610628911.8A CN106222799B (zh) 2016-08-03 2016-08-03 一种双层嵌套纳米纤维及其制备方法
CN201810284958.6A CN108301070A (zh) 2016-08-03 2016-08-03 一种双层嵌套纳米纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610628911.8A CN106222799B (zh) 2016-08-03 2016-08-03 一种双层嵌套纳米纤维及其制备方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN201810594833.3A Division CN108728935A (zh) 2016-08-03 2016-08-03 一种复合金属氧化物纳米纤维
CN201810284958.6A Division CN108301070A (zh) 2016-08-03 2016-08-03 一种双层嵌套纳米纤维的制备方法

Publications (2)

Publication Number Publication Date
CN106222799A CN106222799A (zh) 2016-12-14
CN106222799B true CN106222799B (zh) 2018-09-21

Family

ID=57536501

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201810284958.6A Pending CN108301070A (zh) 2016-08-03 2016-08-03 一种双层嵌套纳米纤维的制备方法
CN201810594833.3A Pending CN108728935A (zh) 2016-08-03 2016-08-03 一种复合金属氧化物纳米纤维
CN201610628911.8A Active CN106222799B (zh) 2016-08-03 2016-08-03 一种双层嵌套纳米纤维及其制备方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201810284958.6A Pending CN108301070A (zh) 2016-08-03 2016-08-03 一种双层嵌套纳米纤维的制备方法
CN201810594833.3A Pending CN108728935A (zh) 2016-08-03 2016-08-03 一种复合金属氧化物纳米纤维

Country Status (1)

Country Link
CN (3) CN108301070A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106731229B (zh) * 2016-12-30 2019-01-15 东华大学 具备防水功能的驻极纳米纤维空气过滤材料及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4886610B2 (ja) * 2007-06-11 2012-02-29 日本バイリーン株式会社 静電紡糸不織布の製造方法
EP2204480B1 (en) * 2008-12-25 2013-03-20 Shinshu University Process of manufacturing inorganic nanofibers
KR20110099475A (ko) * 2010-03-02 2011-09-08 건국대학교 산학협력단 동심원성 다중노즐을 이용한 구배 나노섬유 재료의 제조방법 및 상기 방법으로 제조된 구배 나노섬유
CN101787580B (zh) * 2010-03-12 2011-08-17 浙江大学 利用联合牵引成丝装置制备同轴微米纤维的方法
CN102234846B (zh) * 2010-04-28 2013-08-21 中国科学院化学研究所 具有微米管套纳米线结构的核/壳纤维及其制备方法
CN102071541B (zh) * 2010-11-17 2014-09-03 无锡中科光远生物材料有限公司 一种嵌套纳米结构静电纺丝纤维膜及其制备方法
CN102068917A (zh) * 2010-11-17 2011-05-25 无锡中科光远生物材料有限公司 一种双层中空纤维纳滤膜及其制备方法
CN103132163B (zh) * 2013-03-12 2016-01-27 东南大学 一种具有多重核壳结构的纤维的制备方法
CN103966680A (zh) * 2014-05-04 2014-08-06 东华大学 一种药物缓释纳米纤维的制备方法
CN104389037B (zh) * 2014-11-26 2017-06-06 魏保平 一种嵌套式纺丝体
CN105375028B (zh) * 2015-12-08 2017-11-17 武汉理工大学 收缩的可调内结构的介孔无机盐纳米管材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106222799A (zh) 2016-12-14
CN108728935A (zh) 2018-11-02
CN108301070A (zh) 2018-07-20

Similar Documents

Publication Publication Date Title
CN108315834B (zh) 一种阵列式磁性还原氧化石墨烯-炭纳米纤维的制备方法
Weng et al. Electrospun carbon nanofiber-based composites for lithium-ion batteries: structure optimization towards high performance
KR20140120861A (ko) 리튬이온전지 흑연 음극재료 및 이의 제조방법
CN113073426B (zh) 多孔多中空柔性复合纳米纤维膜材料及其制备方法
CN106571451A (zh) 一种锂离子电池负极材料及其制备方法
CN106784745A (zh) 钠离子电池用四氧化三钴碳纳米纤维的电纺丝制备方法
CN108574089B (zh) 一种空心管状富锂锰基正极材料的制备方法
JP6302878B2 (ja) 電着法を用いた金属酸化物が担持されたカーボンナノファイバー電極の製造方法
CN105514369A (zh) 一种中空SnO2/Co3O4杂化纳米管及其制备方法和应用
CN105489863B (zh) 一种基于C/Ti4O7复合纳米纤维的锂硫电池正极材料及其制备方法
CN108847492A (zh) 一种n掺杂金属钴碳纳米纤维复合材料及其制备方法和应用
KR101438065B1 (ko) 하이브리드나노복합체, 상기 복합체 제조방법 및 상기 하이브리드나노복합체를 포함하는 슈퍼캐패시터용 전극
KR20230066516A (ko) 나노복합체, 이를 포함하는 전극 조성물 및 나노복합체의 제조 방법
CN110429246B (zh) 一种类石墨相氮化碳均匀包覆α-Fe2O3材料及其制备方法、应用
CN113044840B (zh) 一种活性炭负载钼和氮双掺杂碳纳米片阵列复合材料及其制备方法和应用
CN110400916A (zh) 一种二硒化钼纳米片修饰的碳纤维复合材料制备方法
CN106222799B (zh) 一种双层嵌套纳米纤维及其制备方法
CN111952577B (zh) 一种C/Si/CNTs复合碳纳米纤维膜、制备方法及其应用
CN109935472A (zh) 一种多形貌Fe-Mn复合碳纳米纤维及其制备和应用
CN110474023B (zh) 一种纤维状镍铋电池及其制备方法
CN114823155B (zh) 一种三维导电材料及其制备方法和用途
KR101827155B1 (ko) 리튬공기전지용 공기전극 및 그 제조방법
CN106099117A (zh) 一种具有优异倍率性能和电流循环性能的电极
CN115020707A (zh) 一种柔性锂金属电池亲锂碳纳米纤维骨架材料及其制备方法与应用
CN108574096B (zh) NiO/rGO复合纳米材料及其制备方法和锂电池负极材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180809

Address after: 266708 Jingyuan village, Jingjia village, Jingyuan village, Pingyuan City, Qingdao City, Shandong

Applicant after: Xi Fu Technology (Shanghai) Co., Ltd.

Address before: 266708 Jingyuan village, Liyuan street, Pingdu City, Qingdao, Shandong

Applicant before: Geng Yunhua

GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 201800 7 Changxiang Road, Nanxiang Town, Jiading District, Shanghai, 588

Patentee after: Xi Fu Technology (Shanghai) Co., Ltd.

Address before: 266708 Jingyuan village, Jingjia village, Jingyuan village, Pingyuan City, Qingdao City, Shandong

Patentee before: Xi Fu Technology (Shanghai) Co., Ltd.