CN104891460A - Method for preparing graphite-phase carbon nitride nanosheets by using solution phase - Google Patents
Method for preparing graphite-phase carbon nitride nanosheets by using solution phase Download PDFInfo
- Publication number
- CN104891460A CN104891460A CN201510288723.0A CN201510288723A CN104891460A CN 104891460 A CN104891460 A CN 104891460A CN 201510288723 A CN201510288723 A CN 201510288723A CN 104891460 A CN104891460 A CN 104891460A
- Authority
- CN
- China
- Prior art keywords
- carbon nitride
- nanosheets
- phase
- solution phase
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002135 nanosheet Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 24
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 239000002861 polymer material Substances 0.000 claims abstract description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims abstract description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 14
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 14
- 238000001354 calcination Methods 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012265 solid product Substances 0.000 claims abstract description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 3
- 239000002994 raw material Substances 0.000 claims abstract description 3
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 3
- 239000011734 sodium Substances 0.000 claims abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 7
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 claims description 6
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 claims description 6
- 230000026030 halogenation Effects 0.000 claims description 2
- 238000005658 halogenation reaction Methods 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 239000002055 nanoplate Substances 0.000 claims 1
- 230000001699 photocatalysis Effects 0.000 abstract description 10
- 239000000919 ceramic Substances 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 2
- 239000012071 phase Substances 0.000 abstract 3
- 239000002086 nanomaterial Substances 0.000 abstract 1
- 239000012074 organic phase Substances 0.000 abstract 1
- 238000004299 exfoliation Methods 0.000 description 7
- CDOWNLMZVKJRSC-UHFFFAOYSA-N 2-hydroxyterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(O)=C1 CDOWNLMZVKJRSC-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000011941 photocatalyst Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000000089 atomic force micrograph Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- MPPPKRYCTPRNTB-UHFFFAOYSA-N 1-bromobutane Chemical compound CCCCBr MPPPKRYCTPRNTB-UHFFFAOYSA-N 0.000 description 1
- PBLNBZIONSLZBU-UHFFFAOYSA-N 1-bromododecane Chemical compound CCCCCCCCCCCCBr PBLNBZIONSLZBU-UHFFFAOYSA-N 0.000 description 1
- MNDIARAMWBIKFW-UHFFFAOYSA-N 1-bromohexane Chemical compound CCCCCCBr MNDIARAMWBIKFW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910021387 carbon allotrope Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 239000002060 nanoflake Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 230000015843 photosynthesis, light reaction Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
Landscapes
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
一种溶液相制备石墨相氮化碳纳米片的方法,属于纳米材料制备技术领域。将二氰二胺置于带盖陶瓷坩埚中进行煅烧,得到g-C3N4聚合物材料;将g-C3N4聚合物材料加入碱金属锂或钠的四氢呋喃溶液中,超声分散,并加入卤代有机试剂,反应所得固体产物依次用甲苯、乙醇和水进行洗涤,即得到g-C3N4纳米片。具有原料廉价、工艺简单、制备效率高等优点,所得g-C3N4纳米片比表面积显著增大,在有机相和水相中分散性好,具有良好的光催化性能。The invention discloses a method for preparing graphite-phase carbon nitride nanosheets in a solution phase, which belongs to the technical field of nano-material preparation. Put dicyandiamine in a covered ceramic crucible for calcination to obtain gC 3 N 4 polymer material; add gC 3 N 4 polymer material to tetrahydrofuran solution of alkali metal lithium or sodium, ultrasonically disperse, and add halogenated Organic reagents, the solid product obtained from the reaction is washed with toluene, ethanol and water in sequence to obtain gC 3 N 4 nanosheets. The invention has the advantages of cheap raw materials, simple process, high preparation efficiency and the like, the specific surface area of the obtained gC 3 N 4 nanosheets is significantly increased, the dispersibility in the organic phase and the water phase is good, and the photocatalytic performance is good.
Description
技术领域technical field
本发明属于纳米材料制备技术领域,涉及一种溶液相制备石墨相氮化碳(g-C3N4)纳米片的方法。The invention belongs to the technical field of nanometer material preparation, and relates to a method for preparing graphite phase carbon nitride (gC 3 N 4 ) nanosheets in a solution phase.
