CN105461907A - 一种使用生物醇制备高性能不饱和聚酯树脂的方法 - Google Patents

一种使用生物醇制备高性能不饱和聚酯树脂的方法 Download PDF

Info

Publication number
CN105461907A
CN105461907A CN201511033073.1A CN201511033073A CN105461907A CN 105461907 A CN105461907 A CN 105461907A CN 201511033073 A CN201511033073 A CN 201511033073A CN 105461907 A CN105461907 A CN 105461907A
Authority
CN
China
Prior art keywords
unsaturated polyester
polyester resin
alcohol
glycerol
bio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201511033073.1A
Other languages
English (en)
Inventor
王磊
吕金燕
余柳松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reichhold Polymer (tianjin) Co Ltd
Original Assignee
Reichhold Polymer (tianjin) Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reichhold Polymer (tianjin) Co Ltd filed Critical Reichhold Polymer (tianjin) Co Ltd
Priority to CN201511033073.1A priority Critical patent/CN105461907A/zh
Publication of CN105461907A publication Critical patent/CN105461907A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/20Polyesters having been prepared in the presence of compounds having one reactive group or more than two reactive groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本发明涉及一种使用生物醇制备高性能不饱和聚酯树脂的方法,将生物醇,邻苯二甲酸酐,顺丁烯二酸酐加入反应器进行酯化聚合反应,当反应体系酸值达到30-40mgKOH/g,加入丙三醇/季戊四醇,然后继续进行酯化聚合反应至酸值达到10-15mgKOH/g,然后进行稀释处理即可得到不饱和聚酯树脂。其中,丙三醇/季戊四醇的加入时间可以是反应前期或者反应中期加入。本发明用丙三醇/季戊四醇为原料改性生物醇基不饱和聚酯树脂,可以有效改善生物醇中10%的轻组分对不饱和聚酯树脂性能的影响,提高其综合性能,使其满足风电,管道等高端聚酯玻璃钢应用要求,扩宽了生物基不饱和聚酯树脂的应用领域,提高了其使用价值。

Description

一种使用生物醇制备高性能不饱和聚酯树脂的方法
技术领域
本发明属于不饱和聚酯树脂合成技术领域,具体涉及一种利用三元醇或四元醇在合成阶段对树脂进行预交联,同时使用可再生资源生物醇制备高性能不饱和聚酯树脂的方法。
背景技术
近年来由于国际性的能源紧张,石油价格猛涨,影响了世界石油化学工业的发展,世界石油化学工业受到冲击。我国目前是全球第二大石油消费国,但是我国石油资源并不丰富,未来产量大幅度增长的可能性较小,因此利用数量巨大的可再生的生物资源转化和生产新型能源、新材料以及各种化工产品将成为21世纪的朝阳产业。
利用可再生的玉米资源解决聚酯工业的主要原料—二元醇,在国外已研究了近80年,但是一直没有成功。2005年,长春大成集团以自主技术率先在国际上成功完成了以玉米为原料的千吨级的乙二醇/丙二醇/丁二醇等多组分二元醇的工业化试验,在全世界化工界引起巨大反响。2007年长春大成集团第一条20万吨玉米醇项目投产,其产品全部被我国聚酯行业所接受。玉米醇工艺流程最引人注目之处在于:从玉米淀粉转化为山梨醇,在转化为多组分二元混合醇的转化率分别为1.7,1.1,0.9,因此,约1.7吨玉米就可得到约1吨左右的多组分二元混合醇,具有很高的经济价值和工业化前景。
不饱和聚酯广泛应用于工业、农业、国防和建筑等行业,尤其是玻璃纤维增强不饱和聚酯,由于其强度大、加工方便,发展很快。目前,聚酯玻璃钢中聚酯消耗量已占聚酯总消耗量的70%-80%。不饱和聚酯树脂一般是分子链上具有不饱和键的聚酯高分子,是由不饱和二元酸(酐)、饱和二元酸(酐)与二元醇或多元醇缩聚而成,并在缩聚反应结束后趁热加入一定量的乙烯基类单体,形成粘稠的液体树脂,在应用时加入引发剂、促进剂等,反应形成立体网状结构的高分子,是一种热固性树脂。不饱和聚酯树脂生产工艺简便,原料易得,耐化学腐蚀、力学性能、电性能等性能优良,并且可在常温常压下固化,具有良好的工艺性能。
生物醇是以丙二醇为主的丙二醇/乙二醇/丁二醇和其他轻组分的混合液产品,可以直接作为不饱和树脂工业中的原料。但是由于生物醇中含有约10%的轻组分混合液,使生产出来的不饱和聚酯树脂中含有少量的小分子物质,对最终产品的力学性能有一定的影响,具体表现为产品的拉伸强度,弯曲强度较低,测试值的离散系数大。因此目前直接使用生物醇制成的不饱和聚酯树脂只能使用在对聚酯玻璃钢力学性能要求不高的低端领域,无法满足风电,管道等高端应用领域的要求。
发明内容
本发明的目的在于选择丙三醇/季戊四醇作为多元醇,在反应前期或中期对使用生物醇合成的不饱和树脂体系进行预交联,减少反应体系中的小分子物质,制备高性能不饱和聚酯树脂。
本发明所采用的技术方案是:
一种使用生物醇制备高性能不饱和聚酯树脂的方法,将生物醇,邻苯二甲酸酐,顺丁烯二酸酐加入反应器进行酯化聚合反应,当反应体系酸值达到30-40mgKOH/g,加入丙三醇/季戊四醇,然后继续进行酯化聚合反应至酸值达到10-15mgKOH/g,并且利用苯乙烯对得到的产物进行稀释处理即可得到不饱和聚酯树脂。
其中,丙三醇/季戊四醇的加入时间可以是反应前期和生物醇一起加入反应釜中,也可以是反应中期加入,即生物醇和二元酸先进行反应,待酸值达到30-40mgKOH/g时,再加入丙三醇/季戊四醇。
优选在反应中期加入丙三醇/季戊四醇,因为反应前期加入丙三醇/季戊四醇得到的树脂产品力学性能相对较低,只能应用于手糊玻璃钢小制品中,该类市场在国内对树脂的定价较低。反应中期加入丙三醇/季戊四醇得到的树脂产品力学性能好,纯树脂浇铸体完全固化后拉伸强度大于70MPa,弯曲强度大于120MPa,断裂衍生率大于3.5%,可以广泛应用于国内高端玻璃钢市场领域。
原料比例为:生物醇:2500-2950g,邻苯二甲酸酐:2220-2680g,顺丁烯二酸酐:1470-1760g;丙三醇/季戊四醇的:200-500g。
优选的,丙三醇/季戊四醇的用量为200-350g之间。
其中丙三醇/季戊四醇在产品配方中的比例选择具有重要的作用。在上述配方中,如果加入比例低于200g,则多元醇的加入多树脂力学性能的提高没有显著的影响,如果加入比例高于500g,在后续的合成中很容易发生树脂自聚凝胶或者生成环状大分子导致凝胶的现象。
本专利在细化配方的基础上,引用丙三醇/季戊四醇作为多元醇,配合生物醇在不饱和聚酯树脂反应前期/中期加入到反应体系中,可以在生产中对聚酯分子链进行预交联,从而有效减少生物醇中轻组分带来的小分子物质,提高了生物醇基不饱和聚酯树脂的力学性能。同时由于丙三醇是从动植物脂的副产物中回收得到,生产成本低,价格便宜,因此丙三醇的引入在提高生物醇基不饱和聚酯树脂的力学性能的同时,也降低了产品的成本。通过丙三醇改性的生物醇基不饱和聚酯树脂,其力学性能完全满足风电,管道等高端应用领域的需求。
本发明所提供的使用生物醇制备高性能不饱和聚酯树脂的方法与现有技术相比具有以下优点:用丙三醇/季戊四醇为原料改性生物醇基不饱和聚酯树脂,可以有效改善生物醇中10%的轻组分对不饱和聚酯树脂性能的影响,提高其综合性能,使其满足风电,管道等高端聚酯玻璃钢应用要求,扩宽了生物基不饱和聚酯树脂的应用领域,提高了其使用价值。间接的扩大生物醇类的工业化生产,带动农村经济发展。同时,使用丙三醇/季戊四醇的引入,降低了产品的成本,使生物醇基不饱和聚酯树脂更有市场竞争力。
具体实施方式
下面结合具体实施例对本发明作进一步的说明,但不限定本发明的保护范围。
实施例1:
在反应釜内加入2900g生物醇和350g丙三醇,然后升温至80℃,加入2400g邻苯二甲酸酐和1580g顺丁烯二酸酐,保温半小时后继续升温至160℃,保温1小时后继续升温至200℃,保温至酸值达到10-15mgKOH/g。
苯乙烯稀释反应:当聚合物酸值达到10-15mgKOH/g时,降温反应釜至180℃,同时向反应釜中加入0.5g甲基氢醌,搅拌10分钟后,缓慢将反应釜内物料转移至含有0.5g甲基氢醌的3000g的苯乙烯稀释釜中,稀释釜保持搅拌并冷却,保持稀释釜中物料温度不高于60℃。稀释完成冷却至室温即得到不饱和聚酯树脂。调节产品粘度250mpa.s,添加1-1.2%浓度为1%钴作为促进剂,1-1.5%过氧化甲乙酮为固化剂。聚酯固化后拉伸强度达到70MPa,弯曲强度达到110MPa,断裂延伸率3%。
实施例2:
在反应釜内加入2900g生物醇,然后升温至80℃,加入2400g邻苯二甲酸酐和1580g顺丁烯二酸酐,保温半小时后继续升温至160℃,保温1小时后继续升温至200℃,保温至酸值达到30-40mgKOH/g之间,冷却反应釜温度至180℃,加入350g丙三醇,缓慢升温至200℃后,保温至酸值达到10-15mgKOH/g。
苯乙烯稀释反应:当聚合物酸值达到10-15mgKOH/g时,降温反应釜至180℃,同时向反应釜中加入0.5g甲基氢醌,搅拌10分钟后,缓慢将反应釜内物料转移至含有0.5g甲基氢醌的3000g的苯乙烯稀释釜中,稀释釜保持搅拌并冷却,保持稀释釜中物料温度不高于60℃。稀释完成冷却至室温即得到不饱和聚酯树脂。调节产品粘度250mpa.s,添加1-1.2%浓度为1%钴作为促进剂,1-1.5%过氧化甲乙酮为固化剂。聚酯固化后拉伸强度达到79MPa,弯曲强度达到125MPa,断裂延伸率4.5%。与实施案例1对比,树脂拉伸强度提高12.8%,弯曲强度提高13.6%,断裂衍生率提高50%。
实施案3:
在反应釜内加入3115g生物醇,然后升温至80℃,加入2400g邻苯二甲酸酐和1580g顺丁烯二酸酐,保温半小时后继续升温至160℃,保温1小时后继续升温至200℃,保温至酸值达到30-40mgKOH/g,冷却反应釜温度至180℃,加入100g丙三醇,缓慢升温至200℃后,保温至酸值达到10-15mgKOH/g。
苯乙烯稀释反应:当聚合物酸值达到10-15mgKOH/g时,降温反应釜至180℃,同时向反应釜中加入0.5g甲基氢醌,搅拌10分钟后,缓慢将反应釜内物料转移至含有0.5g甲基氢醌的3000g的苯乙烯稀释釜中,稀释釜保持搅拌并冷却,保持稀释釜中物料温度不高于60℃。稀释完成冷却至室温即得到不饱和聚酯树脂。调节产品粘度250mpa.s,添加1-1.2%浓度为1%钴作为促进剂,1-1.5%过氧化甲乙酮为固化剂。聚酯固化后拉伸强度达到70MPa,弯曲强度达到108MPa,断裂延伸率2.8%。
实施案4:
在反应釜内加入2950g生物醇,然后升温至80℃,加入2400g邻苯二甲酸酐和1580g顺丁烯二酸酐,保温半小时后继续升温至160℃,保温1小时后继续升温至200℃,保温至酸值达到30-40mgKOH/g,冷却反应釜温度至180℃,加入200g丙三醇,缓慢升温至200℃后,保温至酸值达到10-15mgKOH/g。
苯乙烯稀释反应:当聚合物酸值达到10-15mgKOH/g时,降温反应釜至180℃,同时向反应釜中加入0.5g甲基氢醌,搅拌10分钟后,缓慢将反应釜内物料转移至含有0.5g甲基氢醌的3000g的苯乙烯稀释釜中,稀释釜保持搅拌并冷却,保持稀释釜中物料温度不高于60℃。稀释完成冷却至室温即得到不饱和聚酯树脂。调节产品粘度250mpa.s,添加1-1.2%浓度为1%钴作为促进剂,1-1.5%过氧化甲乙酮为固化剂。聚酯固化后拉伸强度达到78MPa,弯曲强度达到120MPa,断裂延伸率3.5%。
实施案5:
在反应釜内加入2810g生物醇,然后升温至80℃,加入2400g邻苯二甲酸酐和1580g顺丁烯二酸酐,保温半小时后继续升温至160℃,保温1小时后继续升温至200℃,保温至酸值达到30-40mgKOH/g,冷却反应釜温度至180℃,加入500g丙三醇,缓慢升温至200℃后,保温至酸值达到10-15mgKOH/g。
苯乙烯稀释反应:当聚合物酸值达到10-15mgKOH/g时,降温反应釜至180℃,同时向反应釜中加入0.5g甲基氢醌,搅拌10分钟后,缓慢将反应釜内物料转移至含有0.5g甲基氢醌的3000g的苯乙烯稀释釜中,稀释釜保持搅拌并冷却,保持稀释釜中物料温度不高于60℃。稀释完成冷却至室温即得到不饱和聚酯树脂。调节产品粘度250mpa.s,添加1-1.2%浓度为1%钴作为促进剂,1-1.5%过氧化甲乙酮为固化剂。聚酯固化后拉伸强度达到75MPa,弯曲强度达到130MPa,断裂延伸率4.1%。
实施案6:
在反应釜内加入2780g生物醇,然后升温至80℃,加入2400g邻苯二甲酸酐和1580g顺丁烯二酸酐,保温半小时后继续升温至160℃,保温1小时后继续升温至200℃,保温至酸值达到30-40mgKOH/g,冷却反应釜温度至180℃,加入600g丙三醇,缓慢升温至200℃后,保温至酸值达到10-15mgKOH/g。
苯乙烯稀释反应:当聚合物酸值达到10-15mgKOH/g时,降温反应釜至180℃,同时向反应釜中加入0.5g甲基氢醌,搅拌10分钟后,缓慢将反应釜内物料转移至含有0.5g甲基氢醌的3000g的苯乙烯稀释釜中,稀释釜保持搅拌并冷却,保持稀释釜中物料温度不高于60℃。稀释完成冷却至室温即得到不饱和聚酯树脂。调节产品粘度时发现树脂体系粘度不均匀,有细小颗粒产生,不能用于后续测试。这是由于过多的丙三醇加入,在树脂体系中产生了大量环状大分子。
实施例7:
在反应釜内加入2900g生物醇,然后升温至80℃,加入2400g邻苯二甲酸酐和1580g顺丁烯二酸酐,保温半小时后继续升温至160℃,保温1小时后继续升温至200℃,保温至酸值达到30-40mgKOH/g之间,冷却反应釜温度至180℃,加入340g季戊四醇,缓慢升温至200℃后,保温至酸值达到10-15mgKOH/g。
苯乙烯稀释反应:当聚合物酸值达到10-15mgKOH/g时,降温反应釜至180℃,同时向反应釜中加入0.5g甲基氢醌,搅拌10分钟后,缓慢将反应釜内物料转移至含有0.5g甲基氢醌的3000g的苯乙烯稀释釜中,稀释釜保持搅拌并冷却,保持稀释釜中物料温度不高于60℃。稀释完成冷却至室温即得到不饱和聚酯树脂。调节产品粘度250mpa.s,添加1-1.2%浓度为1%钴作为促进剂,1-1.5%过氧化甲乙酮为固化剂。聚酯固化后拉伸强度达到78MPa,弯曲强度达到135MPa,断裂延伸率4.7%。
在实施例1中,丙三醇的是在反应前期和生物醇一起加入到反应釜中进行反应,此时丙三醇容易与小分子的二元酸反应生成低分子量的环状聚合物,该类聚合物的存在会降低最终不饱和树脂制品的力学性能。所以导致丙三醇的加入对原树脂配方的力学性能没有任何提高。实施例2,4,5,7中,生物醇和二元酸先进行反应,待酸值达到30-40mgKOH/g时,聚合物数均分子量为1200-1600之间,然后加入丙三醇/季戊四醇对树脂体系中生成的小分子进行交联。该工艺可以有效提高最终产品的力学性能,但是由于原材料的分步加入,会导致生产周期延长,会增加一定的生产成本。
实施例1中得到的树脂由于力学性能相对较低,只能应用于手糊玻璃钢小制品中,该类市场在国内对树脂的定价较低。实施例2,4,5,7中得到的树脂,由于力学性能好,可以广泛应用于国内高端玻璃钢市场领域,综合生产成本和树脂在市场中的定价,多元醇在反应中期加入的生产工艺,会给企业带来大的利润回报。
以上所述的利用丙三醇或四元醇在合成阶段对树脂进行预交联,同时使用可再生资源生物醇制备高性能不饱和聚酯树脂的方法,仅是本发明的较佳实施例,并非对发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用于限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

1.一种使用生物醇制备高性能不饱和聚酯树脂的方法,其特征在于:将生物醇,邻苯二甲酸酐,顺丁烯二酸酐加入反应器进行酯化聚合反应,当反应体系酸值达到30-40mgKOH/g,加入丙三醇/季戊四醇,然后继续进行酯化聚合反应至酸值达到10-15mgKOH/g,并且利用苯乙烯对得到的产物进行稀释处理即可得到不饱和聚酯树脂。
2.根据权利要求1所述的一种使用生物醇制备高性能不饱和聚酯树脂的方法,其特征在于:丙三醇/季戊四醇的加入时间可以是反应前期和生物醇一起加入反应釜中,也可以是反应中期加入,即生物醇和二元酸先进行反应,待酸值达到30-50mgKOH/g时,再加入丙三醇/季戊四醇。
3.根据权利要求2所述的一种使用生物醇制备高性能不饱和聚酯树脂的方法,其特征在于:在反应中期加入丙三醇/季戊四醇。
4.根据权利要求1-3任一项所述的一种使用生物醇制备高性能不饱和聚酯树脂的方法,其特征在于:原料比例为:生物醇:2500-2950g,邻苯二甲酸酐:2220-2680g,顺丁烯二酸酐:1470-1760g;丙三醇/季戊四醇的:200-500g。
5.根据权利要求4所述的一种使用生物醇制备高性能不饱和聚酯树脂的方法,其特征在于:丙三醇/季戊四醇的用量为200-350g。
6.根据权利要求4所述的一种使用生物醇制备高性能不饱和聚酯树脂的方法,其特征在于:丙三醇/季戊四醇的用量为200g。
7.根据权利要求4所述的一种使用生物醇制备高性能不饱和聚酯树脂的方法,其特征在于:丙三醇/季戊四醇的用量为350g。
8.根据权利要求4所述的一种使用生物醇制备高性能不饱和聚酯树脂的方法,其特征在于:丙三醇/季戊四醇的用量为500g。
9.使用权利要求1的方法制备的的不饱和聚酯树脂的应用,其特征在于:丙三醇/季戊四醇在反应前期加入时制得的不饱和聚酯树脂应用于手糊玻璃钢小制品中。
10.使用权利要求1的方法制备的的不饱和聚酯树脂的应用,其特征在于:丙三醇/季戊四醇在反应中期加入时制得的不饱和聚酯树脂应用于高端玻璃钢。
CN201511033073.1A 2015-12-30 2015-12-30 一种使用生物醇制备高性能不饱和聚酯树脂的方法 Pending CN105461907A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511033073.1A CN105461907A (zh) 2015-12-30 2015-12-30 一种使用生物醇制备高性能不饱和聚酯树脂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511033073.1A CN105461907A (zh) 2015-12-30 2015-12-30 一种使用生物醇制备高性能不饱和聚酯树脂的方法

Publications (1)

Publication Number Publication Date
CN105461907A true CN105461907A (zh) 2016-04-06

Family

ID=55600103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511033073.1A Pending CN105461907A (zh) 2015-12-30 2015-12-30 一种使用生物醇制备高性能不饱和聚酯树脂的方法

Country Status (1)

Country Link
CN (1) CN105461907A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880994A (zh) * 2021-04-19 2022-01-04 广东汇泉联骏化学工业有限公司 一种改性气干型抗压不饱和聚酯树脂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333041A1 (en) * 2002-02-05 2003-08-06 Resolution Research Nederland B.V. Hardenable unsaturated polyester compositions
CN101033290A (zh) * 2007-03-16 2007-09-12 东华大学 用再生生物原料制取的树脂二元醇制备不饱和树脂的方法
CN101068855A (zh) * 2004-11-30 2007-11-07 旭化成化学株式会社 缩聚聚合物及其成型体的制造方法和制造装置
CN101514241A (zh) * 2008-12-31 2009-08-26 上海新天和树脂有限公司 人造石英石用固化树脂及制备的人造石英石
CN101560293A (zh) * 2009-05-18 2009-10-21 上海新天和树脂有限公司 利用生物醇制备的拉挤不饱和聚酯树脂及其制备方法
CN104311749A (zh) * 2014-10-29 2015-01-28 福建永悦科技有限公司 一种聚酯混凝土用不饱和聚酯树脂及其制备方法
CN105504245A (zh) * 2015-12-18 2016-04-20 广东工业大学 一种可uv-led光固化不饱和聚酯胶衣树脂及其涂料制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333041A1 (en) * 2002-02-05 2003-08-06 Resolution Research Nederland B.V. Hardenable unsaturated polyester compositions
CN101068855A (zh) * 2004-11-30 2007-11-07 旭化成化学株式会社 缩聚聚合物及其成型体的制造方法和制造装置
CN101033290A (zh) * 2007-03-16 2007-09-12 东华大学 用再生生物原料制取的树脂二元醇制备不饱和树脂的方法
CN101514241A (zh) * 2008-12-31 2009-08-26 上海新天和树脂有限公司 人造石英石用固化树脂及制备的人造石英石
CN101560293A (zh) * 2009-05-18 2009-10-21 上海新天和树脂有限公司 利用生物醇制备的拉挤不饱和聚酯树脂及其制备方法
CN104311749A (zh) * 2014-10-29 2015-01-28 福建永悦科技有限公司 一种聚酯混凝土用不饱和聚酯树脂及其制备方法
CN105504245A (zh) * 2015-12-18 2016-04-20 广东工业大学 一种可uv-led光固化不饱和聚酯胶衣树脂及其涂料制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880994A (zh) * 2021-04-19 2022-01-04 广东汇泉联骏化学工业有限公司 一种改性气干型抗压不饱和聚酯树脂及其制备方法

Similar Documents

Publication Publication Date Title
CN102086261B (zh) 多元醇共聚酯的制备方法
CN102336980A (zh) 用于聚氯乙烯电缆料的加工改性剂
CN111808333A (zh) 一种高抗拉强度的复合多糖可食膜及其制备方法
CN102786657B (zh) 一种生物质基双组分聚氨酯的制备方法和应用
CN105461907A (zh) 一种使用生物醇制备高性能不饱和聚酯树脂的方法
CN104497609B (zh) 一种全纤维可降解复合材料的制备方法
CN105086162B (zh) 麻纤维增强聚丙烯工程化复合材料及其制备方法和应用
CN102060985B (zh) 片状或团状模塑料用不饱和聚酯树脂的制备方法
CN102775575B (zh) 一种双组分聚氨酯的制备方法和应用
CN110591272B (zh) 一种高强度耐腐蚀玻璃钢冷却用树脂及其制备方法
CN103570937B (zh) 一种酚醛树脂/mc尼龙复合材料及其制备方法
CN102558800A (zh) 阻燃树脂
CN102603993A (zh) 一种缠绕用不饱和聚酯树脂及其制备方法
CN101613479A (zh) 溶解细菌纤维素的方法
CN102585645A (zh) 一种防伪电化铝涂料及其制备方法
CN102153972A (zh) 用于复杂型芯组合安装的常温快干型粘合剂及制备方法
CN101333767A (zh) 一种微波原位表面改性植物纤维的方法
CN112063277A (zh) 一种金属卷材用树脂及其制备方法
CN105175695A (zh) 醇酸树脂的合成方法
CN111100266A (zh) 一种环保型抗紫外聚酯及其制备方法
CN115584186B (zh) 一种水性环氧硅钢片自粘结涂料及其制备方法
CN102887982B (zh) 一种用于挤拉玻璃钢工艺的酚醛树脂及其制备方法
CN113337131B (zh) 一种高强度、抗紫外线大豆蛋白膜及其制备方法与应用
CN114163930B (zh) 一种氢化松香侧链型二元酸、由其制备的松香侧链型类玻璃高分子及其制备方法
CN113861462B (zh) 一种环保包装材料的制备方法及包装材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160406