CN104916447B - 一种超级电容器用高倍率多孔碳电极材料及制备方法 - Google Patents

一种超级电容器用高倍率多孔碳电极材料及制备方法 Download PDF

Info

Publication number
CN104916447B
CN104916447B CN201410091451.0A CN201410091451A CN104916447B CN 104916447 B CN104916447 B CN 104916447B CN 201410091451 A CN201410091451 A CN 201410091451A CN 104916447 B CN104916447 B CN 104916447B
Authority
CN
China
Prior art keywords
porous carbon
electrode material
preparation
salt
carbon electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410091451.0A
Other languages
English (en)
Other versions
CN104916447A (zh
Inventor
阎景旺
姜靓
高兆辉
李然
衣宝廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201410091451.0A priority Critical patent/CN104916447B/zh
Publication of CN104916447A publication Critical patent/CN104916447A/zh
Application granted granted Critical
Publication of CN104916447B publication Critical patent/CN104916447B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种适合于做超级电容器电极材料的分级多孔碳及其制备方法。该分级多孔碳制备方法的特征为:首先制备含锌和钴的沸石咪唑化合物,然后将其在高温下进行碳化处理,得到分级多孔碳。在该多孔碳中存在大量的中孔和微孔,且孔径分级分布。这种结构的形成有利于电解质离子在多孔碳材料中的传输和双电层的形成。以此分级多孔碳做电极活性物质的超级电容器表现出优异的倍率性能。将钴和锌摩尔比为1:9的沸石咪唑化合物在800℃条件下进行碳化得到的分级多孔碳材料在100mV/s扫速下的比电容达到176F/g。