背景技术Background technique
在氮化碳的五种同素异形体中,石墨相氮化碳,即g-C3N4是最稳定的一种。近年来,g-C3N4因其良好的化学稳定性、独特的半导体能带结构、无毒且原料易得、不含金属等优异特性在光催化污染物降解、光解水制氢、光催化有机合成等领域受到人们的广泛关注。然而,作为一种聚合物半导体材料,将g-C3N4作为光催化剂还存在一些问题,如比表面积小(~10m2/g)、光生载流子的激子结合能高、光生电子-空穴复合严重、可见光利用率低等。针对这些问题,人们从g-C3N4光催化剂的优化合成、物理复合改性、化学掺杂改性、共聚改性、表面修饰、纳米化改性等方面对其理化性质,如半导体能带结构、光吸收性质等进行调整,以期提高g-C3N4的光催化性能。Among the five allotropes of carbon nitride, graphitic carbon nitride, gC 3 N 4 , is the most stable one. In recent years, gC 3 N 4 has been widely used in photocatalytic pollutant degradation, photolysis of water to produce hydrogen, photocatalytic Organic synthesis and other fields have received widespread attention. However, as a polymer semiconductor material, there are still some problems in using gC 3 N 4 as a photocatalyst, such as small specific surface area (~10m 2 /g), high exciton binding energy of photogenerated carriers, photogenerated electron-air Severe hole recombination, low utilization rate of visible light, etc. In response to these problems, people have studied the physical and chemical properties of gC 3 N 4 photocatalysts from the aspects of optimized synthesis, physical composite modification, chemical doping modification, copolymerization modification, surface modification, and nano-modification , light absorption properties, etc., in order to improve the photocatalytic performance of gC 3 N 4 .
与体相材料相比,经过纳米化改性的g-C3N4光催化剂比表面积增大、结晶度提高,其光催化性能明显改善。目前,人们以模板法和非模板法已经合成得到一系列具有特殊形貌的g-C3N4纳米光催化剂,如介孔g-C3N4、g-C3N4纳米棒、g-C3N4纳米颗粒等,有效促进了g-C3N4光催化剂材料的发展。由于g-C3N4具有类石墨层状结构,也可以将g-C3N4剥离成纳米薄片或单层结构,目前常用的剥离方法有热剥离法或溶剂剥离法。热剥离法是将g-C3N4在空气中进行热处理,体相材料逐渐分解为纳米薄片(Niu P等,Adv.Funct.Mater.,2012,22:4763-4770),而溶剂剥离法常用的溶剂为水(Zhang X D等,J.Am.Chem.Soc.,2013,135,18-21)和异丙醇(Yang S等,Adv.Mater.,2013,25:2452),剥离得到的g-C3N4片层结构较为完整、缺陷少,具有较高的光催化效率。然而,热剥离法和溶剂剥离法仍存在实验可控性差,制备得到的g-C3N4片层分散性不好、厚度大、产率低等关键问题尚未解决。Compared with bulk materials, the nano-modified gC 3 N 4 photocatalyst has larger specific surface area, higher crystallinity, and significantly improved photocatalytic performance. At present, a series of gC 3 N 4 nanophotocatalysts with special morphology have been synthesized by template method and non-template method, such as mesoporous gC 3 N 4 , gC 3 N 4 nanorods, gC 3 N 4 nanoparticles, etc. , effectively promoting the development of gC 3 N 4 photocatalyst materials. Since gC 3 N 4 has a graphite-like layered structure, gC 3 N 4 can also be exfoliated into nano-sheets or single-layer structures. Currently, the commonly used exfoliation methods include thermal exfoliation or solvent exfoliation. The thermal exfoliation method is to heat-treat gC 3 N 4 in air, and the bulk material is gradually decomposed into nano-sheets (Niu P et al., Adv. Funct. Mater., 2012, 22:4763-4770), while the solvent exfoliation method is commonly used The solvents are water (Zhang X D et al., J.Am.Chem.Soc., 2013,135,18-21) and isopropanol (Yang S et al., Adv.Mater., 2013,25:2452), and the obtained gC The 3 N 4 sheet structure is relatively complete, with few defects, and has high photocatalytic efficiency. However, thermal exfoliation and solvent exfoliation methods still have poor experimental controllability, and key problems such as poor dispersion, large thickness and low yield of the prepared gC 3 N 4 sheets have not been resolved.
发明内容Contents of the invention
本发明的目的在于提供一种可解决目前制备g-C3N4纳米片效率低、厚度大、分散性差等问题的溶液相制备石墨相氮化碳(g-C3N4)纳米片的方法。The purpose of the present invention is to provide a method for preparing graphite phase carbon nitride (gC 3 N 4 ) nanosheets in solution phase which can solve the problems of low efficiency, large thickness and poor dispersion of gC 3 N 4 nanosheets at present.
为实现上述目的,本发明方法首先以二氰二胺为前驱体,通过热聚合反应得到g-C3N4聚合物材料,然后在有机卤代试剂存在下,于碱金属和萘的四氢呋喃溶液中进行g-C3N4纳米片的溶液相制备。 In order to achieve the above object, the method of the present invention first uses dicyandiamide as a precursor to obtain gC3N4 polymer material through thermal polymerization, and then in the presence of organic halogenated reagents, carry out the process in tetrahydrofuran solution of alkali metal and naphthalene Solution phase preparation of gC3N4 nanosheets .
一种溶液相制备石墨相氮化碳(g-C3N4)纳米片的方法,包括以下步骤:A method for preparing graphite phase carbon nitride (gC 3 N 4 ) nanosheets in a solution phase, comprising the following steps:
1)以二氰二胺为原料,进行煅烧,得到黄色的g-C3N4聚合物材料;1) Using dicyandiamide as a raw material, calcining to obtain a yellow gC 3 N 4 polymer material;
2)将步骤1)所得g-C3N4聚合物材料分散在四氢呋喃溶液中,在氮气保护条件下超声分散,得的g-C3N4分散液,在g-C3N4分散液中依次加入碱金属和萘,持续搅拌,然后加入卤代有机试剂,在氮气保护条件下反应,反应结束后,将所得固体产物依次用甲苯、乙醇和水进行洗涤,得到石墨相氮化碳(g-C3N4)纳米片;2 ) Disperse the gC 3 N 4 polymer material obtained in step 1 ) in a tetrahydrofuran solution, and ultrasonically disperse it under nitrogen protection conditions to obtain a gC 3 N 4 dispersion, add alkali metal and Naphthalene, keep stirring, then add a halogenated organic reagent, and react under the condition of nitrogen protection. After the reaction, the solid product obtained is washed with toluene, ethanol and water in sequence to obtain graphite phase carbon nitride (gC 3 N 4 ) nano piece;
步骤1)中,所述煅烧是在带盖陶瓷坩埚中于马弗炉中进行煅烧,煅烧的温度可为450~550℃,煅烧的时间可为2~4h。In step 1), the calcination is performed in a muffle furnace in a covered ceramic crucible, the calcination temperature may be 450-550° C., and the calcination time may be 2-4 hours.
步骤2)中,所述碱金属可为金属锂或金属钠。In step 2), the alkali metal can be metallic lithium or metallic sodium.
步骤2)中,所述g-C3N4聚合物材料和碱金属的摩尔比(C3N4:碱金属)可为1:7~150,碱金属与萘的摩尔比>1。In step 2), the molar ratio of gC 3 N 4 polymer material to alkali metal (C 3 N 4 : alkali metal) may be 1:7-150, and the molar ratio of alkali metal to naphthalene>1.
步骤2)中,所述有机卤代试剂可为溴代烷烃Br(CH2)nCH3(n为整数,4≤n≤12)和碘代烷烃I(CH2)nCH3(n为整数,4≤n≤12)中的一种。In step 2), the organic halogenation reagent can be bromoalkane Br(CH 2 ) n CH 3 (n is an integer, 4≤n≤12) and iodoalkane I(CH 2 ) n CH 3 (n is Integer, one of 4≤n≤12).
步骤2)中,所述卤代有机试剂与碱金属的摩尔比最好为1∶1。In step 2), the molar ratio of the halogenated organic reagent to the alkali metal is preferably 1:1.
步骤2)中,所述反应的时间可为5~24h。In step 2), the reaction time may be 5-24 hours.
步骤2)中,所述持续搅拌的时间可为30~120min。In step 2), the time for the continuous stirring may be 30-120 minutes.
本发明所制备得到g-C3N4纳米片制备效率高,通过检测,比表面积可达53m2/g,在水及常用有机溶剂中的分散性好,具有良好的光催化性能,原子力显微镜(AFM)表征表明,g-C3N4纳米薄片的厚度约为1~2nm。The gC 3 N 4 nanosheets prepared by the present invention have high preparation efficiency, and through detection, the specific surface area can reach 53m 2 /g, have good dispersibility in water and common organic solvents, and have good photocatalytic performance. The atomic force microscope (AFM ) characterization shows that the thickness of gC 3 N 4 nano flakes is about 1-2nm.
本发明与现有技术相比所具备的优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明提供了一种g-C3N4纳米片的溶液相制备方法,该方法制备效率高、可控性强,制备得到的g-C3N4纳米片厚度和大小可调;(1) The present invention provides a solution-phase preparation method of gC 3 N 4 nanosheets, the method has high preparation efficiency and strong controllability, and the thickness and size of the prepared gC 3 N 4 nanosheets are adjustable;
(2)本发明制备得到的g-C3N4纳米片在水及一般有机溶剂中具有良好的分散性;(2) The gC 3 N 4 nanosheets prepared by the present invention have good dispersibility in water and general organic solvents;
(3)本发明制备得到的g-C3N4纳米片比表面积大,有利于光照条件下光生载流子的有效分离,提高光催化性能;(3) The gC 3 N 4 nanosheets prepared by the present invention have a large specific surface area, which is conducive to the effective separation of photogenerated carriers under light conditions and improves the photocatalytic performance;
(4)该制备方法条件温和,不需要昂贵的设备,具有大规模应用的前景。(4) The preparation method has mild conditions, does not require expensive equipment, and has the prospect of large-scale application.
附图说明Description of drawings
图1为g-C3N4聚合物材料和本发明制备得到g-C3N4纳米片的X射线粉末衍射图(XRD)。Fig. 1 is an X-ray powder diffraction pattern (XRD) of gC 3 N 4 polymer material and gC 3 N 4 nanosheets prepared by the present invention.
图2为本发明制备得到g-C3N4纳米片的扫描电镜图(SEM)。Fig. 2 is a scanning electron microscope image (SEM) of gC 3 N 4 nanosheets prepared in the present invention.
图3为本发明制备得到g-C3N4纳米片的原子力显微镜图(AFM)。Fig. 3 is an atomic force microscope image (AFM) of gC 3 N 4 nanosheets prepared in the present invention.
图4为g-C3N4聚合物材料和本发明制备得到g-C3N4纳米片的紫外漫反射光谱图。Fig. 4 is an ultraviolet diffuse reflectance spectrum diagram of gC 3 N 4 polymer material and gC 3 N 4 nanosheets prepared in the present invention.
图5为2-羟基对苯二甲酸荧光强度随光照时间的变化曲线图。Fig. 5 is a graph showing the variation of fluorescence intensity of 2-hydroxyterephthalic acid with illumination time.
具体实施方式Detailed ways
实施例1Example 1
一种溶液相制备石墨相氮化碳(g-C3N4)纳米片的方法,包括以下步骤:A method for preparing graphite phase carbon nitride (gC 3 N 4 ) nanosheets in a solution phase, comprising the following steps:
在50mL的带盖陶瓷坩埚中加入10g二氰二胺,将坩埚置于马弗炉中,以2.5℃/min的速度从室温升高至550℃,恒温两个小时。煅烧结束后冷却至室温,将样品在玛瑙研钵中研磨得到黄色粉末,即g-C3N4聚合物材料。在氮气保护条件下,称取108mg g-C3N4聚合物材料加入120mL新鲜干燥过的四氢呋喃溶液中,超声5min,然后在该分散液中加入0.55g金属锂和5.08g萘,溶液变为墨绿色后持续搅拌一个小时,再用自动注射器以10mL/h的速度向上述溶液中加入1-溴代十二烷直至溶液绿色消失,在氮气保护下继续反应12h。反应结束后,在上述反应物中加入乙醇除掉未反应的金属锂,以8000rpm/min的转速离心5min,所得固体产物依次用甲苯、乙醇、水洗涤,最后得到g-C3N4纳米片。Add 10g of dicyandiamide to a 50mL ceramic crucible with a lid, place the crucible in a muffle furnace, raise it from room temperature to 550°C at a rate of 2.5°C/min, and keep the temperature constant for two hours. After the calcination, it was cooled to room temperature, and the sample was ground in an agate mortar to obtain a yellow powder, namely gC 3 N 4 polymer material. Under the condition of nitrogen protection, weigh 108mg gC 3 N 4 polymer material and add it to 120mL freshly dried tetrahydrofuran solution, sonicate for 5min, then add 0.55g metal lithium and 5.08g naphthalene to the dispersion, the solution turns dark green Afterwards, stirring was continued for one hour, and 1-bromododecane was added to the above solution at a rate of 10 mL/h with an automatic injector until the green color of the solution disappeared, and the reaction was continued for 12 h under nitrogen protection. After the reaction, add ethanol to the above reactant to remove unreacted metal lithium, centrifuge at 8000rpm/min for 5min, and wash the solid product with toluene, ethanol, and water successively to obtain gC 3 N 4 nanosheets.
实施例1的结果表明:制备得到g-C3N4纳米片比相同质量的g-C3N4聚合物材料更蓬松,气体吸附实验测定g-C3N4纳米片的比表面积可达53m2/g。相比g-C3N4聚合物材料,g-C3N4纳米片在不同溶剂(如二氯甲烷、氯仿、DMF)中的分散性得到显著改善。图1是g-C3N4聚合物材料和g-C3N4纳米片的XRD图,可以发现g-C3N4纳米片的XRD衍射峰强度显著减弱,说明体相g-C3N4聚合物材料已经被成功剥离成纳米片。图2为本发明制备得到g-C3N4纳米片的SEM图,可以看出其明显的薄片状结构。图3的AFM图显示,制备得到的g-C3N4纳米片厚度约为1~2nm。图4为g-C3N4聚合物材料和g-C3N4纳米片的固体紫外漫反射吸收光谱图,由图4可见,本发明制备得到的g-C3N4纳米片在可见光区的吸收明显提高。以对苯二甲酸为分子探针,通过荧光技术对比g-C3N4聚合物材料和本发明制备得到g-C3N4纳米片的光催化性能。图5为可见光光照射下光催化产物2-羟基对苯二甲酸的荧光强度随光照时间的变化曲线图。由图5可见,以g-C3N4纳米片为光催化剂时,2-羟基对苯二甲酸的荧光强度显著高于g-C3N4聚合物材料,说明在光照条件下本发明制备得到的g-C3N4纳米片能产生更多的·OH,具有更优的光催化性能。The results of Example 1 show that the prepared gC 3 N 4 nanosheets are more fluffy than gC 3 N 4 polymer materials of the same mass, and the specific surface area of gC 3 N 4 nanosheets can reach 53 m 2 /g as measured by gas adsorption experiments. Compared with gC 3 N 4 polymer materials, the dispersibility of gC 3 N 4 nanosheets in different solvents (such as dichloromethane, chloroform, DMF) was significantly improved. Figure 1 is the XRD pattern of gC 3 N 4 polymer material and gC 3 N 4 nanosheets. It can be found that the XRD diffraction peak intensity of gC 3 N 4 nanosheets is significantly weakened, indicating that the bulk gC 3 N 4 polymer material has been successfully exfoliated into nanosheets. Fig. 2 is an SEM image of the gC 3 N 4 nanosheets prepared by the present invention, and it can be seen that the gC 3 N 4 nanosheets have an obvious flaky structure. The AFM image in Fig. 3 shows that the thickness of the prepared gC 3 N 4 nanosheets is about 1-2 nm. Fig. 4 is a solid ultraviolet diffuse reflectance absorption spectrum diagram of gC 3 N 4 polymer material and gC 3 N 4 nanosheets. It can be seen from Fig. 4 that the absorption of gC 3 N 4 nanosheets prepared by the present invention in the visible region is significantly improved. Using terephthalic acid as a molecular probe, the photocatalytic properties of gC 3 N 4 polymer materials and gC 3 N 4 nanosheets prepared by the present invention were compared by fluorescence technology. Fig. 5 is a graph showing the change of the fluorescence intensity of the photocatalyzed product 2-hydroxyterephthalic acid with the illumination time under the irradiation of visible light. It can be seen from Figure 5 that when gC 3 N 4 nanosheets are used as photocatalysts, the fluorescence intensity of 2-hydroxyterephthalic acid is significantly higher than that of gC 3 N 4 polymer materials, indicating that the gC 3 prepared by the present invention under light conditions N 4 nanosheets can generate more OH and have better photocatalytic performance.
实施例2Example 2
在50mL的带盖陶瓷坩埚中加入8.43g二氰二胺,将坩埚置于马弗炉中,以2.5℃/min的速度从室温升高至550℃,恒温两个小时。煅烧结束后冷却至室温,将样品在玛瑙研钵中研磨得到黄色粉末,即g-C3N4聚合物材料。在氮气保护条件下,称取71.2mg g-C3N4聚合物材料加入100mL新鲜干燥过的四氢呋喃溶液中,超声5min,然后在该分散液中加入0.81g金属锂和5.22g萘,溶液变为墨绿色后持续搅拌一个小时,再用自动注射器以10mL/h的速度向上述溶液中加入1-溴正丁烷直至溶液绿色消失,在氮气保护下继续反应12h。反应结束后,在上述反应物中加入乙醇除掉未反应的金属锂,以8000rpm/min的转速离心5min,所得固体产物依次用甲苯、乙醇、水洗涤,最后得到g-C3N4纳米片材料。Add 8.43g of dicyandiamide to a 50mL ceramic crucible with a lid, place the crucible in a muffle furnace, raise it from room temperature to 550°C at a rate of 2.5°C/min, and keep the temperature constant for two hours. After the calcination, it was cooled to room temperature, and the sample was ground in an agate mortar to obtain a yellow powder, namely gC 3 N 4 polymer material. Under the condition of nitrogen protection, weigh 71.2mg gC 3 N 4 polymer material and add it to 100mL freshly dried tetrahydrofuran solution, sonicate for 5min, then add 0.81g metal lithium and 5.22g naphthalene to the dispersion, the solution becomes ink After turning green, continue to stir for one hour, then add 1-bromo-n-butane to the above solution at a rate of 10 mL/h with an automatic injector until the green color of the solution disappears, and continue to react for 12 hours under nitrogen protection. After the reaction, add ethanol to the above reactant to remove unreacted metal lithium, centrifuge at 8000rpm/min for 5min, and wash the solid product with toluene, ethanol, and water in sequence to obtain gC 3 N 4 nanosheet material.
实施例3Example 3
在50mL的带盖陶瓷坩埚中加入10g二氰二胺,将坩埚置于马弗炉中,以2.5℃/min的速度从室温升高至550℃,恒温两个小时。煅烧结束后冷却至室温,将样品在玛瑙研钵中研磨得到黄色粉末,即g-C3N4聚合物材料。在氮气保护条件下,称取368mg g-C3N4聚合物材料加入120mL新鲜干燥过的四氢呋喃溶液中,超声5min,然后在该分散液中加入0.21g金属锂和2.56g萘,溶液变为墨绿色后持续搅拌一个小时,再用自动注射器以10mL/h的速度向上述溶液中加入1-溴正己烷直至溶液绿色消失,在氮气保护下继续反应12h。反应结束后,在上述反应物中加入乙醇除掉未反应的金属锂,以8000rpm/min的转速离心5min,所得固体产物依次用甲苯、乙醇、水洗涤,最后得到g-C3N4纳米片材料。Add 10g of dicyandiamide to a 50mL ceramic crucible with a lid, place the crucible in a muffle furnace, raise it from room temperature to 550°C at a rate of 2.5°C/min, and keep the temperature constant for two hours. After the calcination, it was cooled to room temperature, and the sample was ground in an agate mortar to obtain a yellow powder, namely gC 3 N 4 polymer material. Under the condition of nitrogen protection, weigh 368mg gC 3 N 4 polymer material and add it to 120mL freshly dried tetrahydrofuran solution, sonicate for 5min, then add 0.21g metal lithium and 2.56g naphthalene to the dispersion, the solution turns dark green Afterwards, stirring was continued for one hour, and 1-bromo-n-hexane was added to the above solution at a rate of 10 mL/h with an automatic injector until the green color of the solution disappeared, and the reaction was continued for 12 h under nitrogen protection. After the reaction, add ethanol to the above reactant to remove unreacted metal lithium, centrifuge at 8000rpm/min for 5min, and wash the solid product with toluene, ethanol, and water in sequence to obtain gC 3 N 4 nanosheet material.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510288723.0A CN104891460B (en) | 2015-05-29 | 2015-05-29 | Method for preparing graphite-phase carbon nitride nanosheets by using solution phase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510288723.0A CN104891460B (en) | 2015-05-29 | 2015-05-29 | Method for preparing graphite-phase carbon nitride nanosheets by using solution phase |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104891460A true CN104891460A (en) | 2015-09-09 |
CN104891460B CN104891460B (en) | 2017-04-19 |
Family
ID=54024500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510288723.0A Expired - Fee Related CN104891460B (en) | 2015-05-29 | 2015-05-29 | Method for preparing graphite-phase carbon nitride nanosheets by using solution phase |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104891460B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105417507A (en) * | 2015-12-10 | 2016-03-23 | 济南大学 | Preparing method for carbon nitride nano particles and obtained product |
CN105540557A (en) * | 2015-12-17 | 2016-05-04 | 榆林学院 | Method for preparing graphite-like carbon nitride in ultrasonic field |
CN105688969A (en) * | 2016-02-19 | 2016-06-22 | 厦门大学 | Preparation method of catalyst for photo-catalytically splitting water to produce hydrogen |
CN105772056A (en) * | 2016-04-28 | 2016-07-20 | 成都理工大学 | Preparation method and application of graphite-phase carbon nitride photocatalysis material |
CN105800571A (en) * | 2016-02-26 | 2016-07-27 | 浙江大学 | Preparation method for two-dimensional nanosheet carbon nitride material |
CN107098323A (en) * | 2017-04-25 | 2017-08-29 | 中南大学 | A kind of g C3N4Nanometer sheet and preparation method and application |
CN108584892A (en) * | 2018-04-26 | 2018-09-28 | 福州大学 | A kind of preparation method and applications of crystalline phase azotized carbon nano particle |
CN108927197A (en) * | 2018-07-09 | 2018-12-04 | 江苏大学 | A kind of g-C of high catalytic performance3N4Preparation method and purposes |
CN112126946A (en) * | 2020-09-15 | 2020-12-25 | 中国科学院大连化学物理研究所 | Composite membrane for acid-base water electrolysis and preparation method and application thereof |
CN112897484A (en) * | 2021-01-14 | 2021-06-04 | 华南理工大学 | g-C without defect3N4Nanosheets, two-dimensional g-C3N4Nano sheet film, preparation method and application |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058182A (en) * | 2013-01-27 | 2013-04-24 | 厦门大学 | Method for preparing graphene by solution phase |
CN103232458A (en) * | 2013-04-25 | 2013-08-07 | 大连理工大学 | Method for preparing graphite phase carbon nitride material with monatomic layer structure |
CN103848405A (en) * | 2014-03-07 | 2014-06-11 | 西北大学 | A preparation method of single-atom-thick g-C3N4 nanomaterials |
CN104401948A (en) * | 2014-11-17 | 2015-03-11 | 长安大学 | Preparation method for single-layer graphite-type carbon nitride nanosheet solution |
-
2015
- 2015-05-29 CN CN201510288723.0A patent/CN104891460B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058182A (en) * | 2013-01-27 | 2013-04-24 | 厦门大学 | Method for preparing graphene by solution phase |
CN103232458A (en) * | 2013-04-25 | 2013-08-07 | 大连理工大学 | Method for preparing graphite phase carbon nitride material with monatomic layer structure |
CN103848405A (en) * | 2014-03-07 | 2014-06-11 | 西北大学 | A preparation method of single-atom-thick g-C3N4 nanomaterials |
CN104401948A (en) * | 2014-11-17 | 2015-03-11 | 长安大学 | Preparation method for single-layer graphite-type carbon nitride nanosheet solution |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105417507B (en) * | 2015-12-10 | 2018-03-06 | 济南大学 | A kind of preparation method and products obtained therefrom of azotized carbon nano particle |
CN105417507A (en) * | 2015-12-10 | 2016-03-23 | 济南大学 | Preparing method for carbon nitride nano particles and obtained product |
CN105540557A (en) * | 2015-12-17 | 2016-05-04 | 榆林学院 | Method for preparing graphite-like carbon nitride in ultrasonic field |
CN105688969A (en) * | 2016-02-19 | 2016-06-22 | 厦门大学 | Preparation method of catalyst for photo-catalytically splitting water to produce hydrogen |
CN105800571A (en) * | 2016-02-26 | 2016-07-27 | 浙江大学 | Preparation method for two-dimensional nanosheet carbon nitride material |
CN105772056A (en) * | 2016-04-28 | 2016-07-20 | 成都理工大学 | Preparation method and application of graphite-phase carbon nitride photocatalysis material |
CN107098323A (en) * | 2017-04-25 | 2017-08-29 | 中南大学 | A kind of g C3N4Nanometer sheet and preparation method and application |
CN107098323B (en) * | 2017-04-25 | 2019-08-30 | 中南大学 | A kind of g-C3N4 nano sheet and its preparation method and application |
CN108584892A (en) * | 2018-04-26 | 2018-09-28 | 福州大学 | A kind of preparation method and applications of crystalline phase azotized carbon nano particle |
CN108927197A (en) * | 2018-07-09 | 2018-12-04 | 江苏大学 | A kind of g-C of high catalytic performance3N4Preparation method and purposes |
CN112126946A (en) * | 2020-09-15 | 2020-12-25 | 中国科学院大连化学物理研究所 | Composite membrane for acid-base water electrolysis and preparation method and application thereof |
CN112126946B (en) * | 2020-09-15 | 2021-08-27 | 中国科学院大连化学物理研究所 | Composite membrane for acid-base water electrolysis and preparation method and application thereof |
CN112897484A (en) * | 2021-01-14 | 2021-06-04 | 华南理工大学 | g-C without defect3N4Nanosheets, two-dimensional g-C3N4Nano sheet film, preparation method and application |
CN112897484B (en) * | 2021-01-14 | 2023-10-31 | 华南理工大学 | A defect-free g-C3N4 nanosheet, two-dimensional g-C3N4 nanosheet film and preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN104891460B (en) | 2017-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104891460B (en) | Method for preparing graphite-phase carbon nitride nanosheets by using solution phase | |
Zhou et al. | Template-free large-scale synthesis of gC 3 N 4 microtubes for enhanced visible light-driven photocatalytic H 2 production | |
Wu et al. | High-yield lactic acid-mediated route for a gC 3 N 4 nanosheet photocatalyst with enhanced H 2-evolution performance | |
Zhou et al. | Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures | |
Tan et al. | One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution | |
Cui et al. | Preparation of ZnIn2S4/K2La2Ti3O10 composites and their photocatalytic H2 evolution from aqueous Na2S/Na2SO3 under visible light irradiation | |
Han et al. | Erbium single atom composite photocatalysts for reduction of CO2 under visible light: CO2 molecular activation and 4f levels as an electron transport bridge | |
CN109956463B (en) | A kind of carbon nanotube and preparation method thereof | |
Zhang et al. | Synthesis of graphitic carbon nitride by heating mixture of urea and thiourea for enhanced photocatalytic H2 production from water under visible light | |
Xu et al. | Heterojunction composites of g-C3N4/KNbO3 enhanced photocatalytic properties for water splitting | |
Li et al. | Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching | |
CN103752334B (en) | Graphite phase carbon nitride nanosheet visible-light-induced photocatalyst synthesized by promotion of ionic liquid | |
CN106563481A (en) | Ammoniated ultrathin graphite-phase carbonitride photocatalyst and preparation method thereof | |
Wang et al. | Facile synthesis of nanorod-type graphitic carbon nitride/Fe2O3 composite with enhanced photocatalytic performance | |
Chen et al. | A facile strategy for SnS2/g-C3N4 heterojunction composite and the mechanism in photocatalytic degradation of MO | |
CN106669759A (en) | Phosphor sulfur co-doped graphite phase carbon nitride photo-catalyst, preparation method and application thereof | |
CN102583324B (en) | Preparation method of amorphous state carbon nano tube | |
CN105926002B (en) | Flake nano Mg (OH) is prepared using electrolyte barrier film discharge plasma2Method | |
Liu et al. | Noble metal-free NiS/PS codoped g-C3N4 photocatalysts with strong visible light absorbance and enhanced H2 evolution activity | |
Li et al. | Superior sponge-like carbon self-doping graphitic carbon nitride nanosheets derived from supramolecular pre-assembly of a melamine–cyanuric acid complex for photocatalytic H2 evolution | |
CN114671417B (en) | A kind of preparation method and application of high specific surface area nitrogen vacancy type carbon nitride | |
CN110026226A (en) | A kind of graphite phase carbon nitride nanometer sheet porous material and its preparation method and application | |
CN108339562B (en) | A kind of preparation method of iron ion-doped carbon nitride nanotubes and products therefrom | |
CN103274461B (en) | Method for modulating titanium dioxide crystalline phases by using fluoride ions | |
CN105688969A (en) | Preparation method of catalyst for photo-catalytically splitting water to produce hydrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170419 |