CN105452522A - 封装的磁控管 - Google Patents

封装的磁控管 Download PDF

Info

Publication number
CN105452522A
CN105452522A CN201480044214.7A CN201480044214A CN105452522A CN 105452522 A CN105452522 A CN 105452522A CN 201480044214 A CN201480044214 A CN 201480044214A CN 105452522 A CN105452522 A CN 105452522A
Authority
CN
China
Prior art keywords
magnetron
pole piece
magnet
packaged material
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480044214.7A
Other languages
English (en)
Other versions
CN105452522B (zh
Inventor
布赖恩·T·韦斯特
罗杰·M·约翰逊
迈克尔·S·考克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN105452522A publication Critical patent/CN105452522A/zh
Application granted granted Critical
Publication of CN105452522B publication Critical patent/CN105452522B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/10Magnet systems for directing or deflecting the discharge along a desired path, e.g. a spiral path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/04Cathodes
    • H01J23/05Cathodes having a cylindrical emissive surface, e.g. cathodes for magnetrons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/50Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
    • H01J25/52Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode
    • H01J25/58Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field with an electron space having a shape that does not prevent any electron from moving completely around the cathode or guide electrode having a number of resonators; having a composite resonator, e.g. a helix
    • H01J25/587Multi-cavity magnetrons
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/01Generation of oscillations using transit-time effects using discharge tubes
    • H03B9/10Generation of oscillations using transit-time effects using discharge tubes using a magnetron
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C3/00Angle modulation
    • H03C3/30Angle modulation by means of transit-time tube
    • H03C3/32Angle modulation by means of transit-time tube the tube being a magnetron
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03CMODULATION
    • H03C5/00Amplitude modulation and angle modulation produced simultaneously or at will by the same modulating signal
    • H03C5/02Amplitude modulation and angle modulation produced simultaneously or at will by the same modulating signal by means of transit-time tube
    • H03C5/04Amplitude modulation and angle modulation produced simultaneously or at will by the same modulating signal by means of transit-time tube the tube being a magnetron

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明的实施方式大体提供由耐受热及水的材料封装的磁控管。所述封装的磁控管被描述于上以及所附附件中。在一个实施方式中,整个磁控管被封装。在另一个实施方式中,磁控管包含磁极片,且磁极片未被封装材料覆盖。

Description

封装的磁控管
技术领域
本文描述的实施方式大体涉及用于物理气相沉积处理中的磁控管。特定而言,本文描述的实施方式涉及封装的磁控管。
背景技术
物理气相沉积(PVD),或者称为溅射,为在集成电路制造中沉积金属层及相关材料的方法。物理气相沉积已被发展来沉积用于互连的平坦金属层。工业用的物理气相沉积通常利用溅射工作气体,比如氩,的等离子体,用氩离子轰击负偏压的靶材以溅射靶材材料的原子,之后所述靶材材料的原子使基板涂布有靶材材料层。通常通过直流或射频电压、微波、平面磁控管或技术的组合来于处理腔室中形成等离子体排放物(plasmadischarge)。
平面磁控***通常使用设置于靶材上方的旋转磁控管以及靶材与基板之间的直流偏压和/或耦合到靶材与基板之间的空间中的射频源以形成等离子体。磁控管为磁体组件,磁体组件提供接近靶材的溅射表面的磁场线。靶材与等离子体区域之间的负偏压使离子朝向靶材加速,以从靶材撞出靶材材料。来自磁控管的磁场将自由电子,包含从靶材材料移出的次级电子,限制在靶材附近以通过自由电子最大化与溅射的材料的电离碰撞。磁控管通常包含一或更多个磁体,所述一或更多个磁体在靶材的背侧(亦即,非溅射表面)附近旋转,以在靶材的表面附近均匀地分散磁场,以造成更均匀的靶材材料溅射。
PVD处理中所使用的等离子体可加热靶材。若磁控管和/或靶材被加热至高于指定的处理温度,则高温可通过改变靶材上的溅射速率或溅射均匀性而改变处理的效能并减短磁控管与靶材的使用寿命。传统上,通过使背侧暴露于冷却流体来冷却靶材,冷却流体例如去离子水容纳于磁控管腔中。磁控管设置于磁控管腔中且磁体及支撑结构可能被热或冷却腐蚀。此外,以开放结构操控磁控管可能有问题且可能导致硬件处理问题,因为掉落的硬件可能卡在磁体的内部结构中且难以移除。
因此,需要改进的磁控管。
发明内容
本文所述的实施方式大致上提供由耐受热和水的材料封装的磁控管。在一个实施方式中,整个磁控管被封装。在另一个实施方式中,磁控管包含数个磁极片,且这些磁极片未被封装材料覆盖。
在一个实施方式中,揭示一种磁控管。磁控管包含多个磁体、第一磁极片、第二磁极片及封装材料,其中所述多个磁体的每个磁体具有第一端及第二端,其中第一磁极片耦接至这些磁体的第一端,其中第二磁极片耦接至这些磁体的第二端,封装材料覆盖所述多个磁体。
在另一个实施方式中,揭示一种磁控管。磁控管包含多个磁体,其中所述多个磁体的每个磁体具有第一端及第二端。磁控管进一步包含背板,且背板耦接至这些磁体的第一端。磁控管进一步包含第一磁极片,且第一磁极片耦接至这些磁体的第二端。磁控管进一步包含第一封装材料,第一封装材料覆盖所述多个磁体。
在另一个实施方式中,揭示一种磁控管。磁控管包含背板、第一磁极片、第二磁极片、多个磁体及第一封装材料,所述多个磁体设置于背板与第一磁极片之间,第一封装材料覆盖所述多个磁体。
附图说明
为了能详细了解本揭示案的上述特征,可通过参照实施方式而得到以上简要概述的本揭示案的更特定描述,这些实施方式的一些实施方式绘示于附图中。然而,应注意到,附图仅绘示典型实施方式且因此不应被视为对本揭示案的范围的限制,因为本揭示案可允许其他等同有效的实施方式。
图1为根据一个实施方式的物理气相沉积腔室的横截面视图。
图2A至图2C为根据一个实施方式的磁控管的正视图。
图3A至图3C绘示根据一个实施方式的磁控管。
为了促进了解,尽可能使用了相同的元件符号来表示各图中共用的相同元件。应考虑到在一个实施方式中揭示的元件可有益地用于其他实施方式而无需特定详述。
具体实施方式
本文所述的实施方式大体提供磁控管,所述磁控管由耐受热及水的材料封装。图1为根据一个实施方式的PVD腔室10的横截面视图。腔室10包含真空腔室主体12,真空腔室主体12经由陶瓷绝缘体14密封至溅射靶材16,溅射靶材16具有至少一前面,所述至少一前面由待溅射沉积于晶片18上的材料组成,所述材料通常为金属,而晶片18通过晶片夹22而被固持于加热器基座电极20上。取代晶片夹22,盖环或静电夹盘可并入基座20中,或者晶片可放置于基座20上而不被固定就位。靶材材料可为铝、铜、钛、钽、钴、镍、钼、含有低于10重量%的合金元素的这些金属的合金、或其他适于直流溅射的金属及金属合金。在另一方面,射频溅射可用于从介电靶材溅射材料。
固持于腔室主体12内的接地屏蔽件24保护腔室壁12免受溅射的材料的损害且提供接地阳极。可使用额外的浮动屏蔽件。射频电源28可经由交流电容式耦合电路30耦合至基座电极20,以允许基座电极20在存在等离子体时建立直流自偏压。负直流自偏压将在高密度等离子体中所产生的带正电溅射离子吸引深入高级集成电路的高深宽比孔特征。
第一气源34通过质量流量控制器36供应溅射工作气体,比如氩,至腔室主体12。举例而言,在氮化钛或氮化钽的反应性金属氮化物溅射中,从另一个气源38通过另一个质量流量控制器40额外地供应氮至腔室中。或者,可供应氧以产生氧化物,比如Al2O3。气体可被准许从腔室主体12内的不同位置进入。举例而言,位于腔室主体12的底部附近的一或更多个入口管在屏蔽件24的背后供应气体。气体穿过屏蔽件24的底部处的孔隙,或穿过在盖环22与屏蔽件24与基座电极20之间形成的间隙42。通过宽泵口连接至腔室主体12的真空泵***44维持腔室主体12的内部处于低压。基于计算机的控制器48控制反应器,反应器包含电源26、28及质量流量控制器36、40。
为了提供有效率的溅射,磁控管50设置于靶材16上方的磁控管腔64中。磁控管50可包含由背板56耦接的多个相反的磁体52、54,以在腔室主体12内在所述多个磁体52、54的邻近处产生磁场。磁控管50为小型、嵌套(nested)且不平衡的,具有一或更多个内磁体52,一或更多个内磁体52被具有更大磁场强度的相反的外磁体54围绕。内磁体52和外磁体54可被U型磁体取代。在一个实施方式中,磁控管50包含多个U型磁体。磁场捕捉电子并且,为了电荷中性,离子密度亦增加以在腔室主体12内邻近磁控管50处形成高密度等离子体区域58。为了达成均匀溅射至晶片18上,磁控管50通常通过由电机65驱动的轴62而绕靶材16的中心60旋转。
为了抵消传输至靶材的大量功率,靶材16的背面可被密封至背侧冷却剂腔室66。冷却剂比如冷却的去离子水68循环通过冷却剂腔室66的内部以冷却靶材16。磁控管50浸入冷却水68中,且靶材旋转轴62经由旋转密封件70通过冷却剂腔室66。因为在靶材16中产生的热及冷却剂比如去离子水68,磁控管50可能被腐蚀。为了避免磁控管50的腐蚀,磁控管50可由封装材料90封装。在一个实施方式中,多个磁控管可设置于磁控管腔64中。磁控管可分别地被封装,或磁控管可被封装在一起。
封装材料90可为任何耐受热和水的材料,比如环氧树脂(epoxy)、氨基甲酸乙酯(urethanes)、橡胶或类似材料。在一个实施方式中,封装材料90包含双组分环氧树脂(twopartepoxy)。封装材料90可为不透明或透明的且可为黑色或其他颜色。如图1所示,封装材料90可覆盖整个磁控管50。或者,磁控管50的面向靶材16的部分可被暴露。
位置标志106比如磁体可固定至背板56,且位置传感器108比如磁霍尔传感器可设置于磁控管50之上,以允许当旋转磁体52、54通过位置传感器108下方或不通过位置传感器108下方任一情况时控制器48确定磁控管50的当前径向位置。
图2A至图2C为根据一个实施方式的磁控管200的正视图。磁控管200可为图1中所述的磁控管50。磁控管200包含背板202、多个U型磁体204、第一磁极片206及第二磁极片208。背板202可由黄铜制成,且磁极片206、208可由不锈钢制成。多个磁体204可设置于背板202与第一和第二磁极片206、208之间。第一磁极片206可为环(loop),且U型磁体204的每个U型磁体的一端205设置于第一磁极片206上。第二磁极片208可为板,且U型磁体204的每个U型磁体的另一端207设置于第二磁极片208上。第二磁极片208可被第一磁极片206围绕。第一及第二磁极片206、208可为共平面的。因为磁极片206、208与靶材16的背面之间的距离非常小,举例而言约1mm,所以磁极片206、208可不被封装材料覆盖。磁控管200的顶部及侧部皆被封装材料(未图示)覆盖。
如图2B所示,磁极片206、208并未被封装材料覆盖。磁极片206、208之间的间隙可被封装材料(未图示)覆盖,所述封装材料可由与覆盖磁控管200的顶部及侧部的封装材料相同的材料制成。图2C绘示被封装材料210、211覆盖的磁控管200。封装材料210、211可由不透明材料制成。在一个实施方式中,封装材料210、211由黑色不透明材料制成。如图2C所示,磁极片206、208并未被封装材料210、211覆盖。磁极片206、208之间的间隙被封装材料211覆盖,且封装材料211并非与磁极片206、208共平面。封装材料211从平面凹陷,磁极片206、208设置于所述平面上。多个背脊212可设置于封装材料211上。多个背脊212可由与封装材料210、211相同的材料制成。当磁控管200在填充有冷却剂68的冷却剂腔室66内旋转时,凹陷的封装材料211及多个背脊212增加冷却流体紊流且改进靶材16的冷却。
图3A为根据一个实施方式的磁控管300的透视图。磁控管300具有背板302、第一磁极片306及设置于背板302与第一磁极片306之间的多个磁体304。如图3A所示,磁体304可为圆柱状。每个磁体304具有第一端308及第二端310。第一端308耦接至背板302且第二端310耦接至第一磁极片306。第二磁极片(未图示)可与第一磁极片共平面且第二磁极片可被第一磁极片306围绕。多个磁体(未图示)可设置于背板302与第二磁极片之间。
图3B为根据一个实施方式的磁控管300的透视图。如图3B所示,磁控管300以封装材料312封装。封装材料312可由与封装材料210相同的材料制成。封装材料312可覆盖磁体304的顶部及侧部。图3C为根据一个实施方式的磁控管300的底视图。如图3C所示,磁控管300包含第二磁极片314,第二磁极片314被第一磁极片306围绕,且第二封装材料316覆盖第一磁极片306与第二磁极片314之间的间隙。多个磁体(未图示)可设置于第二磁极片314与背板302之间。第一磁极片302与第二磁极片314可为共平面的,且第二封装材料316可从平面凹陷,第一及第二磁极片302、314设置于所述平面上。多个背脊318可形成于第二封装材料316上。多个背脊318可由与封装材料312、316相同的材料制成。当磁控管300在填充有冷却剂68的冷却剂腔室66内旋转时,凹陷的第二封装材料316和多个背脊318增加冷却流体紊流且改进靶材16的冷却。
封装的磁控管可用以辅助PVD处理。于PVD处理期间封装的磁控管可在冷却剂中旋转。因为封装材料耐受热及水,所以磁控管由封装材料保护以免于受腐蚀。
针对刚性的任一磁控管部分,组件能被模制(molded)或装入(potted)密封物(encapsulant)中。模制部件必须适配在源组件中的腔内,使得自由旋转为可能的。封装处理包含制作模具以将组件适配进入模具且然后浇注、注入或压缩封装材料进入组件,以产生完全地或部分地包装的结构。密封物在来源上可适于环境,但可由双组分环氧树脂、树脂或弹性体、热塑性塑料或弹性体或热固化材料制成。材料较佳地为不透明的。所述材料可选择性地以填充材料来填充,以调整密度、结构或成本特性。填充物可包含纤维(玻璃、芳族聚酰胺、碳等等)或粉末(玻璃、滑石等等)或微球或等同物。若需要的话,可将通道模制到密封物中,或随后加工通道,以允许水流动通过主体。此外,可将特征模制或加工在表面中,以增强水循环。
通过消除在开放组件中能吸引/捕捉工具及硬件的多个腔,封装的磁控管提供减低或消除腐蚀、按照需要引导冷却流体流、以及改进操控及提高安全的优点。
虽然前述内容针对本发明的实施方式,但在不背离本发明的基本范围的情况下,可设计本发明的其他及进一步的实施方式,且本发明的范围由以下的权利要求书确定。

Claims (15)

1.一种磁控管,包括:
多个磁体,其中所述多个磁体的每个磁体具有第一端及第二端;
第一磁极片,其中所述第一磁极片耦接至所述磁体的所述第一端;
第二磁极片,其中所述第二磁极片耦接至所述磁体的所述第二端;及
第一封装材料,所述第一封装材料覆盖所述多个磁体。
2.如权利要求1所述的磁控管,其中所述第一封装材料耦接至所述第一磁极片。
3.如权利要求1所述的磁控管,其中所述第一封装材料选自环氧树脂、氨基甲酸乙酯及橡胶中的至少一种。
4.如权利要求1所述的磁控管,其中所述第二磁极片被所述第一磁极片围绕。
5.如权利要求4所述的磁控管,其中间隙形成于所述第一磁极片与第二磁极片之间,且第二封装材料覆盖所述间隙。
6.如权利要求5所述的磁控管,进一步包括多个背脊,所述多个背脊设置于所述第二封装材料上。
7.一种磁控管,包括:
多个磁体,其中所述多个磁体的每个磁体具有第一端及第二端;
背板,其中所述背板耦接至所述磁体的所述第一端;
第一磁极片,其中所述第一磁极片耦接至所述磁体的所述第二端;及
第一封装材料,所述第一封装材料覆盖所述多个磁体。
8.如权利要求7所述的磁控管,其中所述第一封装材料选自环氧树脂、氨基甲酸乙酯及橡胶中的至少一种。
9.如权利要求7所述的磁控管,进一步包括第二磁极片,其中所述第二磁极片被所述第一磁极片围绕。
10.如权利要求9所述的磁控管,进一步包括第二封装材料,所述第二封装材料覆盖所述第一磁极片与所述第二磁极片之间的间隙。
11.如权利要求10所述的磁控管,进一步包括多个背脊,所述多个背脊设置于所述第二封装材料上。
12.一种磁控管,包括:
背板;
第一磁极片;
第二磁极片;
多个磁体,所述多个磁体设置于所述背板与所述第一磁极片之间;及
第一封装材料,所述第一封装材料覆盖所述多个磁体。
13.如权利要求12所述的磁控管,其中所述第二磁极片被所述第一磁极片围绕,且所述第一磁极片和所述第二磁极片为共平面的。
14.如权利要求13所述的磁控管,进一步包括第二封装材料,所述第二封装材料覆盖所述第一磁极片与所述第二磁极片之间的间隙。
15.如权利要求14所述的磁控管,进一步包括多个背脊,所述多个背脊设置于所述第二封装材料上。
CN201480044214.7A 2013-08-14 2014-07-21 封装的磁控管 Active CN105452522B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361866027P 2013-08-14 2013-08-14
US61/866,027 2013-08-14
PCT/US2014/047481 WO2015023400A1 (en) 2013-08-14 2014-07-21 Encapsulated magnetron

Publications (2)

Publication Number Publication Date
CN105452522A true CN105452522A (zh) 2016-03-30
CN105452522B CN105452522B (zh) 2018-07-24

Family

ID=52466349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480044214.7A Active CN105452522B (zh) 2013-08-14 2014-07-21 封装的磁控管

Country Status (6)

Country Link
US (1) US9754771B2 (zh)
JP (1) JP6480445B2 (zh)
KR (1) KR102158659B1 (zh)
CN (1) CN105452522B (zh)
TW (1) TWI645439B (zh)
WO (1) WO2015023400A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433885A (zh) * 2017-12-11 2020-07-17 应用材料公司 具有增强靶材冷却设置的磁电管

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462394B2 (en) * 2018-09-28 2022-10-04 Taiwan Semiconductor Manufacturing Co., Ltd. Physical vapor deposition apparatus and method thereof
US11488814B2 (en) * 2018-10-29 2022-11-01 Taiwan Semiconductor Manufacturing Co., Ltd. Permeance magnetic assembly
US12020965B2 (en) * 2020-10-21 2024-06-25 Applied Materials, Inc. Magnetic holding structures for plasma processing applications
US11469080B1 (en) * 2021-05-24 2022-10-11 Applied Materials, Inc. Magnetron assembly having coolant guide for enhanced target cooling

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042101A (en) * 1975-11-04 1977-08-16 Standard Conveyor Company Accumulating conveyor
US5320728A (en) * 1990-03-30 1994-06-14 Applied Materials, Inc. Planar magnetron sputtering source producing improved coating thickness uniformity, step coverage and step coverage uniformity
US5242566A (en) * 1990-04-23 1993-09-07 Applied Materials, Inc. Planar magnetron sputtering source enabling a controlled sputtering profile out to the target perimeter
US5894199A (en) * 1997-01-31 1999-04-13 Litton Systems, Inc. Tertiary field tuning of positive anode magnetron
US6306265B1 (en) * 1999-02-12 2001-10-23 Applied Materials, Inc. High-density plasma for ionized metal deposition capable of exciting a plasma wave
US6440282B1 (en) * 1999-07-06 2002-08-27 Applied Materials, Inc. Sputtering reactor and method of using an unbalanced magnetron
US6228236B1 (en) 1999-10-22 2001-05-08 Applied Materials, Inc. Sputter magnetron having two rotation diameters
US6663754B2 (en) * 2001-04-13 2003-12-16 Applied Materials, Inc. Tubular magnet as center pole in unbalanced sputtering magnetron
US7018515B2 (en) * 2004-03-24 2006-03-28 Applied Materials, Inc. Selectable dual position magnetron
US7686928B2 (en) 2004-09-23 2010-03-30 Applied Materials, Inc. Pressure switched dual magnetron
CN1944707A (zh) * 2006-09-27 2007-04-11 中国科学院上海光学精密机械研究所 磁控溅射镀膜机的永磁枪靶装置
US8557094B2 (en) * 2006-10-05 2013-10-15 Applied Materials, Inc. Sputtering chamber having auxiliary backside magnet to improve etch uniformity and magnetron producing sustained self sputtering of ruthenium and tantalum
US7767064B2 (en) 2006-10-27 2010-08-03 Applied Materials, Inc. Position controlled dual magnetron
CN201301339Y (zh) * 2008-10-17 2009-09-02 湖南玉丰真空科学技术有限公司 一种高功率平面磁控溅射阴极
CN201309962Y (zh) * 2008-11-10 2009-09-16 皇明太阳能集团有限公司 通过防护处理的磁控溅射圆柱靶
US8580094B2 (en) * 2010-06-21 2013-11-12 Applied Materials, Inc. Magnetron design for RF/DC physical vapor deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433885A (zh) * 2017-12-11 2020-07-17 应用材料公司 具有增强靶材冷却设置的磁电管
CN111433885B (zh) * 2017-12-11 2024-04-26 应用材料公司 具有增强靶材冷却设置的磁电管

Also Published As

Publication number Publication date
CN105452522B (zh) 2018-07-24
US20150048735A1 (en) 2015-02-19
TWI645439B (zh) 2018-12-21
US9754771B2 (en) 2017-09-05
KR20160042084A (ko) 2016-04-18
JP2016528389A (ja) 2016-09-15
TW201508805A (zh) 2015-03-01
WO2015023400A1 (en) 2015-02-19
JP6480445B2 (ja) 2019-03-13
KR102158659B1 (ko) 2020-09-22

Similar Documents

Publication Publication Date Title
KR102188022B1 (ko) 구성가능한 가변 위치 폐쇄 트랙 마그네트론
CN105452522A (zh) 封装的磁控管
US20110220494A1 (en) Methods and apparatus for magnetron metallization for semiconductor fabrication
US9249500B2 (en) PVD RF DC open/closed loop selectable magnetron
WO2010068624A2 (en) Chamber shield for vacuum physical vapor deposition
WO2016018505A1 (en) Magnetron assembly for physical vapor deposition chamber
WO2010068625A2 (en) Shaped anode and anode-shield connection for vacuum physical vapor deposition
KR20180010315A (ko) 물리 기상 증착 프로세스를 통해 유전체 막들을 증착하기 위한 방법들
WO2005095666A2 (en) Magnetically enhanced capacitive plasma source for ionized physical vapour deposition-ipvd
KR101209652B1 (ko) 스퍼터 장치
WO2013030954A1 (ja) スパッタリング薄膜形成装置
KR20150002719A (ko) 플라즈마­제한 갭을 갖는 프로세스 키트
US20140042023A1 (en) Magnetron design for extended target life in radio frequency (rf) plasmas
JP5475506B2 (ja) スパッタリング薄膜形成装置
CN111033683B (zh) 具有双位置磁控管及中央供给冷却剂的阴极组件
US11024490B2 (en) Magnetron having enhanced target cooling configuration
KR101694197B1 (ko) 스퍼터 장치
KR102677883B1 (ko) 향상된 타겟 냉각 구성을 갖는 마그네트론
CN207243990U (zh) 一种等离子体气相沉积设备
TW202023324A (zh) 高電漿密度離子源裝置
WO2016109007A1 (en) Methods and apparatus for nodule control in a titanium-tungsten target

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant