CN105425418A - Blue light filtering, radiation protection and wear resisting lens and preparation method thereof - Google Patents

Blue light filtering, radiation protection and wear resisting lens and preparation method thereof Download PDF

Info

Publication number
CN105425418A
CN105425418A CN201511031963.9A CN201511031963A CN105425418A CN 105425418 A CN105425418 A CN 105425418A CN 201511031963 A CN201511031963 A CN 201511031963A CN 105425418 A CN105425418 A CN 105425418A
Authority
CN
China
Prior art keywords
rete
film material
substrate
evaporation
vacuum coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201511031963.9A
Other languages
Chinese (zh)
Inventor
吴晓彤
方俊勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ott Road (zhangzhou) Optical Technology Co Ltd
Original Assignee
Ott Road (zhangzhou) Optical Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ott Road (zhangzhou) Optical Technology Co Ltd filed Critical Ott Road (zhangzhou) Optical Technology Co Ltd
Priority to CN201511031963.9A priority Critical patent/CN105425418A/en
Publication of CN105425418A publication Critical patent/CN105425418A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The invention relates to a blue light filtering, radiation protection and wear resisting lens and a preparation method thereof. The lens comprise a substrate, and the inner surface and the outer surface of the substrate are provided with first films, second films, third films, fourth films and fifth films sequentially and symmetrically from inside to outside. The first films are titanium oxide layers, and the thickness ranges from 10 nm to 100 nm. The second films are silicon dioxide layers, and the thickness ranges from 50 nm to 100 nm. The third films are metal layers, and the thickness ranges from 5 nm to 20 nm. The fourth films are ITO layers, and the thickness ranges from 10 nm to 100 nm. The fifth films are high-hardness layers, and the thickness ranges from 10 nm to 50 nm. The preparation method comprises the following steps that 1, the substrate is washed; 2, the inner surface and the outer surface of the substrate are coated with the films respectively. The lens can effectively filter out harmful blue light and dazzling light, the wear resistance of the lens can be remarkably improved through the high-hardness layer, and by means of the ITO layers, the transparency of the lens can be increased, and electronic radiation, ultraviolet rays and far-infrared rays harmful to the human body can be cut off.

Description

A kind of filter blue light radiation proof is resistance to grind a lens and preparation method thereof
Technical field
The present invention relates to a kind of lens technology field, especially relate to that a kind of filter blue light radiation proof is resistance to grind a lens and preparation method thereof.
Background technology
Along with people's culture, the improving constantly of living standard, carrying out of sight protection work, the simple optical device that glasses make as correcting defects of vision or protect eyes, has played important effect in people's sphere of life.Glasses are normally made up of eyeglass and mirror holder, and from eyeglass functionally, it has the light quantity that adjustment enters eyes, increase eyesight, effect such as protection eye-safe and clinical treatment illness in eye etc.
Current eyeglass of a great variety, as TAC polarized lenses common at present, it 100% obstruct can be harmful to light, therefore quite by the favor of consumer, be particularly suitable for outdoor exercises to use, but, in motion process, eyeglass is swiped unavoidably, therefore the rub proofness of eyeglass is also the Consideration that consumer chooses, TAC polarized lenses commercially available at present, the hardness on its surface can only reach H, its wearing quality is 1.5 grades, be easy to be scratched by hard object or break, affect the effect that user observes things, both made troubles to user, but also need often to change, increase use cost, have much room for improvement.
The high-energy visible ray of blue light to be wavelength be 400-500nm, blue light directly to penetrate cornea, eyes crystal, through retina, blue light can stimulate retina to produce a large amount of radical ion, make the atrophy of retinal pigment epithelium, and cause the death of photaesthesia cell, retinal pigment epithelium is very strong to the light absorption effect of blue region, absorbs blue ray radiation and can make retinal pigment epithelium atrophy, and this is also the one of the main reasons producing ARM; Blue ray radiation composition is higher larger to cellula visualis injury, and the atrophy of retinal pigment epithelium, can make amphiblestroid image thicken, and can do continuous adjustment, increase the weight of the working strength of ciliary muscle, cause visual fatigue fuzzy image ciliary muscle.Can cause the visual fatigue of people under the effect of ultraviolet and blue light, eyesight can decline gradually, easily causes dry and astringent, early onset cataract, the spontaneous macular diseases such as photophobia, fatigue on ocular vision.In order to avoid blue light injury, the optical mirror slip with partial filtration blue wave band is invented, and this optical mirror slip is also called anti-blue light eyeglass.Existing anti-blue light eyeglass is mostly utilize the anti-blue light eyeglass adding toner and make in lens materials, the patent No. disclosed in Chinese invention patent is the blue light resistant dark down sunglasses lenses of CN101813832A, utilize the anti-blue light eyeglass made at eyeglass top layer plated film in addition, as CN1564052 patent the blue-light injury proof health lens that discloses.
In addition, along with computer, TV etc. are extensively universal, the quantity of myopia population is increased sharply, and the key factor wherein affecting eye eyesight is exactly radiation.Eyes are to one of highstrung organ of electromagnetic radiation in human body.Radiation can cause crystallins to solidify, muddy, form cataract, also can damage cornea, cause visual fatigue, visual impairment even loses.Therefore, the glasses of radiation proof eyeglass are adopted to protect eyes to be relatively simple and effective a kind of mode from radiation damage.
Summary of the invention
The object of the invention is to for the deficiencies in the prior art, provide a kind of blue light that can effectively prevent to the injury of human body, have that the filter blue light radiation proof of high-wearing feature and shielding property is resistance to grind a lens and preparation method thereof.
For achieving the above object, the present invention is by the following technical solutions:
A kind of filter blue light radiation proof is resistance to grind a lens, and comprises substrate, and inside and outside two surfaces of described substrate from the inside to surface symmetry are sequentially provided with the first rete, the second rete, third membrane layer, the 4th rete and the 5th rete; Described first rete is five oxidation three titanium layers, and thickness is 10-100nm; Described second rete is silicon dioxide layer, and thickness is 50-100nm; Described third membrane layer is metal level, and thickness is 5-20nm; Described 4th rete is ITO layer, and thickness is 10-100nm; Described 5th rete is high rigidity layer, and thickness is 10-50nm.
The film material of described metal level is gold, silver, platinum, neodymium, copper, zinc or nickel, and shaping by electron gun evaporation.
The film material of described metal level is billon, silver alloy, platinum alloy, neodymium alloy, aldary, kirsite or nickel alloy, and shaping by electron gun evaporation.
The film material of described high rigidity layer is alundum (Al2O3), zirconia, silica crystals or silicon monoxide crystal, and shaping by electron gun evaporation.
Described substrate is by resin or glass ware forming.
The resistance to preparation method ground a lens of filter blue light radiation proof, when described substrate is by resin forming, described preparation method specifically comprises the following steps:
1) substrate is cleaned, dry;
2) respectively plated film is carried out to inside and outside two surfaces of substrate;
A, plate the first rete:
Vacuum tightness in vacuum coating cabin is adjusted to and is less than or equal to 5.0 × 10 -3handkerchief, and the temperature controlled in vacuum coating cabin is 50-70 DEG C, electron gun is adopted to bombard the film material of the first rete, be deposited on the outside surface of substrate with nanoscale molecular form after the film material evaporation of the first rete, the speed simultaneously controlling the first rete evaporation is 2.5/S, and the thickness after the first rete is finally formed is 10-100nm; Wherein, the film material of described first rete is five oxidation Tritanium/Trititaniums, forms five oxidation three titanium layers;
B, plate the second rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, electron gun is adopted to bombard the film material of the second rete, be deposited on the surface of the first rete in above-mentioned steps A with nanoscale molecular form after the film material evaporation of the second rete, the speed simultaneously controlling the second rete evaporation is 7/S, and the thickness after the second rete is finally formed is 50-100nm; Wherein, the film material of described second rete is silicon dioxide, forms silicon dioxide layer;
C, plating third membrane layer:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, adopt the film material of electron gun bombardment third membrane layer, be deposited on the surface of the second rete in above-mentioned steps B with nanoscale molecular form after the film material evaporation of third membrane layer, the speed simultaneously controlling third membrane layer evaporation is 1/S, and the thickness after third membrane layer is finally formed is 5-20nm; Wherein, the film material of described third membrane layer is gold, silver, platinum, neodymium, copper, zinc, nickel, billon, silver alloy, platinum alloy, neodymium alloy, aldary, kirsite or nickel alloy, forms metal level;
D, plating the 4th rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, adopt the film material of electron gun bombardment the 4th rete, be deposited on the surface of third membrane layer in above-mentioned steps C with nanoscale molecular form after the film material evaporation of the 4th rete, the speed simultaneously controlling the 4th rete evaporation is 1/S, and the thickness after the 4th rete is finally formed is 10-100nm; Wherein, the film material of described 4th rete is ITO material, forms ITO layer;
E, plating the 5th rete:
The vacuum tightness in vacuum coating cabin is kept to be more than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, adopt the film material of electron gun bombardment the 5th rete, be deposited on the surface of the 4th rete in above-mentioned steps D with nanoscale molecular form after the film material evaporation of the 5th rete, the speed simultaneously controlling the 5th rete evaporation is 7/S, and the thickness after the 5th rete is finally formed is 10-50nm; Wherein, the film material of described 5th rete is alundum (Al2O3), zirconia, silica crystals or silicon monoxide crystal, forms high rigidity layer.
In described step 1), substrate is cleaned, dry concrete steps are as follows: adopt organic cleaning solvent to carry out first wash to substrate, and with ultrasonic assistant cleaning, adopt isopropyl alcohol dry; Before substrate coating, substrate is placed in vacuum chamber and again cleans with the outside surface 2-3 minute of ion gun bombardment substrate.
The resistance to preparation method ground a lens of filter blue light radiation proof, when described substrate is by glass ware forming, described preparation method specifically comprises the following steps:
1) substrate is cleaned, dry;
2) respectively plated film is carried out to inside and outside two surfaces of substrate;
A, plate the first rete:
Vacuum tightness in vacuum coating cabin is adjusted to and is less than or equal to 5.0 × 10 -3handkerchief, and the temperature controlled in vacuum coating cabin is 200-300 DEG C, electron gun is adopted to bombard the film material of the first rete, be deposited on the outside surface of substrate with nanoscale molecular form after the film material evaporation of the first rete, the speed simultaneously controlling the first rete evaporation is 2.5/S, and the thickness after the first rete is finally formed is 10-100nm; Wherein, the film material of described first rete is five oxidation Tritanium/Trititaniums, forms five oxidation three titanium layers;
B, plate the second rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, electron gun is adopted to bombard the film material of the second rete, be deposited on the surface of the first rete in above-mentioned steps A with nanoscale molecular form after the film material evaporation of the second rete, the speed simultaneously controlling the second rete evaporation is 7/S, and the thickness after the second rete is finally formed is 50-100nm; Wherein, the film material of described second rete is silicon dioxide, forms silicon dioxide layer;
C, plating third membrane layer:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, adopt the film material of electron gun bombardment third membrane layer, be deposited on the surface of the second rete in above-mentioned steps B with nanoscale molecular form after the film material evaporation of third membrane layer, the speed simultaneously controlling third membrane layer evaporation is 1/S, and the thickness after third membrane layer is finally formed is 5-20nm; Wherein, the film material of described third membrane layer is gold, silver, platinum, neodymium, copper, zinc, nickel, billon, silver alloy, platinum alloy, neodymium alloy, aldary, kirsite or nickel alloy, forms metal level;
D, plating the 4th rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, adopt the film material of electron gun bombardment the 4th rete, be deposited on the surface of third membrane layer in above-mentioned steps C with nanoscale molecular form after the film material evaporation of the 4th rete, the speed simultaneously controlling the 4th rete evaporation is 1/S, and the thickness after the 4th rete is finally formed is 10-100nm; Wherein, the film material of described 4th rete is ITO material, forms ITO layer;
E, plating the 5th rete:
The vacuum tightness in vacuum coating cabin is kept to be more than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, adopt the film material of electron gun bombardment the 5th rete, be deposited on the surface of the 4th rete in above-mentioned steps D with nanoscale molecular form after the film material evaporation of the 5th rete, the speed simultaneously controlling the 5th rete evaporation is 7/S, and the thickness after the 5th rete is finally formed is 10-50nm; Wherein, the film material of described 5th rete is alundum (Al2O3), zirconia, silica crystals or silicon monoxide crystal, forms high rigidity layer.
In described step 1), substrate is cleaned, dry concrete steps are as follows: adopt organic cleaning solvent to carry out first wash to substrate, and with ultrasonic assistant cleaning, adopt isopropyl alcohol dry; Before substrate coating, substrate is placed in vacuum chamber and again cleans with the outside surface 5-10 minute of ion gun bombardment substrate.
The present invention adopts the principle of electron beam vacuum evaporation, there is after utilizing charged particle to accelerate in the electric field the feature of certain kinetic energy, ion is guided into the electrode for being made by the substrate of plated film, and by high purity metal, metal alloy or other oxide that simple substance exists by electron gun with high temperature bombardment, the nano molecular be evaporated makes it move to substrate along certain direction and the final method in deposition on substrate film forming.This invention combine with technique utilizes the trajectory of electron motion in the special distributed controll electric field in magnetic field, improves the technique of plated film with this, make coating film thickness and even property controlled, and good, the cohesive force of rete compactness of preparation is strong and high purity.
The present invention's vacuum evaporation on substrate has five oxidation three titanium layers, take full advantage of five oxidation Tritanium/Trititanium crystalline material coating operations good, rete is intensive, even, stable, the performances such as stress is little, and five oxidation Tritanium/Trititanium crystalline material in visible light wave range, there is the highest refractive index, good crystallinity, evaporation is stablized, without advantages such as venting and splashes, it is made to be adapted at eyeglass substrate being coated with the good multilayer film of anti-reflection property.
The present invention is vacuum evaporation silica layer on substrate, mainly plays a part to increase film adhesion, wearing quality and impact resistance, can absorb harmful light simultaneously.
The ITO layer of the present invention's vacuum evaporation on substrate, as nano indium tin metal oxide, has good electric conductivity, the transparency and transmittance, can cut off harmful electron irradiation, ultraviolet and far infrared; Be plated on eyeglass, harmful electron irradiation, ultraviolet and far infrared can be cut off while the enhancing transparency.
Of the present invention five are oxidized three titanium layers and silicon dioxide layer and metal level cooperatively interacts, mainly play the effect of controlled filter blue light, the present invention is oxidized three titanium layers and silicon dioxide layer at the inside and outside surperficial evaporation five of eyeglass substrate, not only effective elimination most purple light and blue light, and can usable reflection harmful light, high light, dazzling light wave, flash light wave by force, reduce the stimulation of injury to human eye retina and shortwave dazzle; Metal level of the present invention, not only improves anti-blue light effect and sharpness, and can reflect harmful light, dazzling light wave, flashes light wave etc. by force; The present invention is cooperatively interacted by above-mentioned rete, plays the effects such as absorption, reflection, conversion, filtration, and simultaneously by regulating the thickness of above-mentioned each rete, the visible ray making wavelength longer produces coherent interference, thus further filter blue light; High rigidity layer is set at the outermost layer on substrate inside and outside surface, effectively improves the wearing quality of eyeglass, can prevent it from scratching.
When eyeglass substrate of the present invention is by resin forming, the adhesion of each rete of the eyeglass obtained by preparation method of the present invention subzero 20 DEG C time is 2-4hrs, and the adhesion 80 DEG C time is 2-4hrs; When eyeglass substrate of the present invention is by glass ware forming, the adhesion of each rete of the eyeglass obtained by preparation method of the present invention subzero 20 DEG C time is 6-9hrs, and the adhesion 80 DEG C time is 6-9hrs; Multiple retes that eyeglass of the present invention is coated with can effective filter 23 more than 3% harmful blue light, metal level can promote sharpness and anti-blue light effect effectively simultaneously, thus improve the overall sharpness of eyeglass, good contribution is had for the sharpness of vision and authenticity, effectively visual fatigue can be alleviated to harmful blue light, the filtration of dazzling light, the high rigidity layer adopted can significantly improve the wearing quality of eyeglass, and the ITO layer of employing can strengthen the transparency of eyeglass and cut off harmful electron irradiation, ultraviolet and far infrared.
Accompanying drawing explanation
Below in conjunction with the drawings and specific embodiments, the present invention is described in further details:
Fig. 1 is the wear-resisting lens structure exploded view of filter blue light radiation proof of the present invention.
Embodiment
As shown in Figure 1, the present invention includes substrate 1, inside and outside two surfaces of described substrate 1 from the inside to surface symmetry are sequentially provided with the first rete 2, second rete 3, third membrane layer 4, the 4th rete 5 and the 5th rete 6; Described first rete 2 is five oxidation three titanium layers, and thickness is 10-100nm; Described second rete 3 is silicon dioxide layer, and thickness is 50-100nm; Described third membrane layer 4 is metal level, and thickness is 5-20nm; Described 4th rete 5 is ITO layer, and thickness is 10-100nm; Described 5th rete 6 is high rigidity layer, and thickness is 10-50nm.
The film material of described metal level is gold, silver, platinum, neodymium, copper, zinc or nickel, and shaping by electron gun evaporation.
The film material of described metal level is billon, silver alloy, platinum alloy, neodymium alloy, aldary, kirsite or nickel alloy, and shaping by electron gun evaporation.
The film material of described high rigidity layer is alundum (Al2O3), zirconia, silica crystals or silicon monoxide crystal, and shaping by electron gun evaporation.
Described substrate is by resin or glass ware forming.
Embodiment 1
The resistance to preparation method ground a lens of filter blue light radiation proof, when described substrate is by resin forming, described preparation method specifically comprises the following steps:
1) substrate is cleaned, dry;
2) respectively plated film is carried out to inside and outside two surfaces of substrate;
A, plate the first rete:
Vacuum tightness in vacuum coating cabin is adjusted to and is less than or equal to 5.0 × 10 -3handkerchief, and the temperature controlled in vacuum coating cabin is 50-70 DEG C, electron gun is adopted to bombard the film material of the first rete, be deposited on the outside surface of substrate with nanoscale molecular form after the film material evaporation of the first rete, the speed simultaneously controlling the first rete evaporation is 2.5/S, and the thickness after the first rete is finally formed is 10-100nm; Wherein, the film material of described first rete is five oxidation Tritanium/Trititaniums, forms five oxidation three titanium layers;
B, plate the second rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, electron gun is adopted to bombard the film material of the second rete, be deposited on the surface of the first rete in above-mentioned steps A with nanoscale molecular form after the film material evaporation of the second rete, the speed simultaneously controlling the second rete evaporation is 7/S, and the thickness after the second rete is finally formed is 50-100nm; Wherein, the film material of described second rete is silicon dioxide, forms silicon dioxide layer;
C, plating third membrane layer:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, adopt the film material of electron gun bombardment third membrane layer, be deposited on the surface of the second rete in above-mentioned steps B with nanoscale molecular form after the film material evaporation of third membrane layer, the speed simultaneously controlling third membrane layer evaporation is 1/S, and the thickness after third membrane layer is finally formed is 5-20nm; Wherein, the film material of described third membrane layer is gold, silver, platinum, neodymium, copper, zinc, nickel, billon, silver alloy, platinum alloy, neodymium alloy, aldary, kirsite or nickel alloy, forms metal level;
D, plating the 4th rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, adopt the film material of electron gun bombardment the 4th rete, be deposited on the surface of third membrane layer in above-mentioned steps C with nanoscale molecular form after the film material evaporation of the 4th rete, the speed simultaneously controlling the 4th rete evaporation is 1/S, and the thickness after the 4th rete is finally formed is 10-100nm; Wherein, the film material of described 4th rete is ITO material, forms ITO layer;
E, plating the 5th rete:
The vacuum tightness in vacuum coating cabin is kept to be more than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, adopt the film material of electron gun bombardment the 5th rete, be deposited on the surface of the 4th rete in above-mentioned steps D with nanoscale molecular form after the film material evaporation of the 5th rete, the speed simultaneously controlling the 5th rete evaporation is 7/S, and the thickness after the 5th rete is finally formed is 10-50nm; Wherein, the film material of described 5th rete is alundum (Al2O3), zirconia, silica crystals or silicon monoxide crystal, forms high rigidity layer.
In described step 1), substrate is cleaned, dry concrete steps are as follows: adopt organic cleaning solvent to carry out first wash to substrate, and with ultrasonic assistant cleaning, adopt isopropyl alcohol dry; Before substrate coating, substrate is placed in vacuum chamber and again cleans with the outside surface 2-3 minute of ion gun bombardment substrate.
Embodiment 2
The resistance to preparation method ground a lens of filter blue light radiation proof, when described substrate is by glass ware forming, described preparation method specifically comprises the following steps:
1) substrate is cleaned, dry;
2) respectively plated film is carried out to inside and outside two surfaces of substrate;
A, plate the first rete:
Vacuum tightness in vacuum coating cabin is adjusted to and is less than or equal to 5.0 × 10 -3handkerchief, and the temperature controlled in vacuum coating cabin is 200-300 DEG C, electron gun is adopted to bombard the film material of the first rete, be deposited on the outside surface of substrate with nanoscale molecular form after the film material evaporation of the first rete, the speed simultaneously controlling the first rete evaporation is 2.5/S, and the thickness after the first rete is finally formed is 10-100nm; Wherein, the film material of described first rete is five oxidation Tritanium/Trititaniums, forms five oxidation three titanium layers;
B, plate the second rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, electron gun is adopted to bombard the film material of the second rete, be deposited on the surface of the first rete in above-mentioned steps A with nanoscale molecular form after the film material evaporation of the second rete, the speed simultaneously controlling the second rete evaporation is 7/S, and the thickness after the second rete is finally formed is 50-100nm; Wherein, the film material of described second rete is silicon dioxide, forms silicon dioxide layer;
C, plating third membrane layer:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, adopt the film material of electron gun bombardment third membrane layer, be deposited on the surface of the second rete in above-mentioned steps B with nanoscale molecular form after the film material evaporation of third membrane layer, the speed simultaneously controlling third membrane layer evaporation is 1/S, and the thickness after third membrane layer is finally formed is 5-20nm; Wherein, the film material of described third membrane layer is gold, silver, platinum, neodymium, copper, zinc, nickel, billon, silver alloy, platinum alloy, neodymium alloy, aldary, kirsite or nickel alloy, forms metal level;
