CN103668390A - 具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法 - Google Patents

具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法 Download PDF

Info

Publication number
CN103668390A
CN103668390A CN201410000589.5A CN201410000589A CN103668390A CN 103668390 A CN103668390 A CN 103668390A CN 201410000589 A CN201410000589 A CN 201410000589A CN 103668390 A CN103668390 A CN 103668390A
Authority
CN
China
Prior art keywords
titanium
alloy material
titanium alloy
preparation
anodic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410000589.5A
Other languages
English (en)
Other versions
CN103668390B (zh
Inventor
张利
郭志君
李玉宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201410000589.5A priority Critical patent/CN103668390B/zh
Publication of CN103668390A publication Critical patent/CN103668390A/zh
Application granted granted Critical
Publication of CN103668390B publication Critical patent/CN103668390B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Materials For Medical Uses (AREA)

Abstract

具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法。该材料是在钛或钛合金材料的表面分布有微米级的凹凸结构,在凹凸结构的表面分布有纳米级的突刺结构。其制备是现将钛或钛合金材料表面打磨抛光并洁净后,在含有氢氟酸和酸类添加剂的电解液中进行电化学阳极氧化后,在钛或钛合金材料表面形成由多重微米-纳米级凹凸结构形成的微观粗糙结构,与钛基体结合牢固,不易脱落,有更高的生物活性、表面积及表面能,可用于包括光催化剂、太阳能电池、生物种植体等广泛领域,能取得更佳的效果,且制备的成本低,操作简便。

Description

具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法
技术领域
本发明涉及一种具有微米-纳米粗糙结构表面的钛或钛合金材料及其制备方法。
背景技术
钛及钛合金因具有优良的生物相容性、机械性能、较低的弹性模量等特点,使其在口腔种植临床已应用多年。但由于钛及其合金是生物惰性材料,长期植入体内可能会导致骨结合强度降低使种植体松动、脱落,最终导致手术的失败。目前,对钛或其合金的表面活化处理可包括粗化和涂层两种方式。将钛(及其合金)材料表面粗化处理后,可使钛表面张力及表面能增加,能促进成骨细胞的吸附、分化、扩增、界面的早期愈合,在细胞学实验中取得了良好的效果。在钛或其合金材料表面进行涂层式处理,尤其是将具有生物传导性的纳米羟基磷灰石复合于钛或其合金材料的表面,也可提高种植体的生物活性,增加种植体-骨界面的结合强度。因此,对钛及其合金材料的表面进行相应的处理,使其表面形成一层具有生物活性的物质,以实现诱导骨组织的形成和达到生物化学结合的目的,是目前国内外研究的一个热点。
以作为种植体使用的钛或钛合金为例,目前已有报道和/或采用的粗化处理方法主要有:在钛材料体表面以烧结方式附以大约300μm的颗粒状涂层,其主要缺点是烧结涂层厚且分布不均匀,使用时会影响其机械强度、与组织结合强度;将羟基磷灰石粉末送入等离子体火焰中熔融并高速喷射到金属基体上快速凝固而形成涂层,因此其很难保持羟基磷灰石原有的成分和晶格结构,且涂层与基体物理性能差别较大,界面应力集中,降低了与钛基体的结合强度,在较长生理环境下易溶解吸收从而导致种植体松动导致手术失败;采用同样方式的还有以钛浆喷涂表面,其工艺复杂,且近些年来发现钛浆喷涂的种植体周围有钛颗粒存在,易引起局部炎症;在常温下采用将金刚砂或TiO2颗粒高速喷射在钛种植体表面的喷砂法,其存在杂质元素污染且微观结构不均匀等问题;采用盐酸、硫酸、硝酸或氢氟酸的混合液与种植体作用一定时间的酸蚀,在其表面形成一定形状大小的蚀坑,但其方法处理的粗糙度有限,常还需要结合其它表面粗化方法处理。因此,目前常用的表面粗化方法均存在不同的缺陷。
发明内容
    针对上述情况,本发明提供了一种具有新的表面粗化结构的钛或其合金材料,特别是一种具有微米-纳米粗糙结构表面的钛或钛合金材料,并进一步提供该粗化表面结构的钛或钛合金材料的制备方法。
    本发明具有微米-纳米粗糙结构表面的钛或钛合金材料,是在钛或钛合金材料的表面分布有微米级的凹凸结构,在凹凸结构的表面并分布有纳米级的突刺结构。其中,所说的微米级凹凸结构至少应被覆于钛或钛合金材料的应用部位的全表面。所述的钛合金材料,在作为医疗产品时,一般可以为目前已有广泛报道和使用的Ti-13Zr-13Nb、Ti-6Al-7Nb、Ti-12Mo-6Zr-2Fe、Ti-35Nb-7Zr-5Ta、Ti-15Mo、Ti-16Nb-10Hf等钛合金,其中优选Ti-13Zr-13Nb(即Ti、Zr、Nb原子摩尔比为1:13:13)或Ti-6Al-7Nb(即Ti、Al、Nb原子摩尔比为1:6:7)合金。
本发明上述具有微米-纳米粗糙结构表面的钛或钛合金材料的基本制备方法,可以按下述方式进行:
    1)将表面光洁处理并除去氧化膜层及污物后在避氧条件下干燥的钛或钛合金材料,在0℃~80℃以及50~250V的正脉冲电压和1000~5000Hz频率的条件下,以上述干燥的钛或钛合金材料作为阳极,石墨或铂作为阴极,在含有质量分数为0.05~0.5%的HF和酸类添加剂的水溶液电解液中进行电化学阳极氧化,其中的酸类添加剂为占电解液总质量80~85wt%的醋酸、5~10wt%的H2SO4或10~20wt%的H3PO4;电解液优选为质量含量分别为0.2% HF与85%醋酸的水溶液、0.05% HF与5% H2SO4的水溶液、或0.1% HF与10% H3PO4的水溶液。实验显示,进行电化学阳极氧化时的电压过高或过低,会导致所形成的粗糙物结构、状态不规则,或不易形成;温度过高或过低,会影响电解液的组成和/或电化学反应的速度;电化学阳极氧化的时间长短,则会所形成的表面粗糙结构层的厚薄、形态,时间过长甚至还会导致已形成的表面粗糙结构发生不同的坍塌、破坏;
    2)经阳极氧化后的钛或钛合金材料表面的电解液清除干净后,保存于无水乙醇中(避免与氧接触被氧化)。
在上述基本方法的基础上,对其中的一些具体操作方式,还可以单独或任意组合地选择采用下述的优选方式:
优选方式一,上述制备方法中所说的钛或钛合金材料的表面光洁处理并除去氧化膜层,可以采用常用的机械打磨和/或抛光等物理方式处理后,再用由10~15wt%的HF和25~35wt%的HNO3组成的水溶液,以化学抛光方式除净表面的氧化膜层。其中,该化学抛光溶液的优选组成为HF的含量为12wt%和HNO3含量为33wt%。
优选方式二,对除净表面氧化膜层后的钛或钛合金材料表面污物的清洁,采用在功率为100~400W的超声波作用下依次用丙酮、乙醇和水进行清洗,优选的超声波功率为250W。不同的清洗溶剂可具有不同的去污功能。例如,丙酮可有效溶解油污等有机物,且易挥发,所以用丙酮清洗能更干净,快捷;乙醇可以清洗钛表面的有机污染层;去离子水则可以清洗钛表面的灰尘等其它非脂溶性类的污物杂质。实验显示,采用在超声波作用下的清洗,由于超声波的频率高、波长短、传播方向性好和穿透能力强,以及其在液体中的空化作用、加速度作用及直进流作用对液体和污物产生的直接/间接作用,能使污物层实现被有效分散、乳化、剥离,一般10~40分钟即可达到快速、彻底清洗的目的。
优选方式三,钛或钛合金材料表面打磨抛光并除净表面氧化膜层及表面清洁后在避氧条件下的干燥,采用在真空条件下的冷冻干燥,或者是在隔绝空气或N2等惰性气体环境等条件下的干燥。
优选方式四,对钛或钛合金材料表面进行的电化学阳极氧化时间为10分钟~12小时。
优选方式五,对钛或钛合金材料表面进行电化学阳极氧化时两电极间的间距≤10厘米,两电极间优选的间距为4厘米。实验结果显示,进行电化学阳极氧化时,两电极间的间距宜保持适当,间距过小会因局部离子过于集中,导致电解液中的离子分布不均匀,且电解液在间隙内的流动不畅和/或过热汽化而影响反应;间距过大则会使电阻增大和增加电能的消耗。
优选方式六,阳极氧化后钛或钛合金材料,在功率为100~400W的超声波作用下用去离子水清洗除净材料表面的电解液,优选的超声波功率为250W。清洗时间一般在3~10分钟内即可完成。清洗时间太长并不会带来更多的益处,甚至有可能使所形成的微米-纳米粗糙受到损坏。
优选方式八,经阳极氧化并清除干净表面电解液后的钛或钛合金材料在无水乙醇中保存48~72小时。
对本发明上述具有微米-纳米粗糙结构表面的钛或钛合金材料表面的扫描电镜图显示,在材料的表面由多重微米级结构的珊瑚状小坑和小丘和在其表面又长满的排列有序的纳米级扁平枝状结构的乳突或片层,以及介于微米级与纳米的凹坑和凸起共同形成的覆盖层膜状粗糙结构,并与钛或钛合金材料的基底紧密结合为一体。与钛基体结合牢固,不易脱落的该多重微观粗糙结构,能具有更高的生物活性、表面积及表面能,可广泛用于光催化剂,太阳能电池,生物种植体等领域,可取得更佳的效果,且其制备成本低,操作简便。例如其能显著增大作为医学种植体的比表面积和表面能,可促进生物大分子、蛋白质、酶、细胞等的黏附,从而能促进细胞的增值与分化,有利于增强种植体与骨的牢固结合并引导骨生长。
以下结合附图所示实施例的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包括在本发明的范围内。
附图说明
    图1是本发明钛材料表面的多重微米-纳米粗糙结构的扫描电镜照片。
图2是图1中的微米级小丘状凸起表面上纳米级突刺结构的扫描电镜照片。
图3是图1中的微米级小坑状表面上纳米级突刺结构的局部扫描电镜照片。
图4是实施例2纯钛表面的扫面电镜照片。
图5是钛合金材料表面的多重微米-纳米粗糙结构的扫描电镜照片。
图6是图5中的微米级小坑状表面上纳米级突刺结构的局部扫描电镜照片。
具体实施方式
实施例1
将纯钛材料表面依次用400#~1200#不同规格的砂纸打磨后,以化学抛光方式,用含有12wt% HF和33%HNO3的水溶液浸泡30秒钟后,依次用丙酮、乙醇和水超声清洗 30min(超声波功率可在100~400W内调整,优选250W),真空冷冻干燥24h。
然后采用以钛片为阳极、石墨为阴极的两电极***,在含有0.05wt% HF和85wt%醋酸的水溶液电解液中,于20℃和电压100V/2000Hz条件下进行电化学阳极氧化,两电极间距为4cm时间为1h。经电化学阳极氧化处理后的钛片在去离子水中超声清洗5min(超声波功率可在100~400W内调整,优选250W),将电解液清洗干净,放入无水乙醇中保存48h。
经上述处理后的钛材料表面,可形成与钛基底紧密结合的“薄膜”状多重超微纳结构。该多重微米-纳米粗糙结构及局部的扫描电镜照片分别如图1~图3所示。
实施例2
将纯钛片的表面以实施例1的方式用砂纸打磨(或以机械抛光)后,以化学抛光方式,用含有10wt% HF和35%HNO3的水溶液浸泡30秒钟后,按实施例1方式依次用丙酮、乙醇和水超声清洗 30min,真空冷冻干燥24h。
然后采用以钛片为阳极、铂为阴极的两电极***,以含有0.05wt%HF和85wt%醋酸的水溶液为电解液,于80℃和电压100V/2000Hz条件下进行电化学阳极氧化,两电极间距为5cm,时间为2h。阳极氧化后的钛片按实施例1方式以去离子水中超声清洗5min,将电解液清洗干净,放入无水乙醇中保存48h。在钛片的表面同样形成如图4形式与钛片基底紧密结合的多重微米-纳米粗糙结构。
实施例3
将纯钛材料表面用砂纸打磨或机械抛光后,以化学抛光方式,用含有15wt% HF和30% HNO3的水溶液浸泡30秒钟后,按实施例1方式依次用丙酮、乙醇和水超声清洗 30min,真空冷冻干燥24h。
然后采用以钛片为阳极、石墨为阴极的两电极***,以含有0.5wt%HF和85wt%醋酸的水溶液为电解液,于40℃和电压150V/2000Hz条件下进行电化学阳极氧化,两电极间距为5cm,时间为4h。经电化学阳极氧化处理后的钛片按实施例1方式,在去离子水中超声清洗5min,将电解液清洗干净,放入无水乙醇中保存48h。
实施例4
将纯钛表面用砂纸打磨后,以化学抛光方式,用含有15wt% HF和25%HNO3的水溶液浸泡30秒钟后,按实施例1方式依次用丙酮、乙醇和水超声清洗 30min,真空冷冻干燥24h。
然后采用以钛片为阳极、石墨为阴极的两电极***,以含有0.5wt%HF和85wt%醋酸的水溶液为电解液,于0℃和电压250V/5000Hz条件下进行电化学阳极氧化,两电极间距为3cm,时间为12h。经电化学阳极氧化处理后的钛片按实施例1方式,在去离子水中超声清洗5min,将电解液清洗干净,放入无水乙醇中保存48h。
实施例5
将Ti-Zr-Nb型钛合金(Ti、Zr和Nb原子摩尔比1:13:13)表面用砂纸打磨或机械抛光后,以化学抛光方式,用含有10wt% HF和35%HNO3的水溶液浸泡30秒钟后,按实施例1方式依次用丙酮、乙醇和水超声清洗 30min,真空冷冻干燥24h。
然后采用以钛片为阳极、铂为阴极的两电极***,以含有0.1wt% HF和10%H3PO4的水溶液为电解液,于20℃和电压50V/1000Hz条件下进行电化学阳极氧化,两电极间距为6cm,时间为1h。经电化学阳极氧化处理后的钛片按实施例1方式,在去离子水中超声清洗5min,将电解液清洗干净,放入无水乙醇中保存48h。在钛合金材料表面同样形成与钛合金片基底紧密结合的多重微米-纳米粗糙结构,其表面的多重微米-纳米粗糙结构及局部的扫描电镜照片分别如图5和图6所示。
实施例6
将Ti-Al-Nb型钛合金(Ti、Al 和Nb原子摩尔比1:6:7)表面用砂纸打磨后,以化学抛光方式,用含有15wt% HF和25%HNO3的水溶液浸泡30秒钟后,按实施例1方式依次用丙酮、乙醇和水超声清洗 30min,真空冷冻干燥24h。
然后采用以钛片为阳极、石墨为阴极的两电极***,以含有0.05wt% HF和5% H2SO4的水溶液为电解液,于50℃和电压50V/1000Hz条件下进行电化学阳极氧化,两电极间距为4cm,时间为10min。经电化学阳极氧化处理后的钛片按实施例1方式,在去离子水中超声清洗5min,将电解液清洗干净,放入无水乙醇中保存48~72h。在钛合金材料表面同样形成如图4形式与钛片基底紧密结合的多重微米-纳米粗糙结构。

Claims (10)

1.具有微米-纳米粗糙结构表面的钛或钛合金材料,其特征是在钛或钛合金材料的表面分布有微米级的凹凸结构,在凹凸结构的表面分布有纳米级的突刺结构。
2.如权利要求1所述的钛或钛合金材料,其特征是所说的微米级凹凸结构至少被覆于钛或钛合金材料的应用部位全表面。
3.权利要求1或2所述具有微米-纳米粗糙结构表面的钛或钛合金材料的制备方法,其特征是按下述方式进行:
       1)将表面光洁处理并除去氧化膜层及污物后在避氧条件下干燥的钛或钛合金材料,在0℃~80℃以及50~250V的正脉冲电压和1000~5000Hz频率的条件下,以上述干燥的钛或钛合金材料作为阳极,石墨或铂作为阴极,在含有质量分数为0.05~0.5%的HF和酸类添加剂的水溶液电解液中进行电化学阳极氧化,其中的酸类添加剂为占电解液总质量80~85wt%的醋酸、5~10wt%的H2SO4或10~20wt%的H3PO4;电解液优选为质量含量分别为0.2% HF与85%醋酸的水溶液、0.05% HF与5% H2SO4的水溶液、或0.1% HF与10% H3PO4的水溶液;
       2)经阳极氧化后的钛或钛合金材料表面的电解液清除干净后,保存于无水乙醇中。
4.如权利要求3所述的制备方法,其特征是所说对钛或钛合金材料的表面光洁处理并除去氧化膜层,为将钛或钛合金材料表面打磨抛光后,用含有10~15wt% HF和25~35wt% HNO3的水溶液,以化学抛光方式除净表面的氧化膜层,化学抛光溶液中优选的HF含量为12wt%、HNO3为33wt%。
5.如权利要求3所述的制备方法,其特征是所说对除净表面氧化膜层后的钛或钛合金材料表面污物的清洁,采用在功率为100~400W的超声波作用下依次用丙酮、乙醇和水进行清洗,优选的超声波功率为250W。
6.如权利要求3所述的制备方法,其特征是所说钛或钛合金材料表面打磨抛光并除净表面氧化膜层及表面清洁后在避氧条件下的干燥,采用真空冷冻干燥。
7.如权利要求3所述的制备方法,其特征是所说对钛或钛合金材料表面的电化学阳极氧化时间为10分钟~12小时。
8.如权利要求3所述的制备方法,其特征是所说对钛或钛合金材料表面进行电化学阳极氧化时两电极间的间距≤10厘米,两电极间优选的间距为4厘米。
9.如权利要求3所述的制备方法,其特征是阳极氧化后钛或钛合金材料,在功率为100~400W的超声波作用下用去离子水清洗除净材料表面的电解液,优选的超声波功率为250W。
10.如权利要求3至9之一所述的制备方法,其特征是经阳极氧化并清除干净表面电解液后的钛或钛合金材料在无水乙醇中保存48~72小时。
CN201410000589.5A 2014-01-02 2014-01-02 具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法 Expired - Fee Related CN103668390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410000589.5A CN103668390B (zh) 2014-01-02 2014-01-02 具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410000589.5A CN103668390B (zh) 2014-01-02 2014-01-02 具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法

Publications (2)

Publication Number Publication Date
CN103668390A true CN103668390A (zh) 2014-03-26
CN103668390B CN103668390B (zh) 2016-10-26

Family

ID=50307144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410000589.5A Expired - Fee Related CN103668390B (zh) 2014-01-02 2014-01-02 具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法

Country Status (1)

Country Link
CN (1) CN103668390B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104400660A (zh) * 2014-10-24 2015-03-11 成都华西一为生物植体科技有限公司 钛合金作为牙种植体喷砂介质的应用
WO2017161911A1 (zh) * 2016-03-22 2017-09-28 苏州蓝锐纳米科技有限公司 具有冷凝液滴自驱离功能纳米层的换热器
CN110373709A (zh) * 2018-04-13 2019-10-25 中国科学院金属研究所 一种钛铜合金表面改性方法
CN111803231A (zh) * 2020-06-28 2020-10-23 深圳大学 一种仿生微/纳米抗菌结构及其制造方法与应用
CN111840659A (zh) * 2020-04-30 2020-10-30 中科益安医疗科技(北京)股份有限公司 高安全性无镍金属药物洗脱血管支架及其制造方法
CN113481564A (zh) * 2021-06-30 2021-10-08 中国科学院金属研究所 具有仿生超滑表面结构的钛基合金及其制备方法和应用
WO2021218089A1 (zh) 2020-04-30 2021-11-04 中科益安医疗科技(北京)股份有限公司 高氮无镍奥氏体不锈钢无缝薄壁管材、
CN113897569A (zh) * 2021-09-01 2022-01-07 东北大学 一种提高细胞粘附与增殖的钛合金表面形貌及制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2600718A1 (en) * 2005-03-21 2006-09-28 Regents Of The University Of California Controllable nanostructuring on micro-structured surfaces
CN101244462A (zh) * 2008-03-11 2008-08-20 西南交通大学 在纯钛表面产生多级尺寸的微/纳米结构层的方法
CN101871118A (zh) * 2010-06-30 2010-10-27 四川大学 一种在医用钛表面制备具有多级孔结构二氧化钛层的方法
CN102051615A (zh) * 2009-11-02 2011-05-11 中国科学院兰州化学物理研究所 一种防爬行防腐蚀钛或钛合金材料的制备方法
CN102525675A (zh) * 2012-03-02 2012-07-04 吉林大学 在钛合金牙种植体表面制备微米亚微米双级微结构的方法
CN101919741B (zh) * 2010-09-28 2012-09-05 吉林大学 具有微米--纳米多级微表面结构的牙种植体及制备方法
CN102677121A (zh) * 2012-03-31 2012-09-19 四川大学 一步阳极氧化法在医用钛表面制备多级孔结构层
CN102732882A (zh) * 2012-07-13 2012-10-17 东南大学 具有微纳米分级拓扑表面结构的人工关节及其制备方法
CN102912357A (zh) * 2012-10-31 2013-02-06 厦门大学 一种钛种植体表面制备微纳米结构的方法
CN103290455A (zh) * 2013-06-14 2013-09-11 大连理工大学 一种高生物活性的具有微/纳米双重结构的二氧化钛薄膜及其制备方法
CN103388173A (zh) * 2013-07-26 2013-11-13 厦门大学 一种在钛及其合金表面构筑微纳米有序结构的方法
RU2509181C2 (ru) * 2011-04-12 2014-03-10 Общество с ограниченной ответственностью "НЕЛАН-ОКСИД ПЛЮС" Способ формирования пористого оксида на сплаве титан-алюминий

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2600718A1 (en) * 2005-03-21 2006-09-28 Regents Of The University Of California Controllable nanostructuring on micro-structured surfaces
CN101244462A (zh) * 2008-03-11 2008-08-20 西南交通大学 在纯钛表面产生多级尺寸的微/纳米结构层的方法
CN102051615A (zh) * 2009-11-02 2011-05-11 中国科学院兰州化学物理研究所 一种防爬行防腐蚀钛或钛合金材料的制备方法
CN101871118A (zh) * 2010-06-30 2010-10-27 四川大学 一种在医用钛表面制备具有多级孔结构二氧化钛层的方法
CN101919741B (zh) * 2010-09-28 2012-09-05 吉林大学 具有微米--纳米多级微表面结构的牙种植体及制备方法
RU2509181C2 (ru) * 2011-04-12 2014-03-10 Общество с ограниченной ответственностью "НЕЛАН-ОКСИД ПЛЮС" Способ формирования пористого оксида на сплаве титан-алюминий
CN102525675A (zh) * 2012-03-02 2012-07-04 吉林大学 在钛合金牙种植体表面制备微米亚微米双级微结构的方法
CN102677121A (zh) * 2012-03-31 2012-09-19 四川大学 一步阳极氧化法在医用钛表面制备多级孔结构层
CN102732882A (zh) * 2012-07-13 2012-10-17 东南大学 具有微纳米分级拓扑表面结构的人工关节及其制备方法
CN102912357A (zh) * 2012-10-31 2013-02-06 厦门大学 一种钛种植体表面制备微纳米结构的方法
CN103290455A (zh) * 2013-06-14 2013-09-11 大连理工大学 一种高生物活性的具有微/纳米双重结构的二氧化钛薄膜及其制备方法
CN103388173A (zh) * 2013-07-26 2013-11-13 厦门大学 一种在钛及其合金表面构筑微纳米有序结构的方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
LI XIE等: "A facile one-step anodization treatment to prepare multi-level porous titania layer on titanium", 《MATERIALS LETTERS》, vol. 72, 31 December 2011 (2011-12-31), pages 141 - 144 *
NAGEH K. ALLAM等: "Formation of Vertically Oriented TiO2 Nanotube Arrays using a Fluoride Free HCl Aqueous Electrolyte", 《THE JOURNAL OF PHYSICAL CHEMISTRY》, vol. 111, no. 35, 23 August 2007 (2007-08-23), pages 13028 - 13032 *
孟维艳: "纯钛表面微米-纳米微结构的构建及生物学研究", 《中国博士学位论文全文数据库 医药卫生科技辑》, 15 June 2011 (2011-06-15), pages 074 - 15 *
戚卫星: "多孔阳极氧化钛纳米孔道形成机理的研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》, no. 7, 15 July 2013 (2013-07-15), pages 020 - 138 *
林先军等: "《前卫口腔医学荟萃》", 30 November 2003, 黄河出版社, article "钛铸件表面处理与技术", pages: 374 *
潘永康等: "《现代干燥技术》", 30 September 1998, 化学工业出版社, article "真空冷冻干燥", pages: 450 *
陶春虎等: "《失效分析新技术》", 30 November 2011, 国防工业出版社, article "钛合金的环境损伤", pages: 294 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104400660A (zh) * 2014-10-24 2015-03-11 成都华西一为生物植体科技有限公司 钛合金作为牙种植体喷砂介质的应用
WO2017161911A1 (zh) * 2016-03-22 2017-09-28 苏州蓝锐纳米科技有限公司 具有冷凝液滴自驱离功能纳米层的换热器
CN110373709A (zh) * 2018-04-13 2019-10-25 中国科学院金属研究所 一种钛铜合金表面改性方法
CN111840659A (zh) * 2020-04-30 2020-10-30 中科益安医疗科技(北京)股份有限公司 高安全性无镍金属药物洗脱血管支架及其制造方法
WO2021218089A1 (zh) 2020-04-30 2021-11-04 中科益安医疗科技(北京)股份有限公司 高氮无镍奥氏体不锈钢无缝薄壁管材、
CN111840659B (zh) * 2020-04-30 2022-02-08 中科益安医疗科技(北京)股份有限公司 高安全性无镍金属药物洗脱血管支架及其制造方法
CN111803231A (zh) * 2020-06-28 2020-10-23 深圳大学 一种仿生微/纳米抗菌结构及其制造方法与应用
CN113481564A (zh) * 2021-06-30 2021-10-08 中国科学院金属研究所 具有仿生超滑表面结构的钛基合金及其制备方法和应用
CN113897569A (zh) * 2021-09-01 2022-01-07 东北大学 一种提高细胞粘附与增殖的钛合金表面形貌及制备方法
CN113897569B (zh) * 2021-09-01 2022-04-01 东北大学 一种提高细胞粘附与增殖的钛合金表面形貌及制备方法

Also Published As

Publication number Publication date
CN103668390B (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
CN103668390A (zh) 具有微米-纳米粗糙结构表面的钛或钛合金材料及制备方法
CN102586786B (zh) 一种钛表面形成分级多孔形貌的方法
Park et al. Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation
CN101919741B (zh) 具有微米--纳米多级微表面结构的牙种植体及制备方法
CN102912357B (zh) 一种钛种植体表面制备微纳米结构的方法
Szesz et al. Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes
CN102921037A (zh) 一种钛种植体表面制备多级微米结构的方法
CN104674321A (zh) 一种钛或钛合金表面含铜抗菌生物陶瓷膜的制备方法和应用
TWI480026B (zh) 具螺紋構造生醫植體及其選擇性表面處理的方法
Saharudin et al. Surface modification and bioactivity of anodic Ti6Al4V alloy
CN102677121A (zh) 一步阳极氧化法在医用钛表面制备多级孔结构层
CN104032291A (zh) 一种在钛种植体表面制备TiSrO3涂层的方法
CN101942688A (zh) 医用钛合金复合氧化工艺
CN109680266A (zh) 一种在钛合金表面制备钽原子掺杂的生物活性陶瓷涂层及其制备方法
Rautray et al. Formation of anodic TiO2 nanotubes under magnetic field
CN103361702A (zh) 牙种植体表面改性的一种方法
CN101311328A (zh) 一种制备钛基羟基磷灰石/氧化钛纳米管复合涂层的方法
CN102747405A (zh) 提高医用镁合金生物活性的复合陶瓷膜层的制备方法
CN107530146A (zh) 具有微纳米复合结构的表面的种植体及种植体的表面处理方法
Jain et al. Surface characterization, shear strength, and bioactivity of anodized titanium prepared in mixed-acid electrolytes
CN103981523A (zh) 一种超亲水性Ti6Ai7Ni表面喷砂酸蚀处理方法
CN103290455A (zh) 一种高生物活性的具有微/纳米双重结构的二氧化钛薄膜及其制备方法
CN104027839B (zh) 一种在纯钛表面制备具有生物活性纳米结构的方法
CN103877618A (zh) 一种在医用钛或钛合金表面制备含银二氧化钛薄膜的方法
CN108060453B (zh) 一种纯钛基纳米管表面纳米磷灰石棒晶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161026

Termination date: 20190102

CF01 Termination of patent right due to non-payment of annual fee