CN103022156A - 带有集成肖特基势垒二极管的沟槽mosfet器件 - Google Patents

带有集成肖特基势垒二极管的沟槽mosfet器件 Download PDF

Info

Publication number
CN103022156A
CN103022156A CN2012103370694A CN201210337069A CN103022156A CN 103022156 A CN103022156 A CN 103022156A CN 2012103370694 A CN2012103370694 A CN 2012103370694A CN 201210337069 A CN201210337069 A CN 201210337069A CN 103022156 A CN103022156 A CN 103022156A
Authority
CN
China
Prior art keywords
layer
groove
schottky diode
semiconductor layer
well region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103370694A
Other languages
English (en)
Other versions
CN103022156B (zh
Inventor
高立德
苏毅
金钟五
常虹
哈姆扎·依玛兹
伍时谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpha and Omega Semiconductor Cayman Ltd
Original Assignee
Alpha and Omega Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha and Omega Semiconductor Inc filed Critical Alpha and Omega Semiconductor Inc
Publication of CN103022156A publication Critical patent/CN103022156A/zh
Application granted granted Critical
Publication of CN103022156B publication Critical patent/CN103022156B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823487MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66143Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种带有集成肖特基势垒二极管的沟槽MOSFET器件,其中肖特基二极管包括一个形成在半导体衬底上的半导体层;形成在半导体层中的第一和第二沟槽,其中第一和第二沟槽内衬薄电介质层,并用沟槽导体层部分填充,第一电介质层填充第一和第二沟槽的剩余部分;以及一个形成在第一和第二沟槽之间的半导体层顶面上的肖特基金属层。所形成的肖特基二极管中,肖特基金属层作为阳极,第一和第二沟槽之间的半导体层作为阴极。每个第一和第二沟槽中的沟槽导体层电连接到肖特基二极管的阳极。在一个实施例中,所形成的肖特基二极管与沟槽场效应晶体管集成在同一个半导体衬底上。

