CN105068970A - 一种确定五机架冷连轧机厚度的插值迭代近似计算方法 - Google Patents

一种确定五机架冷连轧机厚度的插值迭代近似计算方法 Download PDF

Info

Publication number
CN105068970A
CN105068970A CN201510540790.7A CN201510540790A CN105068970A CN 105068970 A CN105068970 A CN 105068970A CN 201510540790 A CN201510540790 A CN 201510540790A CN 105068970 A CN105068970 A CN 105068970A
Authority
CN
China
Prior art keywords
frame
thickness
calculating
stand
exit thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510540790.7A
Other languages
English (en)
Other versions
CN105068970B (zh
Inventor
陈琼
程蓬
叶理德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wisdri Engineering and Research Incorporation Ltd
Original Assignee
Wisdri Engineering and Research Incorporation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisdri Engineering and Research Incorporation Ltd filed Critical Wisdri Engineering and Research Incorporation Ltd
Priority to CN201510540790.7A priority Critical patent/CN105068970B/zh
Publication of CN105068970A publication Critical patent/CN105068970A/zh
Application granted granted Critical
Publication of CN105068970B publication Critical patent/CN105068970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

本发明提供了一种确定五机架冷连轧机厚度的插值迭代近似计算方法,包括如下步骤:给出带钢原料数据;确定各个机架的功率分配比值和第五机架的绝对轧制力;计算第五机架的入口厚度;根据第五机架和第一机架的入口厚度计算各个机架的平均压下率;第一次计算分配比压下各个机架的出口厚度;计算第一次迭代常量;计算每个功率分配方式机架的出口厚度;计算每个机架的轧制力和轧制力矩;计算第二次迭代常量;计算分配比压下方式第四机架的出口厚度和轧机最后一个机架的出口厚度的绝对差值;循环迭代计算,当绝对差值小于允许的最小差值或迭代次数到达最大值时,退出循环,厚度计算结束。本发明基于插值方法求解厚度,简化算法,获得高精度厚度值。

Description

一种确定五机架冷连轧机厚度的插值迭代近似计算方法
技术领域
本发明属于冶金工程和计算机应用领域,尤其涉及一种确定五机架冷连轧机厚度的插值迭代近似计算方法。
背景技术
五机架冷连轧机中的轧制规程计算是计算其他设定值的基础,机架厚度计算是轧制规程计算的重要组成部分,机架厚度计算有两种方式:绝对压下方式和分配比压下方式。
绝对压下方式分为绝对压下率方式和绝对轧制力方式。绝对压下率方式计算厚度的方法是根据已知的入口或出口厚度和已知的压下率,可以直接得到该机架的出口或入口厚度;绝对轧制力方式计算厚度的方法是用已知的入口或出口厚度和近似的出口或入口厚度计算出近似的轧制力,如果近似的轧制力与已知的绝对轧制力的差值的绝对值小于某个阈值,则该近似的出口或入口厚度即为所求。
分配比压下是指五个机架的某几个机架之间按某一比值:压下率比值、轧制力比值和功率比值,来分配一定的压下率,因此,分配比压下方式有三种压下方式:分配比压下率方式、分配比轧制力方式和分配比功率方式。
以分配比功率方式为例:按分配比功率方式的公式为P1:P2:…:Pn=α12:…αn,其中n为机架数,P1:P2:…:Pn为第n机架的功率模型计算值,α12:…αn为轧制规范的功率比值。因此根据各机架功率成比例原则,各机架出口厚度为未知量建立非线性方程组,
f 1 ( h 0 , h 1 , h 2 ) = α 2 P 1 - α 1 P 2 = 0 f 2 ( h 1 , h 2 , h 3 ) = α 3 P 2 - α 2 P 3 = 0 ... f n - 1 ( h n - 2 , h n - 1 , h n ) = α n P n - 1 - α n - 1 P n = 0
解此方程组可以得到具有很高精度的数值解。大多解此非线性方程组是采用Newton-Raphson法求解,这样就需要求解轧制力对厚度的偏导数以及Jacobi矩阵的逆矩阵,使得计算复杂且运算量大。
发明内容
本发明要解决的技术问题是,针对现有五机架冷连轧机机架厚度计算方法存在的上述不足,提供一种求解五机架冷连轧机分配压下中迭代计算厚度的方法,通过基于插值方法求解非线性方程组,简化计算和程序设计。
本发明为解决上述技术问题所采用的技术方案是:
一种确定五机架冷连轧机厚度的插值迭代近似计算方法,包括如下步骤:
S1:给出带钢原料数据、工厂数据和工艺数据;
S2:根据轧制规范确定第一机架到第四机架的功率分配比值和第五机架的绝对轧制力;
S3:根据第五机架的绝对轧制力和出口厚度计算第五机架的入口厚度,第五机架的入口厚度即为第四机架的出口厚度;
S4:根据第四机架的出口厚度和第一机架的入口厚度计算第一机架到第四机架的平均压下率;
S5:根据S4得到的第一机架到第四机架的平均压下率第一次计算分配比压下第一机架到第四机架的出口厚度;
S6:根据S2中功率分配比值计算第一次迭代常量it_M1;
S7:根据第一次迭代常量it_M1计算每个功率分配方式机架的出口厚度;
S8:计算每个机架的轧制力和轧制力矩,如果轧制力或轧制力矩超限的机架的个数总和大于最大的机架数,则当前轧制规范给出的轧制力分配值不合理,退出压下分配,转到S13,否则转到S9;
S9:将S6得到的第一次迭代常量it_M1和S7得到的第四机架的出口厚度h1_M1设为坐标M1(h1_M1,it_M1);
S10:计算第二次迭代常量it_M2;
S11:计算分配比压下方式第四机架的出口厚度h1_M1和轧机最后一个机架的出口厚度的绝对差值delta_h;
S12:循环迭代计算,当delta_h小于允许的最小差值dh_limit或迭代次数到达迭代的最大值时,退出循环,转到S13;
S13:厚度计算结束,得到每个机架的入口、出口厚度。
按上述方案,所述S4中第一机架到第四机架的平均压下率ε计算公式如下:
ϵ = 1 - 1 / ( h 0 h 4 ) 1 / 4
上式中,h0为第一机架的入口厚度,h4为第四机架的出口厚度。
按上述方案,所述S6中第一次迭代常量it_M1计算公式如下:
i t _ M 1 = Σ i = 1 m ϵ i Σ i = 1 m M ( i ) × w i d t h
上式中,m为分配比压下机架的个数,本发明实施例中为4,εi为第i个分配比压下机架的压下率,width为带钢宽度,M(i)为第i个分配比压下机架的功率分配比值,功率分配比值从轧制规范表中查到。
按上述方案,所述S10中第二次迭代常量it_M2计算公式如下:
i t _ M 2 = ( h 0 - h 4 ′ h 0 - h 4 ) 0.8 × i t _ M 1