Description

一种超级电容器用高倍率多孔碳电极材料及制备方法
技术领域
本发明属于超级电容器电极材料技术领域,具体为一种超级电容器多孔碳电极材料及其制备方法,该电极材料具有孔径分级分布的特点。
背景技术
超级电容器是介于传统物理电容器和二次电池之间的一种新型储能器件。超级电容器具有能量密度高、循环寿命长、快速充放电等优点,因而在移动电子设备和电动车领域具有广泛的应用前景,近年来受到广泛的研究与关注。
超级电容器按工作原理分为两类,分别是双电层电容器和赝电容电容器。活性炭因为低廉的价格和高的比表面积,因而成为目前商品化超级电容器广泛采用的一种电极材料。但是活性炭具有介孔率低的缺点,不利于电解质离子在其中的传输,因而不适合于作为高倍率超级电容器的电极材料。
分级多孔碳含有丰富的微孔和介孔。大量微孔的存在使材料具有高的比表面积,而介孔的大量存在可以减小电解质离子在材料中的迁移阻力。以分级多孔碳做电极活性物质的超级电容器在大电流密度下工作时具有较高的容量保持率。
制备分级多孔碳材料的方法有多种,其中以模板法最具有代表性。Yaqin Huang等人用动物骨骼做碳源和模板,通过KOH活处理,得到高比表面积分级多孔碳。这种碳材料表现出高的比电容和倍率性能(Carbon.2011,49,838–843)。Huiming Cheng等人采用氢氧化镍与酚醛树脂混合的方法,经过高温碳化得到分级多孔碳材料。这种碳电极材料表现出较好的倍率性能(Angew.Chem.Int.Ed.2008,47,373–376)。
含锌沸石咪唑化合物ZIF-8是一种典型的微孔材料,将其碳化可以得到孔径集中分布的微孔碳材料。在ZIF-8中引入石墨化催化剂,可以实现其炭化产物部分石墨化。而石墨畴带的形成会促进碳颗粒内部介孔的形成。本发明采用具有催化石墨化活性的钴离子、不具有催化石墨化活性的锌离子和2-甲基咪唑进行反应的方法制备双金属离子沸石咪唑化合物。然后将双金属离子沸石咪唑化合物在高温下进行处理,得到分级多孔碳材料。本方法制备的分级多孔碳是一种有着广泛应用前景的高倍率超级电容器电极材料。
发明内容
本发明的目的在于提供一种分级多孔碳材料及其制备方法,具体制备方法为通过炭化双金属离子沸石咪唑化合物来得到分级多孔碳。该材料中的中孔微孔孔径分布可以通过改变两种金属离子的摩尔比来进行调控。这种分级多孔碳具有理想的电化学电容特性,适合作为高倍率超级电容器的电极材料。
本发明提供的用于超级电容器的分级多孔碳电极材料,其特征在于:在制备含锌沸石咪唑化合物ZIF-8的过程中,加入钴离子以形成双金属离子沸石咪唑化合物,然后将上述沸石咪唑化合物进行高温碳化处理,得到分级多孔碳。该分级多孔碳中存在大量的中孔和微孔,且孔径分级分布。这种结构的形成有利于电解质离子在多孔碳材料中的传输和双电层的形成。以此分级多孔碳做电极活性物质的超级电容器表现出优异的倍率性能。
本发明还提供了所述分级多孔碳电极材料的制备方法,包括如下步骤:
(1)分别将2-甲基咪唑、锌盐和钴盐溶解于有机溶剂,然后将三种溶液进行混合,并将混合溶液进行水热处理;
(2)将以上水热处理的混合物用溶剂离心洗涤除去其中未反应的2-甲基咪唑和金属盐,然后将得到的混合物在烘箱中进行干燥;
(3)将步骤(2)得到的混合物在惰性气氛下进行碳化,得到分级多孔碳初产物;
(4)将步骤(3)得到的分级多孔碳初产物用酸溶液进行洗涤,然后水洗至中性,干燥后得到分级多孔碳电极材料。
本发明提供的分级多孔碳电极材料的制备方法,在步骤(1)和(2)中,所述的溶剂为N,N-二甲基甲酰胺或甲醇。在步骤(1)中,所述的锌盐为硝酸锌、氯化锌、乙酸锌中的一种或多种,钴盐为硝酸钴、氯化钴、硫酸钴、乙酸钴中的一种或多种;锌盐与2-甲基咪唑的摩尔比为10:1-1:10,锌盐与钴盐的摩尔比为100:1-1:100。
本发明提供的分级多孔碳电极材料的制备方法,步骤(3)所述的惰性气氛为氮气、氩气、氦气中的一种或多种;所述的酸为盐酸、硫酸、硝酸中的一种或多种,碳化温度为500-1200℃,时间0.5-12h。
本发明提供的分级多孔碳电极材料的制备方法,在步骤(4)中,所用的酸溶液为盐酸、硫酸、硝酸中的一种或多种。
本发明提供的分级多孔碳电极材料的制备方法,在步骤(1)中,水热处理的温度为50-200℃,处理的时间为24-72h。
本发明的优点:本发明所提供的是一种超级电容器用分级多孔碳材料及其制备方法。采用本发明所提供方法制备的分级多孔碳材料具有较高的比表面积。此外,该分级多孔碳材料具有微孔孔径可控的特点。由于存在微孔介孔协同作用,分级多孔碳表现出比活性炭更优异的倍率性能。
附图说明
图1为本发明实施例1制备的分级多孔碳材料的孔径分布图;
图2为本发明实施例1制备的分级多孔碳电极的循环伏安曲线;
图3为本发明实施例2制备的分级多孔碳材料的孔径分布图;
图4为本发明实施例2制备的分级多孔碳电极的循环伏安曲线;
图5为本发明实施例3制备的分级多孔碳材料的孔径分布图;
图6为本发明实施例3制备的分级多孔碳电极的循环伏安曲线。
具体实施方式
下面的实施例将对本发明予以进一步的说明,但并不因此而限制对本发明的权利要求。
实施例1
将2.23g Zn(NO3)2·6H2O、0.12g Co(NO3)2·6H2O和0.6g2-甲基咪唑溶于180ml N,N-二甲基甲酰胺。然后将混合溶液置于水热釜中,在140℃下水热处理24h。水热产物用N,N-二甲基甲酰胺溶液洗涤3次以上,然后将产物置于烘箱内在60℃下进行干燥。将干燥产物在氮气气氛中在800℃下碳化3h。得到碳化后产物用氢氧化钾溶液进行处理,然后用去离子水洗涤处理后的样品至中性。对上述产物用盐酸溶液进行处理后,用去离子水清洗至中性。将清洗后的产物用烘箱在60℃下干燥24h,得到分级多孔碳。
物理吸附测试表明该碳材料在1.3nm和5.1nm处内呈现集中的孔径分布(如图1所示),说明得到了孔径分级分布的碳材料。将上述分级多孔碳按活性物质:导电剂:粘结剂=85:10:5的比例进行混合后制成电极片,然后用6M KOH水溶液做电解质,采用三电极循环伏安法对极片进行表征,结果如图2所示。在100mV/s扫速下该电极的循环伏安曲线仍接近矩形,说明采用本发明所提供的方法制备的多孔碳电极材料具有很高的倍率性能。该碳材料在100mV/s扫速下的比电容达到170F/g。
实施例2
将2.11g Zn(NO3)2·6H2O、0.23g Co(NO3)2·6H2O和0.6g2-甲基咪唑溶于180ml N,N-二甲基甲酰胺,然后将混合溶液置于水热釜中,在140℃下水热处理24h。水热产物用N,N-二甲基甲酰胺溶液洗涤3次以上,然后将产物置于烘箱中在60℃下进行干燥。将干燥后的产物在氮气气氛中800℃下碳化3h。碳化产物用氢氧化钾溶液处理后,用去离子水洗涤至中性。再将得到的样品用盐酸溶液进行处理,用去离子水清洗。将清洗后的样品用烘箱在60℃下干燥24h,得到分级多孔碳。
物理吸附结果显示该碳材料在1.2nm和1.8nm处有集中的孔径分布,结果如图3所示。将上述碳材料按活性物质:导电剂:粘结剂=85:10:5的比例进行混合后制成电极片,然后用循环伏安法对其在6M KOH水溶液中的电化学性能进行测试,结果如图4所示。采用本发明所提供方法制备的多孔碳电极材料在100mV/s扫速下的比电容达到176F/g。
实施例3
将1.87g Zn(NO3)2·6H2O、0.47g Co(NO3)2·6H2O和0.6g2-甲基咪唑溶于180ml N,N-二甲基甲酰胺,然后将混合溶液置于水热釜中,在140℃下水热处理24h。水热产物用N,N-二甲基甲酰胺溶液洗涤3次以上,然后将产物置于烘箱中在60℃下进行干燥。将干燥后的产物在氮气气氛中800℃下碳化3h。碳化产物用氢氧化钾溶液处理后,用去离子水洗涤至中性。再将得到的样品用盐酸溶液进行处理,用去离子水清洗。将清洗后的样品用烘箱在60℃下干燥24h,得到分级多孔碳。
物理吸附结果显示该碳材料在1.2nm和5.0nm处有集中的孔径分布,结果如图5所示。将上述碳材料按活性物质:导电剂:粘结剂=85:10:5的比例进行混合后制成电极片,然后用循环伏安法对其在6M KOH水溶液中的电化学性能进行测试,如图6所示。采用本发明所提供方法制备的多孔碳电极材料在100mV/s扫速下的比电容达到132F/g。
实施例4
将0.9116g氯化锌、0.5g Co(NO3)2·6H2O和0.564g2-甲基咪唑溶于191.5ml N,N-二甲基甲酰胺,然后将混合溶液置于水热釜中,在140℃下水热处理24h。水热产物用N,N-二甲基甲酰胺溶液洗涤3次以上,然后将产物置于烘箱中在60℃下进行干燥。将干燥后的产物在氮气气氛中500℃下碳化3h。碳化产物用氢氧化钾溶液处理后,用去离子水洗涤至中性。再将得到的样品用盐酸溶液进行处理,用去离子水清洗。将清洗后的样品用烘箱在60℃下干燥24h,得到分级多孔碳。
实施例5
将1.227g乙酸锌、0.5g Co(NO3)2·6H2O和0.64g2-甲基咪唑溶于200ml N,N-二甲基甲酰胺,然后将混合溶液置于水热釜中,在140℃下水热处理24h。水热产物用N,N-二甲基甲酰胺溶液洗涤3次以上,然后将产物置于烘箱中在60℃下进行干燥。将干燥后的产物在氮气气氛中1000℃下碳化3h。碳化产物用氢氧化钾溶液处理后,用去离子水洗涤至中性。再将得到的样品用盐酸溶液进行处理,用去离子水清洗。将清洗后的样品用烘箱在60℃下干燥24h,得到分级多孔碳。
实施例6
将2.5g乙酸锌、0.5824g乙酸钴和1.22g2-甲基咪唑溶于360mlN,N-二甲基甲酰胺,然后将混合溶液置于水热釜中,在140℃下水热处理24h。水热产物用N,N-二甲基甲酰胺溶液洗涤3次以上,然后将产物置于烘箱中在60℃下进行干燥。将干燥后的产物在氮气气氛中1200℃下碳化3h。碳化产物用氢氧化钾溶液处理后,用去离子水洗涤至中性。再将得到的样品用盐酸溶液进行处理,用去离子水清洗。将清洗后的样品用烘箱在60℃下干燥24h,得到分级多孔碳。

