CN104677870A - 一种超小型化多通道实时荧光光谱检测装置 - Google Patents

一种超小型化多通道实时荧光光谱检测装置 Download PDF

Info

Publication number
CN104677870A
CN104677870A CN201510063198.2A CN201510063198A CN104677870A CN 104677870 A CN104677870 A CN 104677870A CN 201510063198 A CN201510063198 A CN 201510063198A CN 104677870 A CN104677870 A CN 104677870A
Authority
CN
China
Prior art keywords
fluorescence
optical fiber
subminiaturization
detection device
bandpass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510063198.2A
Other languages
English (en)
Inventor
余家昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bio Technology (Shanghai) Co., Ltd.
Original Assignee
Ai Jiesi Bio Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ai Jiesi Bio Tech Ltd filed Critical Ai Jiesi Bio Tech Ltd
Priority to CN201510063198.2A priority Critical patent/CN104677870A/zh
Publication of CN104677870A publication Critical patent/CN104677870A/zh
Priority to PCT/CN2016/072014 priority patent/WO2016124083A1/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种超小型化多通道实时荧光光谱检测装置,包括样品池、激发光源、荧光传输通道和多光谱传感器,所述荧光传输通道用于收集发射光形成的荧光信号,荧光信号通过光纤或光纤束有效输出进行检测;所述多光谱传感器包括带通滤光片和光电二极管,所述带通滤光片实现不同波长荧光的光谱选择,光电二极管感应出跟其相匹配的带通滤光片所对应的波长的荧光强度。本发明的技术方案,使用多光谱传感器代替了传统的滤光片分光***,极大的简化了设备结构并减小了检测***的体积;采用由光纤或光纤束组成的荧光传输通道,降低了发射荧光在光路传播中的能量损失,且相比于传统的开放式传输结构更洁净,不易于被灰尘污染,提高了实验的准确性及灵敏度。

Description

一种超小型化多通道实时荧光光谱检测装置
技术领域
本发明涉及用于实验室或者医疗检测的设备,尤其涉及一种超小型化多通道实时荧光光谱检测装置。
背景技术
目前,在实验室或者医疗检测技术领域中,通过在反应体系中加入荧光基团,利用荧光信号积累实时监测整个反应的进程,通过荧光信号的强度确定反应体系的定性特征,或者根据标准曲线对未知待测样品进行定量分析的方法已经广为运用,其中最为典型的代表是实时荧光定量PCR。具体而言,实时荧光定量PCR是在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。荧光定量PCR仪是在普通PCR仪基础上增加了荧光检测和分析***。如图1所示,在PCR的每一循环结束时,仪器的激发光源101发射出激发光经过滤光器一102、分光镜103、折射镜104和透镜105,最后投射到扩增管106的反应液中,反应液中的荧光物质受到激发光的激发后,产生特定的发射光,经透镜105、折射镜104、分光镜103、滤光器一107和多透镜108,最后在光电接收器109上获得荧光信号。图像传输给计算机软件***,经分析后显示出荧光强度增长曲线,荧光的强弱与标本中的DNA量成正比。
根据荧光激发原理,不用的探针引物往往对应不同波长的激发光及发射光。因此在实际应用中,往往需要多通道荧光检测***,即多个激发光源以及多个发射光通道。传统应用于PCR仪器中的荧光检测和荧光分光***是利用一系列独立的分光镜,带通滤光器,透镜组以及光电接收器的组合***。例如,由美国Idaho公司生产的LS32 为一个激发光源和3个发射通道的荧光检测***。由Roche公司生产的lightCycler 480 为多个激发光源对应多个发射通道的荧光检测***。从以上几个传统荧光分光检测***不难看出,传统的实时荧光定量PCR仪普遍存在体积大,结构复杂,易污染的问题,而且伴随着体积大,结构复杂缺陷的同时还当然地存在设备成本过高,投入巨大的问题,普通医学或者研究实验室难以负担该技术投入等不便于技术推广应用的问题,而易污染以及由于结构复杂而带来的准确性后灵敏度的问题也因此在所难免,同时所有这些缺陷也在客观上决定了传统的实时荧光定量PCR仪存在不利于仪器小型化和一体机化设计的技术难题。
发明内容
针对现有技术中的不足,本发明解决的技术问题在于提供一种超小型化多通道实时荧光光谱检测装置,使用多光谱传感器代替了传统的滤光片分光***,极大的简化了设备结构的复杂程度并减小了检测***的体积。
本发明解决的技术问题还在于提供一种超小型化多通道实时荧光光谱检测装置,采用由光纤或光纤束组成的荧光传输通道,降低了发射荧光在光路传播中的能量损失,而且该荧光信号的传输方式比传统的开放式的传输结构更洁净,不易于被灰尘污染,提高了实验的准确性及灵敏度。
为了解决上述技术问题,一方面,本发明实施例提供了一种超小型化多通道实时荧光光谱检测装置包括:
样品池,该样品池内容纳有待测样品以及与待测样品浓度相关的荧光物质;
激发光源,用于激发样品池中的荧光物质,荧光物质受激发光源产生的激发光激发后产生发射光;
荧光传输通道,用于收集发射光形成的荧光信号,该荧光传输通道包括光纤或者由光纤组成的光纤束,荧光信号通过光纤或光纤束有效输出进行检测;
多光谱传感器,所述多光谱传感器包括一个或两个以上的带通滤光片,以及与所述带通滤光片数量对应的光电二极管;该多光谱传感器接收并检测从荧光传输通道传输来的荧光信号的强度,所述带通滤光片实现不同波长荧光的光谱选择,光电二极管感应出跟其相匹配的带通滤光片所对应的波长的荧光强度。
作为本发明的优选方案,本发明的实施例提供的一种超小型化多通道实时荧光光谱检测装置进一步包括以下技术特征的部分或全部:
优选地,所述荧光传输通道包括反光镜、会聚透镜和光纤或者由光纤组成的光纤束;荧光物质受激发光源产生的发射光直射或者由反光镜反射后通过会聚透镜会聚至光纤或者光纤束光入口端。
优选地,所述荧光传输通道还包括设置于所述样品池两侧的反光镜阵列和会聚透镜透镜阵列,反光镜阵列中包含多个平行设置的反光镜,该反光镜的反光面设置成与其光收集区域的范围相匹配的凹形,所述会聚透镜阵列包含与反光镜数量对应的会聚透镜,每一个反光镜和与之匹配的会聚透镜组成一个荧光收集单元,荧光信号通过该荧光收集单元收集后再经由光纤或者由光纤组成的光纤束传送至所述多光谱传感器。
优选地,所述荧光传输通道中设置有光纤束,所述光纤束中包含有多条光入口端排列为一体的光纤,每一条光纤的光入口端与一个荧光收集单元相对应,光纤束中的每根光纤均形成一个独立波长选择的荧光通道。
优选地,所述荧光传输通道中设置有多条单根光纤,每一条单根光纤的光入口端与一个荧光收集单元相对应并形成一个独立波长选择的荧光通道。
优选地,所述多光谱传感器包括集成于其表面的多个带通滤光片,以及与所述带通滤光片数量对应的光电二极管,所述带通滤光片贴合所述光电二极管的表面;每一个带通滤光片和与之匹配的光电二极管组成一荧光强度检测单元,用于检测该荧光强度检测单元上设置的带通滤光片所对应的波长的荧光强度;每一条光纤的光出口端与一个荧光强度检测单元相对应。
优选地,所述激发光源设置有一个或者两个以上,两个以上的激发光源产生不同频率的激发光。更优地,所述激发光源为是激光二极管或LED光源。
另一方面,本发明实施例还提供了一种用于实验室或者医疗的检测装置,其包含上述方案中所述的超小型化多通道实时荧光光谱检测装置。
再有,本发明实施例还提供了一种核酸扩增检测仪,包含上述方案中所述的超小型化多通道实时荧光光谱检测装置;所述样品池还设置有实现核酸扩增反应温度控制的温控探针。
相比于现有技术,本发明的技术方案至少具有如下有益效果:
本发明实施例提供的小型化多通道实时荧光光谱检测装置,使用多光谱传感器代替了传统的滤光片分光***,极大的简化了设备结构的复杂程度并减小了检测***的体积。在本发明的技术方案中多光谱传感器包括带通滤光片和光电二极管,且带通滤光片和与之匹配的光电二极管组成一荧光强度检测单元,利用集成在多光谱传感器表面的带通滤光片来实现不同波长的光谱选择,利用光电二极管感应跟其相匹配的带通滤光片所对应的波长的荧光强度,从而实现了由一个结构细小的多光谱传感器取代了传统分光技术中若干分散设置的光学元器件,准确地传递了更多的信息且缩小了光学设备的体积;并且,由于多光谱传感器的表面集成多个带通滤光片,而带通滤光片所选择的对应光波波长不同时,就能够同时实现对经由带通滤光片选择的多种波长的荧光信号的强度进行检测。另外,本发明的小型化多通道实时荧光光谱检测装置采用由光纤或光纤束组成的荧光传输通道,光纤或者光纤束中的每根光纤形成一个独立的发射荧光通道,降低了发射荧光在光路传播中的能量损失,而且该荧光信号的传输方式比传统的开放式的传输结构更洁净,不易于被灰尘污染,提高了实验的准确性及灵敏度。
附图说明
图1是现有技术中单通道荧光定量PCR仪的检测原理示意图。
图2是本发明优选实施例1提供的超小型化多通道实时荧光光谱检测装置的结构示意图。
图3是本发明优选实施例1提供的超小型化多通道实时荧光光谱检测装置中的多光谱传感器的结构示意图一。
图4是本发明优选实施例1提供的超小型化多通道实时荧光光谱检测装置中的多光谱传感器的结构示意图二。
图5是本发明优选实施例2提供的超小型化多通道实时荧光光谱检测装置的结构示意图。
图6是本发明优选实施例3提供的超小型化多通道实时荧光光谱检测装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2、5、6为本发明三个优选实施例提供的超小型化多通道实时荧光光谱检测装置的结构示意图。该超小型化多通道实时荧光光谱检测装置应用于实验室或者医疗的检测实验,能够用于对例如核酸扩增反应的实施定量检测,但并不以此为限,在实际应用中,所述超小型化多通道实时荧光光谱检测装置也可应用于其他基于荧光信号探测实现的实时定量或定性检测实验。
如图2所示,本发明优选实施例提供的超小型化多通道实时荧光光谱检测装置包括样品池10、激发光源20、荧光传输通道30和多光谱传感器40。其中,样品池10内容纳有待测样品以及与待测样品浓度相关的荧光物质。激发光源20用于激发样品池中的荧光物质,荧光物质受激发光源产生的激发光激发后产生发射光(荧光)。荧光传输通道30用于收集发射光形成的荧光信号,该荧光传输通道30包括由光纤32组成的光纤束31,荧光信号通过光纤束31有效输出进行检测。多光谱传感器40包括多个带通滤光片41,以及与带通滤光片数量对应的光电二极管42。多光谱传感器40接收并检测从光纤束31传输来的荧光信号的强度,由于多光谱传感器40的表面集成多个带通滤光片,而将不同的带通滤光片所选择的对应光波波长设置为不同时,就能够同时实现对不同波长荧光的光谱选择,光电二极管感应出跟其相匹配的带通滤光片所对应的波长的荧光强度。
具体实现时,样品池10内容纳有待测样品以及与待测样品浓度相关的荧光物质。当本发明的超小型化多通道实时荧光光谱检测装置应用于核酸扩增反应的实施定量检测,待测样品即为核酸扩增反应中产生的目的核酸片度,而与目的核酸浓度相关的荧光物质通常整合于核酸扩增反应的特异性引物中,而且为了是连接于引物的荧光物质不至于在未进行扩增反应是即被激发光源激发产生荧光,通常与荧光物质或者荧光基团共同连接于核酸扩增反应引物的还有荧光猝灭基团,从而使能够被激发光激发荧光物质或者荧光基团的数量在有效地扩增反应中与目的核酸片度的浓度成正比,从而使本发明的超小型化多通道实时荧光光谱检测装置能够通过检测被激发荧光的强度确定待测样品浓度。当然,为了确定待测样品浓度还需要辅之与核酸扩增反应中的标准品,通过分析处理确定确定待测样品浓度。在缺少标准品是也可以通过对荧光强度信号的测试对待测样品的定性特征以及核酸扩增反应的有效性进行有效地分析判断。当然,上述说明仅仅是以核酸扩增反应的实施定量检测为例,对本发明的样品池及其相应的反应原理进行说明,但并不以此为限,在实际应用中,本发明的超小型化多通道实时荧光光谱检测装置也可应用于其他基于荧光信号探测实现的实时定量或定性检测实验。
如图2所示,本发明实施例1中,荧光传输通道包括设置于所述样品池10两侧的反光镜阵列33和会聚透镜透镜阵列34,反光镜阵列33中包含多个平行设置的反光镜331,会聚透镜阵列34包含与反光镜数量对应的会聚透镜341,每一个反光镜331和与之匹配的会聚透镜341组成一个荧光收集单元。荧光信号通过该荧光收集单元收集后再经由光纤束31传送至多光谱传感器40。从光路上分析,荧光物质受激发光源产生的发射光(荧光)以发散方式产生,部分直射到会聚透镜341,另一部分由反光镜331反射后再经由会聚透镜341会聚至光纤束的光入口端。为了使荧光有效会聚,本实施中所采用的反光镜331的反光面设置成与其光收集区域的范围相匹配的凹形。
在本发明实施例1中,荧光传输通道中设置的光纤束31中包含有多条光入口端排列为一体的光纤32,每一条光纤32的光入口端与一个荧光收集单元相对应,光纤束中的每根光纤均形成一个独立波长选择的荧光通道。如图3和4所示,多光谱传感器40包括集成于其表面的多个带通滤光片41,以及与带通滤光片41数量对应的光电二极管42,带通滤光片41贴合光电二极管42的表面;每一个带通滤光片41和与之匹配的光电二极管42组成一荧光强度检测单元,用于检测该荧光强度检测单元上设置的带通滤光片所对应的波长的荧光强度,每一条光纤的光出口端与一个荧光强度检测单元相对应。结合本实施例中对于荧光传输通道的描述,每一条光纤32的光入口端与一个荧光收集单元相对应,光纤束中的每根光纤均形成一个独立波长选择的荧光通道,同时每一条光纤的光出口端与一个荧光强度检测单元相对应,因此,包含反光镜331和与之匹配的会聚透镜341组成的荧光收集单元、光纤32对应的荧光通道以及由带通滤光片41和与之匹配的光电二极管42组成荧光强度检测单元便一一对应,从而实现荧光信号的分通道独立传输以及根据带通滤光片所选择的不同波长荧光强度的独立检测。
如图2-4所示,在本发明实施例1提供的超小型化多通道实时荧光光谱检测装置,其多光谱传感器40包括8个集成于其表面的带通滤光片41,与之对应地,光电二极管42也设置有8个,带通滤光片41贴合光电二极管42的表面,每一个光电二极管42和贴合于其上方带通滤光片41组成一个荧光强度检测单元。每个荧光强度检测单元均可选择独立的发射荧光波长,并检测该荧光强度检测单元上设置的带通滤光片所对应的波长的荧光强度。而且需要说明的是,本发明的方案中,能够有效地实现将8个甚至更多的带通滤光片(以及与之对应的光电二极管)集成于面积小于1cm2的多光谱传感器,准确地传递了更多的信息且并极大地缩小了光学设备的体积。相应地,光纤束中31中设置有8条独立光纤32,从而形成8个独立波长选择的荧光通道,每一条光纤32的光入口端与一个荧光收集单元相对应,每一条光纤的光出口端与一个荧光强度检测单元相对应。具体实现时,通过对光纤束中光纤32的光入口端、光出口端以及多光谱传感器40中的带通滤光片41进行一一对应的编号, 每个编号对应一条独立的荧光收集、传送与检测通道,而每个通道均是由对应衔接的一个由荧光收集单元(包含反光镜331和与之匹配的会聚透镜341)、一个荧光通道(光纤束31中一条传输荧光的光纤32)和一个荧光强度检测单元(由光电二极管42和贴合于其上方带通滤光片41组成)组成,当样品池中含有多种荧光物质,并在多种荧光物质受激发而产生多种不同波长的荧光时,将每个通道中所用带通滤光片41的选择波长设置为与多种不同波长荧光中的一种荧光的波长一致时,就能够通过本发明的超小型化多通道实时荧光光谱检测装置实现对每个通道的实验数据进行科学、准确的分析,即对样品池中多个反应的情况同时进行检测。当然,本发明实施例中对于通道数量、光纤束中的光纤数量、多光谱传感器表面的带通滤光片数量、会聚透镜数量和反光镜的数量并不限定本发明其他实施例中技术方案中所用的相应结构的数量,在具体实现时,根据需要调整相应结构的数量以及排布方式也应当理解为本领域的常用技术手段,属于本发明权利要求所涵盖的范围。
另外,对于激发光源20的设置,本发明实施例1中设置有一个激发光源20,为了使样品池中的荧光物质有效激发,激发光源20的位置以及光源的照射角度以能够使待测样品更为有效地接收照射为依据进行调整。另外,结合物理光学的基本原理,激发光源的频率通常大于发射光(荧光)。当样品池中含有多种荧光物质,且其受激发所产生的荧光频率不同时,该激发光源所产生的激发光需要保证能够使各种荧光物质均能够有效激发产生对应的发射光。而从光源的选择来看,本发明实施例中激发光源选择激光二极管,由于激光能够使激发光源发出的激发光控制在单一或者很小的频率范围内,保证对荧光物质具备激发能力的激发光的强度并避免杂光干扰,从而提高实验的准确性和灵敏度。当然在本发明的其他实施例中也会根据需要和具体实验条件,选择普通LED在内的其他光源作为激发光源,但是该激发光源中必须含有能使荧光物质有效激发产生发射光的光波。
关于激发光源的数量,本发明实施例1中设置有一个激发光源,但在本发明的其他实施例中,也会根据需要对激发光源的个数以及位置进行调整。如图5所示,在本发明实施例2中,激发光源20设置有两个,分别位于样品池的两侧两侧,而且两个激发光源20所产生的激发光波长不同,当样品池中含有多种荧光物质,不同的激发光能够激发产生不同的荧光信号,激发光源20选择和设置就更有针对性,激发光的频率范围和功率根据可控性。当然,在本发明的其他实施例中,也可以根据需要将激发光源设置为多个,处于不同的目的,选择不同频率的激发光源能够使测试反应根据针对性和准确性,同时也能够使样品池待测样品及荧光物质受到更为均匀的激发照射。
如图6所示,本发明实施例3提供的超小型化多通道实时荧光光谱检测装置,其荧光传输通道中设置为多条单根光纤32,每一条单根光纤32的光入口端与一个荧光收集单元相对应并形成一个独立波长选择的荧光通道。同时,本发明实施例3中,每个样品池10中所容纳的荧光物质也设置为一种,激发光源20与样品池10也一一对应,每个样品池10对应设置有一个荧光收集单元,包括反光镜(图中未示出)和与之匹配的会聚透镜341。具体实现时,荧光传输通道中设置有8条与不同样品池10相衔接的单根光纤32,与之对应的,光电二极管42也设置有8个,带通滤光片41贴合光电二极管42的表面,每一个光电二极管42和贴合于其上方带通滤光片41组成一个荧光强度检测单元。每个荧光强度检测单元均可选择独立的发射荧光波长,并检测该荧光强度检测单元上设置的带通滤光片所对应的波长的荧光强度。相应地,8条单根光纤32形成8个独立波长选择的荧光通道,每一条单根光纤的光入口端与一个荧光收集单元、一个样品池和一个激发光源相对应,每一条单根光纤32的光出口端与一个荧光强度检测单元相对应。通过对样品池10、光纤束中光纤32的光入口端、光出口端以及多光谱传感器40中的带通滤光片41进行一一对应的编号, 每个编号对应一条独立的荧光收集、传送与检测通道,而每个通道均是由对应衔接的一个由荧光收集单元(包含反光镜331和与之匹配的会聚透镜341)、一个荧光通道(单根光纤32)和一个荧光强度检测单元(由光电二极管42和贴合于其上方带通滤光片41组成)组成,这样就可以通过本发明的超小型化多通道实时荧光光谱检测装置实现对每个通道的实验数据进行科学、准确的分析。同时,每个样品池10中含有一种荧光物质,并设置与该荧光物质相对应的激发光源,从而实现对多个不同样品池中单一反应同时进行检测。当然,本发明实施例中对于通道数量、单根光纤数量、多光谱传感器表面的带通滤光片数量、会聚透镜数量和反光镜的数量并不限定本发明其他实施例中技术方案中所用的相应结构的数量,在具体实现时,根据需要调整相应结构的数量以及排布方式也应当理解为本领域的常用技术手段,属于本发明权利要求所涵盖的范围。
需要说明的是,本发明实施例还提供了一种用于实验室或者医疗的检测装置,其包含上述实施例中揭示的超小型化多通道实时荧光光谱检测装置。另外,本上述实施例中揭示的超小型化多通道实时荧光光谱检测装置尤其适用于核酸扩增检测实验,因此,本发明的实施例还提供了一种核酸扩增检测仪,包含上述实施例中揭示的超小型化多通道实时荧光光谱检测装置。而且由于温度控制是核酸扩增反应中的重要技术指标,例如普通PCR温度循环式扩增,以及恒温扩增反应的温度控制问题都非常重要,故在所述样品池还设置有实现核酸扩增反应温度控制的温控探针。
相较于现有技术,上述实施例揭示的超小型化多通道实时荧光光谱检测装置,使用多光谱传感器代替了传统的滤光片分光***,极大的简化了结构的复杂程度并减小了检测***的体积。在本发明的技术方案中多光谱传感器包括带通滤光片和光电二极管,且带通滤光片和与之匹配的光电二极管组成一荧光强度检测单元,利用集成在多光谱传感器表面的带通滤光片来实现不同波长的光谱选择,利用光电二极管感应跟其相匹配的带通滤光片所对应的波长的荧光强度。从而实现了由一个结构细小的多光谱传感器取代了传统分光技术中若干分散设置的光学元器件,传递了更多的信息且缩小了光学设备的体积;并且,由于多光谱传感器的表面集成多个带通滤光片,而带通滤光片所选择的对应光波波长不同时,就能够同时实现对经由带通滤光片选择的多种波长的荧光信号的强度进行检测。另外,本发明的小型化多通道实时荧光光谱检测装置采用由光纤或光纤束组成的荧光传输通道,光纤或者光纤束中的每根光纤形成一个独立的发射荧光通道,降低了发射荧光在光路传播中的能量损失,而且该荧光信号的传输方式比传统的开放式的传输结构更洁净,不易于被灰尘污染,提高了实验的准确性及灵敏度。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种超小型化多通道实时荧光光谱检测装置,其特征在于,包括:
样品池,该样品池内容纳有待测样品以及与待测样品浓度相关的荧光物质;
激发光源,用于激发样品池中的荧光物质,荧光物质受激发光源产生的激发光激发后产生发射光;
荧光传输通道,用于收集发射光形成的荧光信号,该荧光传输通道包括光纤或者由光纤组成的光纤束,荧光信号通过光纤或光纤束有效输出进行检测;
多光谱传感器,所述多光谱传感器包括一个或两个以上的带通滤光片,以及与所述带通滤光片数量对应的光电二极管;该多光谱传感器接收并检测从荧光传输通道传输来的荧光信号的强度,所述带通滤光片实现不同波长荧光的光谱选择,光电二极管感应出跟其相匹配的带通滤光片所对应的波长的荧光强度。
2.如权利要求1所述的超小型化多通道实时荧光光谱检测装置,其特征在于:所述荧光传输通道包括反光镜、会聚透镜和光纤或者由光纤组成的光纤束;荧光物质受激发光源产生的发射光直射或者由反光镜反射后通过会聚透镜会聚至光纤或者光纤束光入口端。
3.如权利要求1所述的超小型化多通道实时荧光光谱检测装置,其特征在于:所述荧光传输通道还包括设置于所述样品池两侧的反光镜阵列和会聚透镜透镜阵列,反光镜阵列中包含多个平行设置的反光镜,该反光镜的反光面设置成与其光收集区域的范围相匹配的凹形,所述会聚透镜阵列包含与反光镜数量对应的会聚透镜,每一个反光镜和与之匹配的会聚透镜组成一个荧光收集单元,荧光信号通过该荧光收集单元收集后再经由光纤或者由光纤组成的光纤束传送至所述多光谱传感器。
4.如权利要求3所述的超小型化多通道实时荧光光谱检测装置,其特征在于:所述荧光传输通道中设置有光纤束,所述光纤束中包含有多条光入口端排列为一体的光纤,每一条光纤的光入口端与一个荧光收集单元相对应,光纤束中的每根光纤均形成一个独立波长选择的荧光通道。
5.如权利要求3所述的超小型化多通道实时荧光光谱检测装置,其特征在于:所述荧光传输通道中设置有多条单根光纤,每一条单根光纤的光入口端与一个荧光收集单元相对应并形成一个独立波长选择的荧光通道。
6.如权利要求4或5所述的超小型化多通道实时荧光光谱检测装置,其特征在于:所述多光谱传感器包括集成于其表面的多个带通滤光片,以及与所述带通滤光片数量对应的光电二极管,所述带通滤光片贴合所述光电二极管的表面;每一个带通滤光片和与之匹配的光电二极管组成一荧光强度检测单元,用于检测该荧光强度检测单元上设置的带通滤光片所对应的波长的荧光强度;每一条光纤的光出口端与一个荧光强度检测单元相对应。
7.如权利要求1所述的超小型化多通道实时荧光光谱检测装置,其特征在于:所述激发光源设置有一个或者两个以上,两个以上的激发光源产生不同频率的激发光。
8.如权利要求1所述的超小型化多通道实时荧光光谱检测装置,其特征在于:所述激发光源为是激光二极管或LED光源。
9.一种用于实验室或者医疗的检测装置,其特征在于:包含权利要求1所述的超小型化多通道实时荧光光谱检测装置。
10.一种核酸扩增检测仪,其特征在于:包含权利要求1所述的超小型化多通道实时荧光光谱检测装置;所述样品池还设置有实现核酸扩增反应温度控制的温控探针。
CN201510063198.2A 2015-02-06 2015-02-06 一种超小型化多通道实时荧光光谱检测装置 Pending CN104677870A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510063198.2A CN104677870A (zh) 2015-02-06 2015-02-06 一种超小型化多通道实时荧光光谱检测装置
PCT/CN2016/072014 WO2016124083A1 (zh) 2015-02-06 2016-01-25 一种超小型化多通道实时荧光光谱检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510063198.2A CN104677870A (zh) 2015-02-06 2015-02-06 一种超小型化多通道实时荧光光谱检测装置

Publications (1)

Publication Number Publication Date
CN104677870A true CN104677870A (zh) 2015-06-03

Family

ID=53313218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510063198.2A Pending CN104677870A (zh) 2015-02-06 2015-02-06 一种超小型化多通道实时荧光光谱检测装置

Country Status (2)

Country Link
CN (1) CN104677870A (zh)
WO (1) WO2016124083A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424634A (zh) * 2015-10-29 2016-03-23 中国计量学院 一种基于光纤耦合紫外光源的水质cod检测器及其预测模型优化***
WO2016124083A1 (zh) * 2015-02-06 2016-08-11 余家昌 一种超小型化多通道实时荧光光谱检测装置
CN106010954A (zh) * 2016-05-05 2016-10-12 广东顺德工业设计研究院(广东顺德创新设计研究院) 新型微滴式数字pcr光学检测***、装置及方法
CN106053404A (zh) * 2016-05-09 2016-10-26 崔京南 一种便携式多波段荧光检测微量物质分析仪
CN109060742A (zh) * 2018-08-06 2018-12-21 张家林 一种便携式热循环荧光检测仪
CN110044817A (zh) * 2018-01-16 2019-07-23 青岛益柏生物科技有限公司 一种多通量恒温pcr扩增分析仪
CN110042150A (zh) * 2018-01-16 2019-07-23 青岛益柏生物科技有限公司 一种核酸恒温扩增实时分析装置
CN110161007A (zh) * 2019-06-03 2019-08-23 杭州安誉科技有限公司 一种用于多波长荧光同步检测的光学检测装置
CN111323399A (zh) * 2018-12-15 2020-06-23 中国科学院深圳先进技术研究院 多色荧光同步检测的液滴微流控芯片
CN111682042A (zh) * 2020-06-11 2020-09-18 杭州百伴生物技术有限公司 一种窄带光源阵列及光学检测设备
CN112345503A (zh) * 2020-10-30 2021-02-09 上海世艾生物科技有限公司 一种多重荧光检测装置
CN112432935A (zh) * 2020-11-05 2021-03-02 北京中科生仪科技有限公司 一种基于开关控制激发光源的生物检测***
CN112567216A (zh) * 2018-06-14 2021-03-26 ams国际有限公司 用于检测化学物质的集成的传感器模块
CN112782395A (zh) * 2020-12-30 2021-05-11 北京中科生仪科技有限公司 一种pcr检测仪及其方法
CN112782141A (zh) * 2020-12-29 2021-05-11 中国科学院合肥物质科学研究院 一种基于荧光方法的塑料快速分类设备
CN113340858A (zh) * 2021-04-30 2021-09-03 南京理工大学 便携式混合荧光检测仪
CN114276912A (zh) * 2021-12-24 2022-04-05 深圳市刚竹医疗科技有限公司 荧光检测***、方法和pcr扩增分析装置
CN115629053A (zh) * 2022-08-24 2023-01-20 北京化工大学 一种高通量蛋白质热稳定性分析仪

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018208775A1 (en) * 2017-05-08 2018-11-15 The Regents Of The University Of Michigan Silicon photomultiplier array-based multispectral optical probes for image-guided radiotherapy
CN107991278B (zh) * 2017-12-28 2024-04-26 湖南华南光电科技股份有限公司 基于荧光猝灭技术痕量***探测器的加热进样结构
CN108642158A (zh) * 2018-06-19 2018-10-12 苏州雅睿生物技术有限公司 一种多通道点探测的pcr实时荧光检测***
CN110726704B (zh) * 2019-10-11 2024-04-12 北京茂泽科技有限公司 一种全自动多波长角度激发荧光光度检测分析仪
CN111272760A (zh) * 2020-03-27 2020-06-12 大连恒锐物证司法鉴定所 一种便携式微型文检仪
CN114152583A (zh) * 2020-09-07 2022-03-08 桂林电子科技大学 一种基于ccd探测的多光纤二维光谱分析装置
CN116008580A (zh) * 2023-02-20 2023-04-25 广州科方生物技术股份有限公司 一种自动荧光检测分析仪和荧光检测方法
CN117025387A (zh) * 2023-09-25 2023-11-10 艾普拜生物科技(苏州)有限公司 一种pcr仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2530263Y (zh) * 2002-03-08 2003-01-08 中国科学院上海光学精密机械研究所 检测生物荧光的光纤传感器
CN1489446A (zh) * 2000-12-19 2004-04-14 ������ɽ���� 用于具有多个测量装置的同期荧光和反射测量的方法和设备
CN201110831Y (zh) * 2007-11-21 2008-09-03 大连理工大学 一种多用途高效荧光光纤化学与生物传感器组件
CN201553741U (zh) * 2009-11-16 2010-08-18 杭州博日科技有限公司 一种定量pcr的多波长荧光检测装置
CN101995397A (zh) * 2009-08-12 2011-03-30 索尼公司 光检测芯片和设置有光检测芯片的光检测装置
CN103245641A (zh) * 2012-02-10 2013-08-14 清华大学 多通道平面波导倏逝波生物传感器
CN204462019U (zh) * 2015-02-06 2015-07-08 余家昌 一种超小型化多通道实时荧光光谱检测装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308093A (zh) * 2008-06-06 2008-11-19 北京工业大学 并行多通道光学检测装置
CN102341693B (zh) * 2009-03-07 2013-11-20 惠普开发有限公司 分析器和使用该分析器进行感测的方法
CN104677870A (zh) * 2015-02-06 2015-06-03 余家昌 一种超小型化多通道实时荧光光谱检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1489446A (zh) * 2000-12-19 2004-04-14 ������ɽ���� 用于具有多个测量装置的同期荧光和反射测量的方法和设备
CN2530263Y (zh) * 2002-03-08 2003-01-08 中国科学院上海光学精密机械研究所 检测生物荧光的光纤传感器
CN201110831Y (zh) * 2007-11-21 2008-09-03 大连理工大学 一种多用途高效荧光光纤化学与生物传感器组件
CN101995397A (zh) * 2009-08-12 2011-03-30 索尼公司 光检测芯片和设置有光检测芯片的光检测装置
CN201553741U (zh) * 2009-11-16 2010-08-18 杭州博日科技有限公司 一种定量pcr的多波长荧光检测装置
CN103245641A (zh) * 2012-02-10 2013-08-14 清华大学 多通道平面波导倏逝波生物传感器
CN204462019U (zh) * 2015-02-06 2015-07-08 余家昌 一种超小型化多通道实时荧光光谱检测装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016124083A1 (zh) * 2015-02-06 2016-08-11 余家昌 一种超小型化多通道实时荧光光谱检测装置
CN105424634A (zh) * 2015-10-29 2016-03-23 中国计量学院 一种基于光纤耦合紫外光源的水质cod检测器及其预测模型优化***
CN106010954A (zh) * 2016-05-05 2016-10-12 广东顺德工业设计研究院(广东顺德创新设计研究院) 新型微滴式数字pcr光学检测***、装置及方法
CN106010954B (zh) * 2016-05-05 2018-07-20 广东顺德工业设计研究院(广东顺德创新设计研究院) 新型微滴式数字pcr光学检测***、装置及方法
CN106053404A (zh) * 2016-05-09 2016-10-26 崔京南 一种便携式多波段荧光检测微量物质分析仪
CN110044817A (zh) * 2018-01-16 2019-07-23 青岛益柏生物科技有限公司 一种多通量恒温pcr扩增分析仪
CN110042150A (zh) * 2018-01-16 2019-07-23 青岛益柏生物科技有限公司 一种核酸恒温扩增实时分析装置
CN112567216A (zh) * 2018-06-14 2021-03-26 ams国际有限公司 用于检测化学物质的集成的传感器模块
CN109060742A (zh) * 2018-08-06 2018-12-21 张家林 一种便携式热循环荧光检测仪
CN109060742B (zh) * 2018-08-06 2021-10-26 张家林 一种便携式热循环荧光检测仪
CN111323399A (zh) * 2018-12-15 2020-06-23 中国科学院深圳先进技术研究院 多色荧光同步检测的液滴微流控芯片
CN110161007A (zh) * 2019-06-03 2019-08-23 杭州安誉科技有限公司 一种用于多波长荧光同步检测的光学检测装置
CN111682042A (zh) * 2020-06-11 2020-09-18 杭州百伴生物技术有限公司 一种窄带光源阵列及光学检测设备
CN111682042B (zh) * 2020-06-11 2022-02-25 杭州百伴生物技术有限公司 一种窄带光源阵列及光学检测设备
CN112345503A (zh) * 2020-10-30 2021-02-09 上海世艾生物科技有限公司 一种多重荧光检测装置
CN112432935A (zh) * 2020-11-05 2021-03-02 北京中科生仪科技有限公司 一种基于开关控制激发光源的生物检测***
CN112432935B (zh) * 2020-11-05 2021-08-06 北京中科生仪科技有限公司 一种基于开关控制激发光源的生物检测***
CN112782141A (zh) * 2020-12-29 2021-05-11 中国科学院合肥物质科学研究院 一种基于荧光方法的塑料快速分类设备
CN112782141B (zh) * 2020-12-29 2023-12-19 中国科学院合肥物质科学研究院 一种基于荧光方法的塑料快速分类设备
CN112782395A (zh) * 2020-12-30 2021-05-11 北京中科生仪科技有限公司 一种pcr检测仪及其方法
CN112782395B (zh) * 2020-12-30 2021-11-09 北京中科生仪科技有限公司 一种pcr检测仪及其方法
WO2022141674A1 (zh) * 2020-12-30 2022-07-07 北京中科生仪科技有限公司 一种pcr检测仪及其方法
JP2023516354A (ja) * 2020-12-30 2023-04-19 北京中科生儀科技有限公司 Pcr検出器及びその方法
JP7438580B2 (ja) 2020-12-30 2024-02-27 北京中科生儀科技有限公司 Pcr検出器及びその方法
EP4273547A4 (en) * 2020-12-30 2024-07-17 Integrated Biosystems Co Ltd PCR DETECTOR AND ASSOCIATED METHOD
CN113340858A (zh) * 2021-04-30 2021-09-03 南京理工大学 便携式混合荧光检测仪
CN114276912A (zh) * 2021-12-24 2022-04-05 深圳市刚竹医疗科技有限公司 荧光检测***、方法和pcr扩增分析装置
CN115629053A (zh) * 2022-08-24 2023-01-20 北京化工大学 一种高通量蛋白质热稳定性分析仪
CN115629053B (zh) * 2022-08-24 2024-05-24 北京化工大学 一种高通量蛋白质热稳定性分析仪

Also Published As

Publication number Publication date
WO2016124083A1 (zh) 2016-08-11

Similar Documents

Publication Publication Date Title
CN104677870A (zh) 一种超小型化多通道实时荧光光谱检测装置
CN204462019U (zh) 一种超小型化多通道实时荧光光谱检测装置
EP1830174B1 (en) Multi-channel fluorescence sample analyzer
US20170038299A1 (en) Online process monitoring
CN1167946C (zh) 空间多通道激光诱导荧光同步检测的光纤耦合装置
US20170051335A1 (en) Apparatus and method for thermocyclic biochemical operations
CN103630523A (zh) 一种用于水质光学分析仪表的激光诱导光谱生成装置
CN105008878A (zh) 光学探询器件
JP2021105616A (ja) 光検出システム及びその使用方法
CN104267009A (zh) 六色实时荧光定量pcr分析仪
JPWO2014073064A1 (ja) フロー式単粒子分光器
CN107941702A (zh) 适于光谱分析的多通道光信号耦合增敏收集装置
US11674877B2 (en) Apparatus and method for cyclic flow cytometry using particularized cell identification
US10175171B2 (en) Compact multi-UV-LED probe system and methods of use thereof
RU2304277C2 (ru) Устройство для одновременного контроля в реальном масштабе времени множества амплификаций нуклеиновой кислоты
CN112326611B (zh) 一种n试剂孔m通道荧光检测方法、设计方法
KR20120116778A (ko) 바이오 진단장치
CN207540961U (zh) 适于光谱分析的多通道光信号耦合增敏收集装置
RU132203U1 (ru) Многоканальный капиллярный генетический анализатор
CN221405414U (zh) 一种多色荧光采集结构及pcr仪
CN214781826U (zh) 一种pcr检测仪
RU118064U1 (ru) Устройство для одновременного контроля в реальном масштабе времени множества амплификаций нуклеиновой кислоты
CN209778861U (zh) 一种高效的用于MicroRNA的检测装置
CN220932789U (zh) 一种具有杂光消除功能的荧光检测光路结构
CN220772936U (zh) 一种空间偏移拉曼光谱检测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170519

Address after: Shanghai City, Pudong New Area Road, Lane 222 No. 6 wide 5

Applicant after: Bio Technology (Shanghai) Co., Ltd.

Address before: California

Applicant before: Yu Jiachang

Applicant before: Ai Jiesi bio tech ltd

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150603