CN105043342A - 单向精密测距三角高程测量方法 - Google Patents

单向精密测距三角高程测量方法 Download PDF

Info

Publication number
CN105043342A
CN105043342A CN201510385884.1A CN201510385884A CN105043342A CN 105043342 A CN105043342 A CN 105043342A CN 201510385884 A CN201510385884 A CN 201510385884A CN 105043342 A CN105043342 A CN 105043342A
Authority
CN
China
Prior art keywords
elevation
point
coefficient
measured
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510385884.1A
Other languages
English (en)
Other versions
CN105043342B (zh
Inventor
李祖锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PowerChina Northwest Engineering Corp Ltd
Original Assignee
PowerChina Northwest Engineering Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PowerChina Northwest Engineering Corp Ltd filed Critical PowerChina Northwest Engineering Corp Ltd
Priority to CN201510385884.1A priority Critical patent/CN105043342B/zh
Publication of CN105043342A publication Critical patent/CN105043342A/zh
Application granted granted Critical
Publication of CN105043342B publication Critical patent/CN105043342B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明提供了一种单向精密测距三角高程测量方法,主要解决测距三角高程测量中大气垂直折光系数的确定,以及测距三角高程网平差中的确权问题。主要包括:基准点及待测点的布设及其高程确定,用于折光系数相关关系确定的样本数据获取,各观测方向折光系数的计算,各方向折光系数相关关系的确定及其方差估计,单向测距三角高程的计算,以及单向测距三角高程网的确权及平差。本发明适于实施重复及高危环境下的高程测量工作,可解决不具备双向观测条件项目的高程获取问题,或者通过确定折光系数差提高三角高程测量精度的项目,或者为节约成本而采用单向代替双向三角高程测量的项目。