Claims (7)

1.一种用于超级电容器的分级多孔碳电极材料,其特征在于:在制备含锌沸石咪唑化合物ZIF-8的过程中,加入钴离子以形成双金属离子沸石咪唑化合物,然后将上述沸石咪唑化合物进行高温碳化处理,得到分级多孔碳,具体制备方法为:
(1)分别将2-甲基咪唑、锌盐和钴盐溶解于有机溶剂,然后将三种溶液进行混合,并将混合溶液进行水热处理,其中锌盐与2-甲基咪唑的摩尔比为10:1-1:10,锌盐与钴盐的摩尔比为100:1-1:100;
(2)将以上水热处理的混合物用溶剂离心洗涤除去其中未反应的2-甲基咪唑和金属盐,然后将得到的混合物在烘箱中进行干燥;
(3)将步骤(2)得到的混合物在惰性气氛下进行碳化,得到分级多孔碳初产物;
(4)将步骤(3)得到的分级多孔碳初产物用酸溶液进行洗涤,然后水洗至中性,干燥后得到分级多孔碳电极材料。
2.权利要求1所述用于超级电容器的分级多孔碳电极材料的制备方法,其特征在于,包括如下步骤:
(1)分别将2-甲基咪唑、锌盐和钴盐溶解于有机溶剂,然后将三种溶液进行混合,并将混合溶液进行水热处理,其中锌盐与2-甲基咪唑的摩尔比为10:1-1:10,锌盐与钴盐的摩尔比为100:1-1:100;
(2)将以上水热处理的混合物用溶剂离心洗涤除去其中未反应的2-甲基咪唑和金属盐,然后将得到的混合物在烘箱中进行干燥;
(3)将步骤(2)得到的混合物在惰性气氛下进行碳化,得到分级多孔碳初产物;
(4)将步骤(3)得到的分级多孔碳初产物用酸溶液进行洗涤,然后水洗至中性,干燥后得到分级多孔碳电极材料。
3.按照权利要求2所述用于超级电容器的分级多孔碳电极材料的制备方法,其特征在于:在步骤(1)和(2)中,所述的溶剂为N,N-二甲基甲酰胺或甲醇。
4.按照权利要求2所述用于超级电容器的分级多孔碳电极材料的制备方法,其特征在于:在步骤(1)中,所述的锌盐为硝酸锌、氯化锌、乙酸锌中的一种或多种,钴盐为硝酸钴、氯化钴、硫酸钴、乙酸钴中的一种或多种。
5.按照权利要求2所述用于超级电容器的分级多孔碳电极材料的制备方法,其特征在于:在步骤(3)中,碳化温度为500-1200℃。
6.按照权利要求2所述用于超级电容器的分级多孔碳电极材料的制备方法,其特征在于:在步骤(4)中,所用的酸溶液为盐酸、硫酸、硝酸中的一种或多种。
7.照权利要求2所述用于超级电容器的分级多孔碳电极材料的制备方法,其特征在于:在步骤(1)中,水热处理的温度为50-200℃。
CN201410091451.0A 2014-03-12 2014-03-12 一种超级电容器用高倍率多孔碳电极材料及制备方法 Active CN104916447B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410091451.0A CN104916447B (zh) 2014-03-12 2014-03-12 一种超级电容器用高倍率多孔碳电极材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410091451.0A CN104916447B (zh) 2014-03-12 2014-03-12 一种超级电容器用高倍率多孔碳电极材料及制备方法

