CN105612272B - 用于无电电镀的前处理液及无电电镀的方法 - Google Patents

用于无电电镀的前处理液及无电电镀的方法 Download PDF

Info

Publication number
CN105612272B
CN105612272B CN201580001918.0A CN201580001918A CN105612272B CN 105612272 B CN105612272 B CN 105612272B CN 201580001918 A CN201580001918 A CN 201580001918A CN 105612272 B CN105612272 B CN 105612272B
Authority
CN
China
Prior art keywords
electroless
plating
pretreatment liquid
sugar alcohol
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580001918.0A
Other languages
English (en)
Other versions
CN105612272A (zh
Inventor
伊东正浩
足达勇
足达勇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EEJA Ltd
Original Assignee
Electroplating Engineers of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electroplating Engineers of Japan Ltd filed Critical Electroplating Engineers of Japan Ltd
Publication of CN105612272A publication Critical patent/CN105612272A/zh
Application granted granted Critical
Publication of CN105612272B publication Critical patent/CN105612272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1889Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1813Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by radiant energy
    • C23C18/182Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1841Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1868Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents

Abstract

本发明的目的为提供一种前处理液,其可在非导电性物质表面形成微细的电路及大范围地形成膜厚均匀的薄膜,并提供使用该前处理液的无电电镀(Electroless plating)方法。用于无电电镀的前处理液,是由贵金属胶体纳米粒子、糖醇以及水所构成,其中胶体纳米粒子为金(Au)、铂(Pt)、或钯(Pd)的任一项,胶体纳米粒子的平均粒径为5~80nm,前处理液中含有作为金属质量的胶体纳米粒子为0.01~10g/L;糖醇为三醇(tritol)、丁糖醇、戊糖醇、己糖醇、庚糖醇、辛糖醇、肌醇、檞皮醇、或季戊四醇所构成的群组之中的至少1种,在前处理液中共含有该糖醇0.01~200g/L。另外,无电电镀方法的特征,是使用前处理剂,在无电电镀浴中进行无电电镀。

Description

用于无电电镀的前处理液及无电电镀的方法
技术领域
本发明是关于一种使用于无电电镀(Electroless plating)前处理中的前处理液,以及使用所述前处理液的无电电镀方法;特别是关于一种可在非导电性物质表面形成微细的电路以及可大范围地形成膜厚均匀的薄膜的前处理液,以及使用所述前处理液的无电电镀方法。
背景技术
以往,电镀作为在基材表面上直接形成镍(Ni)、铜(Cu)、钴(Co)等的贱金属(卑金属)或卑金属合金,或是银(Ag)、金(Au)、铂(Pt)、钯(Pd)等的贵金属或贵金属合金的被膜的方法,无电电镀被广泛地应用于工业上。无电电镀的基材有金属、塑料、陶瓷、有机化合物、纤维素等各种组合物,具体而言,可列举:纤维素、生丝素或聚酯等的高分子树脂;三酯酸纤维素(TAC)等的薄膜;聚酰亚胺、聚对苯二甲酸乙二酯(PET)、聚苯胺、光硬化性树脂等的有机化合物被膜;铜、镍、不锈钢等的金属板;氧化铝、二氧化钛、二氧化硅、氮化硅等的陶瓷或石英玻璃等的基体或ITO被膜等各种材料。在这些基材呈现绝缘性而难以析出电镀被膜的情况中,一般是将绝缘性基材浸渍于前处理液,而使无电电镀用触媒附着于基材的必要部分。
作为使用于所述前处理液的无电电镀用触媒,金(Au)、钯(Pd)、铂(Pt)等的贵金属的化合物盐、或镍(Ni)、锡(Sn)等的卑金属的化合物盐,虽作为前处理液中的金属离子大量使用,但使用金(Au)等的贵金属胶体的方法亦已为人所知(后述专利文献1)。
至今为止所使用的贵金属胶体的前处理液,虽可在绝缘性基材表面形成贵金属胶体的触媒核,但在进行无电电镀的情况中,相较于从前处理液中的离子所还原的贵金属触媒核,其具有电镀厚度不均匀且并未均匀析出这样的问题。这是因为,相较于来自贵金属离子的触媒核,贵金属胶体的触媒核与基材的密合性较弱,且相较于从离子还原的贵金属触媒核,其触媒活性较低。
但是,使用金属离子的方法,具有处理步骤变多,可适应的无电电镀浴有所限制等的缺点,因此有人考虑在前处理液中还原贵金属盐,使所形成的贵金属胶体粒子吸附于基材上的做法(后述专利文献2)。
然而,以往的贵金属胶体溶液,由于容易被酸或碱影响,贵金属胶体溶液中的纳米粒子凝集,或是触媒核脱离至无电电镀之中,而造成电镀被膜异常析出的同时,无电电镀浴1次就失控而毁坏这样的问题。
先前技术文献
专利文献
[专利文献1:日本专利4649666号公报
专利文献2:日本特开平1-319683号公报
发明内容
发明所欲解决的问题
本案发明人,为了解决上述问题,而研究一种前处理液,其可使贵金属胶体稳定分散于所有的pH值域中,且能够均匀地吸附于基材表面,进而可通过无电电镀大范围地形成均匀膜厚的电镀皮膜。结果发现,糖醇会保护贵金属纳米粒子而使其在水中可均匀地分散,还可使贵金属纳米粒子均匀地吸附于基材表面,进而完成本发明。
本发明的目的在于提供一种前处理液,其可相对所有pH值域的无电电镀浴,作为稳定的触媒核使用。再者,本发明的目的在于提供一种前处理液,其可形成微细电路以及大范围地形成膜厚均匀的薄膜,且可使贵金属纳米粒子均匀地分散于基材。再者,本发明的目的是提供一种使用所述前处理液的无电电镀方法。
解决问题的手段
作为解决本发明的问题的无电电镀用前处理液之一,其是贵金属胶体纳米粒子、糖醇以及水所构成的无电电镀用前处理液,其中所述胶体纳米粒子为 金(Au)、铂(Pt)、或钯(Pd)的任一项,是在存在糖醇但排除锡(Ⅱ)化合物之下进行化学还原所得,所述胶体纳米粒子的平均粒径为5~80nm,在所述前处理液中含有作为金属质量的所述胶体纳米粒子为 0.01~10g/L;所述糖醇为三醇(tritol)、丁糖醇、戊糖醇、己糖醇、庚糖醇、辛糖醇、肌醇、檞皮醇、或季戊四醇所构成的群组中的至少1种,其在所述前处理液中共含有0.01~200g/L;剩余部分为水。
用以解决本发明的问题的另一种无电电镀用前处理液,是由贵金属胶体纳米粒子、糖醇、pH值调节剂、以及水所构成的用于无电电镀的前处理液,其中所述胶体纳米粒子为金(Au)、铂(Pt)、或钯(Pd)的任一项,是在存在糖醇但排除锡(Ⅱ)化合物之下进行化学还原所得,所述胶体纳米粒子的平均粒径为5~80nm;在所述前处理液中含有作为金属质量的所述胶体纳米粒子为 0.01~10g/L;所述糖醇为三醇、丁糖醇、戊糖醇、己糖醇、庚糖醇、辛糖醇、肌醇、檞皮醇、或季戊四醇所构成的群组之中的至少1种,其在所述前处理液中共含有0.01~200g/L;并含有所述pH值调节剂1g/L 以下,且剩余部分为水。
再者,用以解决本发明的问题的无电电镀方法,是在使基材浸渍于前处理液之后进行无电电镀的无电电镀方法,其特征为使用下述无电电镀前处理液:所述前处理液是由贵金属胶体纳米粒子、糖醇、pH值调节剂、以及水所构成,所述胶体纳米粒子为金(Au)、铂(Pt)、或钯(Pd)的任一项,是在存在糖醇但排除锡(Ⅱ)化合物之下进行化学还原所得,所述胶体纳米粒子的平均粒径为5~80nm;在所述前处理液中含有作为金属质量的所述胶体纳米粒子为 0.01~10g/L;所述糖醇为三醇、丁糖醇、戊糖醇、己糖醇、庚糖醇、辛糖醇、肌醇、檞皮醇、或季戊四醇所构成的群组中的至少1 种,其在所述前处理液中共含有0.01~200g/L;并且含有所述pH值调节剂1g/L以下,剩余部分为水。
本发明使用于无电电镀用前处理液的前处理液中,将既定的糖醇限定于三醇、丁糖醇、戊糖醇、己糖醇、庚糖醇、辛糖醇、肌醇、檞皮醇、或季戊四醇所构成的群组之中的至少1种,是因为其可包覆贵金属纳米粒子,而在所有pH值域以及经加热的水溶液中保护贵金属纳米粒子。这些的糖醇具有耐热性,且不会因为酸碱的状态而使其解离形态有所改变,故可在所有pH值状态下,使用为贵金属纳米粒子的保护剂。因此,即使在强酸或强碱的无电电镀浴中,亦可保持贵金属纳米粒子的表面形态直到置入还原剂而开始进行无电电镀为止。
再者,使前处理液中含有0.01~200g/L的既定糖醇,是为了使贵金属纳米粒子在基材表面等间隔地配置排列。只要在该范围内,即使既定糖醇的浓度变得稀薄,或者反复浸渍数十片基材于相同的前处理液,亦可形成微细电路以及大范围地形成膜厚均匀的薄膜。因此发 明人认为,既定浓度范围的糖醇,在水溶液中虽然会使固体的基材表面与固体的贵金属纳米粒子结合,但并不会使固体的贵金属纳米粒子彼此结合,结果使得贵金属纳米粒子在基材表面上二维状且等间隔地配置排列,进而形成触媒核。
使既定糖醇的下限为0.01g/L,是因为若未满0.01g/L,则变得难以形成微细电路以及大范围地形成膜厚均匀的薄膜。再者,使上限为200g/L,是因为若超过该值,则会在无电电镀浴中形成无用的游离触媒核,而容易引起失控反应。只要既定糖醇在 0.01~200g/L的范围内,则至无电电镀开始之前,对于绝缘性基材的投锚效果(anchor effect)便不会消失,而不会失去作为相对于无电电镀液的触媒核的活性。
本发明的无电电镀用前处理液中,使胶体纳米粒子为金(Au)、铂(Pt)、或钯(Pd)的任一项,是因为其相对于金(Au)、银(Ag)、铂(Pt)、钯(Pd)等的贵金属无电电镀浴,或是钴(Co)、铜(Cu)、镍(Ni)、铁(Fe)等的卑金属无电电镀浴,具有作为稳定的触媒核的作用。由于在这些的电镀浴中贵金属纳米粒子的形状稳定,而显示均匀的触媒作用,故可形成微细的电路。
特别是在糖醇中经化学还原的贵金属纳米粒子,其中于贵金属纳米粒子的表面,观察到1nm以下的微细球状粒子的表面析出形态。具体的表面形态显示于图1。亦即,图1的穿透式电子显微镜影像中,可在1个纳米粒子表面观察到多个如葡萄串的微球状粒子。此称为“披丛集(pico cluster)”。纳米粒子表面上的披丛集,与贵金属的种类互不相关。即使前处理液的贵金属纳米粒子的浓度稀薄,亦可通过该模板效应(template effect),更佳地发挥贵金属纳米粒子作为触媒核的性能,而可形成更微细的电路。
在前处理液中,含有作为金属质量的胶体纳米粒子为 0.01~10g/L。如上所述,即使前处理液的浓度稀薄,贵金属纳米粒子亦可展现触媒核的性能。然而,使下限为 0.01g/L的原因在于,若未满0.01g/L,则必须每次重新配置前处理液,导致步骤繁杂。再者,使上限为10g/L的原因在于,该处理剂对于绝缘性基材具有强力的投锚效果,若超过该值,则在浸渍于前处理液之后,需要大量劳力来进行水洗作业。
再者,使所述胶体纳米粒子的平均粒径为5~80nm,是为了配合无电电镀液的种类及性质使贵金属纳米粒子的触媒核的性能在实用上发挥。至此,虽已了解使用贵金属纳米粒子的前处理液,但贵金属纳米粒子却在浸渍于无电电镀浴时消失。亦即,即使将贵金属纳米粒子均匀地分散于基材表面,但因为贵金属纳米粒子在无电电镀开始之前即溶解,而无法发挥作为固体纳米粒子的触媒核的性能。本发明在无电电镀中置入还原剂之前,因为残留有均匀分散的贵金属纳米粒子群,而可选择与该无电电镀液契合的胶体纳米粒子的平均粒径。
若贵金属纳米粒子的平均粒径未满5nm,则无法定义无电电镀开始析出的时间点,而导致无电电镀失控。再者,贵金属纳米粒子的平均粒径若超过80nm,则难以使其均匀地分散,而不易形成微细电路。再者,所述胶体纳米粒子的平均粒径只要在 5~80nm的范围内,则可在糖醇中经化学还原的贵金属纳米粒子,发现各胶体纳米粒子表面上等间隔排列的球状披丛集。
本发明用于无电电镀的前处理液中,为了不使基材表面变质,含有1g/L以下的pH值调节剂。特别是若在有机高分子基材的表面,使用高温、高浓度的酸或碱,则会有基材特性受损的情况。即使如此,在本发明中较佳为预先对基材表面进行亲水化等前处理,再浸渍于本发明的无电电镀用前处理液。
发 明人认为,本发明中的无电电镀的反应机理以下所述。
若在无电电镀中置入还原剂而开始进行无电电镀,会因为与还原剂的接触并反应,而失去糖醇的保护作用,导致包住贵金属纳米粒子的糖醇在无电电镀浴中离散。剥离出来的贵金属纳米粒子的表面具有活性,特别是若具有披丛集面,其活性会变高。于是,在基材的表面上整齐排列的贵金属纳米粒子群,成为无电电镀的触媒核的位置,并以此处作为起点开始无电电镀的金属析出。再者,若在贵金属纳米粒子上形成披丛集面,则可通过披丛集面的投锚效果提高基材与析出金属的密合性。
本发明的无电电镀方法所使用的前处理液中,较佳的实施方式,亦包含上述情况,其如以下所述。
所述披丛集,以构成其本身的贵金属元素的原子等级的尺寸等间隔地自动排列较佳。这是因为,当触媒核表面变得越微细,会因为无电电镀的金属开始沿着该模板进行还原、析出而成长,而越能够形成微细的电路。
再者,所述胶体纳米粒子的平均粒径较佳为10~40nm。若未满10nm,则因为过细导致触媒作用降低,使得相对于电镀液的活性亦降低,再者,若超过40nm,则变得难以形成微细的电路。
再者,所述糖醇较佳为0.1~20g/L。反应结束后,为了避免不必要的糖醇残留于基材表面,而希望糖醇浓度尽可能稀薄,故其浓度较佳在20g/L以下;再者,若未满 0.1g/L,则重复使用的次数会有所限制,故下限较佳在0.1g/L。
再者,所述胶体纳米粒子为铂(Pt)纳米粒子,且所述糖醇宜为丙三醇、赤藻糖醇、木糖醇、肌醇或季戊四醇之中的至少1种。根据实验得知,与铂(Pt)纳米粒子兼容性良好的组合为丙三醇、赤藻糖醇、木糖醇、肌醇或季戊四醇。
再者,所述胶体纳米粒子较佳为钯(Pd),且所述糖醇较佳为丙三醇、赤藻糖醇、木糖醇或甘露醇之中的至少1种。同样地,根据实验得知,与钯(Pd)纳米粒子兼容性良好的组合为丙三醇、赤藻糖醇、木糖醇或甘露醇。
再者,所述胶体纳米粒子较佳为金(Au),且所述糖醇较佳为丙三醇、赤藻糖醇、木糖醇、甘露醇或季戊四醇之中的至少1种。同样地,根据实验得知,与金(Au)纳米粒子兼容性良好的组合为丙三醇、赤藻糖醇、木糖醇、甘露醇或季戊四醇。
本发明的无电电镀方法中,上述前处理液通过既定糖醇的效果,而具有耐热性以及耐酸碱性。因此,上述前处理液,并不会被前处理液的pH值所影响。再者,即使在前处理液中添加还原剂并放置数十日,对于基材形成触媒核的能力不会衰减,且上述前处理液维持于稳定的状态。而且,本发明的前处理液中,由于提升了润湿性,故即使没有一般使用的界面活性剂,亦可具有贵金属纳米粒子对于基材的投锚效果。
本发明的前处理液的种类,为由贵金属纳米粒子、糖醇以及水所构成的最单纯的前处理液,且其在所述前处理液中添加有pH值调节剂的前处理液。然而,以还原剂使贵金属纳米粒子在所述糖醇中进行化学还原的情况下,会残留还原剂。此处,所使用的还原剂,具有柠檬酸三钠、次亚磷酸钠、乙二酸、酒石酸等的弱还原剂,以及过氧化氢、联胺(H2N-NH2)、硼氢化钠等的还原剂。
本发明的用于无电电镀的前处理液中使用纯水较佳。这是因为,纯水不会与糖醇及贵金属纳米粒子的还原剂互相作用。再者,相较于纯水,由于超纯水可保持糖醇的保护作用因而较佳。
本发明的无电电镀方法中,在基材浸渍于前处理液之后,设有洗净该基材的步骤,这是为了完全去除残留在基材表面的前处理液。高分子树脂的基材中,由于糖醇与基材的接合较为牢固,即使进行水洗一天一夜,贵金属纳米粒子亦会残留在基材表面。若因为水洗不足导致本发明的前处理液中的不必要的贵金属纳米粒子残留,在无电电镀时会形成不必要的触媒核,而导致无电电镀浴失控。洗净步骤一般是以流水进行水洗步骤,但亦可进行机械的刷洗。
再者,本发明的无电电镀方法中,无电电镀浴可使用市售的电镀浴。因为前处理液吸附于绝缘性基材等的投锚效果强,故即使经过洗净步骤的基材,在无电电镀浴中,直到金属还原反应开始前,亦呈现稳定的状态。
再者,本发明的无电电镀方法中,所述披丛集以接近构成其自身的贵金属元素的原子等级的尺寸等间隔地自动排列较佳。随着触媒核变得微细,触媒活性点也会增加,再者,因为金属沿着其还原而开始均匀成长,而可形成微细的电路。
再者,本发明的无电电镀方法中,所述前处理液的纳米粒子的成分与所述无电电镀浴的金属成分一致较佳。通过使金属成分一致,可将吸附于基材的胶体纳米粒子的披丛集面作为模板,而使无电电镀浴的贵金属成分连续析出并成长。
再者,本发明的无电电镀方法中,所述前处理液的pH值与所述无电电镀浴的pH 值一致较佳。通过使pH值一致,可直接维持吸附于基材的胶体纳米粒子的投锚效果。
再者,本发明的无电电镀方法中,对所述基材照射紫外线以进行表面改质较佳。例如,在以硅烷偶合剂处理硅半导体基材的表面的情况,其形成于表面相同地配置有胺末端基等的陶瓷基材。若以石英光罩在所述基材上形成微细电路之后照射紫外线,而能使贵金属纳米粒子仅吸附于未照射紫外线的部分。再者,亦可相同地对环氧树脂的印刷电路基材照射紫外线而形成电路。
发明效果
根据本发明的无电电镀用前处理液,因为糖醇包覆贵金属纳米粒子,故贵金属纳米粒子具有耐热性以及对强酸或强碱等的耐药品性。再者,包覆纳米粒子的既定糖醇,由于并不会改变贵金属纳米粒子的分散状态,故可保持胶体状态。再者,由于包覆纳米粒子的既定糖醇为稳定,故本发明的无电电镀用前处理液具有长期稳定性,在无电电镀开始前,可维持贵金属纳米粒子的形状。再者,由于包覆纳米粒子的既定糖醇对于酸或碱不会改变其解离状态,故对于所有pH值范围的水溶液可维持前处理液。因此,可配合所使用的无电电镀浴的浴组成,调整前处理液的组成。
再者,无论基材的种类,包覆纳米粒子的既定糖醇皆可使贵金属纳米粒子强力吸附于任一基材。再者,所述糖醇分散性优良,吸附于基材的贵金属纳米粒子间的间隔宽,再者,于已吸附的贵金属纳米粒子的表面上,并不会有下一个贵金属纳米粒子重叠吸附的情况。亦即,只要配合所使用的无电电镀液去设定作为触媒核的贵金属纳米粒子的粒径,即可使贵金属纳米粒子在基材上以二维状整齐排列并分散。
再者,由于在吸附于基材之后,糖醇仍包覆贵金属纳米粒子,故在浸渍于无电电镀浴之后会置入还原剂,且贵金属纳米粒子开始无电电镀之前可维持该形状。例如,即使将包覆有所述糖醇的贵金属纳米粒子在吸附于基材后进行干燥,接着只要将其浸渍于无电电镀液,即开始无电电镀反应。再者,包覆有所述糖醇的贵金属纳米粒子,即便进行干燥亦不会凝集。亦即,即便使含有贵金属纳米胶体的前处理液干燥,亦不会凝集而造成金属块状化。因此,即使因为水分蒸发等导致部分浓缩,亦不会在前处理层的液面接触壁面附近产生金属块状化。而且,由于本发明的用于无电电镀的前处理液可重复使用,故可重复在多数的基材上形成触媒核。因此,可将本发明的用于无电电镀的前处理液应用至无电电镀的自动化产线。
再者,因为包覆贵金属纳米粒子的糖醇具有耐热性以及对强酸或强碱等的耐药品性,故可作为市售的所有无电电镀液的前处理液来使用。再者,在所述糖醇中化学还原的贵金属纳米粒子会形成披丛集,且由于所述贵金属纳米粒子的披丛集构造具有经化学还原的活性面,故具有高活性,与基材的接合力以及触媒作用进而变得高活性。
根据本发明的无电电镀方法,除了上述的无电电镀用前处理液的效果以外,可得到以下重复或独立的效果。
由于在无电电镀开始时可得到固体的贵金属纳米粒子,故可持续得到固定形状的触媒核。因此,可在基材上形成电路宽度微细的电路,再者,可在大范围面积地形成薄且均匀的被膜。而且,因为所述触媒核的表面离散有糖醇,而使得固体的贵金属纳米粒子表面露出,故活性高且电镀膜的质量亦为稳定。
再者,只要贵金属纳米粒子在所述糖醇中经化学还原,则于贵金属纳米粒子表面所形成的披丛集会成为模板,而使得从无电电镀浴中被还原的金属在披丛集面析出,故可通过该模板效应,使边缘陡峭的电镀膜成长至次微米为止。
另一方面,因无电电镀的开始而游离的糖醇,因为在无电电镀浴中的浓度极薄,故不会与已还原的无电电镀的金属原子结合。再者,本发明的贵金属纳米胶体,由于牢固地吸附于基材,故即使在前处理后进行充分洗净,亦不会脱离。因此,即使在自动无电电镀产在线,对大量基材重复进行无电电镀,游离的糖醇亦不会发生异常析出反应,进而不会导致电镀浴失控。
附图说明
图1显示本发明的粒径20nm的金(Au)纳米粒子的穿透式电子显微镜影像。
具体实施方式
实施例
接着,描述本发明的较佳实施例。
[1]前处理液的调制
〔实施例1〕
将在金(Au)换算浓度下为0.1g/L的四氯金(Ⅲ)酸钠·四水合物以及1.0g/L的木糖醇溶解于90℃的氢氧化钠水溶液(pH值=12)、并以柠檬酸三钠·二水合物进行还原,得到金(Au)胶体溶液。金(Au)纳米粒子的平均粒径为20nm,其90%以上皆在10~30nm 的范围(d=20±10nm)内。以穿透式电子显微镜(日本电子公司制JEM-2010)观察粒径20nm的金(Au)纳米粒子。图1显示穿透式电子显微镜影像。从该图可明确得知,金(Au)纳米粒子的表面上,披丛集以接近金(Au)原子等级的尺寸等间隔地自动整齐排列。
接着,将所得的金(Au)胶体溶液分散于1规定的盐酸、硫酸以及氢氧化钾的80℃水溶液中,同样以穿透式电子显微镜影像进行观察,并未观察到金(Au)纳米粒子的表面性状有所变化。再者,使其分散于30℃的氢氧化钠水溶液(pH值=12),即使在150小时后,亦同样地未观察到金(Au)纳米粒子的表面性状有所变化。
〔实施例2〕
以与实施例1相同的方式,使四氯金(Ⅲ)酸钠·四水合物的金(Au)换算浓度变更为1g/L、5g/L以及9g/L,同时使木糖醇的浓度变更为15g/L、0.5g/L以及150g/L。所得的金(Au)纳米粒子的粒径,相对于金(Au)换算浓度的1g/L、5g/L以及9g/L,分别为d=20±10nm、d=30±10nm以及d=50±20nm。
〔实施例3〕
使用甘露醇、丙三醇或赤藻糖醇代替木糖醇进行与实施例1相同的实验,分别得到d=20±10nm、d=20±10nm以及d=20±10nm的金(Au)胶体纳米粒子。以与实施例1 相同的方式,将所得的金(Au)胶体溶液分散于1规定的盐酸、硫酸以及氢氧化钾的 80℃水溶液,与实施例1相同地,未观察到金(Au)纳米粒子的表面性状有所变化。
〔实施例4〕
将在钯(Pd)换算浓度下为0.1g/L的氯化钯以及50g/L的丙三醇溶解于90℃的盐酸水溶液(pH值=3),并以次亚磷酸钠还原,而得到钯(Pd)胶体溶液。钯(Pd)纳米粒子为d=30±10nm。
接着,使所得的钯(Pd)胶体溶液分散于1规定的盐酸、硫酸以及氢氧化钾的80℃水溶液,与实施例1相同地,未观察到钯(Pd)纳米粒子的表面性状有所变化。
〔实施例5〕
与实施例4相同地,将氯化钯的钯(Pd)换算浓度变更为1g/L、5g/L以及9g/L,同时将丙三醇的浓度变更为0.05g/L、4g/L以及18g/L。所得的钯(Pd)纳米粒子的粒径,相对于钯(Pd)换算浓度的1g/L、5g/L以及9g/L,分别为d=50±20nm、d=30±10nm 以及d=30±10nm。
〔实施例6〕
使用甘露醇、木糖醇或赤藻糖醇取代丙三醇而进行与实施例4相同的实验时,分别得到d=30±10nm、d=40±10nm以及d=30±10nm的钯(Pd)胶体纳米粒子。与实施例 4相同地,将所得的钯(Pd)胶体溶液分散于1规定的盐酸、硫酸以及氢氧化钾的80℃水溶液,与实施例4相同地,未观察到钯(Pd)纳米粒子的表面性状有所变化。
〔实施例7〕
将在铂(Pt)换算浓度下为0.3g/L的六羟基铂酸(IV)(Hexahydroxyplatinate(IV)) 以及1.5g/L的木糖醇溶解于90℃的氢氧化钠水溶液(pH值=12),并以联胺还原,得到铂(Pt)胶体溶液。铂(Pt)纳米粒子的粒径为d=30±10nm。在以穿透式电子显微镜观察粒径30nm的铂(Pt)纳米粒子时,在铂(Pt)纳米粒子的表面上,披丛集以接近铂(Pt)原子等级的尺寸等间隔地自动整齐排列。
接着,使所得的铂(Pt)胶体溶液分散于1规定的盐酸、硫酸以及氢氧化钾的80℃水溶液,同样地以穿透式电子显微镜影像进行观察时,未观察到铂(Pt)纳米粒子的表面性状有所变化。
〔实施例8〕
与实施例7相同地,将六羟基铂酸(IV)的铂(Pt)换算浓度变更为1.5g/L、5g/L 以及6.5g/L,同时将木糖醇的浓度变更为4g/L、180g/L以及16g/L。所得的铂(Pt)纳米粒子的粒径,相对于铂(Pt)换算浓度的1.5g/L、5g/L以及6.5g/L,分别为d=30±10nm、 d=50±20nm以及d=30±10nm。
〔实施例9〕
使用山梨糖醇、甘露醇、赤藻糖醇、丙三醇或肌醇代替木糖醇而进行与实施例1 相同的实验时,分别得到d=30±10nm、d=60±10nm、d=20±10nm、d=60±10nm以及d=80±10nm的铂(Pt)胶体纳米粒子。将所得的铂(Pt)胶体溶液,与实施例7相同地,分散于1规定的盐酸、硫酸以及氢氧化钾的80℃水溶液,与实施例7相同地,未观察到铂(Pt)纳米粒子的表面性状有所变化。
[2]无电电镀
〔实施例10〕
对于表面上形成SiO2的20mm×20mm的硅晶圆试片,使用信越SILICON股份有限公司制的硅烷偶合剂(3-胺基丙基三乙氧基硅烷(3-Aminopropyltriethoxysilane)(商品名KBE-903)),在大气压下,以75℃进行化学蒸镀5分钟,以形成具有胺末端基的自我组织化单分子膜(SAM)。
将20片该基材,在25℃下,浸渍于1000mL的实施例1中所制作的金(Au)胶体溶液10分钟,并以蒸馏水洗净各基材10分钟。之后,在65℃下,每5分钟将一片试片浸渍于Electroplating Engineers of Japan股份有限公司制的自催化型非氰系无电解金电镀浴(商品名称Precious fab ACG3000WX,金(Au)浓度(2g/L),pH值=7.5)中,实验过程中,并无电解金电镀浴失控的情形,20片的基材皆完成电镀。
以SII NanoTechnology股份有限公司制的荧光X光膜厚测定器(型号SFT-9550)实际测量所得的金(Au)电镀的电镀厚度20片,其平均厚度为50nm(±5nm)。
〔实施例11〕
将长50mm、宽50mm以及厚度1mm的γ-氧化铝基材10片,于25℃下,浸渍于 1000mL的实施例7中所制作的铂(Pt)胶体溶液10分钟,并以蒸馏水洗净各基材30分钟。之后,添加3.4g/L的二硝基二胺铂(II)(Pt(NH3)2(NO2)2)、2摩尔/Pt摩尔的聚乙烯吡咯烷酮(Polyvinylpyrrolidone),以及1.0g/L的硼氢化钾(KBH4)、每三十分钟将一片试片浸渍于pH值=12、浴温90℃的无电解铂电镀浴中,实验过程中,并无电解金电镀浴失控的情形,10片的基材皆完成电镀。
所得的铂(Pt)电镀的电镀厚度,平均厚度为1μm±0.3μm,膜厚仅些微不均匀,而可得到均匀的膜。
〔实施例12〕
将20片长60mm、宽30mm以及厚度0.3mm的金试片浸渍于实施例4的钯(Pd)胶体溶液500mL,并以活水清洗各基材10分钟。之后,在85℃下,每20分钟将一片试片浸渍于Electroplating Engineers of Japan股份有限公司制的无电解镍电镀浴(商品名称LECTROLESS NP7600,镍(Ni)浓度(4.8g/L),pH值=4.6)之中,于实验过程中,并无电解镍电镀浴失控的情形,20片的基材皆完成电镀。
以SII NanoTechnology股份有限公司制的荧光X光膜厚测定器(型号SFT-9550)实际测量所得的镍(Ni)电镀的电镀厚度20片,平均厚度为1.0μm±0.2μm,膜厚仅些微不均匀,而可得到均匀的膜。
〔比较例1〕
除了使四氯金(Ⅲ)酸钠·四水合物在金(Au)换算浓度下为12g/L以外,以与实施例1相同的方式得到金(Au)胶体溶液。该金(Au)纳米粒子的粒径为d=80±50nm。该金(Au)胶体溶液在制作完成后1小时左右发生凝集的现象,而未显现作为无电电镀用触媒核的活性。
〔比较例2〕
除了使四氯金(Ⅲ)酸钠·四水合物在金(Au)换算浓度下为0.005g/L以外,以与实施例1相同的方式得到金(Au)胶体溶液。该金(Au)纳米粒子粒径虽为 d=40±20nm,但在金(Au)纳米粒子的表面未观察到披丛集。将该金(Au)胶体溶液在实施例10的电镀浴中进行无电电镀时,并无法启动无电电镀。
〔比较例3〕
除了使丙三醇为250g/L以外,与实施例4相同地,得到钯(Pd)胶体溶液。
钯(Pd)纳米粒子的粒径虽为d=40±20nm,但在钯(Pd)纳米粒子的表面上并未观察到披丛集。将该钯(Pd)胶体溶液在实施例12的电镀浴中进行无电电镀时,并无法启动无电电镀。
〔比较例4〕
除了使木糖醇为0.005g/L以外,与实施例7相同地,得到铂(Pt)胶体溶液。该铂(Pt)纳米粒子的粒径为d=20±40nm,在铂(Pt)纳米粒子的表面并未观察到披丛集。使该铂(Pt)胶体溶液在实施例11的电镀浴中进行无电电镀时,并无法启动无电电镀。
〔现有例1〕
将包含0.05g/L的聚乙烯吡咯烷酮K25、0.1g/L(Au换算浓度)的四氯金(Ⅲ)酸·四水合物以及0.5g/L的柠檬酸钠·二水合物的水溶液在90℃下搅拌30分钟,得到以聚乙烯吡咯烷酮为分散剂的Au胶体。在以实施例10的方法对该Au胶体溶液进行无电解金电镀时,并无法启动无电电镀。
产业上的利用可能性
本发明的用于无电电镀的前处理液,可应用于所有市售的无电电镀液。再者,无电电镀方法,可使用于光检测器、氢气检测检测器、气压检测器、水深检测器等的各种检测器及配线基材的电极等。

Claims (10)

1.一种用于无电电镀(Electroless plating)的前处理液,其由贵金属胶体纳米粒子、糖醇、及水所构成,其中所述胶体纳米粒子为金(Au)、铂(Pt)、或钯(Pd)的任一项,是在存在糖醇但排除锡(Ⅱ)化合物之下进行化学还原所得,所述胶体纳米粒子的平均粒径为5~80nm,于所述前处理液中含有作为金属质量的所述胶体纳米粒子为 0.01~10g/L;所述糖醇为三醇(tritol)、丁糖醇、戊糖醇、己糖醇、庚糖醇、辛糖醇、肌醇、檞皮醇、或季戊四醇所构成的群组之中的至少1种,在所述前处理液中含有所述糖醇共0.01~200g/L;剩余部分为水。
2.一种用于无电电镀的前处理液,其由贵金属胶体纳米粒子、糖醇、pH值调节剂、及水所构成,其中所述胶体纳米粒子为金(Au)、铂(Pt)、或钯(Pd)的任一项,是在存在糖醇但排除锡(Ⅱ)化合物之下进行化学还原所得,所述胶体纳米粒子的平均粒径为5~80nm,于所述前处理液中含有作为金属质量的所述胶体纳米粒子为 0.01~10g/L;所述糖醇为三醇、丁糖醇、戊糖醇、己糖醇、庚糖醇、辛糖醇、肌醇、檞皮醇、或季戊四醇所构成的群组之中的至少1种,在所述前处理液中含有所述糖醇共0.01~200g/L;并且含有所述pH值调节剂1g/L以下;剩余部分为水。
3.根据权利要求1或2的用于无电电镀的前处理液,其中所述胶体纳米粒子为铂(Pt)纳米粒子,且所述糖醇为丙三醇、赤藻糖醇、木糖醇、肌醇、或季戊四醇之中的至少1种。
4.根据权利要求1或2的用于无电电镀的前处理液,其中所述胶体纳米粒子为钯(Pd),且所述糖醇为丙三醇、赤藻糖醇、木糖醇、或甘露醇之中的至少1种。
5.根据权利要求1或2的用于无电电镀的前处理液,其中所述胶体纳米粒子为金(Au),且所述糖醇为丙三醇、赤藻糖醇、木糖醇、甘露醇、或季戊四醇之中的至少1种。
6.一种无电电镀方法,其是将基材浸渍于前处理液后进行无电电镀的无电电镀方法,所述前处理液是由贵金属胶体纳米粒子、糖醇、pH值调节剂、及水所构成,其中所述胶体纳米粒子为金(Au)、铂(Pt)、或钯(Pd)的任一项的胶体纳米粒子,是在存在糖醇但排除锡(Ⅱ)化合物之下进行化学还原所得,所述胶体纳米粒子的平均粒径为5~80nm;于所述前处理液中含有作为金属质量的该胶体纳米粒子为 0.01~10g/L;所述糖醇为三醇、丁糖醇、戊糖醇、己糖醇、庚糖醇、辛糖醇、肌醇、檞皮醇、或季戊四醇所构成的群组之中的至少1种,在所述前处理液中含有所述糖醇共0.01~200g/L;并且含有所述pH值调节剂1g/L以下;剩余部分为水。
7.根据权利要求6的无电电镀方法,其中在将基材浸渍于所述前处理液后洗净所述基材,再进行无电电镀。
8.根据权利要求6或7的无电电镀方法,其中所述前处理液的纳米粒子的成分与所述无电电镀浴的金属成分一致。
9.根据权利要求6或7的无电电镀方法,其中所述前处理液的pH值与所述无电电镀浴的pH值一致。
10.根据权利要求6或7的无电电镀方法,其中对所述基材照射紫外线。
CN201580001918.0A 2014-07-17 2015-06-11 用于无电电镀的前处理液及无电电镀的方法 Active CN105612272B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014-146991 2014-07-17
JP2014146991A JP5649150B1 (ja) 2014-07-17 2014-07-17 無電解メッキ用前処理液および無電解メッキ方法
PCT/JP2015/066849 WO2016009753A1 (ja) 2014-07-17 2015-06-11 無電解メッキ用前処理液および無電解メッキ方法

Publications (2)

Publication Number Publication Date
CN105612272A CN105612272A (zh) 2016-05-25
CN105612272B true CN105612272B (zh) 2017-10-27

Family

ID=52344818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580001918.0A Active CN105612272B (zh) 2014-07-17 2015-06-11 用于无电电镀的前处理液及无电电镀的方法

Country Status (6)

Country Link
US (1) US9932676B2 (zh)
JP (1) JP5649150B1 (zh)
KR (1) KR101783163B1 (zh)
CN (1) CN105612272B (zh)
TW (1) TWI602948B (zh)
WO (1) WO2016009753A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365835B2 (ja) * 2014-08-29 2018-08-01 国立大学法人 東京大学 電極形成方法
JP6647556B2 (ja) * 2015-02-23 2020-02-14 国立大学法人 東京大学 コンタクト電極およびその形成方法
JP6268379B2 (ja) * 2016-07-08 2018-01-31 石原ケミカル株式会社 無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液並びに無電解ニッケル又はニッケル合金メッキ方法
JP6688183B2 (ja) * 2016-07-15 2020-04-28 日本エレクトロプレイテイング・エンジニヤース株式会社 無電解めっき用前処理液
JP6536997B2 (ja) * 2016-09-02 2019-07-03 株式会社サンテック 白金ナノコロイドの製造方法と粒度分布幅の狭く安定性の高いシングルナノ白金コロイド水溶液
JP6312766B2 (ja) 2016-09-23 2018-04-18 日本エレクトロプレイテイング・エンジニヤース株式会社 金属膜の積層構造
JP7182786B2 (ja) * 2019-03-25 2022-12-05 国立研究開発法人産業技術総合研究所 貴金属ヒドロゾルの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319683A (ja) * 1988-06-20 1989-12-25 Electroplating Eng Of Japan Co 白金コロイド溶液及びそれを用いた無電解白金メッキ方法ならびに白金担持体の製法
JP3208410B2 (ja) * 1997-04-07 2001-09-10 奥野製薬工業株式会社 非導電性プラスチック成形品への電気めっき方法
WO2002028552A1 (en) * 2000-09-27 2002-04-11 Wm. Marsh Rice University Method of making nanoshells
CN101126156A (zh) * 2007-06-06 2008-02-20 南开大学 一种用于abs塑料基体化学镀前处理的新工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682671A (en) * 1970-02-05 1972-08-08 Kollmorgen Corp Novel precious metal sensitizing solutions
US3993802A (en) 1971-07-29 1976-11-23 Photocircuits Division Of Kollmorgen Corporation Processes and products for making articles for electroless plating
AU8113275A (en) 1974-07-11 1976-11-18 Kollmorgen Corp Processes and products of sensitizing substrates
JPS62235473A (ja) 1986-04-04 1987-10-15 Nippon Mining Co Ltd 無電解めつき用アルカリ型触媒液
DE69734947T2 (de) * 1996-02-29 2006-08-24 Tokyo Ohka Kogyo Co., Ltd., Kawasaki Verfahren zur Herstellung von mehrschichtigen Leiterplatten
US7166152B2 (en) * 2002-08-23 2007-01-23 Daiwa Fine Chemicals Co., Ltd. Pretreatment solution for providing catalyst for electroless plating, pretreatment method using the solution, and electroless plated film and/or plated object produced by use of the method
JP3870883B2 (ja) 2002-09-19 2007-01-24 三菱マテリアル株式会社 回路基板とその配線形成方法
US20060134318A1 (en) * 2003-01-28 2006-06-22 Alan Hudd Method of forming a conductive metal region on a substrate
JP4649666B2 (ja) 2006-07-11 2011-03-16 独立行政法人産業技術総合研究所 無電解金メッキ液
US20100261058A1 (en) * 2009-04-13 2010-10-14 Applied Materials, Inc. Composite materials containing metallized carbon nanotubes and nanofibers
JP5409575B2 (ja) * 2010-09-29 2014-02-05 富士フイルム株式会社 金属膜材料の製造方法、及びそれを用いた金属膜材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319683A (ja) * 1988-06-20 1989-12-25 Electroplating Eng Of Japan Co 白金コロイド溶液及びそれを用いた無電解白金メッキ方法ならびに白金担持体の製法
JP3208410B2 (ja) * 1997-04-07 2001-09-10 奥野製薬工業株式会社 非導電性プラスチック成形品への電気めっき方法
WO2002028552A1 (en) * 2000-09-27 2002-04-11 Wm. Marsh Rice University Method of making nanoshells
CN101126156A (zh) * 2007-06-06 2008-02-20 南开大学 一种用于abs塑料基体化学镀前处理的新工艺

Also Published As

Publication number Publication date
JP2016023323A (ja) 2016-02-08
WO2016009753A1 (ja) 2016-01-21
TW201610226A (zh) 2016-03-16
KR101783163B1 (ko) 2017-09-28
TWI602948B (zh) 2017-10-21
US9932676B2 (en) 2018-04-03
US20170067164A1 (en) 2017-03-09
JP5649150B1 (ja) 2015-01-07
CN105612272A (zh) 2016-05-25
KR20160075622A (ko) 2016-06-29

Similar Documents

Publication Publication Date Title
CN105612272B (zh) 用于无电电镀的前处理液及无电电镀的方法
JP6379228B2 (ja) 銀コーティング銅ナノワイヤー及びこれの製造方法
JP7361158B2 (ja) 化学的還元法を用いたコアシェル構造の銀コーティング銅ナノワイヤの製造方法
Azar et al. Functionalised copper nanoparticle catalysts for electroless copper plating on textiles
CN107424665B (zh) 导电性粒子、导电性材料及导电性粒子的制造方法
Muench et al. Expanding the boundaries of metal deposition: High aspect ratio silver nanoplatelets created by merging nanobelts
TWI490377B (zh) 載持鍍覆處理用觸媒粒子之基板之處理方法
JP5649932B2 (ja) 金属被覆金属酸化物微粒子の製造方法および金属被覆金属酸化物微粒子
JP5342114B2 (ja) 導電性粒子の製造方法および導電性粒子
Kawabe et al. Glowing gold nanoparticle coating: Restoring the lost property from bulk gold
JP2023011597A (ja) メッキ物及びそれを形成する方法
EP2646598B1 (de) Verfahren zur metallbeschichtung von nanopartikeln mittels stromloser abscheidetechniken
Tetsumoto et al. Fabrication of silver plated nylon 6 nanofibers using iodine
JP6688183B2 (ja) 無電解めっき用前処理液
WO2014072969A1 (en) Gold nanostructures and processes for their preparation
KR20160099513A (ko) 은 코팅 구리 나노와이어의 제조방법
CN108508070B (zh) Au/Cu/Cu2O纳米纤维球、其制备方法与应用
WO2012173171A1 (ja) 被覆繊維状銅微粒子、並びに該被覆繊維状銅微粒子を含む導電性コーティング剤および導電性フィルム
JPWO2007058173A1 (ja) 金属ナノプレート固定化基材およびその製造方法
KR102115232B1 (ko) 초음파 분산처리를 포함하는 금속 나노와이어 분산용액의 제조방법
TW201318734A (zh) 一種生產微米銀銅複合粉之簡易方法
KR100980427B1 (ko) 무전해 금속도금의 전처리방법, 전처리제 및 이를 이용한무전해 금속도금방법
JP2018123109A (ja) 抗菌性部材及びその製造方法
EP3074468B1 (de) Verfahren zur metallbeschichtung von anorganischen partikeln mittels stromloser metallabscheidung
WO2023190297A1 (ja) 新規複合材、及び複合材の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Tokyo, Japan

Patentee after: EEJA Corp.

Address before: Tokyo, Japan

Patentee before: ELECTROPLATING ENGINEERS OF JAPAN Ltd.

CP01 Change in the name or title of a patent holder