CN105561977B - 用作氮氧化物还原催化剂的金属钨酸盐 - Google Patents

用作氮氧化物还原催化剂的金属钨酸盐 Download PDF

Info

Publication number
CN105561977B
CN105561977B CN201510675436.5A CN201510675436A CN105561977B CN 105561977 B CN105561977 B CN 105561977B CN 201510675436 A CN201510675436 A CN 201510675436A CN 105561977 B CN105561977 B CN 105561977B
Authority
CN
China
Prior art keywords
nox
oxygen
catalyst
nitrogen oxide
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510675436.5A
Other languages
English (en)
Other versions
CN105561977A (zh
Inventor
贾鸿飞
C·A·罗伯茨
坂野充
南圭一
T·佩克
P·T·范森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Toyota Motor Engineering and Manufacturing North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Motor Engineering and Manufacturing North America Inc filed Critical Toyota Motor Corp
Publication of CN105561977A publication Critical patent/CN105561977A/zh
Application granted granted Critical
Publication of CN105561977B publication Critical patent/CN105561977B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本发明涉及用作氮氧化物还原催化剂的金属钨酸盐。该氮氧化物(NOx)还原催化剂包括具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Mn、Fe、Co、Ni和Cu。该催化剂可用于各种环境中,包括富氧和贫氧环境。

Description

用作氮氧化物还原催化剂的金属钨酸盐
技术领域
本发明涉及用于还原氮氧化物(NOx)的催化剂和用于还原氮氧化物(NOx)的方法。
背景技术
来自内燃机的废气产生氮氧化物(NOx),该氮氧化物成为烟雾和其他形式的环境污染的原因之一。应该从这些发动机的废气流除去NOx,以保护环境和满足政府规定。当前的3元催化剂转换器技术可以用来在某些限制的条件下除去汽车废气中的NOx。例如,3元催化剂在高于300℃的高温下运行。此外,为满足目前的排放标准,3元催化剂含有大量贵金属,如铂、铑和钯。进一步,现有技术的催化剂在氧存在下可能难以与NOx反应。
因此,本领域需要一种改进的催化剂,该催化剂在各种条件(包括富氧和贫氧条件)下还原NOx。还需要不包含昂贵的贵金属且制造经济的催化剂。在本领域中进一步需要一种催化剂,其包括在存在氧或不存在氧的条件下选择性地与NOx相互作用的表面。在本领域中还需要用于在各种条件(包括富氧和贫氧条件)下还原NOx的方法。
发明内容
在一个方面,公开了一种氮氧化物(NOx)还原催化剂,其包含具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Mn、Fe、Co、Ni和Cu。
在另一个方面,公开了一种氮氧化物(NOx)还原催化剂,其包含具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Mn、Fe、Co和Cu,其中所述催化剂在包括烃类燃料的富氧环境下还原氮氧化物(NOx)。
在另一个方面,公开了一种氮氧化物(NOx)还原催化剂,其包含具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Ni和Co,其中所述催化剂在包括烃类燃料的贫氧环境下还原氮氧化物(NOx)。
在另一个方面,公开了一种还原氮氧化物(NOx)的方法,其包括以下步骤:提供包含氮氧化物(NOx)和烃类燃料的气态排放混合物,提供氮氧化物(NOx)还原催化剂,其包含具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Mn、Fe、Co、Ni和Cu,使气态排放混合物与氮氧化物(NOx)还原催化剂的表面接触,以形成氮、水和二氧化碳。
附图说明
图1A是MnWO4纳米颗粒的扫描电子显微术(SEM)图像;
图1B是CoWO4纳米颗粒的扫描电子显微术(SEM)图像;
图1C是FeWO4纳米颗粒的扫描电子显微术(SEM)图像;
图1D是NiWO4纳米颗粒的扫描电子显微术(SEM)图像;
图1E是CuWO4纳米颗粒的扫描电子显微术(SEM)图像;
图2是MWO4的粒度和相应的比表面积(BET SSA)的曲线图,其中M选自Mn、Fe、Co、Ni和Cu;
图3是用于氮氧化物(NOx)还原催化剂的活性测试的测试方案的图示;
图4是无氧条件下氮氧化物(NOx)还原催化剂的作为温度函数的NO转化率的曲线图;
图5是有氧条件下氮氧化物(NOx)还原催化剂的作为温度函数的NO转化率的曲线图;
图6是氮氧化物(NOx)还原催化剂的作为氧转化率的函数的NO转化率的曲线图;
图7是MnWO4的作为温度函数的NO、氧和烃的转化率的曲线图;
图8是MnWO4的作为温度函数的氮和二氧化氮计数的曲线图;
图9是NiWO4的作为温度函数的NO和烃的转化率的曲线图;
图10是NiWO4的作为温度函数的氮和二氧化氮计数的曲线图;
图11是MWO4的XRD曲线图,其中M选自Mn、Fe、Co、Ni和Cu;
图12是在富氧条件下氮氧化物(NOx)还原催化剂的还原机理的图形表示;
图13是在贫氧条件下氮氧化物(NOx)还原催化剂的还原机理的图形表示。
具体实施方式
本公开内容提供一种形成用于还原氮氧化物(NOx)以产生氮、水和二氧化碳的催化剂组合物的方法和/或还原氮氧化物(NOx)的方法。该催化剂可包含具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Mn、Fe、Co、Ni和Cu。该催化剂可在富氧环境和贫氧环境中使用。这种催化剂提供了无贵金属催化剂,不同于仅在限定为很窄的条件下运行的大多数3元催化剂,该催化剂允许在各种条件下反应。与当前现有技术的催化剂不同,该催化剂在富氧和贫氧环境下允许氮氧化物(NOx)与催化剂表面的选择性相互作用。
所述方法包括:提供包含氮氧化物(NOx)和烃类燃料的气态排放混合物;提供氮氧化物(NOx)还原催化剂,其包含具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Mn、Fe、Co、Ni和Cu;使气态排放混合物与氮氧化物(NOx)还原催化剂的表面接触以形成氮、水和二氧化碳。
在一个方面,氮氧化物(NOx)还原催化剂包含化学式为MWO4的过渡金属钨酸盐,其中M选自Mn、Fe、Co、Ni和Cu,且包含晶体结构。该催化剂可包含多个过渡金属钨酸盐纳米颗粒。在一些情况下,纳米颗粒尺寸均匀,并且可具有如在图1A-E和图2中示出的最佳10~60纳米的平均粒度。
如上所述,催化剂可在各种条件如富氧和贫氧条件下使用。在一个方面,该催化剂可具有化学式:MWO4,其中M选自Mn、Fe、Co和Cu,且催化剂在富氧环境下还原氮氧化物(NOx)。
在另一个方面,催化剂可具有化学式:MWO4,其中M选自Ni和Co,且催化剂在贫氧环境下还原氮氧化物(NOx)。
在另一个方面,公开了一种形成氮氧化物(NOx)还原催化剂的方法,其包括以下步骤:提供过渡金属的金属盐,其包括Co(NO3)2、MnCl2、FeCl2、Ni(NO3)2或Cu(SO4)4;提供Na2WO4;组合所述金属盐和Na2WO4以形成溶液;使所述溶液暴露于微波能量源并引发水热反应以形成MWO4。暴露步骤可以包括暴露于微波能量不同的时间段来升高温度或将溶液加热至所需温度范围。
暴露步骤可以包括使溶液暴露于微波能量从小于1分钟至60分钟。在一个方面,暴露步骤可以是以800W的功率暴露1分钟至10分钟。暴露步骤可将溶液的温度升至80~300℃的温度。继暴露步骤之后,可以将溶液冷却,然后洗涤和干燥。继干燥步骤之后,可以在空气中于350~700℃煅烧所述催化剂材料60分钟。
对于富氧条件,催化剂可以包括具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Mn、Fe、Co和Cu,其中催化剂还原氮氧化物(NOx)与烃类燃料。
参照图12,其示出了在富氧条件下催化剂反应的图形表示。如该图中所示,氧吸附于催化剂的表面,且一氧化氮形式(NO,x=1)的氮氧化物(NOx)与吸附有氧的表面键合而形成二氧化氮,它与烃类燃料反应而形成氮、二氧化碳和水。如上所述的反应机理可降低典型的现有技术催化剂中的用于(NOx)或(NO)还原的整体活化能垒。
对于贫氧条件,催化剂可包含具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Ni和Co,其中催化剂还原氮氧化物(NOx),且贫氧环境包括烃类燃料。
参照图13,其示出在贫氧条件下催化剂反应的图形表示。如该图中所示,氮氧化物(NOx)或(NO)与催化剂的表面键合,且氮氧键离解而形成氮且氧与烃类燃料反应而形成二氧化碳和水。
通过下面的实施例进一步描述本发明,这些实施例是说明性的实施本发明的具体方式,并不旨在限制权利要求中定义的本发明的范围。
实施例
制备MWO4
Co(NO3)2、MnCl2、FeCl2、Ni(NO3)2或Cu(SO4)4的原料和Na2WO4·2H2O购自Sigma-Aldrich并直接使用而没有进一步纯化。在典型的合成中,在强力搅拌的情况下以化学计量方式将(0.2M)Na2WO4溶液与(0.2M)过渡金属溶液组合。然后将溶液混合物置于玻璃微波管中。在微波反应器(Anton Paar Microwave 300)中进行微波辅助水热合成。以最大功率(800W)将微波管加热至不同的温度。保持暴露于微波下不同的时间,这将在下面更详细地讨论。继暴露于微波之后,通过强制气流将微波管冷却。用离心机将所得产物用DI水多次清洗,接着,在60℃真空干燥一夜。继干燥步骤之后,将催化剂材料在空气中于550℃下煅烧60分钟。
如图1A-E中所示,通过扫描电子显微术(SEM)对最终粉末产物进行检测。在图中可以看出,MWO4材料包含具有10~60nm尺寸范围的离散颗粒。如图2中所示,所述颗粒具有4.9~28.2m2/g的比表面积。X射线衍射(XRD)数据示于图11,示出了催化剂材料的晶体结构。
实施例二
MWO4活性测试
在实验室规模的填充床反应器中进行活性测试(PID Eng&Tech Microactivity-Reference)。通过烃(丙烯(C3H6))来确定NO还原活性。在贫氧和富氧条件下于化学计量条件下进行活性测试。如图3中所示,在贫氧条件下,NO:C3H6的化学计量比为9:1,且在富氧条件下,NO:C3H6:O2的化学计量比是3:1:3。在图3中还示出,将100mg催化剂材料与400mg石英砂组合,并使用100ml/分钟的总流速(气体小时空间速度GHSV~15000/小时)以在富氧和贫氧条件两者下进行测试。预处理阶段包括将反应器和催化剂混合物加热至500℃,并在氧化条件(10%O2余量He,30ml/分钟)下维持该温度15分钟。然后将反应器冷却,并在50℃保持规定的时间,在某些测试中引入一氧化氮(NO,x=1)形式的氮氧化物(NOx)、烃(C3H6)和氧的气体混合物。然后将反应器加热至600℃。测量是在反映于各种数据中的不同温度下进行,这将在下面更详细地讨论。
参照图4,其示出了在贫氧条件(其中没有氧加入到反应器中)下催化剂样品的NO转化率的曲线图。如从曲线图中可以看出,NiWO4和CoWO4样品在贫氧条件下表现出NO还原。贫氧条件下的NOx还原验证了在不存在氧的情况下NO与催化剂表面的选择性相互作用。
参照图5,其示出了在富氧条件(其中将氧加入到反应器中)下催化剂样品的NO转化率的曲线图。如从曲线图中可以看出,MnWO4、FeWO4、CoWO4和CuWO4样品在富氧条件下表现出NO还原。富氧条件下的NOx还原验证了在氧存在的情况下NO与催化剂表面的选择性相互作用。
图6描绘了在富氧条件(其中将氧加入到反应器中)下,在化学计量NO还原的条件下,作为O2转化率函数的催化剂样品的NO转化率的曲线图。如从曲线图中可以看出,MnWO4、FeWO4、CoWO4样品表现出显著的NO选择性。此处的选择性是指催化剂表面选择性地与NO气体,而不是O2气体相互作用的能力。MnWO4样品显示出NO与O2的几乎1:1的选择性。在氧存在下催化剂表面进行所期望的NO还原反应的能力为现有技术的催化剂提供了改进。
参照图7,其示出了在富氧条件(其中将氧加入到反应器中)下MnWO4的作为温度函数的NO、C3H6和O2的转化率。如在图中可以看出,样品的NO转化率超过90%。在较高的温度下,因为氧被消耗而NO转化率下降。
参照图8,其示出了在富氧条件(其中将氧加入到反应器中)下作为温度函数的分别通过在m/z=28和m/z=46处的质谱计数检测而监测到的N2和NO2的产生。图8表明富氧条件下的NO还原导致N2的产生,也存在痕量的NO2
参照图9,其示出了在贫氧条件(其中没有氧加入到反应器中)下NiWO4的作为温度函数的NO和C3H6转化率。如在图中可以看出,样品的NO转化率超过80%。
参照图10,其示出了在贫氧条件(其中没有氧加入到反应器中)下作为温度函数的分别通过在m/z=28和m/z=46处的质谱计数检测而监测到的N2和NO2的产生。图10表明贫氧条件下的NO还原导致产生N2而没有产生NO2
本发明并不限于上述说明性的实施例。所述实施例不是旨在限制本发明的范围。其中的变化,元素的其他组合,以及其它用途对于本领域技术人员来说是可以想到的。本发明的范围由权利要求的范围限定。

Claims (4)

1.一种还原氮氧化物(NOx)的方法,其包括以下步骤:
提供包含氮氧化物(NOx)和烃类燃料的气态排放混合物;
提供氮氧化物(NOx)还原催化剂,其包含具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Mn、Fe、Co、Ni和Cu;
使所述气态排放混合物与氮氧化物(NOx)还原催化剂的表面接触,以形成氮、水和二氧化碳。
2.根据权利要求1所述的方法,其中所述气态排放混合物还包含氧。
3.根据权利要求2所述的方法,其中所述氮氧化物(NOx)还原催化剂包含具有如下化学式的过渡金属钨酸盐:MWO4,其中M选自Mn、Fe、Co和Cu。
4.根据权利要求1所述的方法,其中所述氮氧化物(NOx)还原催化剂包含具有如下化学式的过渡金属钨酸盐:MWO4,M选自Ni和Co,且所述催化剂在贫氧环境下还原氮氧化物(NOx)。
CN201510675436.5A 2014-10-31 2015-10-19 用作氮氧化物还原催化剂的金属钨酸盐 Expired - Fee Related CN105561977B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/529,491 2014-10-31
US14/529,491 US20160121307A1 (en) 2014-10-31 2014-10-31 Metal tungstates for use as nitrogen oxides reduction catalysts

Publications (2)

Publication Number Publication Date
CN105561977A CN105561977A (zh) 2016-05-11
CN105561977B true CN105561977B (zh) 2020-04-14

Family

ID=55753811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510675436.5A Expired - Fee Related CN105561977B (zh) 2014-10-31 2015-10-19 用作氮氧化物还原催化剂的金属钨酸盐

Country Status (4)

Country Link
US (2) US20160121307A1 (zh)
JP (1) JP6804835B2 (zh)
CN (1) CN105561977B (zh)
DE (1) DE102015116735A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439761B2 (ja) * 2016-08-09 2018-12-19 トヨタ自動車株式会社 NOx吸蔵還元触媒の製造方法
US10882030B2 (en) * 2017-08-25 2021-01-05 Uop Llc Crystalline transition metal tungstate
US10682632B2 (en) * 2018-06-26 2020-06-16 Uop Llc Transition metal tungstate material
US10688479B2 (en) * 2018-06-26 2020-06-23 Uop Llc Crystalline transition metal tungstate
US10737248B2 (en) * 2018-06-26 2020-08-11 Uop Llc Crystalline transition metal tungstate
JP7181820B2 (ja) * 2019-03-14 2022-12-01 日本碍子株式会社 多孔質セラミック構造体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163537A (zh) * 2005-04-11 2008-04-16 芬兰技术研究中心 用于催化还原氮氧化物的催化剂、催化剂结构体和用于催化还原氮氧化物的方法
CN101528324A (zh) * 2006-10-19 2009-09-09 乌米科雷股份两合公司 Ce-Zr-R-O催化剂、包含该Ce-Zr-R-O催化剂的制品以及制造和使用该Ce-Zr-R-O催化剂的方法
CN102380378A (zh) * 2011-09-08 2012-03-21 大连理工大学 一种高富氧条件下低温选择还原消除氮氧化物催化剂及其应用
CN103007925A (zh) * 2012-12-21 2013-04-03 中国科学院生态环境研究中心 一种锰钨复合氧化物催化剂、制备方法及其用途
CN103991913A (zh) * 2014-05-29 2014-08-20 陕西科技大学 一种采用微波水热法制备CoWO4 纳米粉体材料的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759280B2 (en) * 2006-09-20 2010-07-20 Basf Corporation Catalysts, systems and methods to reduce NOX in an exhaust gas stream
JP5691779B2 (ja) * 2010-12-07 2015-04-01 株式会社デンソー 排ガス浄化装置
JP6273859B2 (ja) * 2014-01-27 2018-02-07 株式会社豊田中央研究所 三元触媒及びそれを用いた排ガス浄化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163537A (zh) * 2005-04-11 2008-04-16 芬兰技术研究中心 用于催化还原氮氧化物的催化剂、催化剂结构体和用于催化还原氮氧化物的方法
CN101528324A (zh) * 2006-10-19 2009-09-09 乌米科雷股份两合公司 Ce-Zr-R-O催化剂、包含该Ce-Zr-R-O催化剂的制品以及制造和使用该Ce-Zr-R-O催化剂的方法
CN102380378A (zh) * 2011-09-08 2012-03-21 大连理工大学 一种高富氧条件下低温选择还原消除氮氧化物催化剂及其应用
CN103007925A (zh) * 2012-12-21 2013-04-03 中国科学院生态环境研究中心 一种锰钨复合氧化物催化剂、制备方法及其用途
CN103991913A (zh) * 2014-05-29 2014-08-20 陕西科技大学 一种采用微波水热法制备CoWO4 纳米粉体材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Crystal quality and optical property of MnWO4 nanoparticles synthesized by microwave-assisted method";Pham Van Hanh et al.;《Journal of Physics and Chemistry of Solids》;20121119;第74卷;摘要、第426页左栏第1段、第427页左栏第1、3、5段 *
Siti Murni M Zawawi et al.."Structural and optical characterization of metal tungstates (MWO4;M=Ni, Ba, Bi) synthesized by a sucrose-templated method".《Chemistry Central Journal》.2013,第7卷(第80期),第3页左栏第2段、第4页右栏第1段. *

Also Published As

Publication number Publication date
JP6804835B2 (ja) 2020-12-23
US10293328B2 (en) 2019-05-21
US20180207623A1 (en) 2018-07-26
US20160121307A1 (en) 2016-05-05
JP2016087604A (ja) 2016-05-23
DE102015116735A1 (de) 2016-05-04
CN105561977A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN105561977B (zh) 用作氮氧化物还原催化剂的金属钨酸盐
She et al. The role of AgOAl species in silver–alumina catalysts for the selective catalytic reduction of NOx with methane
Dasireddy et al. Selective catalytic reduction of NOx by CO over bimetallic transition metals supported by multi-walled carbon nanotubes (MWCNT)
Shang et al. High performance of NO oxidation over Ce–Co–Ti catalyst: The interaction between Ce and Co
Bell et al. Influence of synthesis route on the catalytic properties of La1− xSrxMnO3
Fino et al. Studies on kinetics and reactions mechanism of La2− xKxCu1− yVyO4 layered perovskites for the combined removal of diesel particulate and NOx
Sun et al. Effects of different manganese precursors as promoters on catalytic performance of CuO–MnO x/TiO 2 catalysts for NO removal by CO
US20070049489A1 (en) Redox active mass for a chemical looping combustion process
Lan et al. Preparation and characterization of SnO 2 catalysts for CO and CH 4 oxidation
Christensen et al. Importance of the oxygen bond strength for catalytic activity in soot oxidation
Doggali et al. Effect of A-site substitution in perovskites: catalytic properties of PrMnO3 and Ba/K/Ce substituted PrMnO3 for CO and PM oxidation
Su et al. NO reduction by methane over iron oxides: Characteristics and mechanisms
JP2022553045A (ja) 炭素被覆酸化ニッケルナノ複合材料、その製造方法および応用
Jakubek et al. Thermal transformation of birnessite (OL) towards highly active cryptomelane (OMS-2) catalyst for soot oxidation
Yu et al. Facile preparation of amorphous CenMnOx catalysts and their good catalytic performance for soot combustion
Song et al. Turning the structural properties and redox ability of Co-La catalyst in the catalytic oxidation of toluene
EP2741841B1 (en) Catalyst for direct decomposition of nitric oxide and method of manufacturing the catalyst
Remani et al. Cobalt doped ceria catalysts for the oxidative abatement of gaseous pollutants and colorimetric detection of H2O2
Yu et al. The effects of Bi 2 O 3 on the selective catalytic reduction of NO by propylene over Co 3 O 4 nanoplates
Wang et al. CuO decorated vacancy-rich CeO2 nanopencils for highly efficient catalytic NO reduction by CO at low temperature
Liu et al. Optimization and comprehensive mechanism of environment-friendly bimetal oxides catalysts for efficient removal of NO in ultra-low temperature flue gas
CN102862960B (zh) 一种高活性复合氧化物载氧体在化学链循环制氢中的应用和制备
JP2018001080A (ja) Co酸化触媒及びその製造方法、担持触媒並びに排ガス処理装置
Tu et al. SO 2-tolerant and H 2 O-promoting Pt/C catalysts for efficient NO removal via fixed-bed H 2-SCR
Jia et al. Investigating NH3-SCR coupled with CO oxidation reaction mechanisms on titanium nanotube-loaded CuMnFe composite metal catalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200708

Address after: Aichi Prefecture, Japan

Patentee after: Toyota Motor Corp.

Address before: Kentucky, USA

Co-patentee before: Toyota Motor Corp.

Patentee before: Toyota Motor Engineering & Manufacturing North America, Inc.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200414

Termination date: 20211019