D, plating the 4th rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, adopt the film material of electron gun bombardment the 4th rete, be deposited on the surface of third membrane layer in above-mentioned steps C with nanoscale molecular form after the film material evaporation of the 4th rete, the speed simultaneously controlling the 4th rete evaporation is 1/S, and the thickness after the 4th rete is finally formed is 10-100nm; Wherein, the film material of described 4th rete is ITO material, forms ITO layer;
E, plating the 5th rete:
The vacuum tightness in vacuum coating cabin is kept to be more than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, adopt the film material of electron gun bombardment the 5th rete, be deposited on the surface of the 4th rete in above-mentioned steps D with nanoscale molecular form after the film material evaporation of the 5th rete, the speed simultaneously controlling the 5th rete evaporation is 7/S, and the thickness after the 5th rete is finally formed is 10-50nm; Wherein, the film material of described 5th rete is alundum (Al2O3), zirconia, silica crystals or silicon monoxide crystal, forms high rigidity layer.
In described step 1), substrate is cleaned, dry concrete steps are as follows: adopt organic cleaning solvent to carry out first wash to substrate, and with ultrasonic assistant cleaning, adopt isopropyl alcohol dry; Before substrate coating, substrate is placed in vacuum chamber and again cleans with the outside surface 5-10 minute of ion gun bombardment substrate.
The present invention adopts the principle of electron beam vacuum evaporation, there is after utilizing charged particle to accelerate in the electric field the feature of certain kinetic energy, ion is guided into the electrode for being made by the substrate of plated film, and by high purity metal, metal alloy or other oxide that simple substance exists by electron gun with high temperature bombardment, the nano molecular be evaporated makes it move to substrate along certain direction and the final method in deposition on substrate film forming.This invention combine with technique utilizes the trajectory of electron motion in the special distributed controll electric field in magnetic field, improves the technique of plated film with this, make coating film thickness and even property controlled, and good, the cohesive force of rete compactness of preparation is strong and high purity.
The present invention's vacuum evaporation on substrate has five oxidation three titanium layers, take full advantage of five oxidation Tritanium/Trititanium crystalline material coating operations good, rete is intensive, even, stable, the performances such as stress is little, and five oxidation Tritanium/Trititanium crystalline material in visible light wave range, there is the highest refractive index, good crystallinity, evaporation is stablized, without advantages such as venting and splashes, it is made to be adapted at eyeglass substrate being coated with the good multilayer film of anti-reflection property.
The present invention is vacuum evaporation silica layer on substrate, mainly plays a part to increase film adhesion, wearing quality and impact resistance, can absorb harmful light simultaneously.
The ITO layer of the present invention's vacuum evaporation on substrate, as nano indium tin metal oxide, has the well transparency and transmittance, can cut off harmful electron irradiation, ultraviolet and far infrared; Be plated on eyeglass, harmful electron irradiation, ultraviolet and far infrared can be cut off while the enhancing transparency.
Of the present invention five are oxidized three titanium layers and silicon dioxide layer and metal level cooperatively interacts, mainly play the effect of controlled filter blue light, the present invention is oxidized three titanium layers and silicon dioxide layer at the inside and outside surperficial evaporation five of eyeglass substrate, not only effective elimination most purple light and blue light, and can usable reflection harmful light, high light, dazzling light wave, flash light wave by force, reduce the stimulation of injury to human eye retina and shortwave dazzle; Metal level of the present invention, not only improves anti-blue light effect and sharpness, and can reflect harmful light, dazzling light wave, flashes light wave etc. by force; The present invention is cooperatively interacted by above-mentioned rete, plays the effects such as absorption, reflection, conversion, filtration, and meanwhile, by regulating the thickness of above-mentioned each rete, the visible ray making wavelength longer produces coherent interference, thus produces antiglare effect further; High rigidity layer is set at the outermost layer on substrate inside and outside surface, effectively improves the wearing quality of eyeglass, can prevent it from scratching.
When eyeglass substrate of the present invention is by resin forming, the adhesion of each rete of the eyeglass obtained by preparation method of the present invention subzero 20 DEG C time is 2-4hrs, and the adhesion 80 DEG C time is 2-4hrs; When eyeglass substrate of the present invention is by glass ware forming, the adhesion of each rete of the eyeglass obtained by preparation method of the present invention subzero 20 DEG C time is 6-9hrs, and the adhesion 80 DEG C time is 6-9hrs; Multiple retes that eyeglass of the present invention is coated with can effective filter 23 more than 3% harmful blue light, metal level can promote sharpness and anti-blue light effect effectively simultaneously, thus improve the overall sharpness of eyeglass, good contribution is had for the sharpness of vision and authenticity, effectively visual fatigue can be alleviated to harmful blue light, the filtration of dazzling light, high rigidity layer can significantly improve the wearing quality of eyeglass, and the ITO layer of employing can strengthen the transparency of eyeglass and cut off harmful electron irradiation, ultraviolet and far infrared.
More than describe and should not have any restriction to protection scope of the present invention.

Claims (9)

1. a filter blue light radiation proof is resistance to grinds a lens, and comprises substrate, it is characterized in that: inside and outside two surfaces of described substrate from the inside to surface symmetry are sequentially provided with the first rete, the second rete, third membrane layer, the 4th rete and the 5th rete; Described first rete is five oxidation three titanium layers, and thickness is 10-100nm; Described second rete is silicon dioxide layer, and thickness is 50-100nm; Described third membrane layer is metal level, and thickness is 5-20nm; Described 4th rete is ITO layer, and thickness is 10-100nm; Described 5th rete is high rigidity layer, and thickness is 10-50nm.
2. a kind of filter blue light radiation proof according to claim 1 is resistance to grinds a lens, and it is characterized in that: the film material of described metal level is gold, silver, platinum, neodymium, copper, zinc or nickel, and shaping by electron gun evaporation.
3. a kind of filter blue light radiation proof according to claim 1 is resistance to grinds a lens, and it is characterized in that: the film material of described metal level is billon, silver alloy, platinum alloy, neodymium alloy, aldary, kirsite or nickel alloy, and shaping by electron gun evaporation.
4. a kind of filter blue light radiation proof according to claim 1 is resistance to grinds a lens, and it is characterized in that: the film material of described high rigidity layer is alundum (Al2O3), zirconia, silica crystals or silicon monoxide crystal, and shaping by electron gun evaporation.
5. a kind of filter blue light radiation proof according to claim 1 is resistance to grinds a lens, and it is characterized in that: described substrate is by resin or glass ware forming.
6. the resistance to preparation method ground a lens of filter blue light radiation proof according to claim 5, it is characterized in that: when described substrate is by resin forming, described preparation method specifically comprises the following steps:
1) substrate is cleaned, dry;
2) respectively plated film is carried out to inside and outside two surfaces of substrate;
A, plate the first rete:
Vacuum tightness in vacuum coating cabin is adjusted to and is less than or equal to 5.0 × 10 -3handkerchief, and the temperature controlled in vacuum coating cabin is 50-70 DEG C, electron gun is adopted to bombard the film material of the first rete, be deposited on the outside surface of substrate with nanoscale molecular form after the film material evaporation of the first rete, the speed simultaneously controlling the first rete evaporation is 2.5/S, and the thickness after the first rete is finally formed is 10-100nm; Wherein, the film material of described first rete is five oxidation Tritanium/Trititaniums, forms five oxidation three titanium layers;
B, plate the second rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, electron gun is adopted to bombard the film material of the second rete, be deposited on the surface of the first rete in above-mentioned steps A with nanoscale molecular form after the film material evaporation of the second rete, the speed simultaneously controlling the second rete evaporation is 7/S, and the thickness after the second rete is finally formed is 50-100nm; Wherein, the film material of described second rete is silicon dioxide, forms silicon dioxide layer;
C, plating third membrane layer:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, adopt the film material of electron gun bombardment third membrane layer, be deposited on the surface of the second rete in above-mentioned steps B with nanoscale molecular form after the film material evaporation of third membrane layer, the speed simultaneously controlling third membrane layer evaporation is 1/S, and the thickness after third membrane layer is finally formed is 5-20nm; Wherein, the film material of described third membrane layer is gold, silver, platinum, neodymium, copper, zinc, nickel, billon, silver alloy, platinum alloy, neodymium alloy, aldary, kirsite or nickel alloy, forms metal level;
D, plating the 4th rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, adopt the film material of electron gun bombardment the 4th rete, be deposited on the surface of third membrane layer in above-mentioned steps C with nanoscale molecular form after the film material evaporation of the 4th rete, the speed simultaneously controlling the 4th rete evaporation is 1/S, and the thickness after the 4th rete is finally formed is 10-100nm; Wherein, the film material of described 4th rete is ITO material, forms ITO layer;
E, plating the 5th rete:
The vacuum tightness in vacuum coating cabin is kept to be more than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 50-70 DEG C simultaneously, adopt the film material of electron gun bombardment the 5th rete, be deposited on the surface of the 4th rete in above-mentioned steps D with nanoscale molecular form after the film material evaporation of the 5th rete, the speed simultaneously controlling the 5th rete evaporation is 7/S, and the thickness after the 5th rete is finally formed is 10-50nm; Wherein, the film material of described 5th rete is alundum (Al2O3), zirconia, silica crystals or silicon monoxide crystal, forms high rigidity layer.
7. the resistance to preparation method ground a lens of a kind of filter blue light radiation proof according to claim 6, it is characterized in that: in described step 1), substrate is cleaned, dry concrete steps are as follows: adopt organic cleaning solvent to carry out first wash to substrate, and with ultrasonic assistant cleaning, adopt isopropyl alcohol dry; Before substrate coating, substrate is placed in vacuum chamber and again cleans with the outside surface 2-3 minute of ion gun bombardment substrate.
8. the resistance to preparation method ground a lens of filter blue light radiation proof according to claim 5, it is characterized in that: when described substrate is by glass ware forming, described preparation method specifically comprises the following steps:
1) substrate is cleaned, dry;
2) respectively plated film is carried out to inside and outside two surfaces of substrate;
A, plate the first rete:
Vacuum tightness in vacuum coating cabin is adjusted to and is less than or equal to 5.0 × 10 -3handkerchief, and the temperature controlled in vacuum coating cabin is 200-300 DEG C, electron gun is adopted to bombard the film material of the first rete, be deposited on the outside surface of substrate with nanoscale molecular form after the film material evaporation of the first rete, the speed simultaneously controlling the first rete evaporation is 2.5/S, and the thickness after the first rete is finally formed is 10-100nm; Wherein, the film material of described first rete is five oxidation Tritanium/Trititaniums, forms five oxidation three titanium layers;
B, plate the second rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, electron gun is adopted to bombard the film material of the second rete, be deposited on the surface of the first rete in above-mentioned steps A with nanoscale molecular form after the film material evaporation of the second rete, the speed simultaneously controlling the second rete evaporation is 7/S, and the thickness after the second rete is finally formed is 50-100nm; Wherein, the film material of described second rete is silicon dioxide, forms silicon dioxide layer;
C, plating third membrane layer:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, adopt the film material of electron gun bombardment third membrane layer, be deposited on the surface of the second rete in above-mentioned steps B with nanoscale molecular form after the film material evaporation of third membrane layer, the speed simultaneously controlling third membrane layer evaporation is 1/S, and the thickness after third membrane layer is finally formed is 5-20nm; Wherein, the film material of described third membrane layer is gold, silver, platinum, neodymium, copper, zinc, nickel, billon, silver alloy, platinum alloy, neodymium alloy, aldary, kirsite or nickel alloy, forms metal level;
D, plating the 4th rete:
The vacuum tightness in vacuum coating cabin is kept to be less than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, adopt the film material of electron gun bombardment the 4th rete, be deposited on the surface of third membrane layer in above-mentioned steps C with nanoscale molecular form after the film material evaporation of the 4th rete, the speed simultaneously controlling the 4th rete evaporation is 1/S, and the thickness after the 4th rete is finally formed is 10-100nm; Wherein, the film material of described 4th rete is ITO material, forms ITO layer;
E, plating the 5th rete:
The vacuum tightness in vacuum coating cabin is kept to be more than or equal to 5.0 × 10 -3handkerchief, keep the temperature in vacuum coating cabin to be 200-300 DEG C simultaneously, adopt the film material of electron gun bombardment the 5th rete, be deposited on the surface of the 4th rete in above-mentioned steps D with nanoscale molecular form after the film material evaporation of the 5th rete, the speed simultaneously controlling the 5th rete evaporation is 7/S, and the thickness after the 5th rete is finally formed is 10-50nm; Wherein, the film material of described 5th rete is alundum (Al2O3), zirconia, silica crystals or silicon monoxide crystal, forms high rigidity layer.
9. the resistance to preparation method ground a lens of a kind of filter blue light radiation proof according to claim 8, it is characterized in that: in described step 1), substrate is cleaned, dry concrete steps are as follows: adopt organic cleaning solvent to carry out first wash to substrate, and with ultrasonic assistant cleaning, adopt isopropyl alcohol dry; Before substrate coating, substrate is placed in vacuum chamber and again cleans with the outside surface 5-10 minute of ion gun bombardment substrate.
CN201511031963.9A 2015-12-31 2015-12-31 Blue light filtering, radiation protection and wear resisting lens and preparation method thereof Pending CN105425418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511031963.9A CN105425418A (en) 2015-12-31 2015-12-31 Blue light filtering, radiation protection and wear resisting lens and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511031963.9A CN105425418A (en) 2015-12-31 2015-12-31 Blue light filtering, radiation protection and wear resisting lens and preparation method thereof

Publications (1)

Publication Number Publication Date
CN105425418A true CN105425418A (en) 2016-03-23

Family

ID=55503730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511031963.9A Pending CN105425418A (en) 2015-12-31 2015-12-31 Blue light filtering, radiation protection and wear resisting lens and preparation method thereof

Country Status (1)

Country Link
CN (1) CN105425418A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861993A (en) * 2016-05-17 2016-08-17 江苏淘镜有限公司 Colored resin spectacle lens and preparation method thereof
CN108107492A (en) * 2017-12-15 2018-06-01 奥特路(漳州)光学科技有限公司 A kind of radiation protection lens coating method
CN108205165A (en) * 2018-02-11 2018-06-26 江苏优立光学眼镜有限公司 A kind of anti-blue light eyeglass and preparation method thereof
CN110346846A (en) * 2019-07-30 2019-10-18 威海世高光电子有限公司 Anti-reflection waterproof membrane and preparation method thereof, optical lens
CN112596272A (en) * 2020-12-04 2021-04-02 明月镜片股份有限公司 Efficient coating process for anti-radiation film layer of lens
CN113056683A (en) * 2018-11-19 2021-06-29 依视路国际公司 Optical lens with a filter interference coating and a multilayer system for improved abrasion resistance
CN113926774A (en) * 2021-10-14 2022-01-14 南京格奥光电科技有限公司 Optical lens and processing method and device thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266309A (en) * 2008-04-25 2008-09-17 同济大学 Single peak narrowband reflection filter possessing broad low reflecting bypass belt
CN203376492U (en) * 2013-07-23 2014-01-01 厦门虹泰光学有限公司 Blue light-resistant coated eyeglass
CN103984120A (en) * 2014-05-30 2014-08-13 奥特路(漳州)光学科技有限公司 Method for manufacturing blue light-resistant optical lens
CN104911546A (en) * 2015-05-25 2015-09-16 瑞之路(厦门)眼镜科技有限公司 PC spectacle lens coating method
CN104950358A (en) * 2015-07-27 2015-09-30 江苏万新光学有限公司 Resin lens with anti-fogging and electromagnetic shielding functions and manufacturing method of resin lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266309A (en) * 2008-04-25 2008-09-17 同济大学 Single peak narrowband reflection filter possessing broad low reflecting bypass belt
CN203376492U (en) * 2013-07-23 2014-01-01 厦门虹泰光学有限公司 Blue light-resistant coated eyeglass
CN103984120A (en) * 2014-05-30 2014-08-13 奥特路(漳州)光学科技有限公司 Method for manufacturing blue light-resistant optical lens
CN104911546A (en) * 2015-05-25 2015-09-16 瑞之路(厦门)眼镜科技有限公司 PC spectacle lens coating method
CN104950358A (en) * 2015-07-27 2015-09-30 江苏万新光学有限公司 Resin lens with anti-fogging and electromagnetic shielding functions and manufacturing method of resin lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105861993A (en) * 2016-05-17 2016-08-17 江苏淘镜有限公司 Colored resin spectacle lens and preparation method thereof
CN105861993B (en) * 2016-05-17 2018-10-30 江苏淘镜有限公司 Color resin spectacle lens and preparation method thereof
CN108107492A (en) * 2017-12-15 2018-06-01 奥特路(漳州)光学科技有限公司 A kind of radiation protection lens coating method
CN108205165A (en) * 2018-02-11 2018-06-26 江苏优立光学眼镜有限公司 A kind of anti-blue light eyeglass and preparation method thereof
CN113056683A (en) * 2018-11-19 2021-06-29 依视路国际公司 Optical lens with a filter interference coating and a multilayer system for improved abrasion resistance
CN110346846A (en) * 2019-07-30 2019-10-18 威海世高光电子有限公司 Anti-reflection waterproof membrane and preparation method thereof, optical lens
CN112596272A (en) * 2020-12-04 2021-04-02 明月镜片股份有限公司 Efficient coating process for anti-radiation film layer of lens
CN113926774A (en) * 2021-10-14 2022-01-14 南京格奥光电科技有限公司 Optical lens and processing method and device thereof

Similar Documents

Publication Publication Date Title
CN105425418A (en) Blue light filtering, radiation protection and wear resisting lens and preparation method thereof
CN103984120B (en) Method for manufacturing blue light-resistant optical lens
CN105425417A (en) Blue light filtering, water and oil dirt preventing and wear resisting lens and preparation method thereof
CN105425415A (en) Blue light filtering, dazzling preventing and wear resisting lens and preparation method thereof
CN105404022A (en) Blue light-filtering sterilizing wear-resistant lens and manufacturing method thereof
CN103984045B (en) A kind of mobile phone screen cover plate of anti-blue light and manufacture method thereof
CN103969725B (en) The anti glare anti static coatings optical mirror slip that a kind of driver is special and manufacture method thereof
CN105467620A (en) Sterilizing, anti-dazzle, anti-reflection and wear-resisting lens and preparing method thereof
CN105425416A (en) Blue light filtering, high light preventing and wear resisting lens and preparation method thereof
CN105629508A (en) Multifunctional lens and preparing method thereof
CN107728239B (en) Blue-light-preventing anti-glare coated resin lens and preparation method thereof
CN105425419A (en) Blue light filtering and wear resisting lens and preparation method thereof
CN205539780U (en) Antifog anti bacterial type chameleon glass block
CN108060390A (en) A kind of dust-proof lens coating method
CN105445960A (en) Anti-reflection and wear-proof lens capable of filtering blue light and preparation method of anti-reflection and wear-proof lens
CN105425414A (en) Blue light filtering lens and preparation method thereof
CN108107494A (en) A kind of anti-blue light lens coating method
CN108018527A (en) A kind of anti glare anti static coatings lens coating method
CN108363123A (en) A kind of waterproof lens coating method
CN105467619A (en) Sterilizing, anti-hard-light and wear-resisting lens and preparing method thereof
CN203673162U (en) Anti-blue-ray lens
CN105445957A (en) Antiseptic, radiation-proof and abrasion-resistant lens and preparation method thereof
CN105446539A (en) Multifunctional touch display screen and manufacturing method thereof
CN108103441A (en) A kind of anti-dazzle lens coating method
CN108107492A (en) A kind of radiation protection lens coating method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160323

RJ01 Rejection of invention patent application after publication