Description

带有集成肖特基势垒二极管的沟槽MOSFET器件
技术领域
本发明涉及半导体器件,尤其是涉及一种集成肖特基势垒二极管的沟槽MOSFET器件。
背景技术
肖特基结的特点在于,能垒(对于自由载流子)低于PN二极管结,单极电流传导与PN二极管情况下的双极电流传导相反。因此,虽然肖特基二极管在低于典型PN结二极管的正向电压下开始电流传导,但是肖特基二极管的反向偏置漏电流高于典型的PN结二极管。由于肖特基二极管是单极器件,因此开关速度比PN结二极管更快。
肖特基二极管通常使用在电子器件中,用于整流。例如,在功率转换器实现同步整流的器件中,功率转换器使用功率MOSFET,作为高端开关,使用另一个功率MOSFET,作为低端开关,两个功率MOSFET用于调制电流传导到负载。在实际运行中,在一个开关开启之前,两个开关都断开。当两个开关断开时,功率MOSFET的体二极管传导电流。然而,为了提高转换效率,肖特基二极管通常与MOSFET体二极管并联,如图1所示。N-型功率MOSFET M1具有一个体二极管D1,由P-型本体区构成,作为阳极,N-型漏极区作为阴极。为了提高功率MOSFET M1的性能,肖特基二极管SD1与体二极管D1并联。肖特基二极管SD1的阳极电连接到功率MOSFET M1的源极端或体二极管D1的阳极。肖特基二极管SD1的阴极电连接到功率MOSFET M1的漏极端,或体二极管D1的阴极。肖特基二极管SD1的正向偏压低于体二极管D1,从而降低了正向压降,并且改善了恢复时间。
发明内容
本发明的目的是提供一种集成肖特基势垒二极管的沟槽MOSFET器件的新型结构。
依据本发明的一个实施例,肖特基二极管包括一个第一导电类型的半导体衬底;一个形成在半导体衬底上的第一导电类型的半导体层;形成在半导体层中的第一和第二沟槽,第一和第二沟槽内衬一薄电介质层,并用沟槽导体层部分填充,第一和第二沟槽的剩余部分用第一电介质层填充;一个形成在第一和第二沟槽之间的半导体层顶面上的肖特基金属层。所形成的肖特基二极管带有肖特基金属层,作为阳极,第一和第二沟槽之间的半导体层,作为阴极。每个第一和第二沟槽中的沟槽导体层都电连接到肖特基二极管的阳极。
依据本发明的另一个方面,含有场效应晶体管和肖特基二极管的半导体器件包括,一个第一导电类型的半导体衬底;一个形成在半导体衬底上的第一导电类型的半导体层;形成在半导体层中的第一和第二沟槽,第一和第二沟槽内衬一薄电介质层,并用第一沟槽导体层填充,第一和第二沟槽的剩余部分用第一电介质层填充;一个形成在第一和第二沟槽之间的半导体层顶面上的肖特基金属层;一个形成在半导体层中的第三沟槽,第三沟槽内衬薄电介质层,并用第一沟槽导体层和第二沟槽导体层填充,第一沟槽导体层通过中间层电介质层,与第二沟槽导体层绝缘,第一沟槽导体层填充一部分第三沟槽,第二沟槽导体层从中间层电介质开始,延伸到第三沟槽的顶面附近;一个形成在第三沟槽附近的半导体层顶部中的第二导电类型的第一阱区,第一阱区延伸到形成在第三沟槽中的第二沟槽导体层底部边缘附近的深度;以及一个形成在第三沟槽侧壁附近的第一阱区中,第一导电类型的重掺杂源极区。
制备一个肖特基二极管,其中肖特基金属层作为阳极,第一和第二沟槽之间的半导体层作为阴极。制备场效应晶体管,其中重掺杂N-型半导体衬底作为漏极,第三沟槽中的第二沟槽导电层作为栅极,第一阱区作为本体区,重掺杂源极区作为源极,第三沟槽中的第一沟槽导电层作为栅极屏蔽电极。第三沟槽中的第一沟槽导电层电连接到源极,每个第一和第二沟槽中的第一沟槽导电层都电连接到肖特基二极管的阳极。
阅读以下详细说明并参照附图后,将更好地理解本发明。
附图说明
图1表示肖特基二极管与功率MOSFET和功率MOSFET的体二极管并联的电路图。
图2表示依据本发明的一个实施例,集成肖特基二极管的沟槽MOSFET器件的剖面图。
图3为图2所示的沟槽肖特基二极管的等轴测试图,表示沟槽的纵轴和形成肖特基二极管的台面结构。
图4表示依据本发明的第一可选实施例,沟槽肖特基二极管的等轴测试图。
图5表示依据本发明的一个实施例,图4中的沟槽肖特基二极管沿纵轴线A-A’的剖面图。
图6表示依据本发明的第二可选实施例,沟槽肖特基二极管的等轴测试图。
图7表示依据本发明的一个实施例,图6中的沟槽肖特基二极管沿纵轴线A-A’的剖面图。
图8表示依据本发明的第三可选实施例,沟槽肖特基二极管的等轴测试图。
图9表示依据本发明的一个实施例,图8中的沟槽肖特基二极管沿纵轴线A-A’的剖面图。
图10表示依据本发明的第四可选实施例,沟槽肖特基二极管的等轴测试图。
具体实施方式
依据本发明的原理,利用沟槽界定的台面结构,将肖特基二极管集成在沟槽MOSFET结构中,沟槽仅由沟槽导体部分填充,沟槽导体电连接到肖特基二极管的阳极。在这种情况下,就可以使用沟槽MOSFET器件的标准制备工艺,制备“沟槽”肖特基二极管,使肖特基二极管无缝集成在沟槽MOSFET器件结构中。
图2表示依据本发明的一个实施例,集成肖特基二极管的沟槽MOSFET器件的剖面图。参见图2,沟槽MOSFET(金属-氧化物-硅场效应晶体管)器件10以及沟槽肖特基二极管20形成在半导体本体上。在本说明中,半导体本体含有一个形成在重掺杂N+衬底21上的N-型外延层22。在其他实施例中,半导体本体含有一个P-型半导体衬底,P-型外延层形成在上方。半导体本体的准确结构,对本发明的实施并不重要。沟槽12(包括沟槽12a至12c)形成在N-型外延层22中,限定台面结构,扩散区就形成在台面结构中。沟槽12a-12c的内壁内衬电介质层15,例如氧化硅层。
第一沟槽导体层13形成在沟槽12的底部。更确切地说,第一沟槽导体层13a至13c形成在每个沟槽12a至12c中。在本发明的实施例中,第一沟槽导体层13为多晶硅层。中间多晶硅电介质层17形成在第一沟槽导体层上。然后,在与沟槽MOSFET器件10有关的沟槽12a中,第二沟槽导体层14形成在中间-多晶硅电介质层17上方。在本发明的实施例中,第二沟槽导体层14为多晶硅层。第二沟槽导体层有时也称为栅极导体层、栅极多晶硅层或栅极电极,其功能同MOSFET器件的栅极导体一样。沟槽12b和12c由台面结构限定,沟槽肖特基二极管20形成在台面结构中,第二沟槽导体层14并没有填充沟槽,而是用电介质层19(例如氧化硅层)填充沟槽的剩余部分。因此,沟槽导体层仅部分填充沟槽12b和12c。
P-阱区24形成在沟槽MOSFET器件所形成的台面结构中。例如,P-阱区24形成在沟槽12a附近的台面结构中,以及沟槽MOSFET器件10所形成的沟槽12a和12b之间。P-阱区24至少延伸到附近沟槽12a中的栅极多晶硅层底部周围。沟槽肖特基二极管20所形成的沟槽12b和12c之间的台面结构,并不接受P-阱植入物,从而仍然是轻掺杂N-型,带有N-型外延层的掺杂浓度。P-阱区24构成沟槽MOSFET器件的本体区,N-型外延层22构成漏极区。N+衬底21构成沟槽MOSFET器件的背部漏极电极。重掺杂N+区16形成在沟槽MOSFET器件所形成的台面结构的顶部。因此,重掺杂N+区16形成在沟槽12a和12b之间的台面结构中,以及沟槽12a附近的台面结构中。电介质层18形成在半导体本体上方,然后形成图案,在N+区16附近的台面结构中,构成源极-本体接触开口。接触开口穿过N+源极区(即,16)延伸到P-阱区24本体区中。然后,用源极金属层填充接触开口,以便将N+源极区(即,16)电连接到P-阱区24本体区。填充接触开口的源极金属层有时也称为源极接触插头或源极插头26,源极金属层(即,26)填充源极区(即,16)和P-阱区24中的接触开口。在某些实施例中,源极接触插头(即,26)为钨插头。在某些实施例中,填充源极接触开口之前,可以选择通过在源极-本体接触开口的底部进行P+植入,形成P-型本体接触扩散区23,以便改善源极插头和P-阱区24本体区之间的欧姆接触。
形成源极插头之后,在源极插头和电介质层18上方制备金属层38,形成到源极区和阱区的电连接。在某些实施例中,金属层38为铝层。后续的电介质或绝缘层(图中没有表示出)可以形成在金属层38上方。在沟槽之间的台面结构中,制备到漏极区(N-型外延层22)以及到第一、第二沟槽导体层的电接触,在第三维度上垂直于图2所示的剖面。
因此,所形成的沟槽MOSFET器件10包括一个形成在栅极多晶硅层(即,14)中的栅极区,一个形成在N+区16中的源极区,一个形成在N-型外延层22中的漏极区,以及一个形成在P-阱区24中的本体区。MOSFET器件10为屏蔽栅沟槽MOSFET器件,第一沟槽导体层13屏蔽栅极多晶硅层(即,14)不受高压的影响。因此,第一沟槽导体层有时也称为屏蔽多晶硅层或栅极屏蔽电极。在某些实施例中,MOSFET器件10的源极区电连接到接地端,屏蔽多晶硅层也电连接到地电势。到屏蔽多晶硅层的电连接可以处于沟槽之间的台面结构中,在第三维度上,垂直于图2所示的剖面。
沟槽肖特基二极管20形成在沟槽12b和12c之间的台面结构27中。如上所述,沟槽12b和12c之间的台面结构并不接受P-阱植入,因此,台面结构仍然保持N-型外延层22的掺杂水平。为了制备肖特基势垒二极管,肖特基金属层28形成在台面结构27的表面上,并与台面结构27电接触。图3为沟槽肖特基二极管20的等轴测试图,表示的是沟槽的长轴以及肖特基二极管所形成的台面结构。参见图3,肖特基结形成在肖特基金属层28和台面结构27处的N-型外延层22的金属-硅结处。台面结构27构成肖特基二极管的阴极,而肖特基金属层28构成肖特基二极管的阳极。在本发明的实施例中,额外的金属层形成在肖特基金属层28上,以便改善导电。在本实施例中,金属层30形成在肖特基金属层28上方。在一个实施例中,金属层30为复合金属层,包括钨层和铝-硅层。
本发明所述的沟槽肖特基二极管20的显著特点是,肖特基二极管形成在沟槽12b、12c限定的台面结构27中,沟槽12b、12c仅仅用沟槽导体层部分填充,沟槽导体层电连接到肖特基二极管的阳极。在本实施例中,限定肖特基二极管20台面结构27的沟槽12b、12c,都仅用屏蔽多晶硅层(即,13b、13c)填充。栅极多晶硅层并不形成在沟槽12b、12c中。在这种情况下,删除沟槽12b、12c中的栅极多晶硅层,并且修正台面结构27中的P-阱区之后,就可以利用与沟槽MOSFET相同的制备工艺,制备沟槽肖特基二极管。在本实施例中,台面结构27中完全删除P-阱区。在本发明的可选实施例中,分立的P-阱区可以分散形成,或者沿台面结构的长轴方向间隔开,肖特基二极管就形成在P-阱区之间的N-型外延层中,下文还将详细介绍。
本发明所述的沟槽肖特基二极管20的另一个显著特点是,沟槽MOSFET器件和沟槽肖特基二极管的台面结构宽度相同。沟槽肖特基二极管不需要像传统的器件那样,使台面结构变窄。肖特基二极管使用较宽的台面结构宽度的优势在于,改善了肖特基二极管的串联电阻,提高了肖特基二极管的效率。在一个实施例中,肖特基二极管形成在台面结构中,该台面结构也用于制备到屏蔽多晶硅层的电接触。因此,在沟槽MOSFET器件中集成肖特基二极管有效利用了硅不动产。
本发明的另一个实施例,部分填充肖特基二极管的沟槽12b和12c的沟槽导体层,可以是任意其他类型的导体层,包括金属和多晶硅。此外,在本发明的实施例中,肖特基二极管的沟槽12b和12c可以用沟槽导体层填充,一直到沟槽深度的一半左右,或小于沟槽深度的一半。然而,在另一个实施例中,肖特基二极管的沟槽12b和12c中的沟槽导体层13b、13c可以电连接到沟槽MOSFET器件10的屏蔽多晶硅层(即,13a),以及电连接到MOSFET器件的源极电势。
在一些实施例中,在台面结构27的顶面进行浅补偿植入29,以调节肖特基二极管函数附近的台面结构表面上的势垒高度。在本发明的实施例中,浅补偿植入29为P-型离子植入到N-外延层22中。选取浅补偿植入29的深度和剂量,以调节肖特基二极管20的正向偏压和击穿漏电流。浅补偿植入的植入剂量可以或不足以超过N-外延层22的基础掺杂浓度。因此,台面结构27表面上所形成的植入区可以转换成P-型或仍然保持N-型。
在一些实施例中,在N-型外延层22中试用一个或多个深腔补偿植入35,远离肖特基结,在台面结构的深处。深腔补偿植入35可以是N-型植入或P-型植入。可以选取深腔补偿植入35的植入剂量,使N-外延层22的基础掺杂浓度高于深腔补偿植入。因此,所形成的植入区仍然是N-型,但是势垒高度可以通过补偿植入来调节。深腔补偿植入35的作用是控制肖特基结的电流通路,以降低漏电流。
图4表示依据本发明的第一可选实施例,沟槽肖特基二极管的等轴测试图。参见图4,沟槽肖特基二极管40的制备方式与上述沟槽肖特基二极管20的制备方式大致相同。更确切地说,沟槽肖特基二极管40形成在两个沟槽12b和12c之间的台面结构27中,沟槽12b和12c仅用沟槽导体层13b和13c部分填充。在本实施例中,P-阱区24可以分散形成,或者在台面结构27中沿台面结构的长轴方向间隔开。台面结构的长轴与沟槽的长轴平行。因此,P-阱区24从一个沟槽侧壁延伸到下一个,例如从沟槽12b的侧壁延伸到沟槽12c的侧壁。P-阱区沿台面结构的长轴方向间隔开,形成沿台面结构的长度方向独立的P-阱区。在本实施例中,肖特基金属层48作为长条纹,覆盖着P-阱区以及P-阱区之间的N-型外延区。在一个实施例中,肖特基金属条纹48的宽度小于两个邻近沟槽12b、12c之间的台面结构宽度。因此,沟槽肖特基二极管40形成在肖特基金属层48和N-型外延层22之间的肖特基结处,以及肖特基金属层48和P-阱区24之间的肖特基结之间。
图5表示依据本发明的一个实施例,沟槽肖特基二极管40沿长轴方向A-A’的剖面图。参见图5,沟槽肖特基二极管40形成在N-型外延层22中,在两个沟槽12b、12c(图4)之间,还在两个邻近的P-阱区24之间。肖特基金属层48形成在N-型外延层22和P-阱区24的表面上,以构成肖特基结。在本说明中,肖特基金属覆盖P-阱区24以及N-型外延层22。在一个实施例中,肖特基金属层48为氮化钛(TiN)层。此外,在一些实施例中,额外的金属层形成在肖特基金属层上,以降低肖特基二极管的阳极电阻。在本实施例中,钨(W)层51形成在肖特基金属层48上,铝-硅(Al-Si)层52形成在钨层51上。绝缘层(图中没有表示出)形成在肖特基二极管结构上方,提供绝缘或钝化。
在散布的P-阱区之间,制备沟槽肖特基二极管具有许多优势。特别是P-阱区的作用是夹断肖特基二极管电流通路,从而限制漏电流。P-阱区还可以控制肖特基结附近的台面结构的表面电场。从而提升肖特基二极管的性能。
在本发明的实施例中,如上所述,在沟槽肖特基二极管结构中进行补偿植入,以提高肖特基二极管的电场性能。在一个实施例中,在肖特基结附近的N-型外延层22的顶面进行浅补偿植入29。浅补偿植入29可以控制肖特基二极管的正向偏压及击穿漏电流。在一些实施例中,对N-型外延层22进行一次或多次深腔补偿植入35,远离肖特基结,在台面结构的深处。深腔补偿植入35的作用是控制肖特基二极管的电流通路,降低漏电流。
图6表示依据本发明的第二可选实施例,沟槽肖特基二极管的等轴测试图。图7表示依据本发明的一个实施例,图6所示的沟槽肖特基二极管沿长轴A-A’的剖面图。参见图6和图7,沟槽肖特基二极管60的制备方式与上述沟槽肖特基二极管40的制备方式大致相同。更确切地说,沟槽肖特基二极管60形成在两个沟槽12b和12c之间的台面结构27中,沟槽12b和12c仅用沟槽导体层13b和13c部分填充。此外,P-阱区24在台面结构27中沿台面结构的长轴分散形成。在本实施例中,源极接触插头(即,26)以及可选的P+本体接触扩散区23形成在P-阱区24中。肖特基金属层68形成在一条长条纹中,覆盖着台面结构27中的N-型外延层、P-阱区24以及源极插头26。源极插头26使肖特基金属层68和P-阱区24之间形成欧姆接触。在这种情况下,P-阱区24电连接到与肖特基二极管相同的电势上。因此,沟槽导体层13b、13c、P-阱区24以及阳极都连接到相同的电势。在一些实施例中,沟槽导体层13b、13c、P-阱区24以及阳极都电连接到地电压。沟槽导体层13b、13c以及P-阱区都为肖特基二极管提供屏蔽。在本发明的实施例中,肖特基二极管的阳极转而连接到沟槽MOSFET的源极,沟槽MOSFET形成在同一个半导体层上。沟槽肖特基二极管60还包括一个浅补偿植入29以及一个或多个深腔补偿植入35,如图上述图7所示。
图8表示依据本发明的第三可选实施例,沟槽肖特基二极管的等轴测试图。图9表示依据本发明的一个实施例,图8所示的沟槽肖特基二极管沿长轴A-A’的剖面图。参见图8和图9,沟槽肖特基二极管70的制备方式与上述沟槽肖特基二极管60的制备方式大致相同。更确切地说,沟槽肖特基二极管70形成在两个沟槽12b和12c之间的台面结构27中,沟槽12b和12c仅用沟槽导体层13b和13c部分填充。P-阱区24在台面结构27中沿台面结构的长轴分散形成。源极接触插头(即,26)以及可选的P+本体接触扩散区23形成在P-阱区24中。在本实施例中,肖特基金属层78作为岛,形成在台面结构27中的N-型外延层22上。更确切地说,肖特基金属岛形成在N-型外延层22上方,在邻近的P-阱区24之间的台面结构27中,并且在被边缘终接扩散区54包围的区域中。边缘终接扩散区54为P-型区,形成在N-型外延层22的顶面中,包围着肖特基结。更确切地说,边缘终接扩散区54形成在被邻近的P-阱区24限定的台面结构27的边缘上。在一个实施例中,通过在N-外延层22中植入P-型离子,构成边缘终接扩散区54。边缘终接扩散区54的作用是降低肖特基结拐角处的电场。
在本发明的实施例中,如上所述,肖特基二极管70还包括一个浅补偿植入29以及一个或多个深腔补偿植入35。
在本实施例中,肖特基二极管70包括源极插头26和P+本体接触扩散区23,在P-阱区24中。源极插头26和P+本体接触扩散区23是可选的,在本发明的其他实施例中,可以省去这两者或其中之一。可以制备在P-阱区24中不带有任何源极插头或P+本体接触区的肖特基二极管70。
图10表示依据本发明的第四可选实施例,沟槽肖特基二极管的等轴测试图。参见图10,沟槽肖特基二极管80的制备方式与上述沟槽肖特基二极管60的制备方式大致相同。更确切地说,沟槽肖特基二极管80形成在两个沟槽12b和12c之间的台面结构27中,沟槽12b和12c仅用沟槽导体层13b和13c部分填充。此外,P-阱区24在台面结构27中沿台面结构的长轴分散形成,源极接触插头(即,26)以及可选的P+本体接触扩散区23形成在P-阱区24中。在本实施例中,肖特基金属层88作为岛,覆盖着邻近P-阱区24之间的台面结构27中的N-型外延层22。源极插头26电连接到肖特基二极管的阳极,肖特基二极管的阳极转而连接到形成在同一个半导体层上的沟槽MOSFET的源极。
在本实施例中,肖特基二极管80包括源极插头26和P+本体接触扩散区23,在P-阱区24中。源极插头26和P+本体接触扩散区23是可选的,在本发明的其他实施例中,可以省去这两者或其中之一。可以制备在P-阱区24中不带有任何源极插头或P+本体接触区的肖特基二极管80。
上述详细说明用于解释说明本发明的典型实施例,不作为局限。可能存在本发明范围内的多种修正和改变。例如,图2、3和10中所示的肖特基金属层可以延伸穿过两个邻近沟槽(12b、12c)之间的N-型外延层的整体宽度。在本发明的其他实施例中,肖特基金属层仅覆盖两个沟槽之间的宽度部分,如图4和图6所示。与之类似,图4和图6所示的肖特基金属层可以延伸覆盖两个邻近沟槽之间的半导体层的整体宽度。
此外,在上述实施例中,介绍了一种N-型沟槽MOSFET器件,沟槽肖特基二极管形成在N-型外延层上方。在本发明的器件实施例中,可以通过转换半导体层或衬底、外延层及各种扩散/植入区的极性,制备相反极性的器件。本发明范围应由所附的权利要求书限定。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (27)