Publications (2)

Publication Number Publication Date
CN104916447A CN104916447A (zh) 2015-09-16
CN104916447B true CN104916447B (zh) 2017-11-17

Family

ID=54085443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410091451.0A Active CN104916447B (zh) 2014-03-12 2014-03-12 一种超级电容器用高倍率多孔碳电极材料及制备方法

Country Status (1)

Country Link
CN (1) CN104916447B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428079A (zh) * 2015-12-08 2016-03-23 上海电力学院 一种超级电容器的电极材料的制备方法
CN105819424A (zh) * 2016-03-21 2016-08-03 太原理工大学 一种多孔碳材料的制备方法
CN105845457A (zh) * 2016-05-26 2016-08-10 江苏大学 一种多孔碳材料的制备方法及其用途
CN106835363B (zh) * 2017-01-18 2019-01-15 南京理工大学 一种用于超级电容器的中空碳纤维材料的制备方法
CN106744804B (zh) * 2017-01-24 2019-03-08 深圳大学 一种多级孔碳材料的制备方法及超级电容器
CN107522266B (zh) * 2017-03-20 2021-08-10 上海大学 分级多孔碳材料电容型脱盐电极材料的制备方法
CN107416789A (zh) * 2017-06-15 2017-12-01 南京工业大学 一种介孔碳的制备方法
CN107681091B (zh) * 2017-09-12 2020-09-22 北京理工大学 一种锂硫电池功能化复合隔膜及其制备方法
CN108054020B (zh) * 2017-11-22 2020-01-24 江苏大学 一种氮掺杂碳颗粒/石墨化碳氮复合材料的制备方法及应用
CN108190856A (zh) * 2018-01-25 2018-06-22 南京航空航天大学 一种Ce-N共掺杂二维多孔碳材料的制备方法
CN108346522B (zh) * 2018-03-28 2020-01-10 安徽师范大学 一种四氧化三钴分级结构纳米阵列材料、制备方法及其应用
CN108480655B (zh) * 2018-04-10 2021-05-11 河南大学 一种碳载金属钨纳米颗粒
CN108545712A (zh) * 2018-04-17 2018-09-18 东华大学 一种用盐模板碳化zif-8合成多级孔碳材料的方法
CN108831756B (zh) * 2018-07-02 2020-11-24 桂林电子科技大学 一种基于zif-8掺杂镍、钴的多孔碳复合材料及其制备方法和应用
CN108806998B (zh) * 2018-07-18 2020-06-26 江苏大学 溶剂热法合成基于ZIF-8的三元复合ZnO/ZnCo2O4/NiO的方法及其应用
CN109879264A (zh) * 2019-01-22 2019-06-14 天津大学 一种三维多孔碳基超级电容器电极材料的制备方法
CN109824908A (zh) * 2019-02-23 2019-05-31 华南理工大学 一种双金属的金属有机框架薄层及其制备方法
CN110498413B (zh) * 2019-08-27 2021-04-27 中南大学 一种定向调控多孔活性炭材料孔径和石墨化的方法及其在锂离子电容器中的应用
CN110813300B (zh) * 2019-12-02 2022-08-09 华北电力大学(保定) 一种负载钴锌双金属的纳米碳材料及其制备方法和在催化氧化亚硫酸镁中的应用
CN115321511B (zh) * 2022-08-17 2023-11-28 合肥霏润新能源技术有限公司 一种多孔碳材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU757588A1 (ru) * 1977-07-04 1980-08-23 Sergej P Rogov Способ получения электроизоляционного масла
CN102335626A (zh) * 2011-07-20 2012-02-01 中国科学院化学研究所 一种合成沸石咪唑酯微纳骨架结构材料的方法
CN102962036A (zh) * 2012-10-30 2013-03-13 中国科学院大连化学物理研究所 基于过渡金属钴的多孔金属有机骨架材料及其制备方法
US20130259783A1 (en) * 2012-03-30 2013-10-03 Exxonmobil Research And Engineering Company Linker exchange in zeolitic imidazolate frameworks
CN103570752A (zh) * 2012-07-24 2014-02-12 中国科学院大连化学物理研究所 一种离子热法合成微孔sod型沸石咪唑骨架物种的方法
CN103570767A (zh) * 2012-07-24 2014-02-12 中国科学院大连化学物理研究所 一种离子热法合成微孔zni型沸石咪唑骨架物种的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU757588A1 (ru) * 1977-07-04 1980-08-23 Sergej P Rogov Способ получения электроизоляционного масла
CN102335626A (zh) * 2011-07-20 2012-02-01 中国科学院化学研究所 一种合成沸石咪唑酯微纳骨架结构材料的方法
US20130259783A1 (en) * 2012-03-30 2013-10-03 Exxonmobil Research And Engineering Company Linker exchange in zeolitic imidazolate frameworks
CN103570752A (zh) * 2012-07-24 2014-02-12 中国科学院大连化学物理研究所 一种离子热法合成微孔sod型沸石咪唑骨架物种的方法
CN103570767A (zh) * 2012-07-24 2014-02-12 中国科学院大连化学物理研究所 一种离子热法合成微孔zni型沸石咪唑骨架物种的方法
CN102962036A (zh) * 2012-10-30 2013-03-13 中国科学院大连化学物理研究所 基于过渡金属钴的多孔金属有机骨架材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Co8-MOF-5 as electrode for supercapacitors;Raül Díaz etc;《Materials Letters》;20111018;第68卷;第126页第3段 *
Cobalt Doping of the MOF-5 Framework and Its Effect on Gas-Adsorption Properties;Juan A. Botas etc;《Langmuir》;20101231;第26卷(第8期);全文 *
Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes;Watcharop Chaikittisilp etc;《Chem. Commun.》;20120531;第48卷;第7259页第 2-4段 *

Also Published As

Publication number Publication date
CN104916447A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
CN104916447B (zh) 一种超级电容器用高倍率多孔碳电极材料及制备方法
CN105948036B (zh) 一种葛根基互联层次孔径结构多孔活性炭材料的制备方法及其应用
CN106276893B (zh) 一种氮掺杂葛根基介孔活性炭的制备方法及其应用
CN104715936B (zh) 一种用于超级电容器的分级多孔碳电极材料及制备方法
CN108840370A (zh) 一种过渡金属氧化物/氮掺杂有序介孔碳复合材料及其制备方法
CN108529619A (zh) 一种氮硫共掺杂多孔碳材料及其制备方法和应用
CN105845458A (zh) 一种石墨烯活化金属有机骨架电极材料及其制备和应用
CN106744842A (zh) 一种制备石墨烯材料的方法及其在化学储能和/或转化中的用途
CN108091871A (zh) 一种多孔球状锂离子电池三元正极材料及其制备方法
CN106219515A (zh) 具有特殊交联空球状氮掺杂碳材料的合成方法
CN109243862B (zh) 一种双重修饰的碳空心球复合物及其制备方法和应用
CN104495788A (zh) 一种多孔碳的制备方法
CN104445144A (zh) 一种氮硫双掺杂介孔碳电极材料、制备方法及应用
CN104231623B (zh) 一种金属离子掺杂制备不同形貌氧化石墨烯/聚苯胺复合电极材料的方法
CN106910638A (zh) 一种基于Zr‑MOFs复合材料为模板的碳材料及其制备方法和应用
CN106430146A (zh) 氮锰共掺杂多级孔碳材料的制备方法
CN107481865B (zh) 一种基于gqd/氢氧化钴复合材料的全固态柔性微型超级电容器
CN107253720B (zh) 一种高比表面积介孔活性炭及其制备方法和在超级电容器中的应用
CN105439143A (zh) 一种用于超级电容器的分级多孔活性炭及制备方法
CN110416548A (zh) 一种氮掺杂多孔碳的二维结构的制备方法及其应用
CN105280393A (zh) 一种纳米隧道的无定形炭材料及其制备方法
CN106206078B (zh) 一种超级电容器的制作方法
CN105405675B (zh) 一种Ag/Co(OH)2纳米阵列薄膜超级电容器电极材料及其制备方法
CN110364712A (zh) 一种多孔碳@氮掺杂多孔碳核壳结构的制备方法及其应用
CN106449130A (zh) 多级孔碳氮微球材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant