CN106119796A - 一种非晶金刚石涂层的制备方法 - Google Patents

一种非晶金刚石涂层的制备方法 Download PDF

Info

Publication number
CN106119796A
CN106119796A CN201610635389.6A CN201610635389A CN106119796A CN 106119796 A CN106119796 A CN 106119796A CN 201610635389 A CN201610635389 A CN 201610635389A CN 106119796 A CN106119796 A CN 106119796A
Authority
CN
China
Prior art keywords
preparation
neon
base material
coating
mixed atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610635389.6A
Other languages
English (en)
Inventor
代伟
王启民
刘景茂
耿东森
高翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201610635389.6A priority Critical patent/CN106119796A/zh
Publication of CN106119796A publication Critical patent/CN106119796A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • C23C14/0611Diamond

Abstract

本发明公开一种非晶金刚石涂层的制备方法,在氖气气氛或含氖气的混合气氛中对基材进行磁控溅射沉积,功率为0.3‑5kW,衬底偏压为‑50~‑500V,沉积时间为1~3小时,得到非晶金刚石涂层,所述磁控溅射沉积采用的磁控源为纯度大于99.9%的单质石墨靶。该方法具有成本低、制备速度快、可大面积均匀沉积、适应复杂沉积表面的优点,具有很好的应用前景。

Description

一种非晶金刚石涂层的制备方法
技术领域
本发明属于磨具技术领域,涉及一种非晶金刚石涂层的制备方法。
技术背景
碳基涂层(如金刚石、类金刚石DLC、非晶金刚石ta-C等)具有极高的硬度和耐磨性、低摩擦系数和热膨胀系数、高弹性模量、良好的化学稳定性以及与非铁族亲和弱等优异性能,被广泛应用于刀具、模具、精密零部件、微电子等领域。其中,非晶金刚石ta-C是一种四面体无定形非晶碳,其金刚石sp3键含量高达80%以上,结构和性能非常接近金刚石(100%sp3),具有极高的硬度和耐磨性、低摩擦自润滑性、高热导系数、等特性低热膨胀系数、良好的化学稳定性以及与非铁族亲和弱等优异性能。相比传统的DLC涂层(a-C或a-C:H),ta-C涂层sp3键含量高,且不含有氢,具有更高的硬度(高达80GPa)、密度和热稳定性(>500℃)。此外,与金刚石涂层相比,ta-C涂层具有(1)无晶界的光滑表面;(2)低温生长(<150C)(金刚石涂层沉积通常>700C);(3)工艺参数可调,使涂层结构和性能可在大范围内剪裁等优点。因此,ta-C涂层有望取代昂贵的CVD沉积微晶金刚石涂层应用在钻头,刀片,立铣刀等刀具上,进一步应用于轻合金(铝合金)、金属基复合材料、工程陶瓷、纤维增强复合塑料等难加工材料的切削加工。同时,ta-C作为理想的耐磨材料,还应用于内表面要求耐磨和低粗糙度的场合,如内燃机活塞环、拉丝模、紧压模、各种模具等。
非晶金刚石ta-C的制备关键是sp3键的形成,需要高离化率的碳离子束流。目前ta-C的制备技术主要有电弧蒸发沉积(Cathodic arc evaporation,CVA)、激光蒸发沉积(Pulsed laser deposition,PLD)、磁控溅射等技术。CVA和PLD虽然能获得较高离化率的碳粒子束,但石墨靶材的蒸发易产生大颗粒,而且涂层横向沉积速率不均匀,不能大面积镀膜。现在较为主流的制备技术是FCVA,采用电磁过滤***将宏观大颗粒过滤,获得离化率接近100%的碳离子束流,但过滤导致沉积速率大幅下降,涂层成本提升。此外,受磁场约束的碳离子流横截面小,很难应用于大尺寸工件镀膜。而磁控溅射不会产生大颗粒,能实现大面积均匀沉积,但是传统磁控溅射难以获得高离化率的碳粒子束合成sp3键。因此,寻求一种能、大面积、快速、低成本、适应复杂工件表面均匀沉积、高质量的非晶金刚石制备方法是目前实现非晶金刚石涂层推广应用所急需解决的问题。
发明内容
针对上述现有技术的不足,本发明提供提供一种非晶金刚石涂层的制备方法,该方法中的磁控溅射碳离化率高,制备的非晶金刚石涂层具有高密度、高sp3键含量优点,具有成本低、制备速度快、可大面积均匀沉积、适应复杂沉积表面的优点,具有很好的应用前景。
本发明的目的通过以下技术方案实现:
一种非晶金刚石涂层的制备方法,在氖气气氛或含氖气的混合气氛中对基材进行磁控溅射沉积,功率为0.3-5kW,衬底偏压为-50~-500V,沉积时间为1~3小时,得到非晶金刚石涂层,所述磁控溅射沉积采用的磁控源为纯度大于99.9%的单质石墨靶。
本发明所用的基材包括硅片和合金基材,具体没有特殊限制。
优选的,对上述基材的待沉积表面进行辉光预处理,具体是在氩气气氛中对基材进行轰击刻蚀,以除去表面的氧化层,提高涂层与基材的结合力。
优选的,所述预处理过程中,所述氩气气氛的压力为0.5~1Pa。
优选的,所述预处理过程中,衬底偏压设置为-100~-1000V,时间为30-180min。
优选的,所述氖气或含氖气的混合气氛的压强为0.3~3Pa。
优选的,所述含氖气的混合气氛为氖气和氩气的混合气氛,所述混合气氛中氖气的分压百分比为10%~90%。
本发明具有以下有益效果:本发明采用电离能高的氖气或含氖气的混合气体作为溅射气体,能提高电子温度,进而提高碳粒子离化率,获得高sp3键含量的非晶金刚石ta-C涂层,同时本发明的方法能够实现低成本、大面积、快速沉积得到涂层,且能适应复杂表面实现均匀沉积,所制备的非晶金刚石ta-C涂层sp3含量高、结构致密,性能优异。
具体实施方式
本发明可通过如下的实施例进一步的说明,但实施例不是对本发明保护范围的限制。
实施例1
非晶金刚石ta-C涂层的制备具体如下:
用酒精超声波清洗硅片基体,然后用去离子水漂洗,用干燥压缩空气吹干,在高功率脉冲等离子体增强型复合磁控溅射设备GDUT-HAS500型镀膜机(磁控溅射源为纯度为99.9%的石墨靶)的真空室中将基体置于工件支架上,将真空室抽真空至5.0×10-3Pa以下,向真空室通入100sccm氩气,使真空室压力为1Pa,开启衬底偏压进行预处理,预处理过程设置衬底偏压-500V,预处理时间为30分钟;然后开启磁控溅射源进行磁控溅射沉积,沉积过程中向真空室通入10sccm氖和90sccm氩(氖气占10%),控制气压0.5Pa,设置功率为2kW,偏压为-100V,沉积时间为2小时,沉积完成后待真空室温度降至室温,即在基体表面制备得到非晶金刚石ta-C涂层。
对硅片上制备的ta-C涂层样品进行测试,具体采用D8 Discover型XRR测试涂层密度达2.8g/cm3,采用AXIS ULTRADLD型X光电子谱测得sp3键含量62%、用NANO G200纳米压痕测试测得涂层的硬度达到30GPa。
实施例2
用酒精超声波清洗硅片基体,然后用去离子水漂洗,用干燥压缩空气吹干,在高功率脉冲等离子体增强型复合磁控溅射设备GDUT-HAS500型镀膜机(磁控溅射源为纯度为99.9%的石墨靶)的真空室中将基体置于工件支架上,将真空室抽真空至5.0×10-3Pa以下,向真空室通入100sccm氩气,使真空室压力为1Pa,开启衬底偏压进行预处理,预处理过程设置衬底偏压-500V,预处理时间为30分钟;然后开启磁控溅射源进行磁控溅射沉积,沉积过程中向真空室通入90sccm氖气和10sccm氩气(氖气占90%),控制气压0.5Pa,设置磁控溅射功率2kW,同时偏压设置为-100V,沉积时间为2小时,沉积完成后待真空室温度降至室温,即在基体表面制备得到非晶金刚石ta-C涂层。
参照实施例1的测试方法,测得所制备的非晶金刚石ta-C涂层的密度达3.3g/cm3,sp3键含量在75%以上,硬度达到38GPa。
实施例3
用酒精超声波清洗硅片基体,然后用去离子水漂洗,用干燥压缩空气吹干,在高功率脉冲等离子体增强型复合磁控溅射设备GDUT-HAS500型镀膜机(磁控溅射源为纯度为99.9%的石墨靶)的真空室中将基体置于工件支架上,将真空室抽真空至5.0×10-3Pa以下,向真空室通入100sccm氩气,使真空室压力为1Pa,开启衬底偏压进行预处理,预处理过程设置偏压-500V,预处理时间为30分钟;然后开启磁控溅射源进行磁控溅射沉积,沉积过程中向真空室通入50sccm氖气和50sccm氩气(氖气占50%),控制气压0.5Pa,设置磁控溅射功率2kW,同时偏压设置为-100V,沉积时间为2小时,沉积完成后待真空室温度降至室温,即在基体表面制备得到非晶金刚石ta-C涂层。
参照实施例1的制备方法,经过密度、X光电子谱、纳米压痕测试,所制备的非晶金刚石ta-C涂层的密度达3g/cm3,sp3键含量为65%,硬度达到34GPa。
对比实施例
用酒精超声波清洗硅片基体,然后用去离子水漂洗,用干燥压缩空气吹干,在高功率脉冲等离子体增强型复合磁控溅射设备GDUT-HAS500型镀膜机(磁控溅射源为纯度为99.9%的石墨靶)的真空室中将基体置于工件支架上,将真空室抽真空至5.0×10-3Pa以下,向真空室通入100sccm氩气,使真空室压力为1Pa,开启衬底偏压行预处理,预处理过程设置偏压-500V,预处理时间为30分钟;然后开启磁控溅射源进行磁控溅射沉积,沉积过程中向真空室通入100scmm氩气,控制气压0.5Pa,设置磁控溅射功率2kW,同时偏压设置为-100V,沉积时间为2小时,,沉积完成后待真空室温度降至室温,即在基体表面制备得到非晶金刚石ta-C涂层。
参照实施例1的测试方法,测得所制备的对比非晶金刚石ta-C涂层的密度为2g/cm3,sp3键含量为40%,硬度为18GPa。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制。本领域的技术人员应当理解,可以对本发明的技术方案进行若干推演或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (6)

1.一种非晶金刚石涂层的制备方法,在氖气气氛或含氖气的混合气氛中对基材进行磁控溅射沉积,功率为0.3-5kW,衬底偏压为-50~-500V,沉积时间为1~3小时,得到非晶金刚石涂层,所述磁控溅射沉积采用的磁控源为纯度大于99.9%的单质石墨靶。
2.如权利要求1所述的制备方法,其特征在于,所述氖气或含氖气的混合气氛的压强为0.3~3Pa。
3.如权利要求1所述的制备方法,其特征在于,所述含氖气的混合气氛为氖气和氩气的混合气氛,所述混合气氛中氖气的分压百分比为10%~90%。
4.如权利要求1-3任一项所述的制备方法,其特征在于,进行磁控溅射沉积之前对基材的待沉积表面进行辉光预处理,具体是在氩气气氛中对基材进行轰击刻蚀,以除去表面的氧化层,提高涂层与基材的结合力。
5.如权利要求4所述的制备方法,其特征在于,所述预处理过程中,所述氩气气氛的压力为0.5~1Pa。
6.如权利要求4所述的制备方法,其特征在于,所述预处理过程中,衬底偏压设置为-100~-1000V,时间为30-180min。
CN201610635389.6A 2016-08-03 2016-08-03 一种非晶金刚石涂层的制备方法 Pending CN106119796A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610635389.6A CN106119796A (zh) 2016-08-03 2016-08-03 一种非晶金刚石涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610635389.6A CN106119796A (zh) 2016-08-03 2016-08-03 一种非晶金刚石涂层的制备方法

Publications (1)

Publication Number Publication Date
CN106119796A true CN106119796A (zh) 2016-11-16

Family

ID=57255803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610635389.6A Pending CN106119796A (zh) 2016-08-03 2016-08-03 一种非晶金刚石涂层的制备方法

Country Status (1)

Country Link
CN (1) CN106119796A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107841666A (zh) * 2017-11-29 2018-03-27 宁波市鄞州隆茂冲压件厂 一种支架
CN107916442A (zh) * 2017-12-11 2018-04-17 李春浓 高尔夫球杆头表面复合镀膜及镀膜方法
CN107955922A (zh) * 2017-11-29 2018-04-24 宁波市鄞州龙腾工具厂 一种房车通风罩

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231940A (ja) * 2004-02-19 2005-09-02 Yoshiki Takagi ダイヤモンドの合成方法と装置並びにダイヤモンド合成用電極とその製造方法
CN101244897A (zh) * 2008-03-25 2008-08-20 哈尔滨工业大学 光电探测***的带非晶金刚石膜的玻璃球罩及其制备方法
CN101532122A (zh) * 2009-04-03 2009-09-16 西安交通大学 一种生物医用NiTi合金表面制备类金刚石涂层的方法
CN101997512A (zh) * 2010-10-28 2011-03-30 哈尔滨工业大学 固贴式薄膜体声波谐振器及其全绝缘布拉格反射栅制备方法
CN103088292A (zh) * 2011-10-31 2013-05-08 豪泽尔涂层技术有限公司 用于在多个工件和一个工件上沉积无氢四面体非晶碳层的装置和方法
CN103534380A (zh) * 2011-04-07 2014-01-22 艾诺提克斯Ab 用于溅射碳靶的溅射工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231940A (ja) * 2004-02-19 2005-09-02 Yoshiki Takagi ダイヤモンドの合成方法と装置並びにダイヤモンド合成用電極とその製造方法
CN101244897A (zh) * 2008-03-25 2008-08-20 哈尔滨工业大学 光电探测***的带非晶金刚石膜的玻璃球罩及其制备方法
CN101532122A (zh) * 2009-04-03 2009-09-16 西安交通大学 一种生物医用NiTi合金表面制备类金刚石涂层的方法
CN101997512A (zh) * 2010-10-28 2011-03-30 哈尔滨工业大学 固贴式薄膜体声波谐振器及其全绝缘布拉格反射栅制备方法
CN103534380A (zh) * 2011-04-07 2014-01-22 艾诺提克斯Ab 用于溅射碳靶的溅射工艺
CN103088292A (zh) * 2011-10-31 2013-05-08 豪泽尔涂层技术有限公司 用于在多个工件和一个工件上沉积无氢四面体非晶碳层的装置和方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
S.P. BUGAEV ET AL: ""Ion-assisted pulsed magnetron sputtering deposition of ta-C films"", 《THIN SOLID FILMS》 *
王承遇等: "《玻璃材料手册》", 31 January 2008, 化学工业出版社 *
许政权等: "《介质光波导器件原理》", 28 February 1989, 上海交通大学出版社 *
陈弟虎等: "非晶金刚石薄膜的拉曼光谱研究", 《无机材料学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107841666A (zh) * 2017-11-29 2018-03-27 宁波市鄞州隆茂冲压件厂 一种支架
CN107955922A (zh) * 2017-11-29 2018-04-24 宁波市鄞州龙腾工具厂 一种房车通风罩
CN107916442A (zh) * 2017-12-11 2018-04-17 李春浓 高尔夫球杆头表面复合镀膜及镀膜方法

Similar Documents

Publication Publication Date Title
CN110106483B (zh) 一种类石墨颗粒复合的类金刚石涂层及其制备方法和应用
CN106835037A (zh) 一种高硬度、高弹性模量的多组元氮化物涂层及其制备方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN101792898B (zh) 一种提高镁合金抗磨损性能的碳膜及其制备方法
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN108385066B (zh) 一种无氢金属掺杂类金刚石涂层制备方法及其制品
CN102650053A (zh) 复杂形状cvd金刚石/类金刚石复合涂层刀具制备方法
CN110453190B (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN110004409B (zh) 具有高硬度和高结合力的CrAlN纳米梯度涂层及其制备工艺
CN102021513B (zh) 一种基体表面的高韧性抗氧化减磨涂层及其制备方法
CN106119796A (zh) 一种非晶金刚石涂层的制备方法
CN108677144A (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
Zia et al. Structural, mechanical, and tribological characteristics of diamond-like carbon coatings
CN108977781A (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
CN114574827B (zh) 一种含碳高熵合金薄膜及其制备方法与应用
CN105316634A (zh) 一种Cr-B-C-N纳米复合薄膜的制备方法
CN115044867A (zh) 一种TiAlWN涂层及其制备方法与应用
CN109023243B (zh) 一种超强韧、低摩擦碳基刀具涂层及其制备方法
CN113774344B (zh) 一种钛硅共掺杂非晶碳氮复合薄膜的制备方法
CN112501553B (zh) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN103160796A (zh) 在钢铁表面制备类金刚石薄膜的方法
CN103317793B (zh) 一种类金刚石基纳米复合涂层刀具及其制备方法
Zheng et al. Preparation and tribological behavior of TiN/aC composite films deposited by DC magnetron sputtering
CN108396306A (zh) 一种低温沉积硬度可控的类金刚石复合薄膜的方法
CN102912302B (zh) 一种镁合金表面制备钇/氮化硅复合涂层材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116

RJ01 Rejection of invention patent application after publication