1.一种肖特基二极管,其特征在于,包括:
一个第一导电类型的半导体衬底;
一个形成在半导体衬底上的第一导电类型的半导体层;
形成在半导体层中的第一和第二沟槽,第一和第二沟槽内衬一个薄电介质层,并且用一沟槽导体层部分填充,第一和第二沟槽的剩余部分用第一电介质层填充;以及
一个形成在第一和第二沟槽之间的半导体层顶面上的肖特基金属层,
其中所述的肖特基金属层形成所述的肖特基二极管的阳极,第一和第二沟槽之间的半导体层形成所述的肖特基二极管的阴极,每个第一和第二沟槽中的沟槽导体层都电连接到所述的肖特基二极管的阳极。
2.如权利要求1所述的肖特基二极管,其特征在于,其中所述的第一和第二沟槽都具有第一沟槽深度,第一沟槽导体层向上延伸到第一沟槽深度的一半或一半以下。
3.如权利要求1所述的肖特基二极管,其特征在于,其中所述的肖特基金属层形成在半导体层上覆盖从第一沟槽到第二沟槽的半导体层的部分宽度或整体宽度。
4.如权利要求1所述的肖特基二极管,其特征在于,还包括:
多个第二导电类型的阱区,形成在第一沟槽和第二沟槽之间的半导体层顶部,多个阱区在平行于第一和第二沟槽的长轴方向上分隔开;
其中所形成的肖特基金属层覆盖着多个阱区以及多个阱区之间的半导体层。
5.如权利要求4所述的肖特基二极管,其特征在于,其中所述的肖特基金属层形成在半导体层以及多个阱区上方,覆盖着从第一沟槽到第二沟槽的半导体层以及阱区的一部分宽度或整体宽度。
6.如权利要求4所述的肖特基二极管,其特征在于,还包括:
多个接触插头,每个接触插头都形成在相应的阱区中;
其中所形成的肖特基金属层覆盖着多个阱区,多个接触插头以及多个阱区之间的半导体层,肖特基金属层与多个接触插头构成欧姆接触。
7.如权利要求6所述的肖特基二极管,其特征在于,还包括:
    多个第二导电类型的接触扩散区,每个接触扩散区都分别形成在各自的接触插头下方各自的阱区中。
8.如权利要求6所述的肖特基二极管,其特征在于,其中所述的肖特基金属层形成在半导体层、多个阱区以及多个接触插头上,并且覆盖半导体层的一部分宽度或整体宽度,以及从第一沟槽到第二沟槽的阱区。
9.如权利要求1所述的肖特基二极管,其特征在于,还包括:
在第一和第二沟槽之间的半导体层顶面上,进行第二导电类型的浅补偿植入,利用浅补偿植入来调节肖特基二极管的正向偏压。
10.如权利要求1所述的肖特基二极管,其特征在于,还包括:
在第一和第二沟槽之间的半导体层中,以及在远离半导体层顶面的深处,进行第二导电类型的深腔补偿植入,利用深腔补偿植入,降低肖特基二极管的漏电流。
11.如权利要求1所述的肖特基二极管,其特征在于,还包括:
多个第二导电类型的阱区,形成在第一沟槽和第二沟槽之间的半导体层顶部,多个阱区在平行于第一和第二沟槽的长轴方向上间隔开;
其中肖特基金属层形成在第一和第二沟槽之间的半导体层顶面上,仅仅覆盖多个阱区之间的半导体层。
12.如权利要求1所述的肖特基二极管,其特征在于,还包括:
多个第二导电类型的阱区,形成在第一沟槽和第二沟槽之间的半导体层顶部,多个阱区在平行于第一和第二沟槽的长轴方向上间隔开;以及
一个第二导电类型的边缘终接扩散区,形成在沿第一和第二沟槽以及邻近的阱区限定的边缘的半导体层中;
其中所形成的肖特基金属层覆盖着被边缘终接扩散区限定的一个区域中的半导体层。
13.如权利要求1所述的肖特基二极管,其特征在于,其中所述的肖特基金属层是由氮化钛层构成的。
14.如权利要求1所述的肖特基二极管,其特征在于,其中所述的半导体层是由第一导电类型的外延层构成的。
15.如权利要求4所述的肖特基二极管,其特征在于,其中所述的第一导电类型是由N-型导电性构成的,第二导电类型是由P-型导电性构成的。
16.如权利要求1所述的肖特基二极管,其特征在于,其中半导体衬底是由第一导电类型的重掺杂半导体衬底构成的。
17.一种包含场效应晶体管和肖特基二极管的半导体器件,其特征在于,该半导体器件包括:
一个第一导电类型的半导体衬底;
一个第一导电类型的半导体层,形成在半导体衬底上;
第一和第二沟槽,形成在半导体层中,第一和第二沟槽内衬薄电介质层,并用第一沟槽导体层填充,第一沟槽导体层填充每个第一和第二沟槽的一部分,第一和第二沟槽的剩余部分用第一电介质层填充;
一个肖特基金属层,形成在第一和第二沟槽之间的半导体层顶面上;
一个第三沟槽,形成在半导体层中,第三沟槽内衬薄电介质层,并用第一沟槽导体层和第二沟槽导体层填充,通过一个中间层电介质层,第一沟槽导体层与第二沟槽导体层绝缘,第一沟槽导体层填充第三沟槽的一部分,且第二沟槽导体层从中间层电介质延伸到第三沟槽的顶面附近;
一个第二导电类型的第一阱区,形成在第三沟槽附近的半导体层顶部,第一阱区延伸到形成在第三沟槽中的第二沟槽导体层底部边缘附近的深度;以及
一个第一导电类型的重掺杂源极区,形成在第三沟槽侧壁附近的第一阱区;
其中所形成的肖特基二极管中,肖特基金属层作为阳极,第一和第二沟槽之间的半导体层作为阴极;
其中所形成的场效应晶体管中,重掺杂N-型半导体衬底作为漏极电极,第三沟槽中的第二沟槽导体层作为栅极电极,第一阱区作为本体区,重掺杂源极区作为源极电极,第三沟槽中的第一沟槽导体层作为栅极屏蔽电极;并且
其中第三沟槽中的第一沟槽导体层电连接到源极电极,每个第一和第二沟槽中的第一沟槽导体层都电连接到肖特基二极管的阳极。
18.如权利要求17所述的半导体器件,其特征在于,其中第一、第二和第三沟槽具有第一沟槽深度,第一沟槽导体层向上延伸到第一沟槽深度的一半或小于一半。
19.如权利要求17所述的半导体器件,其特征在于,还包括:
多个第二导电类型的阱区,形成在第一和第二沟槽之间的半导体层顶部,多个阱区在平行于第一和第二沟槽的长轴方向上间隔开;
其中所形成的肖特基金属层覆盖着多个阱区,以及多个阱区之间的半导体层。
20.如权利要求19所述的半导体器件,其特征在于,其中多个阱区的掺杂浓度和深度都与第一阱区相同。
21.如权利要求19所述的半导体器件,其特征在于,还包括:
多个接触插头,每个接触插头都形成在各自的多个阱区的其中之一;
其中所形成的肖特基金属层,覆盖多个阱区、多个接触插头以及多个阱区之间的半导体层,肖特基金属层与多个接触插头形成欧姆接触。
22.如权利要求21所述的半导体器件,其特征在于,还包括:
多个第二导电类型的接触扩散区,每个接触扩散区分别形成在各自的接触插头下方的阱区中。
23.如权利要求17所述的半导体器件,其特征在于,还包括:
一个第二导电类型的浅扩散区,形成在第一和第二沟槽之间的半导体层的顶面上。
24.如权利要求17所述的半导体器件,其特征在于,还包括:
一个第二导电类型的深腔扩散区,形成在第一和第二沟槽之间的半导体层中,在远离半导体层顶面的深处。
25.如权利要求17所述的半导体器件,其特征在于,其中所述的半导体层是由第一导电类型的外延层构成的。
26.如权利要求17所述的半导体器件,其特征在于,其中所述的第一导电类型是由N-型导电性构成的,第二导电类型是由P-型导电性构成的。
27.如权利要求17所述的半导体器件,其特征在于,其中所述的半导体衬底是由第一导电类型的重掺杂半导体衬底构成的。
CN201210337069.4A 2011-09-22 2012-09-13 带有集成肖特基势垒二极管的沟槽mosfet器件 Active CN103022156B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/241,126 2011-09-22
US13/241,126 US8610235B2 (en) 2011-09-22 2011-09-22 Trench MOSFET with integrated Schottky barrier diode

Publications (2)

Publication Number Publication Date
CN103022156A true CN103022156A (zh) 2013-04-03
CN103022156B CN103022156B (zh) 2015-02-11

Family

ID=47910309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210337069.4A Active CN103022156B (zh) 2011-09-22 2012-09-13 带有集成肖特基势垒二极管的沟槽mosfet器件

Country Status (3)

Country Link
US (3) US8610235B2 (zh)
CN (1) CN103022156B (zh)
TW (1) TWI481038B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617141A (zh) * 2013-11-04 2015-05-13 美格纳半导体有限公司 半导体器件及其制造方法
CN105762200A (zh) * 2016-04-28 2016-07-13 上海格瑞宝电子有限公司 一种沟槽肖特基二极管结构及其制备方法
CN106169464A (zh) * 2015-05-21 2016-11-30 英飞凌科技德累斯顿有限责任公司 包括功率晶体管和电压限制装置的晶体管布置
CN106208990A (zh) * 2016-08-26 2016-12-07 宜确半导体(苏州)有限公司 一种射频功率放大器及射频前端模块
CN106328718A (zh) * 2016-11-04 2017-01-11 四川洪芯微科技有限公司 一种台面二极管
CN109935634A (zh) * 2017-12-15 2019-06-25 万国半导体(开曼)股份有限公司 集成在超级结功率mosfet中的肖特基二极管
CN110998861A (zh) * 2019-10-18 2020-04-10 香港应用科技研究院有限公司 带有沟槽肖特基二极管和异质结栅极的碳化硅屏蔽型mosfet
CN114023812A (zh) * 2021-10-20 2022-02-08 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽型mosfet器件及其制作方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785279B2 (en) 2012-07-30 2014-07-22 Alpha And Omega Semiconductor Incorporated High voltage field balance metal oxide field effect transistor (FBM)
US9224852B2 (en) 2011-08-25 2015-12-29 Alpha And Omega Semiconductor Incorporated Corner layout for high voltage semiconductor devices
US8680613B2 (en) 2012-07-30 2014-03-25 Alpha And Omega Semiconductor Incorporated Termination design for high voltage device
US8610235B2 (en) * 2011-09-22 2013-12-17 Alpha And Omega Semiconductor Incorporated Trench MOSFET with integrated Schottky barrier diode
US8836024B2 (en) * 2012-03-20 2014-09-16 Semiconductor Components Industries, Llc Electronic device including a trench and a conductive structure therein having a contact within a Schottky region and a process of forming the same
US8823081B2 (en) * 2012-09-21 2014-09-02 Infineon Technologies Austria Ag Transistor device with field electrode
JP6104575B2 (ja) 2012-11-28 2017-03-29 株式会社東芝 半導体装置
JP2014120685A (ja) * 2012-12-18 2014-06-30 Toshiba Corp 半導体装置
EP2942805B1 (en) * 2014-05-08 2017-11-01 Nexperia B.V. Semiconductor device and manufacturing method
US9484452B2 (en) 2014-12-10 2016-11-01 Alpha And Omega Semiconductor Incorporated Integrating enhancement mode depleted accumulation/inversion channel devices with MOSFETs
US9583482B2 (en) 2015-02-11 2017-02-28 Monolith Semiconductor Inc. High voltage semiconductor devices and methods of making the devices
US20160238635A1 (en) * 2015-02-18 2016-08-18 Infineon Technologies Ag Offset voltage compensation
US10475785B2 (en) * 2015-09-07 2019-11-12 Kabushiki Kaisha Toshiba Semiconductor device
HK1207524A2 (zh) * 2015-10-07 2016-01-29 Internat Onizuka Electronics Ltd 種 及其製作方法
TWI599041B (zh) * 2015-11-23 2017-09-11 節能元件控股有限公司 具有底部閘極之金氧半場效電晶體功率元件及其製作方法
KR102430498B1 (ko) 2016-06-28 2022-08-09 삼성전자주식회사 쇼트키 다이오드를 갖는 전자 소자
TWI601295B (zh) * 2016-08-25 2017-10-01 綠星電子股份有限公司 斷閘極金氧半場效電晶體
DE102017108048A1 (de) * 2017-04-13 2018-10-18 Infineon Technologies Austria Ag Halbleitervorrichtung mit einer grabenstruktur
US10396216B2 (en) * 2017-05-03 2019-08-27 Semiconductor Components Industries, Llc Device including a sidewall Schottky interface
JP7059556B2 (ja) * 2017-10-05 2022-04-26 富士電機株式会社 半導体装置
TWI737883B (zh) * 2018-01-09 2021-09-01 力智電子股份有限公司 溝槽金氧半導體元件
CN112909034A (zh) * 2019-12-04 2021-06-04 半导体元件工业有限责任公司 半导体器件
WO2022055632A2 (en) * 2020-07-31 2022-03-17 The Board Of Trustees Of The University Of Illinois Low-leakage schottky diodes and method of making a power semiconductor device
US20220238698A1 (en) * 2021-01-26 2022-07-28 Pakal Technologies, Inc. Mos-gated trench device using low mask count and simplified processing
JP2022129918A (ja) * 2021-02-25 2022-09-06 Tdk株式会社 ショットキーバリアダイオード

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200531292A (en) * 2004-03-15 2005-09-16 Fairchild Semiconductor Optimized trench power mosfet with integrated schottky diode
TW200826303A (en) * 2006-12-01 2008-06-16 Alpha & Omega Semiconductor Junction barrier schottky (JBS) with floating islands
US20090020843A1 (en) * 2007-07-22 2009-01-22 Alpha & Omega Semiconductor, Ltd Bottom anode Schottky diode structure and method
US20100013552A1 (en) * 2008-07-15 2010-01-21 Maxpower Semiconductor Inc. MOSFET Switch with Embedded Electrostatic Charge

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753938A (en) * 1996-08-08 1998-05-19 North Carolina State University Static-induction transistors having heterojunction gates and methods of forming same
US6351018B1 (en) 1999-02-26 2002-02-26 Fairchild Semiconductor Corporation Monolithically integrated trench MOSFET and Schottky diode
US6677641B2 (en) * 2001-10-17 2004-01-13 Fairchild Semiconductor Corporation Semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US7345342B2 (en) * 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP3927111B2 (ja) * 2002-10-31 2007-06-06 株式会社東芝 電力用半導体装置
US7652326B2 (en) * 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
CN100359686C (zh) 2004-11-30 2008-01-02 万代半导体元件(上海)有限公司 金属氧化物半导体场效应晶体管和肖特基二极管结合的瘦小外形封装
US8093651B2 (en) 2005-02-11 2012-01-10 Alpha & Omega Semiconductor Limited MOS device with integrated schottky diode in active region contact trench
US7952139B2 (en) 2005-02-11 2011-05-31 Alpha & Omega Semiconductor Ltd. Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout
US7285822B2 (en) 2005-02-11 2007-10-23 Alpha & Omega Semiconductor, Inc. Power MOS device
US7737522B2 (en) 2005-02-11 2010-06-15 Alpha & Omega Semiconductor, Ltd. Trench junction barrier controlled Schottky device with top and bottom doped regions for enhancing forward current in a vertical direction
US8362547B2 (en) 2005-02-11 2013-01-29 Alpha & Omega Semiconductor Limited MOS device with Schottky barrier controlling layer
US7436022B2 (en) 2005-02-11 2008-10-14 Alpha & Omega Semiconductors, Ltd. Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout
US7453119B2 (en) 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
US8022482B2 (en) 2006-02-14 2011-09-20 Alpha & Omega Semiconductor, Ltd Device configuration of asymmetrical DMOSFET with schottky barrier source
US7825508B2 (en) 2006-07-28 2010-11-02 Alpha Omega Semiconductor, Inc. Multi-die DC-DC buck power converter with efficient packaging
US7750447B2 (en) 2007-06-11 2010-07-06 Alpha & Omega Semiconductor, Ltd High voltage and high power boost converter with co-packaged Schottky diode
US7808102B2 (en) 2006-07-28 2010-10-05 Alpha & Omega Semiconductor, Ltd. Multi-die DC-DC boost power converter with efficient packaging
DE102006036347B4 (de) * 2006-08-03 2012-01-12 Infineon Technologies Austria Ag Halbleiterbauelement mit einer platzsparenden Randstruktur
US20090039456A1 (en) 2007-08-08 2009-02-12 Alpha & Omega Semiconductor, Ltd Structures and methods for forming Schottky diodes on a P-substrate or a bottom anode Schottky diode
US20090057713A1 (en) * 2007-08-31 2009-03-05 Infineon Technologies Austria Ag Semiconductor device with a semiconductor body
US7816732B2 (en) * 2008-06-23 2010-10-19 Force Mos Technology Co., Ltd. Integrated trench MOSFET and Schottky rectifier with trench contact structure
US7842974B2 (en) 2009-02-18 2010-11-30 Alpha & Omega Semiconductor, Inc. Gallium nitride heterojunction schottky diode
US8390058B2 (en) * 2009-06-12 2013-03-05 Aplha and Omega Semiconductor Incorporated Configurations and methods for manufacturing devices with trench-oxide-nano-tube super-junctions
US7910486B2 (en) * 2009-06-12 2011-03-22 Alpha & Omega Semiconductor, Inc. Method for forming nanotube semiconductor devices
US8829614B2 (en) 2009-08-31 2014-09-09 Alpha And Omega Semiconductor Incorporated Integrated Schottky diode in high voltage semiconductor device
US8138605B2 (en) * 2009-10-26 2012-03-20 Alpha & Omega Semiconductor, Inc. Multiple layer barrier metal for device component formed in contact trench
US8313995B2 (en) * 2011-01-13 2012-11-20 Infineon Technologies Austria Ag Method for manufacturing a semiconductor device
US8431470B2 (en) * 2011-04-04 2013-04-30 Alpha And Omega Semiconductor Incorporated Approach to integrate Schottky in MOSFET
US8502302B2 (en) * 2011-05-02 2013-08-06 Alpha And Omega Semiconductor Incorporated Integrating Schottky diode into power MOSFET
US8610235B2 (en) * 2011-09-22 2013-12-17 Alpha And Omega Semiconductor Incorporated Trench MOSFET with integrated Schottky barrier diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200531292A (en) * 2004-03-15 2005-09-16 Fairchild Semiconductor Optimized trench power mosfet with integrated schottky diode
TW200826303A (en) * 2006-12-01 2008-06-16 Alpha & Omega Semiconductor Junction barrier schottky (JBS) with floating islands
US20090020843A1 (en) * 2007-07-22 2009-01-22 Alpha & Omega Semiconductor, Ltd Bottom anode Schottky diode structure and method
US20100013552A1 (en) * 2008-07-15 2010-01-21 Maxpower Semiconductor Inc. MOSFET Switch with Embedded Electrostatic Charge

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11056595B2 (en) 2013-11-04 2021-07-06 Magnachip Semiconductor, Ltd. Semiconductor device and manufacturing method thereof
US10269988B2 (en) 2013-11-04 2019-04-23 Magnachip Semiconductor, Ltd. Semiconductor device and manufacturing method thereof
CN104617141A (zh) * 2013-11-04 2015-05-13 美格纳半导体有限公司 半导体器件及其制造方法
CN106169464A (zh) * 2015-05-21 2016-11-30 英飞凌科技德累斯顿有限责任公司 包括功率晶体管和电压限制装置的晶体管布置
CN105762200B (zh) * 2016-04-28 2019-04-09 上海格瑞宝电子有限公司 一种沟槽肖特基二极管结构及其制备方法
CN105762200A (zh) * 2016-04-28 2016-07-13 上海格瑞宝电子有限公司 一种沟槽肖特基二极管结构及其制备方法
CN106208990A (zh) * 2016-08-26 2016-12-07 宜确半导体(苏州)有限公司 一种射频功率放大器及射频前端模块
CN106328718A (zh) * 2016-11-04 2017-01-11 四川洪芯微科技有限公司 一种台面二极管
CN109935634A (zh) * 2017-12-15 2019-06-25 万国半导体(开曼)股份有限公司 集成在超级结功率mosfet中的肖特基二极管
CN109935634B (zh) * 2017-12-15 2022-07-12 万国半导体(开曼)股份有限公司 集成在超级结功率mosfet中的肖特基二极管
CN110998861A (zh) * 2019-10-18 2020-04-10 香港应用科技研究院有限公司 带有沟槽肖特基二极管和异质结栅极的碳化硅屏蔽型mosfet
CN110998861B (zh) * 2019-10-18 2022-03-22 香港应用科技研究院有限公司 功率晶体管及其制造方法
CN114023812A (zh) * 2021-10-20 2022-02-08 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽型mosfet器件及其制作方法
CN114023812B (zh) * 2021-10-20 2023-08-22 上海华虹宏力半导体制造有限公司 屏蔽栅沟槽型mosfet器件及其制作方法

Also Published As

Publication number Publication date
TWI481038B (zh) 2015-04-11
US20130075808A1 (en) 2013-03-28
US20140073098A1 (en) 2014-03-13
CN103022156B (zh) 2015-02-11
US8865540B2 (en) 2014-10-21
US9281416B2 (en) 2016-03-08
US20150001616A1 (en) 2015-01-01
US8610235B2 (en) 2013-12-17
TW201314918A (zh) 2013-04-01

Similar Documents

Publication Publication Date Title
CN103022156B (zh) 带有集成肖特基势垒二极管的沟槽mosfet器件
US8198687B2 (en) Structure with PN clamp regions under trenches
CN101385148B (zh) 用肖特基源极触点实施的隔离栅极沟槽式金属氧化物半导体场效应晶体管单元
US7777278B2 (en) Lateral semiconductor component with a drift zone having at least one field electrode
KR101404906B1 (ko) 자기-바이어스 전극을 포함하는 수평형 전력 디바이스
KR101531899B1 (ko) 집적화된 쇼트키를 포함하는 고밀도 전계 효과 트랜지스터
US7173306B2 (en) Vertical semiconductor component having a drift zone having a field electrode, and method for fabricating such a drift zone
US8816468B2 (en) Schottky rectifier
US9620583B2 (en) Power semiconductor device with source trench and termination trench implants
US11538933B2 (en) Schottky diode integrated into superjunction power MOSFETs
CN111199969B (zh) 具有集成体二极管的SiC功率半导体器件
US20060118864A1 (en) Power trench transistor
CN105702676A (zh) 与mosfet集成的增强型耗尽积累/反转通道器件
CN103247681A (zh) 沟槽底部氧化物屏蔽以及三维p-本体接触区的纳米mosfet
CN102956684A (zh) 集成晶胞的掩埋场环场效应晶体管植入空穴供应通路
CN111081779B (zh) 一种屏蔽栅沟槽式mosfet及其制造方法
US8471331B2 (en) Method of making an insulated gate semiconductor device with source-substrate connection and structure
CN103329268A (zh) 半导体器件及制造其的方法
CN111200022A (zh) 具有集成的肖特基结的SiC功率半导体器件
CN103094321A (zh) 二维屏蔽栅晶体管器件及其制备方法
KR20060040592A (ko) 에지 종단 구조체를 갖는 반도체 장치 및 그 형성 방법
CN102456690B (zh) 半导体器件及其制造方法
CN113823679A (zh) 栅控二极管整流器
CN112635319A (zh) 肖特基二极管
CN113054016B (zh) 一种碳化硅mosfet器件的元胞结构及功率半导体器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200424

Address after: Ontario, Canada

Patentee after: World semiconductor International Limited Partnership

Address before: 475 oakmead Park Road, Sunnyvale, California, USA

Patentee before: Alpha and Omega Semiconductor Inc.

TR01 Transfer of patent right