Description

单向精密测距三角高程测量方法
技术领域
本发明属于测距三角高程测量技术领域,具体涉及一种单向精密测距三角高程测量方法。
背景技术
虽然目前GNSS技术的持续发展为空间数据的获取提供了极大便利,在一些特定条件下,其平面相对定位精度甚至达到了亚毫米,但由于受大地高向正常高转换过程中高程异常获取精度及其自身测量精度等因素的影响,限制了其在更高精度高程测量领域的推广,因此高程仍然大量采用传统的测量手段,目前较高精度高程测量主要有两种方式,一种是水准测量,另外一种是精密测距三角高程,其中水准测量精度最高,在一些高精度高程测量方面几乎无可替代,所以,目前一、二等高程获取主要依靠精密水准测量实现,但在一些地区,比如高山峡谷地区,几何水准测量高程传递是非常困难的,部分地区甚至是不可能的,但采用测距三角高程测量就比较容易实现,三角高程具有测定高差速度快,测量简单,不受地形条件限制等优点,特别是在高差较大的地区优势更加明显,特别是近年来,测量设备测角、测距精度不断提高,计算方法也不断得到完善,使得测距三角高程测量精度有了显著提高,目前采用测距三角高程测量方法获取三等、四等高程应用已经成熟,国内、外一些学者也开展过采用测距精密三角高程代替二等甚至一等水准的研究乃至生产,如辽宁工程大学的沈忱、中国地质大学的韩昀、天津水电院的周水渠等人均进行了相关研究及实践,对于进一步发挥三角高程的优势,持续挖掘高效的三角高程测量技术及测量数据处理方法,具有重要的研究和应用价值。
但三角高程也有其自身的缺陷,其影响因素主要有两个方面,一方面受到垂直角测量精度的限制,另一方面主要受到大气折射及垂线偏差因素的影响。垂直角测量和大气垂直折光差是精密测距三角高程的主要误差源(应用中,测距边长一般较短,故垂线偏差影响未予单独考虑),随着观测仪器精度的不断提升,特别是具有自动目标识别、自动照准、自动测角与测距测量机器人的不断发展,垂直角观测精度已经大幅度提升,为此,大气折射的影响成为三角高程测量重要的误差源,为了削弱折光对三角高程测量精度的影响,一般采用对向观测的手段对折光影响进行削弱,如果地形对称,同时段观测,确保测量的环境条件较接近,这种削弱效果是比较理想的,但如果地形条件不对称,或者不能在同一个时间段进行往、返观测,则在往、返测的过程中环境发生了较大变化,则难以较好抵消大气折光对三角高程的影响,部分条件下甚至会加大误差。三角高程折光关系见附图1。图中展示为自A点向B点观测示意图,i为仪器高,s为目标高,a为垂直角,平距为D,高差值为hAB。由于垂直大气折光的影响,视线发生向地面或者反方向的折射,视线不是直线而是弧线。图中虚线即为受到大气折光影响的视线方向。
因此,如果项目不具备对向观测条件,特别对于一些人员不便到达及不宜暴露或不宜频繁暴露的项目,如高危滑坡体监测项目,就限制了水准及对向测距三角高程测量的应用。当采用单向测距三角高程测量时,由于受到大气折射等因素的影响,单向测距三角高程精度难以保证。
发明内容
本发明是提供一种单向精密测距三角高程测量方法,目的是克服背景技术中所述单向测距三角高程测量现有技术所存在的不足。主要解决测距三角高程测量中大气垂直折光系数(隐含垂线偏差等要素)的确定,以及三角高程网平差中的确权问题。
本发明的技术方案是:单向精密测距三角高程测量方法,包括如下步骤:
步骤1:布设基准点及待测点
本步骤包括如下具体步骤:
1).首先根据工程需求布设待测点,即布设观测目标点;在待测点确定的基础上开展基准点的布设,包括用于对待测点直接观测的基准点的布设以及用于测定实时大气垂直折光系数的基准方向点的布设;
2).确保基准点在基准点的一个复测周期内不发生显著变形,这里采用t检验法对各基准点进行位移显著性检验以确定是否发生显著变形;
3).所布设的基准方向,应与待测方向视线所穿越的地形结构及朝向情况接近,确保两者近地气层结构相似,其中基准方向指由基准点至基准方向点所确定的方向,待测方向指由基准点至待测点所确定的方向;
4).如果滑坡体周边没有满足步骤2)和步骤3)要求的基准点,则在异地独立建造辅助基准点与基准方向,要求异地所建的辅助基准点与基准方向应与基准点至待测点方向视线所穿越的地形结构及朝向一致,确保两地地形及朝向一致,光照条件一致;
步骤2:获取基准点及待测点高程
基准点、待测点布设完成后,联测基准点及待测点已知高程,采用水准或者精密测距三角高程测量的方式联测,基准点高程要准确测定,测量精度高于待测点一个等级;待测点初始高程精度需高于设计的精度要求,对于部分获取待测点精确高程存在困难的项目,则采用单向测距三角高程测量结果,每次反演大气垂直折光系数所采用的基准高程应一致。
步骤3:获取样本数据用于确定基准方向与待测方向大气垂直折光系数相关关系
取多个环境下的测距三角高程测量样本数据来建立基准方向与待测方向的相关关系;通过连续观测基准点及待测点方向测距三角高程数据,利用步骤2所获取的高程数据,同步计算出持续的折光系数;通过对折光系数的统计、降噪处理,建立基准方向与待测方向的相关关系;观测时间避开阴天,以保证复杂的温度梯度变化,确保在这个观测条件下获取日常观测需要的参数,采用等步长观测,在大气变换剧烈的情况下加密观测。
对于步骤2中提出的待测点采用单向测距三角高程的情况,需保证在数据采集的起、止时间段内待测点不会发生显著变形,对于发生变形的点位,可通过在起、止时间分别观测高程,按照时间内插各个时刻待测点高程;
对于拥有多期测距三角高程测量数据的项目,直接对这些数据进行精度及可靠性检验后,作为样本数据进行计算分析;
无论是何种方式获取的测距三角高程测量样本数据,均需要保证每组所采集的基准方向与待测方向测距三角高程测量数据在时间上一一对应;
步骤4:确定各观测方向大气垂直折光系数
依据步骤2所提供的基准点及待测点高程值,以及步骤3得到的测距三角高程测量样本数据,按照如下公式求解各组基准方向及待测方向大气垂直折光系数k值:
k值计算公式如下:
k=1-[(h-S×Sinα-I+L)2R/(S×cosα)2](1)
上式中:h为已知高差值,S为斜边,α为垂直角,I为仪器高,L为标高,R为参考椭球曲率半径;
对所计算的大气垂直折光系数采用小波进行降噪处理,或者在回归方程参数估计过程中采用整体最小二乘方法进行参数估计,大气垂直折光系数方差mk 2估算公式如下:
m k 2 = ( 2 R ( S · cos α ) 2 ) 2 m h 2 + [ 2 R ( S · cos α ) 2 ( 2 ( h - I + L ) / S - sin α ) ] 2 m s 2 + [ 2 R S 2 · cos 3 α ( 2 ( h - I + L ) s i n α - S ( cos 2 α + 2 sin 2 α ) ) ] 2 m α 2 + ( 2 R ( S · cos α ) 2 ) 2 m I 2 + ( 2 R ( S · c o s α ) 2 ) 2 m L 2 - - - ( 2 )
公式中mh 2、ms 2、ma 2、mI 2、mL 2分别为对应的高差h、斜距s、垂直角α、仪器高I、标高L的方差;
用待测点连续观测进行计算时,短期内变形点如果发生变形,则在观测起、止时间分别测定待测点高程,通过时间内插求出指定时刻的变形点高程;
步骤5:确定基准方向与待测方向大气垂直折光系数的相关关系及折光系数方差估计
在步骤4确定的大气垂直折光系数k及其方差基础上,建立起基准方向与待测方向大气垂直折光系数的相关关系模型;两者相关性建立有两种方法:
方法一:利用回归方程建立基准方向与各个待测方向相关关系;
方法二:结合当地近地气层温度梯度分布特点,以方位、高度角要素确定任意方向待测点大气垂直折光系数计算模型;
基于步骤4所计算的大气垂直折光系数k,利用回归方程建立基准方向与各个待测方向的相关关系;首先通过绘制散点图,确定回归方程选配线型,然后分析基准方向与各个待测方向大气垂直折光系数的相关性,根据项目精度要求进行相关性满足要求的待测方向筛选,筛选的原则是精度要求越高则对相关性要求越高;通过相关性检验后,建立基准方向与各个待测方向折光系数的回归方程,并进行回归方程参数的计算及折光系数方差的估算;
如果观测点较多,不便于逐点确定,则按照方法二,以方位、高度角要素确定任意方向待测点大气垂直折光系数计算模型;
步骤6单向测距三角高程的确定
步骤5确定出了基准方向与待测方向的相关关系,每次测量过程中按照如下公式确定基准方向大气垂直折光系数:
KH=1-[(h-S×Sinα-I+L)2R/(S×cosα)2](6)
每次监测过程中,通过观测出基准方向斜距S、垂直角α,仪器高I和标高L,计算出大气垂直折光系数,
将计算出的系数KHi代入下式:
KBi=a+bKHi(7)
每次测量过程中,通过测出KHi,就可以求出KBi,将KBi代入下式,确定出各个方向的修正后三角高差值:
hi=S×Sinαi+Ii-Li+(1-KBi)×(S×Cosαi)2/2R(8)
步骤7单向测距三角高程网的确权及平差
通过两个或者多个测站对待测点进行测量,能够形成附合或者闭合路线,则依据高程闭合差进一步修正大气垂直折光系数。计算过程如下:
设测量两个基准点至待测点B1的高差分别为h1和h2,两个基准点高程为H1和H2,则存在如下关系:
ω=H1+h1-h2-H2(9)
式中的ω就是闭合差,理论上ω=0,然后将ω按照距离确权分配到高差h1和h2上,再将这个数值再代回式(1)进行k值迭代计算;
然后建立高差观测值间接平差模型,确定各个高差的最优估计值,模型如下:
V = B x ^ - f - - - ( 13 )
V为高差观测值改正数;B为平差模型的系数矩阵;为高程未知参数;-f为平差模型的常数项;由此模型确定高程参数
其中高程平差按照测距三角高程方差进行确权;
上述步骤1中所述的复测周期指由于地质运动以及工程施工等因素影响,可能会影响到测量基准点的稳定性,需要定期进行测量控制网测量,以便及时发现基准点的变形,并对发生变形的基准点赋予新的测量成果;这里所说的一个复测周期就是指重复测量经历的时间间隔。
上述步骤5中,相关性确定方法具体是以最常用的线性回归方程来实现,具体如下:
首先,求回归线的前提是变量待测点大气垂直折光系数KB与基准方向大气垂直折光系数KH必须存在线性相关,线性相关的指标是相关系数ρ:
ρ = 1 n Σ i = 1 n ( KH i - K H ‾ ) ( KB i - K B ‾ ) 1 n Σ i = 1 n ( KH i - K H ‾ ) 2 1 n Σ i = 1 n ( KB i - K B ‾ ) 2 - - - ( 3 )
其次,令:
K B = K B 1 KB 2 ... K B n , K H = 1 KH 1 1 KH 2 ... ... 1 KH n , β = a b , e = e 1 e 2 ... e n K B = K H β + e - - - ( 4 )
当有效KB大于2个,需要进行参数最优估计;
根据最小二乘原理,直接给出参数估值最小二乘求解公式:
β=(KHTPKH)-1KHTPKB(5)
解法方程组得:
a ^ = Σ KH i 2 Σ KB i - Σ KH i Σ KB i KH i n Σ KH i 2 - ( Σ KH i ) 2 b ^ = n Σ KB i KH i - Σ KB i Σ KH i n Σ KH i 2 - ( Σ KH i ) 2 - - - ( 6 )
用模型的复相关系数对回归模型拟合程度综合度量:
R 2 = Σ ( K ^ B i - KB i ‾ ) 2 Σ ( KB i - KB i i ‾ ) 2 - - - ( 7 )
其中:为待测方向大气垂直折光系数平均值,为待测方向大气垂直折光系数计算值;R2越大,即越接近于1,则模型拟合效果越好,方程的偏离度越小;
最后,评定其方差:
设残差值为V,则:
V=KHβ-KB(8)
待测方向折光系数KB的方差估计值σ2为:
σ ^ 2 = V t V n - 2 - - - ( 9 )
上述步骤7中,依据测距三角高程方差进行确权的方法如下:
单向测距三角高程方差估计公式为:
m h 2 = [ sin a + ( 1 - k ) S ( cos a ) 2 / R ] 2 m s 2 + [ S cos a ( 1 - ( 1 - k ) * S * sin a / R ] 2 m a 2 + [ ( S cos a ) 2 / 2 R ] 2 m k 2 + m I 2 + m L 2 - - - ( 10 )
公式中ms 2、ma 2mI 2、mL 2分别为对应的高差h、斜距s、垂直角α、折光系数k、仪器高I及标高L的方差值,其中ms 2、ma 2、mI 2、mL 2方差采用标称或估算精度计算,直接采用待测方向折光系数KB的方差估计值进行计算, m k 2 = σ k 2 ;
设定单位权中误差为σ0,确定各个测段三角高程的权值为:
P i = σ 0 2 / m h i 2 , i = 1 , 2 , ... , n - - - ( 11 )
本发明的有益效果:本发明是设计一套方法,以提高单向测距三角高程测量精度。该方法主要解决测距三角高程测量中大气垂直折射系数(隐含垂线偏差要素)的确定,以及测距三角高程网平差中的确权等问题。该方法是依据所布置的待测点布置若干观测基准点,并通过观测获取基准点及待测点高程。获取各组基准方向与待测方向三角高程同步观测数据,并依据基准点与待测点高程计算各组基准方向与待测方向大气垂直折光系数,并对所计算的各方向大气垂直折光系数进行降噪处理。根据降噪处理后的各组大气垂直折光系数,建立基准方向与待测方向大气垂直折光系数相关关系模型,并可估计出大气垂直折光系数方差。在应用中,当测定出基准方向的折光系数,便可依据所建立的模型求出各个待测方向的折光系数,将求出的待测方向折光系数代入三角高程计算公式中,便可求出基准点至待测点高差及高差方差值。最后依据高差方差进行三角高程网确权,并进行单程测距三角高程网或高程混合网平差。
本发明的优点如下:
1、适于重复及高危环境下的高程测量工作,比如高程监测项目,为其提供了一套高效率、高精度的测距三角高程解决方案;
2、测量效率更高,由于不采用双向观测,可显著的降低野外数据采集时间;
3、测量精度更高,如测量结果及选用模型可靠,可显著削弱由于往返测环境条件不对称,所造成的折光系数抵消不彻底对结果的影响;
4、测量作业过程更安全,由于其不需要进行往返测,待测点可以放置棱镜后,无人值守,为危险区域高精度高程数据的连续获取提供了可能;
5、测量成本更低,由于效率的显著提高,为重复高程测量提供了更低成本的解决方案。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1是三角高程折光关系示意图。
图2是模拟实验项目示意图。
图3是本发明方法的作业流程。
图4是降噪后的基准方向及待测方向大气垂直折光系数变化过程线。
具体实施方式
如图3所示为本发明的作业流程,本发明的具体实施步骤如下:
1基准方向及待测点的布设
基准方向及待测点的布设应根据项目实际地形特征而建造,主要原则如下:
1).根据工程需求布设待测点(观测目标点),在待测点确定的基础上开展基准点的布设,基准点包括用于对待测点直接观测的基准点以及用于测定实时大气垂直折光系数的基准方向点(注:文中提出的基准方向指由基准点至基准方向点所确定的方向,待测方向指由基准点至待测点所确定的方向);
2).基准点应有较高的稳定性,能够确保在基准点一个复测周期内不发生显著变形,这里采用t检验法对各基准点进行位移显著性检验以确定是否发生显著变形;
3).所布设的基准点至基准方向,应与基准点至待测点方向视线所穿越的地形结构及朝向情况接近,确保两者近地气层结构相似,以保证基准方向与待测方向具有相似的温度梯度结构。
4).如果滑坡体周边没有满足以上第2条和第3条要求的稳定基准方向点,可在异地独立建造辅助基准点与基准方向,要求异地所建的辅助基准点与基准方向应与基准点至待测点方向视线所穿越的地形结构及朝向情况接近,并不宜远离测区,确保两地地形及朝向接近,日照基本同步。下边模拟一个项目以介绍普遍的布设原则。
图2是模拟实验项目示意图。
图中,白线范围内为滑坡体,按照监测计划,在变形体上建造B1、B2、B3、B4,在这个基础上,布设观测基准点H1和H2,其中H1为观测基准点,H2为辅助基准点,基准方向H1→H2地形结构与变形点方向相似,使之间折光关系存在相关性。
2基准点及待测点高程的获取
基准点及待测点布设完成后,联测基准点及待测点已知高程,采用水准测量或者精密三角高程测量方法,准确测定基准点高程,测量精度应高于待测点一个等级。对于获取待测点精确高程存在困难的项目,如仅需要相对变形量(如滑坡变形监测等),可采用单程测量结果,但每次反演折光系数所采用的基准高程应一致,通过估算,只要各次反演折光系数所采用的基准高程是一致的,其对所解算的相对折光系数变化影响量值很小。
3获取折光系数相关关系确定的样本数据
基准方向与待测方向的相关关系的建立,应获取多个环境下的观测样本,通过连续观测基准点及待测点方向测距三角高程数据,利用步骤2所获取的高程数据,可同步计算出持续的折光变化数据,连续观测(自上午太阳升起之前至太阳落山后)基准点及待测点,获取持续的折光数据,对这些数据统计并降噪处理,用于建立基准方向与待测方向的相关关系。观测时间应避开阴天,保证复杂的温度梯度变化,确保在这个观测条件下获取日常观测需要的参数,在大气变换剧烈的情况下加密观测。
太阳升起和太阳落山前后,折光变化迅速,推荐20分钟测量一次,每次观测不少于4个测回(这个可以根据精度灵活确定),其余时间可1个小时观测一次。
对于步骤2中提出的待测点采用单向测距三角高程的情况,需保证在数据采集的起、止时间段内待测点不会发生显著变形,对于发生变形的点位,可通过在起、止时间分别观测高程,采用时间内插出各个时刻待测点高程。
在实际生产中,对于拥有多期测距三角高程测量数据的项目,可直接对这些数据进行精度及可靠性检验后,作为样本数据进行计算分析。
无论是何种方式获取的测距三角高程测量样本数据,均需要保证每组所采集的基准方向与待测方向测距三角高程测量数据在时间上一一对应。
观测仪器的选择根据观测精度要求来确定。
4大气垂直折光系数的确定
针对工程中常用的短距离测距三角高程,垂直角折光角可转换为垂直折光系数。
两点间测距三角高程测量单向高程基本公式为:h=S×Sinα+I-L+(1-k)×(S×Cosα)2/2R(1)
式(1)中:S为斜边,α为垂直角,仪器高I、标高L系观测量,曲率半径R为已知。
依据步骤2所提供的基准点及待测点高程值,以及步骤3得到的测距三角高程测量样本数据,按照如下公式求解各组基准方向(含辅助基准方向)及待测方向大气垂直折光系数k值:
k=1-[(h-S×Sinα-I+L)2R/(S×cosα)2](2)
其中,h为已知高差值,S为斜边,α为垂直角,I为仪器高,L为标高,R为参考椭球曲率半径。
这样就可以确定出各个时间点选定方向的折光系数,由于垂直角,边长等量观测依然存在误差,导致折光系数不可避免的含有噪声误差,必要的情况下需要进行降噪处理,在实验阶段的案例中我们对计算的折光系数采用小波进行了降噪处理。或者在回归方程参数估计过程中,采用整体最小二乘方法进行参数估计,这就需要估算出折光系数的方差,按照误差传播率,推出折光系数k方差估算公式如下:
m k 2 = ( 2 R ( S · cos α ) 2 ) 2 m h 2 + [ 2 R ( S · cos α ) 2 ( 2 ( h - I + L ) / S - sin α ) ] 2 m s 2 + [ 2 R S 2 · cos 3 α ( 2 ( H - I + L ) s i n α - S ( cos 2 α + 2 sin 2 α ) ) ] 2 m α 2 + ( 2 R ( S · cos α ) 2 ) 2 m I 2 + ( 2 R ( S · c o s α ) 2 ) 2 m L 2 - - - ( 3 )
公式中ms 2、ma 2mI 2、mL 2分别为对应的高差h、斜距s、垂直角α、折光系数k、仪器高I及标高L的方差值。
用待测点连续观测进行计算时,短期内变形点一般不会发生显著变形,如发生变形,可在观测起、止时间分别测定待测点高程,通过时间内插求出指定时刻的变形点高程。
5基准方向与待测方向大气垂直折光系数相关关系的确定
基准方向与待测方向大气垂直折光系数相关关系的确定及其方差估计
在步骤4确定的大气垂直折光系数k及其方差基础上,建立起基准方向与待测方向大气垂直折光系数的相关关系模型。两者相关性建立有两种方法:
1利用回归方程建立基准方向与各个待测方向相关关系;
2结合当地近地气层温度梯度分布特点,以方位、高度角要素确定任意方向待测点大气垂直折光系数计算模型。
利用回归方程建立基准方向与各个待测方向相关关系,利用步骤4所计算的大气垂直折光系数k,通过绘制散点图,选配回归方程线型,然后分析基准方向与各个待测方向大气垂直折光系数的相关性,线性相关的指标是相关系数ρ,这里用如下式子计算:
如果两站之间地形结构对称,又是在同一个时刻进行往返测,那么就可以有效削弱折光影响,否则往返测对折光的削弱有限。采用回归方程建立相关关系方法如下:
首先通过绘制散点图,根据散点图选配线型,并建立回归方程,方程建立应尽量简单,否则会给模型可靠性评价带来更大的难度。
一般称 Y = X β + ϵ E ( ϵ ) = 0 , C O V ( ϵ , ϵ ) = σ 2 I n
为高斯—马尔柯夫线性模型(k元线性回归模型),并简记为(Y,Xβ,σ2In)
下边我们以最常用的线性回归方程为例介绍其实现过程。
设定基准方向大气垂直折光系数为KH,变形点或者待测点折光系数为KB,线性关系可设定为如下的形式:
KBi=a+bKHi+ei(4)
其中:a、b为系数,ei为随机误差。KB与KH服从一元线性回归模型。
求回归直线的前提是变量KB与KH必须存在线性相关,否则所配直线就无实际意义,线性相关的指标是相关系数ρ,这里用如下式子计算:
ρ = 1 n Σ i = 1 n ( KH i - K H ‾ ) ( KB i - K B ‾ ) 1 n Σ i = 1 n ( KH i - K H ‾ ) 2 1 n Σ i = 1 n ( KB i - K B ‾ ) 2 - - - ( 5 )
|ρ|越接近于1,线性回归分析的效果越好;特别,当|ρ|=1时,(KB1,KH1),(KB2,KH2),…,(KBn,KHn)将全部落在直线KB=a+bKH上。
一般认为:
如果ρ∈[0.75,1],那么正相关很强;如果ρ∈[-1,-0.75],那么负相关很强;如果ρ∈(-0.75,-0.30]或r∈[0.30,0.75),那么相关性一般;如果ρ∈[-0.25,0.25],那么相关性较弱。
通过相关性检验后,令:
K B = K B 1 KB 2 ... K B n , K H = 1 KH 1 1 KH 2 ... ... 1 KH n , β = a b , e = e 1 e 2 ... e n K B = K H β + e - - - ( 6 )
当有效KB大于2个,需要进行参数最优估计。
根据最小二乘原理,直接给出参数估值最小二乘求解公式:
β=(KHTPKH)-1KHTPKB(7)
解法方程组得:
a ^ = Σ KH i 2 Σ KB i - Σ KH i Σ KB i KH i n Σ KH i 2 - ( Σ KH i ) 2 b ^ = n Σ KB i KH i - Σ KB i Σ KH i n Σ KH i 2 - ( Σ KH i ) 2 - - - ( 8 )
下面用模型的复相关系数对回归模型拟合程度综合度量:
R 2 = Σ ( K ^ B i - KB i ‾ ) 2 Σ ( KB i - KB i i ‾ ) 2 - - - ( 9 )
其中:为待测方向大气垂直折光系数平均值,为待测方向大气垂直折光系数计算值。R2越大(越接近于1),则模型拟合效果越好,方程的偏离度越小。
然后将上式参数代入式(3)就可确定出基准方向与待测点方向折光关系式。然后评定其中误差:
设残差值为V,则:
V=KHβ-KB(10)
待测方向折光系数KB的方差估计值σ2为:
σ ^ 2 = V t V n - 2 - - - ( 11 )
方差项可以较直观反映出模型计算的精度情况。
另外统计出方差分析的F统计量
F = S S R / f R S S E / f E = S S R S S E / ( n - 2 ) - - - ( 12 )
方差分析的显著性概率
p=P(F(1,n-2)>F)(13)
以上数据计算及分析可在Matlab等软件实现。
如果观测点较多,不便于逐点确定,可以按照第2种方法,以方位、高度角要素确定任意方向待测点大气垂直折光系数计算模型。具体选择那种方法要根据精度要求和环境特征来确定。
另外,结合本步骤内容再谈谈步骤1中的点位布置,基准点布置应根据初选的拟合模型,评估由于基准点原始参考高程测量误差对拟合精度的影响程度,使用中应区别不同特征项目进行分别研究。
6单向测距三角高程的确定
当进行待测点观测时,只要观测出基准方向斜距S、垂直角α,仪器高I和标高L,便可通过公式(14)计算出测量时刻的基准方向大气垂直折光系数:
KH=1-[(h-S×Sinα-I+L)2R/(S×cosα)2](14)
由于在步骤5中已经确定出了基准方向与待测方向折光系数k的相关关系。将式(14)计算出的系数KHi代入式(15):
KBi=a+bKHi(15)
便可求出待测方向折光系数KBi,将KBi代入式(16),就可解算出各个方向修正后精密测距三角高差值:
hi=S×Sinαi+Ii-Li+(1-KBi)×(S×Cosαi)2/2R(16)
7单向测距三角高程网的定权及平差
如果通过两个或者多个测站对待测点进行测量,可形成附合或者闭合路线,可依据高程闭合差进一步修正折光系数。计算过程如下:
设通过两个基准点测量的至待测点B1高差分别为h1和h2,两个基准点高程为H1和H2,则存在如下关系:
ω=H1+h1-h2-H2(17)
式中的ω就是闭合差,理论上ω=0,然后将ω按照距离确权分配到高差h1和h2上,再将这个数值再代回式(2)进行K值迭代计算。关于平差中确权的问题,在这里有必要探讨一下:
根据误差传播定律,设h、S、a、k、I及L的中误差分别为mh、ms、ma、mk、mI、mL,据式(1)按照误差传播定律:
m h 2 = ( ∂ h ∂ s ) 2 m s 2 + ( ∂ h ∂ a ) 2 m a 2 + ( ∂ h ∂ K ) 2 m k 2 + ( ∂ h ∂ I ) 2 m I 2 + ( ∂ h ∂ L ) 2 m L 2 - - - ( 18 )
下边忽略推导过程,直接给出单向高差精度公式:
m h 2 = [ sin a + ( 1 - k ) S ( cos a ) 2 / R ] 2 m s 2 + [ S cos a ( 1 - ( 1 - k ) * S * sin a / R ) ] 2 m a 2 + [ ( S cos a ) 2 / 2 R ] 2 m k 2 + m I 2 + m L 2 - - - ( 19 )
以上公式在实际应用中,由于距离误差的影响一般远小于垂直角误差的影响,为了简化计算,忽略边长影响,公式简化如下:
m h 2 = [ S * cos a * ( 1 - ( 1 - k ) * S * sin a / R ) ] 2 m a 2 + [ ( S cos a ) 2 / 2 R ] 2 m k 2 + m I 2 + m L 2 - - - ( 20 )
其中ms 2、ma 2、mI 2、mL 2方差可采用标称或估算精度计算,本专利中大气垂直折光系数k值主要考虑的是相对精度水平,故直接采用待测方向折光系数KB的方差估计值进行计算,
各个方向的观测精度不等,平差确权宜依据观测值方差来确定。设定单位权中误差为σ0,确定各个测段三角高程的权值为:
P i = σ 0 2 / m h i 2 , i = 1 , 2 , ... , n - - - ( 11 )
然后建立高差观测值间接平差模型,从而确定各个高差的最优估计值。模型如下:
V = B x ^ - f - - - ( 22 )
V为高差观测值改正数;B为平差模型的系数矩阵;为高程未知参数;-f为平差模型的常数项。
由此计算的先验权阵,进行高程平差,并最终确定高程参数
实验证明,在采用以上方法后,在采用单向测量的情况下,依然可以获取较高的测量成果,当一个点采用大于两个方向的测量成果,可进一步提高其可靠性及精度。
下边用一个案例进一步说明本发明
该监测项目系一个山体堆积体,监测内容包括沉降和平面位移监测两部分,其中沉降监测采用二等水准测量,平面采用测量机器人前方交会,按照三等精度测量,基于实验项目已有的一些条件,对该专利方法精度及可靠性进行验证,实验计划如下:
在基准点H1设站,基准方向为H2,测定B1、B2、B3、B4等待测点。
观测时间避开阴天,确保存在一个复杂多变的温度梯度变化环境,以对其可靠性进行验证,从上午6点开始(太阳升起之前),截止晚上8点(太阳落山),持续14个小时的观测。
太阳升起时,折光变化迅速,6点至9点20分钟测量一次,每次4个测回,随后1个小时观测一次,下午6点以后每20分钟一次。
观测仪器采用徕卡公司TM30测量机器人。
测量后的数据分析内容:
1、绘制出温度过程线。计算出各个点的大气垂直折光系数,并将各个点的折光过程线绘出,必要时对大气垂直折光系数进行小波降噪处理。
2、绘出大气垂直折光系数散点图,根据散点图确定须配曲线的类型,这里选择简单的线性回归方程,并用相关性检验方法对各个方向过程线一致性进行检验分析。
3、以基准方向大气垂直折光系数为变量,由相关方向建立回归方程,建立各个待定方向与基准方向的关系函数。
4、计算拟合优度及F等统计量。
5、据先验三角高程精度进行定权,以对多个方向三角高程平差
6、其他一些要素的分析及检验,成果的输出及与水准高程的比较,误差的统计等内容。
通过实验,当基准方向选择合理,边长不大于500米,单程测量可以替代双向观测。
图4是降噪后的基准方向及待测方向大气垂直折光系数变化过程线图。初步结论:该实验数据所统计的大气垂直折光系数超过常用的0.14(地球曲率变化影响部分),上午大气垂直折光系数绝对值逐步变小,中午处于一个震荡的态势,到下午日落前后大气垂直折光系数呈现绝对值变大的趋势,这个趋势可以从左图中看出。小波去噪后,大气垂直折光系数呈现上图所示变化情况,各个方向大气垂直折光系数主要存在常数差异,这部分差异除了本身折光影响外,主要是测量过程中量高误差所致,因为这部分边长普遍在150米至200米范围,影响量非常小。
综上,本发明方法包括:1)基准点及待测点(观测目标点)的布设(基准点包括用于对待测点直接观测的基准点以及用于测定实时大气垂直折光系数的基准方向点);2)基准点及待测点高程的确定;3)用于大气垂直折光系数相关关系确定的基准方向与待测方向样本数据获取(注:基准方向指由基准点至基准方向点所确定的方向,待测方向指由基准点至待测点所确定的方向);4)各观测方向大气垂直折光系数的确定;5)基准方向与待测方向大气垂直折光系数相关关系的确定及折光系数方差估计;6)单向测距三角高程的确定;7)单向测距三角高程网的定权及平差。
本发明可较好解决不具备往返双向测量条件,且需要高精度观测的项目,以及为提高测距三角高程测量精度,需要确定更准确的折光系数差,或者为节约成本而采用单向代替双向测距三角高程测量的项目,特别对于需要重复进行的高程测量项目效果更加显著。
该方法是依据所布置的待测点布置若干观测基准点,并通过观测获取基准点及待测点高程。获取各组基准方向与待测方向三角高程同步观测数据,并依据基准点与待测点高程计算各组基准方向与待测方向大气垂直折光系数,并对所计算的各方向大气垂直折光系数进行降噪处理。根据降噪处理后的各组大气垂直折光系数,建立基准方向与待测方向大气垂直折光系数相关关系模型,并可估计出大气垂直折光系数方差。在应用中,当测定出基准方向的折光系数,便可依据所建立的模型求出各个待测方向的折光系数,将求出的待测方向折光系数代入三角高程计算公式中,便可求出基准点至待测点高差及高差方差值。最后依据高差方差进行三角高程网确权,并进行单程测距三角高程网或高程混合网平差。
本发明给出了关于通过设定一定的观测规则,通过单向测距三角高程测量获取高程成果的一系列思路与方法。针对本发明方法的基准点、基准方向以及待测点布设的准则,包括在待测点周边布设基准方向,以及在异地类似地形及朝向条件下进行辅助基准点及基准方向布置的思路。给出了基准点及待测点初始高程精度要求及获取方法。给出了用于相关关系确定的样本数据获取方法,包括通过连续观测获取数据的思路,以及对已有数据的利用原则,数据降噪处理方法,计算各组基准方向及待测方向大气垂直折光系数的方法,进行k值方差估计方法,给出了基准方向与待测方向之间建立相关关系模型的思路,包括根据散点图确定回归模型选配线型的方法,以及以方位、高度角要素确定任意方向待测点大气垂直折光系数的思路,以及回归方程相关性检验方法,参数求解方法,以及单程三角高程方差估计方法,本发明还包括了基于三角高程先验误差确权及平差方法,包括相对基准方向的大气垂直折光系数方差估计方法,三角高程方差估计方法,以及单程三角高程网的确权方法。
本发明的优点如下:
1、适于重复及高危环境下的高程测量工作,比如高程监测项目,为其提供了一套高效率、高精度的测距三角高程解决方案;
2、测量效率更高,由于采用单向观测,显著降低了野外数据采集时间;
3、测量精度更高,如测量结果及选用模型可靠,可显著削弱由于往返测环境条件不对称,所造成的折光系数抵消不彻底对结果的影响;
4、测量作业过程更安全,由于其不需要进行往返测,待测点可以放置棱镜后,无人值守,为危险区域高精度高程数据的连续获取提供了可能;
5、测量成本更低,由于效率的显著提高,为重复高程测量提供了更低成本的解决方案。
该方法可以通过实际工程体现出来,如某滑坡体的沉降监测,滑坡滑动较大,为了获取其变形动态,在一个滑坡体布设了50个监测点,其高程测量精度要求为三等,当采用三角高程往返测,受滑坡交通条件限制,滑坡体区域攀爬非常困难,至少需要4天时间才能完成一个周期的沉降监测工作,当采用该方法,由于基准点布置区域交通相对便利,可以用一天时间便可完成所有的监测工作,一个月进行4次周期性监测,每组配置7名工作人员,一年便可节约1008个工作日,同时作业时间大幅缩短。
本实施方式中没有详细叙述的部分属本行业的公知的常用手段,这里不一一叙述。以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本发明相同或相似的设计均属于本发明的保护范围之内。

Claims (4)

1.单向精密测距三角高程测量方法,其特征在于,包括如下步骤:
步骤1:布设基准点及待测点
本步骤包括如下具体步骤:
1).首先根据工程需求布设待测点,即布设观测目标点;在待测点确定的基础上开展基准点的布设,包括用于对待测点直接观测的基准点的布设以及用于测定实时大气垂直折光系数的基准方向点的布设;
2).确保基准点在基准点的一个复测周期内不发生显著变形,这里采用t检验法对各基准点进行位移显著性检验以确定是否发生显著变形;
3).所布设的基准方向,应与待测方向视线所穿越的地形结构及朝向情况接近,确保两者近地气层结构相似,其中基准方向指由基准点至基准方向点所确定的方向,待测方向指由基准点至待测点所确定的方向;
4).如果滑坡体周边没有满足步骤2)和步骤3)要求的基准点,则在异地独立建造辅助基准点与基准方向,要求异地所建的辅助基准点与基准方向应与基准点至待测点方向视线所穿越的地形结构及朝向一致,确保两地地形及朝向一致,光照条件一致;
步骤2:获取基准点及待测点高程
基准点、待测点布设完成后,联测基准点及待测点已知高程,采用水准或者精密测距三角高程测量的方式联测,基准点高程要准确测定,测量精度高于待测点一个等级;待测点初始高程精度需高于设计的精度要求,对于部分获取待测点精确高程存在困难的项目,则采用单向测距三角高程测量结果,每次反演大气垂直折光系数所采用的基准高程应一致。
步骤3:获取样本数据用于确定基准方向与待测方向大气垂直折光系数相关关系
取多个环境下的测距三角高程测量样本数据来建立基准方向与待测方向的相关关系;通过连续观测基准点及待测点方向测距三角高程数据,利用步骤2所获取的高程数据,同步计算出持续的折光系数;通过对折光系数的统计、降噪处理,建立基准方向与待测方向的相关关系;观测时间避开阴天,以保证复杂的温度梯度变化,确保在这个观测条件下获取日常观测需要的参数,采用等步长观测,在大气变换剧烈的情况下加密观测。
对于步骤2中提出的待测点采用单向测距三角高程的情况,需保证在数据采集的起、止时间段内待测点不会发生显著变形,对于发生变形的点位,可通过在起、止时间分别观测高程,按照时间内插各个时刻待测点高程;
对于拥有多期测距三角高程测量数据的项目,直接对这些数据进行精度及可靠性检验后,作为样本数据进行计算分析;
无论是何种方式获取的测距三角高程测量样本数据,均需要保证每组所采集的基准方向与待测方向测距三角高程测量数据在时间上一一对应;
步骤4:确定各观测方向大气垂直折光系数
依据步骤2所提供的基准点及待测点高程值,以及步骤3得到的测距三角高程测量样本数据,按照如下公式求解各组基准方向及待测方向大气垂直折光系数k值:
k值计算公式如下:
k=1-[(h-S×Sinα-I+L)2R/(S×cosα)2](1)
上式中:h为已知高差值,S为斜边,α为垂直角,I为仪器高,L为标高,R为参考椭球曲率半径;
对所计算的大气垂直折光系数采用小波进行降噪处理,或者在回归方程参数估计过程中采用整体最小二乘方法进行参数估计,大气垂直折光系数方差mk 2估算公式如下:
m k 2 = ( 2 R ( S · cos α ) 2 ) 2 m h 2 + [ 2 R ( S · cos α ) 2 ( 2 ( h - I + L ) / S - sin α ) ] 2 m s 2 + [ 2 R S 2 · cos 3 α ( 2 ( h - I + L ) sin α - S ( cos 2 α + 2 sin 2 α ) ) ] 2 m α 2 + ( 2 R ( S · cos α ) 2 ) 2 m I 2 + ( 2 R ( S · cos α ) 2 ) 2 m L 2 - - - ( 2 )
公式中mh 2、ms 2、ma 2、mI 2、mL 2分别为对应的高差h、斜距s、垂直角α、仪器高I、标高L的方差;
用待测点连续观测进行计算时,短期内变形点如果发生变形,则在观测起、止时间分别测定待测点高程,通过时间内插求出指定时刻的变形点高程;
步骤5:确定基准方向与待测方向大气垂直折光系数的相关关系及折光系数方差估计
在步骤4确定的大气垂直折光系数k及其方差基础上,建立起基准方向与待测方向大气垂直折光系数的相关关系模型;两者相关性建立有两种方法:
方法一:利用回归方程建立基准方向与各个待测方向相关关系;
方法二:结合当地近地气层温度梯度分布特点,以方位、高度角要素确定任意方向待测点大气垂直折光系数计算模型;
基于步骤4所计算的大气垂直折光系数k,利用回归方程建立基准方向与各个待测方向的相关关系;首先通过绘制散点图,确定回归方程选配线型,然后分析基准方向与各个待测方向大气垂直折光系数的相关性,根据项目精度要求进行相关性满足要求的待测方向筛选,筛选的原则是精度要求越高则对相关性要求越高;通过相关性检验后,建立基准方向与各个待测方向折光系数的回归方程,并进行回归方程参数的计算及折光系数方差的估算;
如果观测点较多,不便于逐点确定,则按照方法二,以方位、高度角要素确定任意方向待测点大气垂直折光系数计算模型;
步骤6:单向测距三角高程的确定
步骤5确定出了基准方向与待测方向的相关关系,每次测量过程中按照如下公式确定基准方向大气垂直折光系数:
KH=1-[(h-S×Sinα-I+L)2R/(S×cosα)2](6)
每次监测过程中,通过观测出基准方向斜距S、垂直角α,仪器高I和标高L,计算出大气垂直折光系数,
将计算出的系数KHi代入下式:
KBi=a+bKHi(7)
每次测量过程中,通过测出KHi,就可以求出KBi,将KBi代入下式,确定出各个方向的修正后三角高差值:
hi=S×Sinαi+Ii-Li+(1-KBi)×(S×Cosαi)2/2R(8)
步骤7:单向测距三角高程网的确权及平差
通过两个或者多个测站对待测点进行测量,能够形成附合或者闭合路线,则依据高程闭合差进一步修正大气垂直折光系数。计算过程如下:
设测量两个基准点至待测点B1的高差分别为h1和h2,两个基准点高程为H1和H2,则存在如下关系:
ω=H1+h1-h2-H2(9)
式中的ω就是闭合差,理论上ω=0,然后将ω按照距离确权分配到高差h1和h2上,再将这个数值再代回式(1)进行k值迭代计算;
然后建立高差观测值间接平差模型,确定各个高差的最优估计值,模型如下:
V = B x ^ - f - - - ( 13 )
V为高差观测值改正数;B为平差模型的系数矩阵;为高程未知参数;-f为平差模型的常数项;由此模型确定高程参数
其中高程平差按照测距三角高程方差进行确权;
2.如权利要求1所述的单向精密测距三角高程测量方法,其特征在于,步骤1中所述的复测周期指由于地质运动以及工程施工等因素影响,可能会影响到测量基准点的稳定性,需要定期进行测量控制网测量,以便及时发现基准点的变形,并对发生变形的基准点赋予新的测量成果;这里所说的一个复测周期就是指重复测量经历的时间间隔。
3.如权利要求1所述的单向精密测距三角高程测量方法,其特征在于,所述步骤5中,相关性确定方法具体是以最常用的线性回归方程来实现,具体如下:
首先,求回归线的前提是变量待测点大气垂直折光系数KB与基准方向大气垂直折光系数KH必须存在线性相关,线性相关的指标是相关系数ρ:
ρ = 1 n Σ i = 1 n ( KH i - K H ‾ ) ( KB i - K B ‾ ) 1 n Σ i = 1 n ( KH i - K H ‾ ) 2 1 n Σ i = 1 n ( KB i - K B ‾ ) 2 - - - ( 3 )
其次,令:
K B = K B 1 KB 2 ... K B n , K H = 1 KH 1 1 KH 2 ... ... 1 KH n , β = a b , e = e 1 e 2 ... e n
KB=KHβ+e(4)
当有效KB大于2个,需要进行参数最优估计;
根据最小二乘原理,直接给出参数估值最小二乘求解公式:
β=(KHTPKH)-1KHTPKB(5)
解法方程组得:
a ^ = ΣKH i 2 ΣKB i - ΣKH i ΣKB i KH i nΣKH i 2 - ( ΣKH i ) 2 b ^ = nΣKB i KH i - ΣKB i ΣKH i nΣKH i 2 - ( ΣKH i ) 2 - - - ( 6 )
用模型的复相关系数对回归模型拟合程度综合度量:
R 2 = Σ ( K ^ B i - KB i ‾ ) 2 Σ ( KB i - KB i i ‾ ) 2 - - - ( 7 )
其中:为待测方向大气垂直折光系数平均值,为待测方向大气垂直折光系数计算值;R2越大,即越接近于1,则模型拟合效果越好,方程的偏离度越小;
最后,评定其方差:
设残差值为V,则:
V=KHβ-KB(8)
待测方向折光系数KB的方差估计值σ2为:
σ ^ 2 = V t V n - 2 - - - ( 9 )
4.如权利要求1所述的单向精密测距三角高程测量方法,其特征在于,所述步骤7中,依据测距三角高程方差进行确权的方法如下:
单向测距三角高程方差估计公式为:
m h 2 = [ sin a + ( 1 - k ) S ( cos a ) 2 / R ] 2 m s 2 + [ S cos a ( 1 - ( 1 - k ) * S * sin a / R ) ] 2 m a 2 + [ ( S cos a ) 2 / 2 R ] 2 m k 2 + m I 2 + m L 2 - - - ( 10 )
公式中ms 2、ma 2mI 2、mL 2分别为对应的高差h、斜距s、垂直角α、折光系数k、仪器高I及标高L的方差值,其中ms 2、ma 2、mI 2、mL 2方差采用标称或估算精度计算,直接采用待测方向折光系数KB的方差估计值进行计算,
设定单位权中误差为σ0,确定各个测段三角高程的权值为:
P i = σ 0 2 / m h i 2 , i = 1 , 2 , ... , n - - - ( 11 )
CN201510385884.1A 2015-07-03 2015-07-03 单向精密测距三角高程测量方法 Active CN105043342B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510385884.1A CN105043342B (zh) 2015-07-03 2015-07-03 单向精密测距三角高程测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510385884.1A CN105043342B (zh) 2015-07-03 2015-07-03 单向精密测距三角高程测量方法

Publications (2)

Publication Number Publication Date
CN105043342A true CN105043342A (zh) 2015-11-11
CN105043342B CN105043342B (zh) 2017-05-24

Family

ID=54450081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510385884.1A Active CN105043342B (zh) 2015-07-03 2015-07-03 单向精密测距三角高程测量方法

Country Status (1)

Country Link
CN (1) CN105043342B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388507A (zh) * 2015-11-24 2016-03-09 中国电建集团西北勘测设计研究院有限公司 基于区域gnss与精密测距尺度比估计法确定椭球参数的方法
CN105445177A (zh) * 2015-12-29 2016-03-30 中国地质大学(武汉) 岸坡侵蚀量和侵蚀速率的监测方法
CN106595574A (zh) * 2016-12-16 2017-04-26 鞍钢集团矿业有限公司 基于测量机器人露天矿边坡监测高程数据的处理方法
CN106599483A (zh) * 2016-12-16 2017-04-26 鞍钢集团矿业有限公司 基于测量机器人露天矿边坡监测平面数据的处理方法
CN107687711A (zh) * 2016-08-04 2018-02-13 青岛经济技术开发区海尔热水器有限公司 一种热水器安全监测装置及方法
CN107805984A (zh) * 2017-09-21 2018-03-16 中铁工程设计咨询集团有限公司 单边测量轨道控制网桩点的方法和***
CN109029341A (zh) * 2018-06-15 2018-12-18 兰州交通大学 参数法cpiii精密三角高程控制网数据处理方法
CN110132229A (zh) * 2019-05-10 2019-08-16 西南交通大学 一种铁路轨道控制网三角高程测量与数据处理的方法
CN110344327A (zh) * 2019-07-03 2019-10-18 西南交通大学 一种斜拉桥上轨道控制网cpiii点实时高程计算方法
CN110455257A (zh) * 2019-08-16 2019-11-15 中国电建集团成都勘测设计研究院有限公司 大气垂直折光系数检测方法、高程测量***及方法
CN111308432A (zh) * 2019-12-03 2020-06-19 中国人民解放军63921部队 一种利用测速数据评估航天器测距数据精度的方法
CN111609833A (zh) * 2020-05-26 2020-09-01 武汉弘泰建筑工程质量检测有限公司 高耸建筑物沉降观测方法
CN113551643A (zh) * 2021-07-29 2021-10-26 中冀建勘集团有限公司 一种跨河水准测量方法及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765154B1 (ko) * 2006-12-05 2007-10-15 삼부기술 주식회사 경사지에서 수준측량 시 전, 후시의 거리조정을 이용한측량방법
CN101403613A (zh) * 2008-10-30 2009-04-08 广州市设计院 一种高程测量的新方法
CN103399362A (zh) * 2013-07-23 2013-11-20 河海大学 一种基于三角高程网的大气折光系数反演方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765154B1 (ko) * 2006-12-05 2007-10-15 삼부기술 주식회사 경사지에서 수준측량 시 전, 후시의 거리조정을 이용한측량방법
CN101403613A (zh) * 2008-10-30 2009-04-08 广州市设计院 一种高程测量的新方法
CN103399362A (zh) * 2013-07-23 2013-11-20 河海大学 一种基于三角高程网的大气折光系数反演方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
张正禄等: "精密三角高程代替一等水准测量的研究", 《武汉大学学报.信息科学版》 *
李浩等: "大气折光在三角高程测量中的反算及精度分析", 《贵州水力发电》 *
蒋利龙等: "削减大气折光对三角高程影响的新途径", 《测绘工程》 *
许昌等: "跨江高程传递区域大气折光系数的统计分析", 《勘察科学技术》 *
郑德华: "精密测距三角高程精度分析及高程混合网定权", 《同济大学学报》 *
龙四春等: "大气折光系数修正与高精度三角高程测量", 《公路交通科技》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388507A (zh) * 2015-11-24 2016-03-09 中国电建集团西北勘测设计研究院有限公司 基于区域gnss与精密测距尺度比估计法确定椭球参数的方法
CN105388507B (zh) * 2015-11-24 2017-11-03 中国电建集团西北勘测设计研究院有限公司 基于区域gnss与精密测距尺度比估计法确定椭球参数的方法
CN105445177A (zh) * 2015-12-29 2016-03-30 中国地质大学(武汉) 岸坡侵蚀量和侵蚀速率的监测方法
CN105445177B (zh) * 2015-12-29 2017-12-29 中国地质大学(武汉) 岸坡侵蚀量和侵蚀速率的监测方法
CN107687711A (zh) * 2016-08-04 2018-02-13 青岛经济技术开发区海尔热水器有限公司 一种热水器安全监测装置及方法
CN107687711B (zh) * 2016-08-04 2020-05-26 青岛经济技术开发区海尔热水器有限公司 一种热水器安全监测装置及方法
CN106599483A (zh) * 2016-12-16 2017-04-26 鞍钢集团矿业有限公司 基于测量机器人露天矿边坡监测平面数据的处理方法
CN106595574B (zh) * 2016-12-16 2019-05-28 鞍钢集团矿业有限公司 基于测量机器人露天矿边坡监测高程数据的处理方法
CN106595574A (zh) * 2016-12-16 2017-04-26 鞍钢集团矿业有限公司 基于测量机器人露天矿边坡监测高程数据的处理方法
CN106599483B (zh) * 2016-12-16 2019-08-27 鞍钢集团矿业有限公司 基于测量机器人露天矿边坡监测平面数据的处理方法
CN107805984A (zh) * 2017-09-21 2018-03-16 中铁工程设计咨询集团有限公司 单边测量轨道控制网桩点的方法和***
CN109029341A (zh) * 2018-06-15 2018-12-18 兰州交通大学 参数法cpiii精密三角高程控制网数据处理方法
CN109029341B (zh) * 2018-06-15 2021-09-14 兰州交通大学 参数法cpiii精密三角高程控制网数据处理方法
CN110132229A (zh) * 2019-05-10 2019-08-16 西南交通大学 一种铁路轨道控制网三角高程测量与数据处理的方法
CN110344327A (zh) * 2019-07-03 2019-10-18 西南交通大学 一种斜拉桥上轨道控制网cpiii点实时高程计算方法
CN110455257A (zh) * 2019-08-16 2019-11-15 中国电建集团成都勘测设计研究院有限公司 大气垂直折光系数检测方法、高程测量***及方法
CN111308432A (zh) * 2019-12-03 2020-06-19 中国人民解放军63921部队 一种利用测速数据评估航天器测距数据精度的方法
CN111308432B (zh) * 2019-12-03 2022-03-22 中国人民解放军63921部队 一种利用测速数据评估航天器测距数据精度的方法
CN111609833A (zh) * 2020-05-26 2020-09-01 武汉弘泰建筑工程质量检测有限公司 高耸建筑物沉降观测方法
CN111609833B (zh) * 2020-05-26 2021-12-31 武汉弘泰建筑工程质量检测有限公司 高耸建筑物沉降观测方法
CN113551643A (zh) * 2021-07-29 2021-10-26 中冀建勘集团有限公司 一种跨河水准测量方法及***

Also Published As

Publication number Publication date
CN105043342B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
CN105043342A (zh) 单向精密测距三角高程测量方法
CN108871266B (zh) 一种基于中间法三角高程方法的自动化沉降监测方法
Vanicek et al. Geodetic leveling and its applications
CN102788578B (zh) 一种基于局部重力场逼近的匹配导航方法
CN103499340B (zh) 一种实现大高差高程竖直传递的测量装置及测量方法
CN102607506B (zh) 高填方机场边坡单台全站仪的自由设站变形监测方法
CN109948294A (zh) 一种隧道极限位移的确定方法
CN107608939A (zh) 基于高分辨率卫星数据的trmm降水数据降尺度方法
CN105069295B (zh) 基于卡尔曼滤波的卫星以及地面降水测量值同化方法
CN108316363B (zh) 基坑水平位移自动监测***及方法
CN104613932A (zh) 利用垂线偏差与重力异常确定似大地水准面模型的方法
CN102609940A (zh) 利用地面激光扫描技术进行测量对象表面重建时点云配准误差处理方法
CN102305617A (zh) 全站仪在工程中精确测高程的方法
CN101493324A (zh) 基于cqg2000的区域似大地水准面精化方法
CN103727920B (zh) 基于大地水准面模型测量水准高差的方法
Górska et al. Displacement monitoring and sensitivity analysis in the observational method
CN103526783A (zh) 一种测量建筑基坑水平位移的方法
CN116663762A (zh) 一种城市规划地下空间勘察测绘方法及***
CN101957193B (zh) 一种海岛礁高程传递的优化方法
CN104567802A (zh) 集成船载重力和gnss的测线式陆海高程传递方法
Hong et al. Simulation-based approach for uncertainty assessment: Integrating GPS and GIS
CN105388507A (zh) 基于区域gnss与精密测距尺度比估计法确定椭球参数的方法
CN102589518B (zh) 遥感航测高程拟合方法
CN205712222U (zh) 一种基坑边缘竖向沉降的监测装置
CN115374511B (zh) 一种地铁隧道监测三维控制网仿真设计***和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant