CN106046681A - 一种亚麻纤维素基磷系膨胀型阻燃剂及其制备方法和应用 - Google Patents

一种亚麻纤维素基磷系膨胀型阻燃剂及其制备方法和应用 Download PDF

Info

Publication number
CN106046681A
CN106046681A CN201610383752.XA CN201610383752A CN106046681A CN 106046681 A CN106046681 A CN 106046681A CN 201610383752 A CN201610383752 A CN 201610383752A CN 106046681 A CN106046681 A CN 106046681A
Authority
CN
China
Prior art keywords
flax fiber
carboxyl
source
fire retardant
element base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610383752.XA
Other languages
English (en)
Other versions
CN106046681B (zh
Inventor
张水洞
殷悦
彭华乔
江金辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Second Research Institute of CAAC
Original Assignee
South China University of Technology SCUT
Second Research Institute of CAAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Second Research Institute of CAAC filed Critical South China University of Technology SCUT
Priority to CN201610383752.XA priority Critical patent/CN106046681B/zh
Publication of CN106046681A publication Critical patent/CN106046681A/zh
Application granted granted Critical
Publication of CN106046681B publication Critical patent/CN106046681B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • C08B15/04Carboxycellulose, e.g. prepared by oxidation with nitrogen dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明属于含磷膨胀型阻燃剂技术领域,公开了一种亚麻纤维素基磷系膨胀型阻燃剂及其制备方法和应用。该阻燃剂包括2~10重量份的炭源、1~10重量份的酸源和1~10重量份的气源;所述炭源为高羧基含量的羧基亚麻纤维,由包括以下步骤的方法制备得到:将亚麻纤维浸泡水中,加入H2O2及催化剂,搅拌反应,得到高羧基含量的羧基亚麻纤维。本发明还提供一种基于上述阻燃剂的环氧树脂复合材料。本发明阻燃剂以高羧基含量的羧基亚麻纤维素为炭源,成炭率为20~27.2%,热分解释放可燃性气体少。得到的环氧树脂复合材料极限氧指数超过29,垂直燃烧等级为V‑0,燃烧总热释放量下降超过60%,并具有吸水率低、力学性能高等优点。

Description

一种亚麻纤维素基磷系膨胀型阻燃剂及其制备方法和应用
技术领域
本发明属于含磷膨胀型阻燃剂技术领域,特别涉及一种亚麻纤维素基磷系膨胀型阻燃剂及其制备方法和应用。
背景技术
纤维素是自然界中分布最广、含量最多的一种多糖,占植物界碳含量的50%以上。羧基亚麻纤维作为纤维素衍生物的一种,具有良好的生物相容性、生物可降解性、环境友好和无毒等特点,已被广泛用于不少行业。以过氧化氢(H2O2)制备羧基亚麻纤维因具有绿色、环保和高纯度等优点而备受关注。而纤维素经过氧化之后,其性能较天然纤维素又有了较大的提高。如中国专利申请CN104017090A公开一种采用过氧化氢制备羧基纤维素的方法,其羰基含量高达10.4%,对铅离子的吸附比纯纤维提高10倍以上。
环氧树脂具有多方面优良的性能,如耐腐蚀性能、电绝缘性能、力学性能、可粘结性以及优于其他热固性树脂的加工工艺性。因此无论在高新技术还是在通用技术,无论在国防军事还是在民用工业,甚至在日常生活中都可以看到环氧树脂及其次加工产品的踪迹。环氧树脂是热固性树脂中非常重要的一种,但其阻燃性能较差,氧指数较低(约19.8)。环氧树脂的易燃性及离火后的持续自燃容易引发火灾的缺点限制了它的应用。卤系阻燃剂因其用量少、阻燃效率高且应用范围广,成为市场的主流,但阻燃的同时也产生大量的腐蚀性和有毒气体,由此引发的二口恶英(Dioxin)问题而受到人们的广泛关注。欧盟2003年2月颁布了《限制有害物质指令》(RoHS),2006年7月1日开始实施《关于在电气、电子设备中限制使用某些有害物质指令》(简称ROHS指令),规定了首批实施的有害物质和近期关注环境管理物质名单。在电子电气设备中禁止使用多溴联苯(PBB)、多溴二苯醚(PBOE)和甲醛。含卤阻燃剂的使用受到了很大的冲击。
所以开发一种新型阻燃环氧树脂替代现有的卤素阻燃环氧树脂迫在眉睫。由此,新型的膨胀形阻燃剂由于其低毒、抑烟以及制备简单等优点而备受关注。添加膨胀阻燃剂的聚合物在燃烧时分解产生不燃气体隔绝氧气带走大量热量,并在材料表面形成一层炭层起到隔绝热量和氧气的作用。膨胀型阻燃剂主要有三大成分:炭源、酸源和气源。随着上世纪对于膨胀型阻燃的研究的深入,典型的炭源如季戊四醇由于价格昂贵已经不能满足大规模生产的需要,所以来源广泛,绿色无污染的淀粉成为了最为普遍的成炭剂。如李斌等人研究了淀粉替代季戊四醇对聚乙烯膨胀阻燃体系的影响(李斌,张秀成,孙才英.淀粉对聚乙烯膨胀阻燃体系热降解和阻燃的影响[J].高分子材料科学与工程.2000(02))。在日常使用时,淀粉容易吸水而迁移出材料外,从而导致不能形成足够多的炭层,进一步影响阻燃效果。而在膨胀型阻燃炭源中,同为多糖类的亚麻纤维却鲜有提及。与淀粉相比,同为天然大分子多糖的亚麻纤维有着更好的耐水性和结构稳定性。
为了制备羧基纤维素,章胜红等用NaOH溶液对天然纤维素进行改性以提高其被氧化能力,以TEMPO-NaOCl-NaBr体系作为氧化剂选择性羧基亚麻纤维葡萄糖基环的伯羟基成羧基,以此技术制备的一种纤维素基重金属吸附材料可置于曝气生物滤池的调节池中对Cu2+和Cd2+等重金属离子进行预处理(章胜红,陈季华,曝气生物滤池深度净化有机废水的研究,2006)。公开号为CN1O201899A的专利采用的方法是以粘胶纤维长丝织物为起始原料,采用有机氧化溶剂体系对粘胶纤维长丝织物进行氧化,氧化反应结束后,经洗涤、干燥制成羧基亚麻纤维止血产品,产品的羧基含量可以达到15~24%,采用的有机氧化溶剂为环己烷或是甲基环己烷。美国专利US6627749B1公布了一种采用亚硝酸钠、磷酸和硝酸混合液体对纤维素进行氧化,制备得到羧基含量低于24.5%的羧基亚麻纤维,可用于药物、化工和医用高分子领域中。美国专利US6120554-A公布了一种采用烷基季氨盐为催化剂,以过氧化氢为氧化剂羧基亚麻纤维,从而制备得到羧基亚麻纤维,但是氧化度低,氧化效率差,并且制备过程需要在较高的温度下进行,难为广泛应用。日本专利2011057749A报道了采用极性氧化剂将纤维素C6上的羟基氧化成醛基和羧基,其中得到的羧基亚麻纤维中羧基含量为0.6~2.2mmol/g。德国专利DE102010034782报道了一种氧化度5~50%的纤维素的制备方法,该方法采用次氯酸钠等氧化剂进行氧化处理,反应温度20~160℃下进行。
迄今为止,国内外对制备羧基纤维素的报道虽已存在,但是制备的工艺复杂,条件苛刻,须在强酸性或者是碱性介质中制备。所选用的氧化剂不仅对纤维素本身的破坏性大,而且会有副产物遗留,对环境造成一定的影响。本发明采用过氧化氢这种绿色环保的氧化剂,通过设计的反应条件,制备羧基含量最高达40%的羧基亚麻纤维,并将其作为新型膨胀型阻燃剂炭源,与三聚氰胺微胶囊包覆的聚磷酸铵形成的组合物,实现在较低含量下膨胀阻燃环氧树脂具有高阻燃等级、高力学性能及低吸水率等优点。
发明内容
为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种亚麻纤维素基磷系膨胀型阻燃剂。本发明以高羧基含量的羧基亚麻纤维为材料,与三聚氰胺微胶囊包覆的聚磷酸铵组成膨胀型阻燃剂,利用其高成炭性和低可燃性气体释放量,降低阻燃剂的含量,提高阻燃性能,应用于环氧树脂阻燃中。
本发明另一目的在于提供一种上述亚麻纤维素基磷系膨胀型阻燃剂的制备方法。
本发明再一目的在于提供一种基于上述亚麻纤维素基磷系膨胀型阻燃剂的环氧树脂复合材料。
本发明再一目的在于提供上述亚麻纤维素基磷系膨胀型阻燃剂在树脂、橡胶中的应用,特别是环氧树脂阻燃中的应用。
本发明的目的通过下述方案实现:
一种亚麻纤维素基磷系膨胀型阻燃剂,包括2~10重量份的炭源、1~10重量份的酸源和1~10重量份的气源;
所述炭源为高羧基含量的羧基亚麻纤维,其由包括以下步骤的方法制备得到:将亚麻纤维浸泡水中,加入H2O2及催化剂,搅拌反应,得到高羧基含量的羧基亚麻纤维。
所用亚麻纤维和H2O2的质量比优选为20:10~20:80。
所述搅拌反应的条件优选为20~50℃下搅拌反应0.5~72h。
所用催化剂的量为催化量即可,优选为亚麻纤维质量的0.02~2%。
所述的催化剂可为硫酸铁、硫酸铜、硫酸钴、硫酸锰、硫酸锌、氯化锌、氯化钴、氯化亚铜、氯化亚铁、氯化铁、氯化铜、溴化锌、溴化钴、溴化亚铁、溴化铁和溴化铜中的至少一种。所述催化剂使用前优选先溶解于水中制备得到浓度为0.1mol/L的溶液。
所述亚麻纤维优选在水中浸泡1~5h后再加入H2O2及催化剂反应。所用水的量优选为亚麻纤维质量的两倍或以上。
所述搅拌反应后,优选通过分离、洗涤和干燥得到纯化产品。所述洗涤优选利用水冲洗分离后固体至中性。所述干燥优选在50℃~85℃下烘干4~12h。
所述的酸源和气源优选为三聚氰胺包覆的聚磷酸铵(MFAPP),其制备方法可参照文献(Yang L,Cheng W L,Zhou J,et al.Polym Degradation Stab,2014,105(1):150-159.)得到。
所述酸源和气源的总用量优选为3~10重量份。
为了更好地实现本发明,所述亚麻纤维素基磷系膨胀型阻燃剂,包括2~10重量份的炭源、3~10重量份的三聚氰胺包覆的聚磷酸铵;
所述炭源为高羧基含量的羧基亚麻纤维,其由包括以下步骤的方法制备得到:将亚麻纤维浸泡水中,加入H2O2及催化剂,搅拌反应,得到高羧基含量的羧基亚麻纤维。
本发明所述阻燃剂的炭源为高羧基含量的羧基亚麻纤维素,与传统的成炭剂,如季戊四醇、纯淀粉和纯亚麻纤维相比,具有成炭率高、燃烧过程中释放甲醇等可燃性气体少以及耐水性高等优点,其羧基含量为10~40%,在空气气氛中热分解温度为600℃时所得成炭率为20~27.2%,热分解释放甲醇等可燃性气体下降比例50~95%。
本发明还提供一种所述亚麻纤维素基磷系膨胀型阻燃剂的制备方法,通过将2~10重量份的炭源、1~10重量份的酸源和1~10重量份的气源混合制备得到。
本发明还提供一种基于上述亚麻纤维素基磷系膨胀型阻燃剂的环氧树脂复合材料,包括100质量份环氧树脂、20~60质量份固化剂、5~20质量份所述亚麻纤维素基磷系膨胀型阻燃剂。其通过将所述组合混合搅拌均匀得到。
所用固化剂为本领域常规使用的固化剂即可,优选为33质量份。
将上述组分混合搅拌均匀,加入模具中,固化,脱模,得到环氧树脂复合材料。
上述制备得到的环氧树脂复合材料具有优异的阻燃性能,其极限氧指数超过29,垂直燃烧等级为V-0,燃烧总热释放量与纯环氧树脂相比下降最大值超过60%。其中,以羧基含量为32.2%的高羧基含量的羧基亚麻纤维素为炭源制备得到的环氧树脂复合材料具有突出优异的阻燃效果。
本发明,以高羧基含量的羧基亚麻纤维素为炭源,与三聚氰胺包覆的聚磷酸铵发挥协同作用可应用于树脂、橡胶中作为阻燃剂,特别是环氧树脂阻燃中的应用。其用于环氧树脂膨胀型阻燃剂中,依靠其高成炭性和自身高阻燃性,使得在较低阻燃剂添剂量的情况下,环氧树脂具有良好的阻燃性能,从而推动羧基亚麻纤维应用于膨胀阻燃领域中。
本发明的机理为:
本发明制备高羧基含量的亚麻纤维素并将其作为新型炭源与聚磷酸铵发挥协同作用,得到膨胀型阻燃剂。此新型炭源的羧基含量为10~40%,成炭量超过27.2%,燃烧过程中甲醇等可燃性气体量大幅度减少,且膨胀所得的炭层结构均匀致密且膨胀率高,与三聚氰胺微胶囊包覆的聚磷酸铵形成的阻燃剂,具有膨胀性优异,协同阻燃效率高的特点。以100质量份的环氧树脂(固化剂用量为21份)计,当所用的膨胀型阻燃剂中三聚氰胺微胶囊包覆的聚磷酸铵的用量为3~10质量份,炭源的用量为2~10质量份,所得环氧树脂复合材料的极限氧指数超过29,垂直燃烧等级为V-0,燃烧总热释放量下降最大值超过60%,并且具有吸水率低(24小时内吸水率低于4%)、力学性能高(拉伸强度和缺口冲击强度分别不低于纯环氧树脂的85%和130%)等优点,其综合性能远优于以常用炭源季戊四醇和纯淀粉,具有广泛的应用价值。
本发明相对于现有技术,具有如下的优点及有益效果:
(1)与现有的技术相比,本发明阻燃剂的碳源,高羧基含量的羧基亚麻纤维,具有成炭率高,炭层结构致密均匀,燃烧产生的可燃性气体少,协同阻燃效率高,可以作为膨胀型阻燃剂的一种新型炭源来使用。
(2)本发明独创性的使用高羧基亚麻纤维做为一种新型成炭剂用于膨胀型阻燃剂中,取得了明显的效果,极大拓宽了亚麻纤维及其衍生物的应用范围。
(3)通过对比发现,高羧基含量的羧基亚麻纤维素与聚磷酸铵发挥协同作用,用于环氧树脂的膨胀型阻燃,获得了膨胀程度高,炭层结构致密,阻燃效果良好的膨胀型阻燃剂。
附图说明
图1为实施例1、2和4制备的羧基亚麻纤维素的红外谱图。其中,曲线a为纯亚麻纤维,曲线b为实施例1制备的OLF12.6,曲线c为实施例2制备的OLF27.4,曲线d为实施例4制备的OLF34.5。
图2为实施例1、2和4制备的羧基亚麻纤维素的核磁共振碳谱图。其中,曲线a为纯亚麻纤维,曲线b为实施例1制备的OLF12.6,曲线c为实施例2制备的OLF27.4,曲线d为实施例4制备的OLF34.5。
图3为实施例1、2和4制备的羧基亚麻纤维素的热重分析谱图。其中,曲线a为纯亚麻纤维,曲线b为实施例1制备的OLF12.6,曲线c为实施例2制备的OLF27.4,曲线d为实施例4制备的OLF34.5。
图4为实施例1、2和4制备的羧基亚麻纤维素热重红外联用谱图。其中,曲线a为纯亚麻纤维,曲线b为实施例1制备的OLF12.6,曲线c为实施例2制备的OLF27.4,曲线d为实施例4制备的OLF34.5。
图5为实例5、6和7锥形量热测试中平均热释放速率(A)、总的热释放量(B)和总的烟密度谱图(C),其中,曲线a为纯环氧树脂,曲线b为对比例2,曲线c为对比例1,曲线d为实施例5,曲线e为实施例6,曲线f为实施例7。
图6为实例5、6和7锥形量热燃烧测试后样品的炭层外观。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如是《贝尔斯坦有机化学手册》(化学工业出版社,1996年)中的条件,或按照制造厂商所建议的条件。比例和百分比基于重量,除非特别说明。
除非另有定义或说明,本文中所使用的所有专业与科学用语与本领域技术熟练人员所熟悉的意义相同。此外任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。
下列实施例中所用试剂均可从商业渠道购买得到。
对比例1
27.5g环氧树脂固化剂(D230)和82.5g双酚A型环氧树脂(DGEBA)放置于塑料烧杯中,搅拌混合10min;混合物置于真空干燥箱内40℃放置1小时;随后加入4.11g三聚氰胺包覆的聚磷酸铵(MFAPP)和5.48g季戊四醇(PER)搅拌混合5min,随后利用高速搅拌机,2000rpm下搅拌3min,直到形成均一稳定混合物;倒入聚四氟乙烯模具中,置于真空干燥箱中固化,固化条件为55℃固化45min后升温到85℃继续固化90min,脱模,得到复合材料样品。
对比例2
27.5g环氧树脂固化剂(D230)和82.5g双酚A型环氧树脂(DGEBA)放置于塑料烧杯中,搅拌混合10min;混合物置于真空干燥箱内40℃放置1小时;随后加入4.11g三聚氰胺包覆的聚磷酸铵(MFAPP)和5.48g亚麻纤维,搅拌混合5min,随后利用高速搅拌机,2000rpm下搅拌3min,直到形成均一稳定混合物;倒入聚四氟乙烯模具中,置于真空干燥箱中固化,固化条件为55℃固化45min后升温到85℃继续固化90min,脱模,得到复合材料样品。
实施例1
将100份亚麻纤维浸置于1500份蒸馏水中,滴入预先配置好的0.1mol/L的CuSO4溶液2份,缓慢加入24.6份的双氧水(H2O2含量30%)溶液,置于30℃恒温搅拌反应72小时,抽滤并用蒸馏水将羧基亚麻纤维洗涤干净,放入80℃干燥箱中烘干12小时。取出后用高速搅拌机粉碎6min,得到固体产物,采用滴定法测试羧基含量约12.6%,标记样品为OLF12.6。
实施例2
将100份亚麻纤维浸置于1500份蒸馏水中,滴入预先配置好的0.05mol/L的FeCl2溶液3份,缓慢加入48.6份的双氧水(H2O2含量30%)溶液,置于35℃恒温搅拌反应60小时,抽滤并用蒸馏水将羧基亚麻纤维洗涤干净,放入85℃干燥箱中烘干12小时。取出后将纤维用高速搅拌机粉碎6min,得到固体产物,采用滴定法测试羧基含量约27.4%,标记样品为OLF27.4。
实施例3
将100份亚麻纤维浸置于1500份蒸馏水中,滴入预先配置好的0.05mol/L的CoCl2溶液3份,缓慢加入50.9份的双氧水(H2O2含量30%)溶液,置于40℃恒温搅拌反应70小时,将进行抽滤并用蒸馏水羧基亚麻纤维洗涤干净,放入85℃干燥箱中烘干12小时。取出后将纤维用高速搅拌机粉碎6min,得到固体产物,采用滴定法测试羧基含量约28.4%,标记样品为OLF28.4。
实施例4
将100份亚麻纤维浸置于1500份蒸馏水中,滴入预先配置好的0.05mol/L的NiCl2溶液3份,缓慢加入92.2份的双氧水(H2O2含量30%)溶液,置于40℃恒温搅拌反应70小时,进行抽滤并用蒸馏水将羧基亚麻纤维洗涤干净,放入85℃干燥箱中烘干12小时。取出后将纤维用高速搅拌机粉碎6min,得到固体产物,采用滴定法测试羧基含量约34.5%,标记样品为OLF34.5。
对实施例1~4制备得到的羧基亚麻纤维进行红外、核磁共振、热重、及热重红外分析,结果见图1~4。由图1可见,与亚麻相比,OLF在1735cm-1处的新出现一处强烈的吸收峰,归属为C=O伸缩振动峰,随着羧基含量的增加,1735cm-1处吸收峰的强度增加。同时在1640cm-1对应于亚麻纤维吸附水羟基的吸收振动峰,其强度明显下降。红外谱图结果说明,采用H2O2催化氧化亚麻纤维,其产物是羧基亚麻纤维。由图2可见,61ppm归属于葡萄糖环侧链的C6的特征吸收峰,74ppm,73ppm,71ppm分别归属于葡萄糖骨架的C3、C2和C5的特征吸收峰,101ppm则为C1的特征吸收峰。与NLF曲线相比较,曲线OLF12.6,OLF27.4和OLF34.5在173ppm位置出现一个新的特征吸收峰,归属于C6上羟基被氧化为羧基后的响应峰,同时随着羧基含量的提高,响应峰的强度逐渐增强,从图2可以确认C6的伯羟基被选择性的氧化为羧基,而曲线在220~230ppm无新的吸收峰出现,因此判断反应过程C2和C3位置羟基不发生氧化反应。图3说明随着羧基含量的提高,OLF受热分解的残炭量逐渐增加,在膨胀型阻燃体系中,增加炭化率,可降低逸至燃烧区的可燃性挥发产物的量,起到隔热隔氧的作用,降低炭层下材料的可燃性;由图4可见,羧基的存在可以起到催化葡萄糖单元成炭的作用,同时羧基的存在使得在燃烧过程,OLF产生更少量的含碳元素的气体;随着羧基含量的提高,催化成炭效果越明显,含有碳元素的气体释放量越少,有更多的碳元素保留在凝聚相中,从而使得OLF的成炭率逐渐提高。因此,本发明的OLF可作为新型炭源来使用。
实施例5
27.5g环氧树脂固化剂(D230)和82.5g双酚A型环氧树脂(DGEBA)放置于塑料烧杯中,搅拌混合10min;混合物置于真空干燥箱内40℃放置1小时;随后加入4.11g三聚氰胺包覆的聚磷酸铵(MFAPP)和5.48g实施例1制备得到的羧基亚麻纤维(OLF12.6)搅拌混合5min,随后利用高速搅拌机,2000rpm下搅拌3min,直到形成均一稳定混合物;倒入聚四氟乙烯模具中,置于真空干燥箱中固化,固化条件为55℃固化45min后升温到85℃继续固化90min,脱模,得到复合材料样品。
实施例6
27.5g环氧树脂固化剂(D230)和82.5g双酚A型环氧树脂(DGEBA)放置于塑料烧杯中,搅拌混合10min;混合物置于真空干燥箱内40℃放置1小时;随后加入4.11g三聚氰胺包覆的聚磷酸铵(MFAPP)和5.48g实施例2制备得到的羧基亚麻纤维(OLF27.4)搅拌混合5min,随后利用高速搅拌机,2000rpm下搅拌3min,直到形成均一稳定混合物;倒入聚四氟乙烯模具中,置于真空干燥箱中固化,固化条件为55℃固化45min后升温到85℃继续固化90min,脱模,得到复合材料样品。
实施例7
27.5g环氧树脂固化剂(D230)和82.5g双酚A型环氧树脂(DGEBA)放置于塑料烧杯中,搅拌混合10min;混合物置于真空干燥箱内40℃放置1小时;随后加入4.11g三聚氰胺包覆的聚磷酸铵(MFAPP)和5.48g实施例4制备得到的羧基亚麻纤维(OLF34.5)搅拌混合5min,随后利用高速搅拌机,2000rpm下搅拌3min,直到形成均一稳定混合物;倒入聚四氟乙烯模具中,置于真空干燥箱中固化,固化条件为55℃固化45min后升温到85℃继续固化90min,脱模,得到复合材料样品。
对实施例5~7制备得到的环氧树脂复合材料各项性能指标进行检测,结果见表1和表2,及图5和图6。其中,表1为以不同炭源制备的膨胀阻燃环氧树脂的阻燃性能,表2为纯EP和不同炭源制备的膨胀阻燃环氧树脂的锥形量热参数。
由表1可见,炭源为PER、NLF、OLF(用量为5份)对MFAPP/EP阻燃性能的影响,在相同的添加量下(MFAPP用量为3.75份),以PER作为炭源时,EP的LOI只有24.5%,且无阻燃等级,阻燃效果最差。这是由于PER的成炭率仅有0.9%,无法形成有效的膨胀型炭层,起到阻燃效果。当添加5%的OLF作为炭源时,随着羧基含量的增加,EP的阻燃性能逐渐提高,以OLF27.4为炭源的MFAPP/EP阻燃性能最好。随着羧基含量的提高,OLF的热稳定降低,炭化温度下降至与MFAPP的初始分解温度更加匹配;并且残炭量逐渐增大,燃烧释放的可燃性气体逐渐减少,因此提高了EP的阻燃性能。而由于OLF34.4炭化温度降低过多,在MFAPP分解前,已提前分解成炭,最终不能形成多孔炭层,对EP的阻燃性能作用下降。以OLF27.4为炭源阻燃效果明显优于纯亚麻纤维,主要是OLF27.4在燃烧中更容易成炭形成多孔炭层结构,可降低逸至燃烧区的可燃性挥发产物的量,同时燃烧释放的更少量的可燃物等。
表1 以不同炭源制备的膨胀阻燃环氧树脂的阻燃性能
表2 纯EP和不同炭源制备的膨胀阻燃环氧树脂的锥形量热参数
由图5的锥形量热谱图中可以看到,纯的环氧树脂热释放速率(PHRR)为1247.3kW/m2,总的热释放量(THR)为49.8MJ/m2,烟密度(TSP)为26.7m2/kg说明环氧树脂是种易燃材料,当引入不同的阻燃剂(MFAPP/PER,MFAPP/NLF和MFAPP/OLF)时,可以降低环氧树脂PHRR和THR的数值。其中MFAPP/OLF27.4降低的最多,PHRR降低为553.5kW/m2,THR降低为19.4MJ/m2。同时,MFAPP/OLF27.4加入到环氧树脂中更极大降低了材料的总的烟释放量(TSP),这是因为OLF27.4和MFAPP发挥了较好的协同阻燃效果,在燃烧过程中能够形成比较连续且致密的炭层,从而阻碍的热量,可燃性气体和氧气向基材内部的传递,起到很好的屏障作用,从而达到较好的阻燃效果。这个推断由图6展示的图片可以得到证实,即当炭源为羧基亚麻纤维时,燃烧后的成炭率更高(最大数值超过41%),便于包覆由MFAPP分解释放的气体,使得体系的膨胀率更好,隔热隔氧的作用更充分,因此阻燃效果更好。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种亚麻纤维素基磷系膨胀型阻燃剂,其特征在于包括2~10重量份的炭源、1~10重量份的酸源和1~10重量份的气源;
所述炭源为高羧基含量的羧基亚麻纤维,其由包括以下步骤的方法制备得到:将亚麻纤维浸泡水中,加入H2O2及催化剂,搅拌反应,得到高羧基含量的羧基亚麻纤维。
2.根据权利要求1所述的亚麻纤维素基磷系膨胀型阻燃剂,其特征在于:所用亚麻纤维和H2O2的质量比为20:10~20:80;所述搅拌反应的条件为20~50℃下搅拌反应0.5~72h。
3.根据权利要求1所述的亚麻纤维素基磷系膨胀型阻燃剂,其特征在于:所述的催化剂为硫酸铁、硫酸铜、硫酸钴、硫酸锰、硫酸锌、氯化锌、氯化钴、氯化亚铜、氯化亚铁、氯化铁、氯化铜、溴化锌、溴化钴、溴化亚铁、溴化铁和溴化铜中的至少一种。
4.根据权利要求1所述的亚麻纤维素基磷系膨胀型阻燃剂,其特征在于:所述的酸源和气源为三聚氰胺包覆的聚磷酸铵。
5.根据权利要求1所述的亚麻纤维素基磷系膨胀型阻燃剂,其特征在于:所述酸源和气源的总用量为3~10重量份。
6.根据权利要求1所述的亚麻纤维素基磷系膨胀型阻燃剂,其特征在于:所述亚麻纤维素基磷系膨胀型阻燃剂,包括2~10重量份的炭源、3~10重量份的三聚氰胺包覆的聚磷酸铵;
所述炭源为高羧基含量的羧基亚麻纤维,其由包括以下步骤的方法制备得到:将亚麻纤维浸泡水中,加入H2O2及催化剂,搅拌反应,得到高羧基含量的羧基亚麻纤维。
7.一种权利要求1所述的亚麻纤维素基磷系膨胀型阻燃剂的制备方法,其特征在于通过将2~10重量份的炭源、1~10重量份的酸源和1~10重量份的气源混合制备得到。
8.一种基于权利要求1~6任一项所述的亚麻纤维素基磷系膨胀型阻燃剂的环氧树脂复合材料,其特征在于包括100质量份环氧树脂、20~60质量份固化剂、5~20质量份权利要求1~6任一项所述的亚麻纤维素基磷系膨胀型阻燃剂。
9.权利要求8所述的环氧树脂复合材料的制备方法,其特征在于将所述组分混合搅拌均匀,加入模具中,固化,脱模,得到环氧树脂复合材料。
10.权利要求1~6任一项所述的亚麻纤维素基磷系膨胀型阻燃剂在树脂、橡胶中的应用。
CN201610383752.XA 2016-06-01 2016-06-01 一种亚麻纤维素基磷系膨胀型阻燃剂及其制备方法和应用 Expired - Fee Related CN106046681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610383752.XA CN106046681B (zh) 2016-06-01 2016-06-01 一种亚麻纤维素基磷系膨胀型阻燃剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610383752.XA CN106046681B (zh) 2016-06-01 2016-06-01 一种亚麻纤维素基磷系膨胀型阻燃剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106046681A true CN106046681A (zh) 2016-10-26
CN106046681B CN106046681B (zh) 2018-09-14

Family

ID=57172770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610383752.XA Expired - Fee Related CN106046681B (zh) 2016-06-01 2016-06-01 一种亚麻纤维素基磷系膨胀型阻燃剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106046681B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054809A (zh) * 2019-04-18 2019-07-26 宁波一舟塑胶有限公司 一种复合阻燃剂及其制备方法和其在聚丙烯中的应用
CN110564108A (zh) * 2019-09-29 2019-12-13 国网江苏省电力有限公司镇江供电分公司 清洁阻燃和抑烟性环氧树脂纳米复合材料及其制备方法
CN112279927A (zh) * 2020-11-04 2021-01-29 暨南大学 羧基纳米纤维素、其制备方法及应用
CN112795140A (zh) * 2021-01-04 2021-05-14 中变集团上海变压器有限公司 一种变压器用环氧树脂线圈及其加工工艺
CN113563486A (zh) * 2021-07-01 2021-10-29 杭州志合新材料有限公司 一种含磷腈基团的阻燃纳米纤维素、制备方法及其阻燃聚乳酸

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073751A (zh) * 2012-11-22 2013-05-01 中国科学院宁波材料技术与工程研究所 膨胀型阻燃剂、含有该阻燃剂的阻燃聚合物组合物,以及纤维增强聚合物基阻燃复合材料
CN104017090A (zh) * 2014-05-05 2014-09-03 华南理工大学 一种采用过氧化氢制备羧基纤维素的方法
CN104804218A (zh) * 2015-04-28 2015-07-29 中科院广州化学有限公司南雄材料生产基地 纳米纤维素表面改性核壳结构阻燃剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073751A (zh) * 2012-11-22 2013-05-01 中国科学院宁波材料技术与工程研究所 膨胀型阻燃剂、含有该阻燃剂的阻燃聚合物组合物,以及纤维增强聚合物基阻燃复合材料
CN104017090A (zh) * 2014-05-05 2014-09-03 华南理工大学 一种采用过氧化氢制备羧基纤维素的方法
CN104804218A (zh) * 2015-04-28 2015-07-29 中科院广州化学有限公司南雄材料生产基地 纳米纤维素表面改性核壳结构阻燃剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIN YANG等: ""Effects of microencapsulated APP-II on the microstructure and flame retardancy of PP/APP-II/PER composites"", 《POLYMER DEGRADATION AND STABILITY》 *
张水洞等: ""定位氧化淀粉的制备及对环氧树脂膨胀阻燃体系的影响"", 《高分子材料科学与工程》 *
张水洞等: ""过氧化氢氧化再生纤维素及其阻燃、吸附性能"", 《化工学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054809A (zh) * 2019-04-18 2019-07-26 宁波一舟塑胶有限公司 一种复合阻燃剂及其制备方法和其在聚丙烯中的应用
CN110054809B (zh) * 2019-04-18 2021-04-06 宁波一舟塑胶有限公司 一种复合阻燃剂及其制备方法和其在聚丙烯中的应用
CN110564108A (zh) * 2019-09-29 2019-12-13 国网江苏省电力有限公司镇江供电分公司 清洁阻燃和抑烟性环氧树脂纳米复合材料及其制备方法
CN110564108B (zh) * 2019-09-29 2021-08-17 国网江苏省电力有限公司镇江供电分公司 清洁阻燃和抑烟性环氧树脂纳米复合材料及其制备方法
CN112279927A (zh) * 2020-11-04 2021-01-29 暨南大学 羧基纳米纤维素、其制备方法及应用
CN112795140A (zh) * 2021-01-04 2021-05-14 中变集团上海变压器有限公司 一种变压器用环氧树脂线圈及其加工工艺
CN113563486A (zh) * 2021-07-01 2021-10-29 杭州志合新材料有限公司 一种含磷腈基团的阻燃纳米纤维素、制备方法及其阻燃聚乳酸
CN113563486B (zh) * 2021-07-01 2022-07-05 杭州志合新材料有限公司 一种含磷腈基团的阻燃纳米纤维素、制备方法及其阻燃聚乳酸

Also Published As

Publication number Publication date
CN106046681B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN106046681B (zh) 一种亚麻纤维素基磷系膨胀型阻燃剂及其制备方法和应用
Shao et al. A strategy to construct multifunctional ammonium polyphosphate for epoxy resin with simultaneously high fire safety and mechanical properties
Liang et al. Preparation of a novel lignin-based flame retardant for epoxy resin
Shao et al. In-situ coprecipitation formed Fe/Zn-layered double hydroxide/ammonium polyphosphate hybrid material for flame retardant epoxy resin via synergistic catalytic charring
CN101812186B (zh) 一种微胶囊化膨胀型阻燃剂及其在环氧树脂复合材料中的应用
CN103073751B (zh) 膨胀型阻燃剂、含有该阻燃剂的阻燃聚合物组合物,以及纤维增强聚合物基阻燃复合材料
CN105111321B (zh) 一种高成炭率羧基淀粉和制备方法与应用及基于其的膨胀型无卤阻燃剂
CN103965245B (zh) 一种含磷生物基二酸二缩水甘油酯及其制备方法和应用
Qiu et al. A simple and universal strategy for construction and application of silica-based flame-retardant nanostructure
Liu et al. Preparation of novel biomass humate flame retardants and their flame retardancy in epoxy resin
Chen et al. Polymerization of hydroxylated graphitic carbon nitride as an efficient flame retardant for epoxy resins
CN110003575A (zh) 一种无卤阻燃的三元乙丙橡胶
CN102796283B (zh) 一种复合型膨胀阻燃剂及其制备方法
Chen et al. Improving fire resistance of epoxy resin using electrolytic manganese residue-based zeolites modified with metal–organic framework ligands
Xu et al. Preparation of a cobalt metal-organic framework (Co-MOF) and its application as a polypropylene flame retardant by compounding with melamine polyphosphate
CN107459492A (zh) 一种有机改性三聚氰胺聚磷酸盐及其制备方法
Li et al. Recent advances in metal-family flame retardants: a review
CN110387126A (zh) 一种膨胀型复合阻燃剂的制备方法
Lian et al. A green organic-inorganic PAbz@ ZIF hybrid towards efficient flame-retardant and smoke-suppressive epoxy coatings with enhanced mechanical properties
Xu et al. Synthesis of aluminum bis (hydroxy‐phenyl‐methyl) phosphinate and its synergistic flame retardant mechanism in PLA
Lin et al. A bio-based hyperbranched flame retardant towards the fire-safety and smoke-suppression epoxy composite
CN107556255A (zh) 一种有机胺改性三聚氰胺聚磷酸盐及其制备方法
CN101392176A (zh) 一种磷酸锌包覆氢氧化镁型复合无机阻燃剂的制备方法
Xiao et al. Super-efficient fire safety poly (lactide) enabled by unique radical trapping
CN101139454B (zh) 一种含多孔磷酸镍的无卤膨胀型阻燃聚丙烯及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180914

Termination date: 20200601

CF01 Termination of patent right due to non-payment of annual fee