上式中,h0为第一机架的入口厚度,h4为第四机架的出口厚度,h′4为用第一次迭代常量计算的第四机架的出口厚度。
按上述方案,所述S11中绝对差值delta_h计算公式如下:
delta_h=|h5-h′4|。
上式中,h5为轧机最后一个机架的出口厚度,h′4为分配比压下方式第四机架的出口厚度,即h1_M1。
按上述方案,所述S12中循环迭代计算如下:
第①步:根据第二次迭代常量it_M2,计算所有分配机架的出口厚度;
第②步:将第①步计算的第四机架的出口厚度h1_M2和第二次迭代常量it_M2作为第二个近似点M2(h1_M2,it_M2);
第③步:计算S3中第四机架的出口厚度和第①步的第四机架的出口厚度的绝对值偏差,如果偏差小于极限值,则转到S13,否则转到第④步;
第④步:用基于插值的方法再次计算第二次迭代常量it_M2:
i t _ M 2 = ( i t _ M 2 × ( h 1 _ M 1 - h 5 ) - i t _ M 1 × ( h 1 _ M 2 - h 5 ) ) h 1 _ M 1 - h 1 _ M 2
第⑤步:将近似点M1的值替换为M2的值,即M1=M2;
第⑥步:迭代次数加1,如果迭代次数大于最大迭代次数,则转到S13,否则转到第①步。
本发明的工作原理:在Newton-Raphson法的基础上,构造既有较高的收敛速度,又无需计算偏导数和系数矩阵的逆矩阵的迭代公式,用基于插值的方法计算迭代常量,用迭代常量得到近似的出口厚度或入口厚度,然后迭代计算迭代常量并得到相应近似的出口厚度或入口厚度,直到近似的出口厚度或入口厚度满足最小的出口厚度或入口厚度或迭代次数到达最大值时,厚度计算结束。
本发明的有益效果:通过基于插值方法求解非线性方程组,简化计算和程序设计,获得高精度的厚度值。
附图说明
图1为本发明厚度计算方法的工作流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
如图1所示,本发明所述的确定五机架冷连轧机厚度的插值迭代近似计算方法,具体包括如下步骤:
S1:给出带钢原料数据、工厂数据和工艺数据;
S2:根据轧制规范确定第一机架到第四机架的功率分配比值和第五机架的绝对轧制力;
S3:根据第五机架的绝对轧制力和出口厚度计算第五机架的入口厚度h4,第五机架的入口厚度h4即为第四机架的出口厚度;
S4:根据第四机架的出口厚度和第一机架的入口厚度计算第一机架到第四机架的平均压下率ε:
ϵ = 1 - 1 / ( h 0 h 4 ) 1 / 4 ;
上式中,h0为第一机架的入口厚度,h4为第四机架的出口厚度;
S5:根据S4得到的第一机架到第四机架的平均压下率ε第一次计算分配比压下第一机架到第四机架的出口厚度h′1,h′2,h′3,h′4
S6:根据S2中功率分配比值计算第一次迭代常量it_M1:
i t _ M 1 = Σ i = 1 m ϵ i Σ i = 1 m M ( i ) × w i d t h
上式中,m为分配比压下机架的个数,本发明实施例中为4,εi为第i个分配比压下机架的压下率,width为带钢宽度,M(i)为第i个分配比压下机架的功率分配比值,功率分配比值从轧制规范表中查到;
S7:根据第一次迭代常量it_M1计算每个功率分配方式机架的出口厚度,即第一机架的出口厚度h′1,第二机架的出口厚度h′2,第三机架的出口厚度h′3,第四机架的出口厚度h′4
S8:用工艺数学模型计算轧制工艺参数:第一机架到第四机架的轧制力和轧制力矩;判断第一机架到第四机架的工艺参数是否全部超限,如果全部超限则执行S13,否则转到S9;
计算轧制力和轧制力矩时还涉及到其它模型,变形抗力模型、轧辊压扁模型、摩擦模型、轧制力和轧制功率模型:
1、变形抗力模型
k f = 1.5 × [ m s 0 + m s i × ( h 0 - h m h 0 ) m s e ]
上式中,kf为变形抗力,ms0为材料变形抗力的初始值,ms0=282.96[N/MM2];msi为材料变形抗力增量值,msi=425.45[N/MM2];mse为材料加工硬化指数mse=0.75;hm为带钢的平均厚度;h0为原料厚度;
2、摩擦系数模型
μ = ( μ 0 + v _ 0 × exp ( - v v _ 1 ) + ( r - r _ 0 ) × r _ 1 ) × ( 1 + w _ 0 1 - w × w _ 1 ) × ( 1 + l n ( h f _ 0 ) × f _ 1 ) × ( 1 + e p s _ 1 × l n ( e p s e p s _ 0 ) )
式中,μ为摩擦系数,μ0为基本摩擦系数;v_0为考虑速度对摩擦系数影响的系数;v为机架速度;v_1为与速度有关的常数;r为轧辊的实际粗糙度;r_0为轧辊最小的粗糙度;r_1为考虑轧辊粗糙度对摩擦系数影响的系数;w_0,w_1为考虑轧辊磨损量对摩擦系数影响的常数;w为轧辊的实际磨损量;f_0,f_1为考虑带钢出口厚度对摩擦系数影响的常数;h为带钢的出口厚度;eps为带钢实际的压下率,eps_0,eps_1为考虑压下率对摩擦系数影响的常数;
3、轧辊压扁半径模型
r b = R × ( 1 + C r b × F w B × ( h 0 - h 1 ) )
式中,rb为轧辊压扁半径;Crb为轧辊压扁常数,R为轧辊半径,Fw为轧制力,B为带钢宽度,h0为带钢入口厚度,h1为带钢出口厚度;
4、轧制力模型
F=Fp+Fe
F p = Q F × ( k f - ξ ) × W × r b × ( h i n - h o u t ) × 1 1000
ξ=α·tin+β·tout
Q F = 1.08 - 1.02 · e p s + 1.79 · e p s · μ · 1 - e p s r b h o u t
F e = 2 3 1 - v 2 E × k f × h o u t h i n - h o u t × ( k f - ξ ) × W × r b × ( h i n - h o u t ) × 1 1000
式中,F为轧制力(kN);Fp为塑性区轧制力(kN);Fe为弹性区轧制力(kN);hin为入口厚度(mm);hout为出口厚度(mm);W为带钢宽度(mm);tin为入口单位张力(N/mm2);tout为出口单位张力(N/mm2);kf为平均变形抗力(N/mm2);μ为摩擦系数;rb为轧辊压扁半径(mm);QF为轧制力外摩擦影响系数;eps为压下率;v为泊松比(=0.3);E为杨氏模量(=21700×9.80665N/mm2);α为入口张力影响系数;β为出口张力影响系数。
5、电机功率模型
P = 1 η × v R G R × 1 60
式中,P为电机功率;η为电机效率;R为轧辊半径(mm);vR为轧辊速度(m/min);G为轧制力矩;
S9:将S7得到的第四机架的出口厚度h′4设为h1_M1,将h1_M1和S6得到的第一次迭代常量it_M1设为坐标M1(h1_M1,it_M1);
S10:计算第二次迭代常量it_M2:
i t _ M 2 = ( h 0 - h 4 ′ h 0 - h 4 ) 0.8 × i t _ M 1
上式中,h0为第一机架的入口厚度,h4为第四机架的出口厚度,h′4为用第一次迭代常量计算的第四机架的出口厚度;
S11:计算轧机最后一个机架的出口厚度h5和分配比压下方式第四机架(最后一个机架)的出口厚度h′4的绝对差值delta_h:
delta_h=|h5-h′4|;
S12:用基于插值的迭代方法计算delta_h,直到delta_h小于允许的最小差值dh_limit,比如取值0.001或迭代次数到达迭代的最大值时,退出循环,转到S13,循环迭代计算如下:
第①步:根据第二次迭代常量it_M2,计算所有分配机架的出口厚度;
第②步:将第①步计算的第四机架的出口厚度h1_M2和第二次迭代常量it_M2作为第二个近似点M2(h1_M2,it_M2);
第③步:计算S3中第四机架的出口厚度和第①步的第四机架的出口厚度的绝对值偏差,如果偏差小于极限值,则转到S13,否则转到第④步;
第④步:用基于插值的方法再次计算第二次迭代常量it_M2:
i t _ M 2 = ( i t _ M 2 × ( h 1 _ M 1 - h 5 ) - i t _ M 1 × ( h 1 _ M 2 - h 5 ) ) h 1 _ M 1 - h 1 _ M 2
第⑤步:将近似点M1的值替换为M2的值,即M1=M2;
第⑥步:迭代次数加1,如果迭代次数大于最大迭代次数,则转到S13,否则转到第①步。
S13:厚度计算结束(压下分配结束),得到每个机架的入口、出口厚度。
下表1为本实例实施的计算结果,由下表可知,采用本方法能够得到满足轧制规范得到的分配比功率条件下各机架的功率,同时满足在设备能力允许范围内的满意的厚度分配。原料厚度[mm]:4.030,成品厚度[mm]:1.201,带钢宽度[mm]:1225,轧机额定功率[KW]:6750。
表1本发明计算方法实施例计算结果
以上所述的实例仅是对本发明的基本实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域技术人员对本发明的技术方案做出的各种变换和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (6)

1.一种确定五机架冷连轧机厚度的差值迭代近似计算方法,其特征在于,包括如下步骤:
S1:给出带钢原料数据、工厂数据和工艺数据;
S2:根据轧制规范确定第一机架到第四机架的功率分配比值和第五机架的绝对轧制力;
S3:根据第五机架的绝对轧制力和出口厚度计算第五机架的入口厚度,第五机架的入口厚度即为第四机架的出口厚度;
S4:根据第四机架的出口厚度和第一机架的入口厚度计算第一机架到第四机架的平均压下率;
S5:根据S4得到的第一机架到第四机架的平均压下率第一次计算分配比压下第一机架到第四机架的出口厚度;
S6:根据S2中功率分配比值计算第一次迭代常量it_M1;
S7:根据第一次迭代常量it_M1计算每个功率分配方式机架的出口厚度;
S8:计算每个机架的轧制力和轧制力矩,如果轧制力或轧制力矩超限的机架的个数总和大于最大的机架数,则当前轧制规范给出的轧制力分配值不合理,退出压下分配,转到S13,否则转到S9;
S9:将S6得到的第一次迭代常量it_M1和S7得到的第四机架的出口厚度h1_M1设为坐标M1(h1_M1,it_M1);
S10:计算第二次迭代常量it_M2;
S11:计算分配比压下方式第四机架的出口厚度h1_M1和轧机最后一个机架的出口厚度的绝对差值delta_h;
S12:循环迭代计算,当delta_h小于允许的最小差值dh_limit或迭代次数到达迭代的最大值时,退出循环,转到S13;
S13:厚度计算结束,得到每个机架的入口、出口厚度。
2.根据权利要求1所述的确定五机架冷连轧机厚度的差值迭代近似计算方法,其特征在于,所述S4中第一机架到第四机架的平均压下率ε计算公式如下:
ϵ = 1 - 1 / ( h 0 h 4 ) 1 / 4
上式中,h0为第一机架的入口厚度,h4为第四机架的出口厚度。
3.根据权利要求1所述的确定五机架冷连轧机厚度的差值迭代近似计算方法,其特征在于,所述S6中第一次迭代常量it_M1计算公式如下:
i t _ M 1 = Σ i = 1 m ϵ i Σ i = 1 m M ( i ) × w i d t h
上式中,m为分配比压下机架的个数,本发明实施例中为4,εi为第i个分配比压下机架的压下率,width为带钢宽度,M(i)为第i个分配比压下机架的功率分配比值,功率分配比值从轧制规范表中查到。
4.根据权利要求1所述的确定五机架冷连轧机厚度的差值迭代近似计算方法,其特征在于,所述S10中第二次迭代常量it_M2计算公式如下:
i t _ M 2 = ( h 0 - h 4 ′ h 0 - h 4 ) 0.8 × i t _ M 1
上式中,h0为第一机架的入口厚度,h4为第四机架的出口厚度,h′4为用第一次迭代常量计算的第四机架的出口厚度。
5.根据权利要求1所述的确定五机架冷连轧机厚度的差值迭代近似计算方法,其特征在于,所述S11中绝对差值delta_h计算公式如下:
delta_h=|h5-h′4|。
上式中,h5为轧机最后一个机架的出口厚度,h′4为分配比压下方式第四机架的出口厚度,即h1_M1。
6.根据权利要求1所述的确定五机架冷连轧机厚度的差值迭代近似计算方法,其特征在于,所述S12中循环迭代计算如下:
第①步:根据第二次迭代常量it_M2,计算所有分配机架的出口厚度;
第②步:将第①步计算的第四机架的出口厚度h1_M2和第二次迭代常量it_M2作为第二个近似点M2(h1_M2,it_M2);
第③步:计算S3中第四机架的出口厚度和第①步的第四机架的出口厚度的绝对值偏差,如果偏差小于极限值,则转到S13,否则转到第④步;
第④步:用基于插值的方法再次计算第二次迭代常量it_M2:
i t _ M 2 = ( i t _ M 2 × ( h 1 _ M 1 - h 5 ) - i t _ M 1 × ( h 1 _ M 2 - h 5 ) ) h 1 _ M 1 - h 1 _ M 2
第⑤步:将近似点M1的值替换为M2的值,即M1=M2;
第⑥步:迭代次数加1,如果迭代次数大于最大迭代次数,则转到S13,否则转到第①步。
CN201510540790.7A 2015-08-28 2015-08-28 一种确定五机架冷连轧机厚度的插值迭代近似计算方法 Active CN105068970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510540790.7A CN105068970B (zh) 2015-08-28 2015-08-28 一种确定五机架冷连轧机厚度的插值迭代近似计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510540790.7A CN105068970B (zh) 2015-08-28 2015-08-28 一种确定五机架冷连轧机厚度的插值迭代近似计算方法

Publications (2)

Publication Number Publication Date
CN105068970A true CN105068970A (zh) 2015-11-18
CN105068970B CN105068970B (zh) 2017-11-21

Family

ID=54498346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510540790.7A Active CN105068970B (zh) 2015-08-28 2015-08-28 一种确定五机架冷连轧机厚度的插值迭代近似计算方法

Country Status (1)

Country Link
CN (1) CN105068970B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513594A (en) * 1983-08-22 1985-04-30 Tippins Machinery Company, Inc. Method and apparatus for combining automatic gauge control and strip profile control
KR100685038B1 (ko) * 2005-10-05 2007-02-20 주식회사 포스코 압연두께 제어장치
CN101612633A (zh) * 2008-06-24 2009-12-30 宝山钢铁股份有限公司 冷连轧过程中间厚度在线设定方法
CN102728624A (zh) * 2011-04-13 2012-10-17 宝山钢铁股份有限公司 一种精轧带钢负荷分配设定方法
CN102921743A (zh) * 2012-10-30 2013-02-13 中冶南方(武汉)信息技术工程有限公司 一种确定五机架冷连轧机压下分配的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513594A (en) * 1983-08-22 1985-04-30 Tippins Machinery Company, Inc. Method and apparatus for combining automatic gauge control and strip profile control
KR100685038B1 (ko) * 2005-10-05 2007-02-20 주식회사 포스코 압연두께 제어장치
CN101612633A (zh) * 2008-06-24 2009-12-30 宝山钢铁股份有限公司 冷连轧过程中间厚度在线设定方法
CN102728624A (zh) * 2011-04-13 2012-10-17 宝山钢铁股份有限公司 一种精轧带钢负荷分配设定方法
CN102921743A (zh) * 2012-10-30 2013-02-13 中冶南方(武汉)信息技术工程有限公司 一种确定五机架冷连轧机压下分配的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘宝: "无机架冷连轧机厚度控制***的研究和应用", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
陈嘉祺: "冷连轧机第五机架厚度控制方式的研究", 《电工文摘》 *

Also Published As

Publication number Publication date
CN105068970B (zh) 2017-11-21

Similar Documents

Publication Publication Date Title
CN101623708B (zh) 板形控制集成***及执行方法
CN104858241B (zh) 一种冷连轧机组极薄带钢轧制的乳化液流量综合优化方法
CN104998913B (zh) 一种冷轧轧制过程中电机功率的预测方法
CN101648216B (zh) 一种pc轧机板形板凸度离线预报设定方法
Zhang et al. The calculation of roll torque and roll separating force for broadside rolling by stream function method
CN105312321A (zh) 一种冷连轧机组的工艺润滑制度优化方法
CN103567229B (zh) 一种针对六辊轧机的弯辊力组合板形控制方法
CN101934290B (zh) 不锈钢冷连轧负荷分配调整方法
CN103008360B (zh) 一种确定冷轧机工作辊温度场及热膨胀的方法
CN102921743B (zh) 一种确定五机架冷连轧机压下分配的方法
CN102363159B (zh) 一种单张板精密冷轧板厚测量***的厚度控制方法
CN105458012B (zh) 一种与高次曲线工作辊配合的支撑辊辊形通用设计方法
CN105234188B (zh) 冷连轧过程中以效益控制为目标的轧制速度优化方法
CN107321799A (zh) 一种新型二十辊轧机控制工艺的参数制定集成***
CN105234186B (zh) 冷连轧过程以吨钢电耗控制为目标的轧制规程优化方法
CN107442577A (zh) 一种精轧带钢负荷分配设定方法
CN102553945B (zh) 一种适合于四辊轧机的非常态板形预报方法
CN102688896B (zh) 四辊冷连轧机组基于机理模型的虚拟凸度仪设定方法
CN105032945B (zh) 一种热连轧机组板形板凸度综合控制能力评价方法
CN105013835A (zh) 冷连轧机组极薄带轧制中基于热凸度的原始辊缝设定方法
Knight et al. Investigations into the influence of asymmetric factors and rolling parameters on strip curvature during hot rolling
CN101934288B (zh) 冷连轧压下分配方法
CN106903173A (zh) 一种基于综合等负荷函数的轧制规程优化方法
CN105022923B (zh) 一种轧制力和轧制温度相互迭代的计算方法
JP2017073935A (ja) 消費電力量予測方法、装置及びプログラム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant