CN105593393A - 磁特性和被膜密合性优异的方向性电磁钢板 - Google Patents

磁特性和被膜密合性优异的方向性电磁钢板 Download PDF

Info

Publication number
CN105593393A
CN105593393A CN201480054725.7A CN201480054725A CN105593393A CN 105593393 A CN105593393 A CN 105593393A CN 201480054725 A CN201480054725 A CN 201480054725A CN 105593393 A CN105593393 A CN 105593393A
Authority
CN
China
Prior art keywords
steel plate
rete
steel sheet
grain
tension force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480054725.7A
Other languages
English (en)
Other versions
CN105593393B (zh
Inventor
寺岛敬
渡边诚
上坂正宪
末广龙一
高宫俊人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
NKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53004078&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN105593393(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NKK Corp filed Critical NKK Corp
Publication of CN105593393A publication Critical patent/CN105593393A/zh
Application granted granted Critical
Publication of CN105593393B publication Critical patent/CN105593393B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • H01F1/14783Fe-Si based alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0289Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供一种即使在一次再结晶退火(脱碳退火)中进行快速加热时,磁特性和被膜密合性也稳定地优异的方向性电磁钢板。具体而言,该方向性电磁钢板在钢板表面具有由形成于钢板侧的以氧化物为主体的被膜层A和形成于表面侧的以玻璃质为主体的被膜层B这2层构成的张力赋予型绝缘被膜,其特征在于,表面侧被膜层B对钢板给予的张力σB相对于上述钢板侧被膜层A对钢板给予的张力σA的比R(σBA)为1.20~4.0的范围。

Description

磁特性和被膜密合性优异的方向性电磁钢板
技术领域
本发明涉及磁特性和被膜密合性优异的方向性电磁钢板。
背景技术
方向性电磁钢板是作为变压器、发电机的铁芯材料使用的软磁性材料,特征在于具有作为铁的易磁化轴的<001>方位在钢板的轧制方向高度地对准的结晶组织。这种集合组织通过二次再结晶退火形成,该二次再结晶退火是在方向性电磁钢板的制造工序的最终退火中使被称为所谓的高斯(Goss)方位的{110}<001>方位的晶粒优先地巨大生长。
在方向性电磁钢板的表面,通常从钢板侧形成有以镁橄榄石等氧化物为主体的被膜层以及以磷酸盐系的玻璃质为主体的被膜层这2层被膜。磷酸盐系的玻璃质被膜是以赋予绝缘性、加工性和防锈性等为目的而制成的,但由于玻璃与金属的密合性低,因此通过将以镁橄榄石等氧化物为主体的陶瓷层介于其间来使被膜密合性提高。这些被膜在高温下形成且与钢板相比具有低的热膨胀率,因此利用温度下降至室温时的钢板与被膜的热膨胀率的差对钢板赋予张力(拉伸应力),产生减少铁损的效果。顺便指出,根据专利文献1,为了得到上述铁损减少效果,认为适宜的是对钢板赋予8MPa以上的高的张力。
为了对钢板赋予如上述的高的张力,以往提出了各种玻璃质的被膜。例如,专利文献2中提出了以磷酸镁、胶体状二氧化硅和三氧化铬为主体的被膜,此外,专利文献3中提出了以磷酸铝、胶体状二氧化硅和铬酸酐为主体的被膜。
此外,作为改善被膜的密合性的技术,例如在专利文献4中公开了通过在专门于直接点火用途的基础上将对被膜的钢板的赋予张力设为8MPa以下、且使镁橄榄石层与无机系绝缘被膜的每单位面积质量比适当化来提高被膜密合性的技术。
另一方面,从提高磁特性、尤其是减少铁损的观点出发,已知板厚的减少、Si含量的增加、结晶方位的取向性提高、对钢板的张力赋予、钢板表面的平滑化、二次再结晶晶粒的细粒化等是有效的。尤其是,近年来,作为使二次再结晶晶粒细粒化的技术,开发了以一次再结晶退火或兼具脱碳退火的一次再结晶退火进行快速加热的方法;在即将进行一次再结晶退火之前进行快速加热处理,改善一次再结晶集合组织的方法等。
例如,专利文献5中公开了如下技术:在将轧制至最终板厚的钢带进行脱碳退火之前,将气氛氧浓度设为500ppm以下,以加热速度100℃/s以上快速加热至800~950℃的温度,将脱碳退火工序的前部区域的温度设为低于快速加热中的到达温度的775~840℃,接下来,将后部区域的温度设为高于前部区域的815~875℃的温度而施行脱碳退火,从而得到低铁损的方向性电磁钢板;此外,在专利文献6中公开了如下技术:在即将对轧制至最终板厚的钢带进行脱碳退火之前,在pH2O/pH2为0.2以下的非氧化性气氛中以100℃/s以上的加热速度快速加热至700℃以上的温度,从而得到低铁损的方向性电磁钢板。
此外,专利文献7中公开了如下技术:通过将脱碳退火工序的升温阶段的至少600℃以上的温度区域以95℃/s以上的升温速度加热至800℃以上,且由以体积分率计含有10-6~10-1的氧的非活性气体构成该温度区域的气氛,将脱碳退火的均热时的气氛的构成成分设为H2和H2O或H2、H2O和非活性气体,且将H2O分压相对于H2分压的比pH2O/pH2设为0.05~0.75,此外,将每单位面积气氛气体的流量设为0.01~1Nm3/min·m2的范围,从而将被膜与钢板的混杂区域中的从钢板晶粒的结晶方位的Goss方位起的偏差角度为10度以内的晶粒的比例设为50%以下,得到皮膜特性和磁特性优异的方向性电磁钢板;此外,专利文献8中公开了如下技术:通过将脱碳退火工序的升温阶段的至少650℃以上的温度区域以100℃/s以上的升温速度加热至800℃以上,且将该温度区域的气氛设为以体积分率计含有10-6~10-2的氧的非活性气体,另一方面,将脱碳退火的均热时的气氛的构成成分设为H2与H2O或H2、H2O与非活性气体,且将H2O分压相对于H2分压的比pH2O/pH2设为0.15~0.65,从而得到皮膜特性和磁特性优异的方向性电磁钢板。
现有技术文献
专利文献
专利文献1:日本特开平08-67913号公报
专利文献2:日本特公昭56-52117号公报(日本特开昭50-79442号公报)
专利文献3:日本特公昭53-28375号公报(日本特开昭48-39338号公报)
专利文献4:日本特开2002-60957号公报
专利文献5:日本特开平10-298653号公报
专利文献6:日本特开平07-62436号公报
专利文献7:日本特开2003-27194号公报
专利文献8:日本专利第3537339号公报(日本特开2000-204450号公报)
发明内容
通过使上述的专利文献中公开的技术、尤其是一次再结晶退火(脱碳退火)中的加热条件适当化,可以实现由二次再结晶晶粒的微细化所致的磁特性的改善和被膜特性的改善。然而,无论如何组合上述技术,也处处可见被膜特性、尤其是被膜密合性差的事例。
本发明是鉴于现有技术中存在的上述问题而作出的,其目的在于提供一种即使在一次再结晶退火(脱碳退火)中进行快速加热时磁特性和被膜密合性也稳定地优异的方向性电磁钢板。
本发明的发明人等为了解决上述课题,着眼于方向性电磁钢板的表面被膜由形成于钢板侧的以氧化物为主体的被膜层和形成于表面侧的以玻璃质为主体的被膜层这2层的被膜构成的情况,对改善被膜密合性的对策反复进行了深入研究。其结果发现,通过使形成于钢板侧的以氧化物为主体的被膜层对钢板给予的张力与形成于表面侧的以玻璃质为主体的被膜层对钢板给予的张力的比进行适当化,不仅磁特性优异,而且可以显著改善钢板侧被膜层与钢板的密合性,完成了本发明。
即,本发明是一种方向性电磁钢板,该方向性电磁钢板在钢板表面上具有由形成于钢板侧的以氧化物为主体的被膜层A和形成于表面侧的以玻璃质为主体的被膜层B这2层构成的张力赋予型绝缘被膜,其特征在于,表面侧被膜层B对钢板给予的张力σB相对于上述钢板侧被膜层A对钢板给予的张力σA的比R(σBA)为1.20~4.0的范围。
本发明的上述方向性电磁钢板的特征在于,钢板侧被膜层A的氧化物为镁橄榄石,表面侧被膜层B的玻璃质是含有选自Mg、Al、Ca、Ti、Nd、Mo、Cr、B、Ta、Cu和Mn中的1种或2种以上的金属元素的硅磷酸盐系玻璃。
此外,本发明的上述方向性电磁钢板的特征在于,钢板侧被膜层A对钢板给予的张力σA为6MPa以下。
此外,本发明的上述方向性电磁钢板的特征在于,钢板侧被膜层A的每单位面积质量以氧换算为1.0~3.0g/m2(双面)。
此外,本发明的上述方向性电磁钢板的特征在于,是对轧制成最终板厚的冷轧板进行在100~700℃之间以升温速度50℃/s以上来加热的一次再结晶退火后,进行二次再结晶退火而得到的。
根据本发明,在一次再结晶退火或兼具脱碳退火的一次再结晶退火、二次再结晶退火中,无需为了形成被膜而进行致密控制,而仅将以氧化物为主体的钢板侧被膜层和以玻璃质为主体的表面侧被膜层对钢板给予的张力比控制在适当范围,就可以稳定地制造磁特性和被膜特性优异的方向性电磁钢板。进而,根据本发明,对于在一次再结晶退火或兼具脱碳退火的一次再结晶退火中不进行快速加热的钢板,也能够兼具被膜密合性和磁特性,因此在产业上取得的效果极大。
具体实施方式
如上所述,在现有技术中,通过使一次再结晶退火或兼具脱碳退火的一次再结晶退火(以下也简称为“一次再结晶退火”)中的加热条件适当化,可实现兼具由二次再结晶晶粒的微细化所致的磁特性的改善和被膜特性的改善,但对于被膜密合性,实际情况是未必得到稳定的效果。本发明的发明人等对其原因反复进行大量的实验而进行研究,结果作如下考虑。
通过在一次再结晶退火中进行快速加热而使二次再结晶晶粒微细化的技术是使磁特性提高的非常优异的技术,但对钢板表面的初期氧化状态产生巨大影响,尤其是使通过脱碳退火而形成的内部氧化层的致密度下降,对二次再结晶退火时形成的陶瓷质被膜的致密度,甚至与钢板的密合性产生不良影响,因此引起被膜特性的劣化。
因此,本发明的发明人等着眼于方向性电磁钢板的表面被膜由形成于钢板侧的以氧化物为主体的被膜层和形成于表面侧的以玻璃质为主体的被膜层这2层的被膜构成,对改善被膜密合性的对策进一步反复研究,其结果发现,通过将形成于钢板侧的以氧化物为主体的被膜层(以下也称为“钢板侧被膜层”或“被膜层A”)对钢板给予的张力σA与形成于表面侧的以玻璃质为主体的被膜层(以下也称为“表面侧被膜层”或“被膜层B”)对钢板给予的张力σB的比(以下也简称为“张力比”)R(=σBA)控制在适当范围,不仅磁特性优异,而且可以显著改善钢板侧被膜层与钢板的密合性。
即,本发明的方向性电磁钢板是在钢板的表面上具有由形成于钢板侧的以氧化物为主体的被膜层A和形成于表面侧的以玻璃质为主体的被膜层B这2层构成的张力赋予型绝缘被膜的方向性电磁钢板,且表面侧被膜层B对钢板给予的张力σB相对于上述钢板侧被膜层A对钢板给予的张力σA的比(张力比)R(σBA)需要为1.20~4.0的范围。
上述张力比R小于1.20时,无法充分得到对钢板赋予高于钢板侧被膜层的张力的表面侧被膜层的铁损减少效果。另一方面,若上述张力比R大于4.0,则钢板侧被膜层从表面侧被膜层受到的张力变得过度,因此对钢板与钢板侧被膜层的界面的密合强度产生不良影响,使被膜密合性下降。另外,上述张力比R优选为1.4~3.0的范围。
另外,钢板表面的被膜对钢板赋予的上述张力设为轧制方向的张力,其尺寸的测定方法可以由使用碱、酸等除去钢板单面侧的被膜时的钢板的翘曲的尺寸,使用下述式算出。
对钢板赋予的张力(MPa)=(钢板的杨氏模量(GPa))×板厚(mm)×翘曲的尺寸(mm)÷(翘曲的测定试验片长度(mm))2×103
(其中,上述钢板的杨氏模量使用132GPa。)
应予说明,被膜由2层构成时的各个被膜的张力可以通过首先仅除去最外层(B层)而测定翘曲,由该翘曲算出B层的张力,接下来,除去内层(A层)而测定翘曲,由该翘曲算出(A层+B层)的张力,将上述B层与(A层+B层)的张力的差分设为内层(A层)的张力来进行测定。
这里,本发明的方向性电磁钢板中的以氧化物为主体的钢板侧被膜层优选为镁橄榄石、堇青石等的陶瓷层,其中,优选为镁橄榄石。若为以镁橄榄石为主体的氧化物被膜,则通过在脱碳退火后涂布以MgO为主体的退火分离剂并进行最终退火的方法,能够以低成本制造。
另一方面,以玻璃质为主体的表面侧被膜层优选由硅磷酸盐系玻璃构成。这是因为,若为硅磷酸盐系玻璃,则即使以1000℃以下的低温煅烧,也可以对钢板赋予高的拉伸张力。另外,以提高作为缺点的耐水性为目的,上述硅磷酸盐系玻璃优选含有选自Mg、Al、Ca、Ti、Nd、Mo、Cr、B、Ta、Cu和Mn中的1种或2种以上的金属元素。
此外,本发明的方向性电磁钢板中,钢板侧被膜层对钢板给予的张力σA优选为6MPa以下。若为6MPa以下,则钢板与钢板侧被膜层之间的应力较小,因此在弯曲剥离试验中剥离产生的临界应力值也会变高,被膜密合性提高。但是,为了得到铁损减少效果,张力σA优选为1.0MPa以上。更优选为1.5~4.0MPa的范围。
此外,本发明的方向性电磁钢板中的钢板侧被膜层(以氧化物为主体的层)的每单位面积质量以氧换算优选为1.0~3.0g/m2的范围。通过设为1.0g/m2以上,被膜层的钢板被覆率充分变高,即使形成以玻璃质为主体的表面侧被覆层,也可得到被膜外观的均匀性优异的方向性电磁钢板。另一方面,若为3.0g/m2以下,则钢板侧被膜层的厚度薄,因此被膜密合性优异。更优选为1.5~3.0g/m2的范围。
另外,本发明作为对象的方向性电磁钢板只要是以通常公知的方法制造的、且在钢板表面具有以氧化物为主体的钢板侧被膜层和以玻璃质为主体的表面侧的被膜层这2层,就均可使用,但上述钢板优选通过以下说明的方法制造。
首先,成为本发明的方向性电磁钢板的原材料的钢原材料(钢坯)优选具有以下成分组成。
C:0.001~0.10质量%
C是对使高斯方位晶粒产生有用的成分,为了有效地体现这样的效果,优选含有0.001质量%以上。但是,若大于0.10质量%,则在后工序的脱碳退火中,难以将脱碳进行至不发生磁时效的水平(0.005质量%以下)。因此,C优选设为0.001~0.10质量%的范围。更优选为0.010~0.08质量%的范围。
Si:1.0~5.0质量%
Si是为了提高钢的电阻而使铁损下降,并且使铁的BCC组织稳定化,使高温下的热处理成为可能而需的成分,优选至少添加1.0质量%。但是,大于5.0质量%的添加会使冷轧变难。因此,Si优选设为1.0~5.0质量%的范围。更优选为2.0~4.5质量%的范围。
Mn:0.01~1.0质量%
Mn不仅有效地有助于钢的热脆性的改善,而且在S、Se进行混杂时形成MnS、MnSe等析出物,发挥作为抑制剂(inhibitor)的机能。若Mn的含量少于0.01质量%,则上述的效果变得不充分,另一方面,若大于1.0质量%,则MnSe等析出物的粒径粗大化而丧失作为抑制剂的效果。因此,Mn优选设为0.01~1.0质量%的范围。更优选为0.015~0.80质量%的范围。
sol.Al:0.003~0.050质量%
Al是在钢中形成AlN而成为分散第二相,作为抑制剂发挥作用的有用成分,若其添加量小于0.003质量%,则无法充分确保AlN的析出量,另一方面,若添加大于0.050质量%,则AlN粗大地析出而丧失作为抑制剂的作用。因此,Al优选以sol.Al计设为0.003~0.050质量%的范围。更优选为0.005~0.045质量%的范围。
N:0.001~0.020质量%
N与Al同样是用于形成AlN所需的成分。若其添加量低于0.001质量%,则AlN的析出变得不充分,另一方面,若添加大于0.020质量%,则在钢坯再加热时产生鼓起等而成为表面缺陷的产生原因。因此,N优选设为0.001~0.020质量%的范围。更优选为0.002~0.015质量%的范围。
选自S和Se中的1种或2种:合计为0.001~0.05质量%
S和Se是与Mn、Cu结合而形成MnSe、MnS、Cu2-XSe、Cu2-XS而成为钢中的分散第二相,发挥抑制剂的作用的有用成分。若S和Se的合计含量小于0.001质量%,则缺乏上述效果,另一方面,若大于0.05质量%,则不仅钢坯再加热时的固溶变得不充分,而且也成为制品板的表面缺陷的原因。因此,在单独添加或复合添加中的任一情况下均优选设为合计0.01~0.05质量%的范围。更优选为0.015~0.045质量%的范围。
本发明的方向性电磁钢板中使用的钢原材料除上述成分以外还可以进一步含有选自Cu:0.01~0.2质量%、Ni:0.01~0.5质量%、Cr:0.01~0.5质量%、Sb:0.01~0.1质量%、Sn:0.01~0.5质量%、Mo:0.01~0.5质量%和Bi:0.001~0.1质量%中的1种或2种以上。上述元素容易偏析于晶粒边界、表面,具有作为辅助的抑制剂的作用,因此通过添加,能够进一步提高磁特性。但是,任何元素在小于上述添加量时均无法得到上述添加效果。另一方面,若大于上述添加量,则容易产生被膜的外观不良、二次再结晶不良,因此在添加的情况下,优选成为上述范围。
此外,本发明的方向性电磁钢板中使用的钢原材料除上述成分以外还可以进一步含有选自B:0.001~0.01质量%、Ge:0.001~0.1质量%、As:0.005~0.1质量%、P:0.005~0.1质量%、Te:0.005~0.1质量%、Nb:0.005~0.1质量%、Ti:0.005~0.1质量%和V:0.005~0.1质量%中的1种或2种以上。通过上述元素的添加,抑制剂的抑制力进一步被强化,可稳定地得到更高的磁通密度。
接着,对使用具有上述成分组成的钢原材料制造本发明的方向性电磁钢板的方法进行说明。
本发明的方向性电磁钢板可以通过将由如下一连串的工序构成的制造方法来制造,即,具有上述说明的成分组成的钢以常法的精炼工艺进行熔炼,使用连续铸造法或铸锭-开坯轧制法制成钢原材料(钢坯)后,将上述钢坯进行热轧而制成热轧板,施行或不施行热轧板退火,其后,通过1次或夹着中间退火的1次以上的冷轧制成最终板厚的冷轧板,施行一次再结晶退火或兼具脱碳退火的一次再结晶退火后,例如,将以MgO为主成分的退火分离剂涂布于钢板表面,进行干燥,卷取成线圈后,施行最终退火而形成以镁橄榄石为主体的被膜层,进而,经过兼具玻璃质的绝缘被膜的涂布、煅烧和形状矫正的平坦化退火。对于除了上述一次再结晶退火(脱碳退火)和在最终退火前涂布于钢板表面的退火分离剂以外的制造条件,可以采用以往公知的条件,没有特别限制。
这里,上述一次再结晶退火或兼具脱碳退火的一次再结晶退火优选将加热过程中的升温速度提高至50℃/s以上。通过上述快速加热,可以使一次再结晶集合组织中的Goss方位的比例增加,使二次再结晶后的Goss晶粒的数量增加而减小平均粒径,因此可以提高铁损特性。但是,若升温速度变得过快,则在高斯方位{110}<001>被蚕食的{111}组织的量减少,容易产生二次再结晶不良,因此升温速度的上限优选设为300℃/s左右。优选为80~250℃/s的范围。
此外,一次再结晶退火中进行快速加热的温度范围优选设为100~700℃之间。钢板到达退火炉时的温度根据外部气温或前工序中的处理温度、钢板的输送时间等而发生偏差,因此若设为从100℃开始则容易控制。另一方面,即使将结束快速加热的温度设为大于开始一次再结晶的700℃,不仅快速加热的效果会饱和,而且快速加热所需的能量成本也会增加,因此不优选。
另外,在一次再结晶退火中进行脱碳退火时,优选以钢板中的C小于0.0050质量%的方式实施。因此,在钢原材料(钢坯)的C小于0.0050质量%时未必一定进行。此外,上述脱碳退火可以不与一次再结晶退火兼行,而另外进行,但先前进行脱碳退火时,需要以脱碳退火进行快速加热。
接着,为了形成以镁橄榄石、堇青石等氧化物为主体的被膜层,在一次再结晶退火后且在最终退火之前涂布于钢板表面的退火分离剂优选以MgO为主成分或使用含有MgO的退火分离剂。
另外,在最终退火中不形成镁橄榄石而制成镜面,其后,通过CVD或PVD、溶胶凝胶法、钢板氧化等方法形成以氧化物为主体的被膜,其后,在形成以玻璃质为主体的绝缘被膜时,也可使用以Al2O3等为主体的退火分离剂。但是,在这种情况下,钢板表面的被膜的氧每单位面积质量也优选设为1.0~3.0g/m2的范围。
实施例1
将含有C:0.06质量%、Si:3.3质量%、Mn:0.08质量%、S:0.001质量%、Al:0.015质量%、N:0.006质量%、Cu:0.05质量%和Sb:0.01质量%的钢坯进行1100℃×30分钟的再加热后,进行热轧而制成板厚2.2mm的热轧板,施行1000℃×1分钟的热轧板退火后,进行冷轧而制成最终板厚0.23mm的冷轧板,从所得的冷轧板的线圈中央部提取宽度100mm×长度400mm的试验片,在实验室中,施行兼具脱碳退火的一次再结晶退火,上述脱碳退火是以升温速度20℃/s从室温加热至820℃,在湿润气氛下进行脱碳。此时,将一次再结晶退火时间以表1中记载的方式进行各种改变,而使退火后的钢板表面的氧每单位面积质量产生变化。
[表1]
接下来,将相对于MgO100质量份混合10重量份的TiO2而成的退火分离剂制成水浆状并进行涂布、干燥后,将300℃至800℃之间用100小时升温,其后,以50℃/hr升温至1200℃而使二次再结晶完成后,施行以1200℃保持5小时而纯化的最终退火。接下来,在上述试验片表面上涂布包含作为Mg(PO3)2的30mol%的磷酸镁、作为SiO2的60mol%的胶体二氧化硅、10mol%的CrO3的组成的硅磷酸盐系的绝缘张力被膜的涂布液,以850℃×1分钟进行煅烧。此时,通过将涂布的每单位面积质量进行各种变化,使绝缘张力被膜对钢板赋予的张力产生变化。
对于以上述方式得到的试验片,测定镁橄榄石被膜(钢板侧被膜层)和玻璃质被膜(表面侧被膜层)对钢板赋予的张力(σA、σB)、在磁化力800A/m下的磁通密度B8、在1.7T、50Hz下的铁损W17/50,并且测定在氮气氛下进行800℃×3小时的去应力退火后的被膜剥离试验(弯曲剥离试验),将这些结果并记于表1。
由表1可知,张力比R小于1.20时,铁损W17/50劣化成0.95W/kg,另一方面,为4.0以上时,耐弯曲剥离性均为45mm以上,劣化,与此相对,适于本发明例的R为1.20~4.0的范围时,磁特性、被膜特性均良好,进而,若镁橄榄石被膜的氧每单位面积质量为1.0~3.0g/m2,且对镁橄榄石被膜对钢板赋予的张力为6MPa以下,则耐弯曲剥离性变得更加良好,为25mm以下。
实施例2
从与实施例1中使用的相同的冷板提取宽度100mm×长度400mm的试验片,在实验室中,在湿润气氛下,以表2中记载的升温速度从100℃升温至700℃,进一步以20℃/s升温至850℃,施行兼具均热保持120s的脱碳退火的一次再结晶退火。接下来,将以3:2的质量比包含Al2O3和MgO的退火分离剂制成水浆状而在上述试验片表面上涂布、干燥。接下来,将该试验片用100小时将300℃至800℃之间升温后,以50℃/hr升温至1250℃而使二次再结晶完成后,施行进行1250℃×5hr的纯化的最终退火,在钢板的表面形成由堇青石(2MgO·2Al2O3·5SiO2)构成的被膜。应予说明,上述被膜的氧换算的每单位面积质量为2.0g/m2,对钢板赋予的张力为4.0MPa。
[表2]
接下来,在上述试样的表面上涂布含有作为Mg(PO3)2的30mol%的磷酸镁、作为SiO2的60mol%的胶体二氧化硅和以氧化物换算合计10mol%的表2中记载的各种金属元素的硅磷酸盐系的绝缘张力涂布液,以880℃×1min进行煅烧。此时,通过将被膜的每单位面积质量进行各种变化,使对钢板赋予的张力产生变化。
对于以上述方式得到的试验片,测定镁橄榄石被膜(钢板侧被膜层)和玻璃质被膜(表面侧被膜层)对钢板赋予的张力(σA、σB)、在磁化力800A/m下的磁通密度B8、在1.7T、50Hz下的铁损W17/50,并且测定在氮气氛下进行800℃×3小时的去应力退火后的被膜剥离试验(弯曲剥离试验),将这些结果并记于表2。
由表2可知,在张力比R为1.20~4.0的范围内磁特性和被膜特性均良好,此外,若一次再结晶退火的升温速度大于50℃/s,则铁损W17/50变得更加良好,为0.84W/kg以下。

Claims (5)

1.一种方向性电磁钢板,该方向性电磁钢板在钢板表面具有由形成于钢板侧的以氧化物为主体的被膜层A和形成于表面侧的以玻璃质为主体的被膜层B这2层构成的张力赋予型绝缘被膜,其特征在于,
表面侧被膜层B对钢板给予的张力σB相对于所述钢板侧被膜层A对钢板给予的张力σA的比R即σBA为1.20~4.0的范围。
2.如权利要求1所述的方向性电磁钢板,其特征在于,钢板侧被膜层A的氧化物是镁橄榄石,表面侧被膜层B的玻璃质是含有选自Mg、Al、Ca、Ti、Nd、Mo、Cr、B、Ta、Cu和Mn中的1种或2种以上的金属元素的硅磷酸盐系玻璃。
3.如权利要求1或2所述的方向性电磁钢板,其特征在于,钢板侧被膜层A对钢板给予的张力σA为6MPa以下。
4.如权利要求1~3中任一项所述的方向性电磁钢板,其特征在于,以双面计,钢板侧被膜层A的每单位面积质量以氧换算为1.0~3.0g/m2
5.如权利要求1~4中任一项所述的方向性电磁钢板,其特征在于,是对轧制成最终板厚的冷轧板进行在100~700℃之间以升温速度50℃/s以上来加热的一次再结晶退火后,进行二次再结晶退火而得到的。
CN201480054725.7A 2013-10-30 2014-10-23 磁特性和被膜密合性优异的方向性电磁钢板 Active CN105593393B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013225122A JP6156646B2 (ja) 2013-10-30 2013-10-30 磁気特性および被膜密着性に優れる方向性電磁鋼板
JP2013-225122 2013-10-30
PCT/JP2014/078233 WO2015064472A1 (ja) 2013-10-30 2014-10-23 磁気特性および被膜密着性に優れる方向性電磁鋼板

Publications (2)

Publication Number Publication Date
CN105593393A true CN105593393A (zh) 2016-05-18
CN105593393B CN105593393B (zh) 2018-06-19

Family

ID=53004078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480054725.7A Active CN105593393B (zh) 2013-10-30 2014-10-23 磁特性和被膜密合性优异的方向性电磁钢板

Country Status (7)

Country Link
US (1) US10395807B2 (zh)
EP (1) EP3064607B1 (zh)
JP (1) JP6156646B2 (zh)
KR (1) KR101763085B1 (zh)
CN (1) CN105593393B (zh)
RU (1) RU2639178C2 (zh)
WO (1) WO2015064472A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110024058A (zh) * 2016-12-21 2019-07-16 杰富意钢铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
CN110809644A (zh) * 2017-07-13 2020-02-18 日本制铁株式会社 方向性电磁钢板
CN110832111A (zh) * 2017-07-13 2020-02-21 日本制铁株式会社 方向性电磁钢板
CN111684106A (zh) * 2018-02-06 2020-09-18 杰富意钢铁株式会社 带有绝缘被膜的电磁钢板及其制造方法
CN112437817A (zh) * 2018-07-13 2021-03-02 日本制铁株式会社 方向性电磁钢板及其制造方法
CN113227412A (zh) * 2018-12-27 2021-08-06 杰富意钢铁株式会社 方向性电磁钢板用退火分离剂和方向性电磁钢板的制造方法
CN113272473A (zh) * 2019-01-08 2021-08-17 日本制铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
CN113302337A (zh) * 2019-01-16 2021-08-24 日本制铁株式会社 方向性电磁钢板及其制造方法
CN113302335A (zh) * 2019-01-16 2021-08-24 日本制铁株式会社 方向性电磁钢板及其制造方法
CN115151681A (zh) * 2020-02-28 2022-10-04 杰富意钢铁株式会社 带绝缘被膜的方向性电磁钢板和其制造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3196325T3 (pl) * 2014-09-01 2020-08-24 Nippon Steel Corporation Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych
KR101762339B1 (ko) 2015-12-22 2017-07-27 주식회사 포스코 방향성 전기강판 및 방향성 전기강판의 제조방법
CN110892091B (zh) * 2017-07-13 2022-08-16 日本制铁株式会社 方向性电磁钢板
WO2019106976A1 (ja) * 2017-11-28 2019-06-06 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
US11236427B2 (en) 2017-12-06 2022-02-01 Polyvision Corporation Systems and methods for in-line thermal flattening and enameling of steel sheets
KR102043782B1 (ko) * 2017-12-26 2019-11-12 주식회사 포스코 방향성 전기강판 및 방향성 전기강판의 제조방법
RU2767383C1 (ru) * 2018-03-20 2022-03-17 Ниппон Стил Корпорейшн Электротехнический стальной лист с ориентированной зеренной структурой и способ его производства
CN111918981A (zh) * 2018-03-30 2020-11-10 杰富意钢铁株式会社 取向性电磁钢板的制造方法及连续成膜装置
CN113302324B (zh) * 2019-01-16 2023-06-02 日本制铁株式会社 单方向性电磁钢板及其制造方法
BR112022004916A2 (pt) * 2019-09-18 2022-06-07 Nippon Steel Corp Método para fabricar chapa de aço elétrica de grão orientado
JP7393623B2 (ja) * 2019-09-19 2023-12-07 日本製鉄株式会社 方向性電磁鋼板
JP7040584B1 (ja) 2020-10-06 2022-03-23 Jfeスチール株式会社 金属ストリップ表面への溝形成方法、および方向性電磁鋼板の製造方法
JP7040585B1 (ja) 2020-10-06 2022-03-23 Jfeスチール株式会社 金属ストリップ表面への溝形成方法、および方向性電磁鋼板の製造方法
KR102597512B1 (ko) * 2020-12-22 2023-11-01 주식회사 포스코 방향성 전기강판 및 그의 제조방법
WO2024096082A1 (ja) * 2022-11-01 2024-05-10 日本製鉄株式会社 方向性電磁鋼板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132941A (ja) * 1991-11-06 1993-05-28 Koichi Uemura オープンシールド工法およびそれに使用するコンクリート函体
JPH06212262A (ja) * 1993-01-12 1994-08-02 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP2002060957A (ja) * 2000-08-24 2002-02-28 Nippon Steel Corp ダイレクトイグニッションに適した方向性電磁鋼板
JP2003293103A (ja) * 2002-04-09 2003-10-15 Jfe Steel Kk 磁束密度の高い方向性電磁鋼板およびその製造方法
CN101031667A (zh) * 2004-11-10 2007-09-05 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
JP2010249616A (ja) * 2009-04-14 2010-11-04 Jfe Steel Corp 方向性電磁鋼板の被膜張力の間接測定方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE789262A (fr) 1971-09-27 1973-01-15 Nippon Steel Corp Procede de formation d'un film isolant sur un feuillard d'acierau silicium oriente
JPS5652117B2 (zh) 1973-11-17 1981-12-10
JPS5917521B2 (ja) * 1975-08-22 1984-04-21 川崎製鉄株式会社 方向性けい素鋼板に耐熱性のよい上塗り絶縁被膜を形成する方法
IT1115840B (it) 1977-03-09 1986-02-10 Centro Speriment Metallurg Soluzione di rivestimenti per acciai per impieghi magnetici
JP2983128B2 (ja) * 1993-08-24 1999-11-29 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
KR0182802B1 (ko) 1993-01-12 1999-04-01 다나카 미노루 극히 낮은 철손을 갖는 일방향성 전자강판 및 그 제조방법
JPH0867913A (ja) 1994-08-24 1996-03-12 Nippon Steel Corp 鉄損の小さい珪素鋼板及びその製造法及び使用法
JP3456862B2 (ja) 1997-04-25 2003-10-14 新日本製鐵株式会社 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP3537339B2 (ja) 1999-01-14 2004-06-14 新日本製鐵株式会社 皮膜特性と磁気特性に優れた方向性電磁鋼板及びその製造方法
JP2002220642A (ja) * 2001-01-29 2002-08-09 Kawasaki Steel Corp 鉄損の低い方向性電磁鋼板およびその製造方法
JP4598320B2 (ja) 2001-07-12 2010-12-15 新日本製鐵株式会社 方向性電磁鋼板の製造方法
TWI270578B (en) 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same
EP1889928B1 (en) 2005-06-10 2016-07-20 Nippon Steel & Sumitomo Metal Corporation Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
JP4823719B2 (ja) 2006-03-07 2011-11-24 新日本製鐵株式会社 磁気特性が極めて優れた方向性電磁鋼板の製造方法
RU2407818C2 (ru) 2006-05-19 2010-12-27 Ниппон Стил Корпорейшн Лист текстурированной электротехнической стали, обладающей высокой прочностью на растяжение, изоляционная пленка и способ обработки такой изоляционной пленки
US7976644B2 (en) 2006-05-24 2011-07-12 Nippon Steel Corporation Method of production of grain-oriented electrical steel sheet with high magnetic flux density
JP5853352B2 (ja) * 2010-08-06 2016-02-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5994981B2 (ja) 2011-08-12 2016-09-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN104024474A (zh) 2011-12-28 2014-09-03 杰富意钢铁株式会社 具有涂层的取向性电磁钢板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132941A (ja) * 1991-11-06 1993-05-28 Koichi Uemura オープンシールド工法およびそれに使用するコンクリート函体
JPH06212262A (ja) * 1993-01-12 1994-08-02 Nippon Steel Corp 極めて低い鉄損をもつ一方向性電磁鋼板の製造方法
JP2002060957A (ja) * 2000-08-24 2002-02-28 Nippon Steel Corp ダイレクトイグニッションに適した方向性電磁鋼板
JP2003293103A (ja) * 2002-04-09 2003-10-15 Jfe Steel Kk 磁束密度の高い方向性電磁鋼板およびその製造方法
CN101031667A (zh) * 2004-11-10 2007-09-05 杰富意钢铁株式会社 方向性电磁钢板及其制造方法
JP2010249616A (ja) * 2009-04-14 2010-11-04 Jfe Steel Corp 方向性電磁鋼板の被膜張力の間接測定方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110024058A (zh) * 2016-12-21 2019-07-16 杰富意钢铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
US11180834B2 (en) 2016-12-21 2021-11-23 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
CN110809644A (zh) * 2017-07-13 2020-02-18 日本制铁株式会社 方向性电磁钢板
CN110832111A (zh) * 2017-07-13 2020-02-21 日本制铁株式会社 方向性电磁钢板
CN110832111B (zh) * 2017-07-13 2022-03-01 日本制铁株式会社 方向性电磁钢板
CN110809644B (zh) * 2017-07-13 2021-12-21 日本制铁株式会社 方向性电磁钢板
CN111684106A (zh) * 2018-02-06 2020-09-18 杰富意钢铁株式会社 带有绝缘被膜的电磁钢板及其制造方法
CN112437817A (zh) * 2018-07-13 2021-03-02 日本制铁株式会社 方向性电磁钢板及其制造方法
CN112437817B (zh) * 2018-07-13 2023-02-24 日本制铁株式会社 方向性电磁钢板及其制造方法
US11926888B2 (en) 2018-12-27 2024-03-12 Jfe Steel Corporation Annealing separator for grain-oriented electrical steel sheet and method of producing grain-oriented electrical steel sheet
CN113227412A (zh) * 2018-12-27 2021-08-06 杰富意钢铁株式会社 方向性电磁钢板用退火分离剂和方向性电磁钢板的制造方法
CN113227412B (zh) * 2018-12-27 2023-01-24 杰富意钢铁株式会社 方向性电磁钢板用退火分离剂和方向性电磁钢板的制造方法
CN113272473A (zh) * 2019-01-08 2021-08-17 日本制铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
CN113272473B (zh) * 2019-01-08 2023-07-07 日本制铁株式会社 方向性电磁钢板及方向性电磁钢板的制造方法
CN113302335A (zh) * 2019-01-16 2021-08-24 日本制铁株式会社 方向性电磁钢板及其制造方法
CN113302337B (zh) * 2019-01-16 2023-06-16 日本制铁株式会社 方向性电磁钢板及其制造方法
CN113302335B (zh) * 2019-01-16 2023-06-20 日本制铁株式会社 方向性电磁钢板及其制造方法
CN113302337A (zh) * 2019-01-16 2021-08-24 日本制铁株式会社 方向性电磁钢板及其制造方法
CN115151681A (zh) * 2020-02-28 2022-10-04 杰富意钢铁株式会社 带绝缘被膜的方向性电磁钢板和其制造方法

Also Published As

Publication number Publication date
JP2015086426A (ja) 2015-05-07
US10395807B2 (en) 2019-08-27
EP3064607B1 (en) 2018-02-21
CN105593393B (zh) 2018-06-19
WO2015064472A1 (ja) 2015-05-07
EP3064607A4 (en) 2016-09-07
KR20160044561A (ko) 2016-04-25
KR101763085B1 (ko) 2017-07-28
US20160260531A1 (en) 2016-09-08
RU2639178C2 (ru) 2017-12-20
EP3064607A1 (en) 2016-09-07
JP6156646B2 (ja) 2017-07-05
RU2016121005A (ru) 2017-12-05

Similar Documents

Publication Publication Date Title
CN105593393A (zh) 磁特性和被膜密合性优异的方向性电磁钢板
KR102120572B1 (ko) 무 방향성 전자 강판의 제조 방법
TWI472626B (zh) 方向性電磁鋼板的製造方法及方向性電磁鋼板的再結晶退火設備
CN102443734B (zh) 无瓦楞状缺陷的无取向电工钢板及其制造方法
CN104662180B (zh) 晶粒取向电磁钢板的制造方法
CN102803521B (zh) 方向性电磁钢板的制造方法
CN103228801B (zh) 方向性电磁钢板的制造方法
WO2013099455A1 (ja) コーティング付き方向性電磁鋼板およびその製造方法
WO2014017590A1 (ja) 方向性電磁鋼板の製造方法
CN103069032A (zh) 方向性电磁钢板及其制造方法
WO2014047757A1 (zh) 一种高磁感普通取向硅钢的制造方法
WO2017111507A1 (ko) 방향성 전기강판용 절연피막 조성물, 이를 이용한 방향성 전기강판의 절연피막 형성방법, 및 방향성 전기강판
WO2014017591A1 (ja) 方向性電磁鋼板の製造方法
WO2017111505A1 (ko) 방향성 전기강판 및 방향성 전기강판의 제조방법
JP7010305B2 (ja) 方向性電磁鋼板
CN105008555A (zh) 方向性电磁钢板的制造方法
CN109906277A (zh) 取向性电磁钢板的制造方法
TWI717914B (zh) 無方向性電磁鋼板的製造方法
JP6624028B2 (ja) 方向性電磁鋼板の製造方法
JP5857983B2 (ja) 方向性電磁鋼板の製造方法および焼鈍分離剤用MgO
CN109923222A (zh) 取向性电磁钢板的制造方法
JP2014156633A (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板並びに方向性電磁鋼板用表面ガラスコーティング
JP5434438B2 (ja) 一方向性電磁鋼板の製造方法
KR970007030B1 (ko) 고자속밀도급 방향성 전기강판의 제조방법
JP2021139040A (ja) 方向性電磁鋼板の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant