CN102497153B - 永磁同步电机功率角恒定自适应控制方法 - Google Patents

永磁同步电机功率角恒定自适应控制方法 Download PDF

Info

Publication number
CN102497153B
CN102497153B CN201110409788.8A CN201110409788A CN102497153B CN 102497153 B CN102497153 B CN 102497153B CN 201110409788 A CN201110409788 A CN 201110409788A CN 102497153 B CN102497153 B CN 102497153B
Authority
CN
China
Prior art keywords
power angle
output
angle
motor
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110409788.8A
Other languages
English (en)
Other versions
CN102497153A (zh
Inventor
王旭
邢岩
刘岩
杨丹
徐彬
李杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201110409788.8A priority Critical patent/CN102497153B/zh
Publication of CN102497153A publication Critical patent/CN102497153A/zh
Application granted granted Critical
Publication of CN102497153B publication Critical patent/CN102497153B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

一种永磁同步电机功率角恒定自适应控制方法,涉及电机控制技术领域,本发明通过对功率角特性及稳定性的分析,提出了一种通用性强、适应范围广的功率角恒定闭环控制策略,当负载振动时,功率角稳定在期望值,有效解决了永磁同步电机无传感器运行时的失步和效率问题。本发明利用永磁同步电机d-q坐标系数学模型求取功率角,设计了自校正PID功率角智能控制器,***实时检测永磁电机功率角并将其控制在理想值附近,使得***运行稳定,效率高,电机无振荡平稳运行。

Description

永磁同步电机功率角恒定自适应控制方法
技术领域
本发明涉及电机控制技术领域,特别涉及一种永磁同步电机功率角恒定自适应控制方法。
背景技术
随着科学技术的日新月异,交流电动机的驱动及其控制技术都得到了迅猛发展,使得交流伺服***在现代工业***中的应用也越来越广泛,将逐步取代直流伺服***。永磁同步电机具有气隙磁密高、效率高、结构简单、可靠性高等诸多优点,在各种高性能驱动***中得到了广泛应用。高性能的交流调速传动***一般需要在转子轴上安装机械式传感器,以测量电动机的转子速度和位置。这些机械式传感器常是编码器、解算器和测速发电机。机械式传感器提供电动机所需的转子信号,但也给传动***带来高成本、安装维护困难、抗干扰能力下降、可靠性降低等一系列问题。
为了克服使用机械式传感器给传动***带来的缺陷,国内外学者开展了无机械式传感器交流传动***的研究。永磁同步电机无传感器控制不但能够降低***成本,而且能够提高***的抗干扰能力、增加***可靠性,是近些年来在交流伺服电机控制技术中最为活跃的一个领域。目前,无传感器技术在城市地铁车辆***、家用电器、工业机械等方面得到了一定应用。
无传感器控制技术,就是通过已知的电机参数及易测得的定子电压或电流值快速而准确地估算出电机的实际位置和速度,并作为***的反馈信号,实现永磁同步电动机的无传感器运行。近年来国内外学者在永磁同步电机无传感器控制方面做了大量工作,提出了很多方法,推进了无传感器永磁电机控制技术的发展。通常来说,永磁同步电机无传感器控制的方法主要有:利用转子电压电流的开环磁链估计法,高频注入估计法,扩展卡尔曼滤波器估计法,观测器基础上的估计方法,模型参考自适应法和人工智能理论基础上的估计方法等。
失步是永磁同步电机无传感器运行的一个缺点,为了避免失步的发生,通常的做法是给电机一个较大电流,使其运行在一个输出转矩较大的状态,当负载在一定范围内扰动时,由同步电动机稳定运行时的自调节特性可知,同步电动机仍可运行在稳定状态,但电机运行效率低,浪费能源。
发明内容
针对现有装置存在的问题,本发明提出一种永磁同步电机功率角恒定自适应控制方法,以达到使***响应快,运行稳定的目的,有效地解决了永磁同步电机失步和运行效率问题。
本发明的技术方案是这样实现的:一种永磁同步电机功率角恒定自适应控制方法,包括以下步骤:
步骤1:利用霍尔传感器、电阻分压电路和光电编码器进行数据采样,所述数据包括电机定子u相电流ia、电机定子v相电流ib、直流侧母线电压Udc和电机转子旋转速度ωr;以实现***的闭环控制和功率角计算;
步骤2:利用步骤1所得的数据,实时计算功率角,公式如下:
Figure BDA0000118550210000021
式中,ia、ib、ic分别为电机三相定子电流,id、iq分别为定子电流矢量的d、q分量;θ为A轴和d轴间夹角;
Figure BDA0000118550210000022
式中,δ为定子磁链和转子磁链间夹角,即功率角,Ld、Lq分别为定子电感的d、q分量,且Ld=Lq=Ls,其中LS为定子电感,是一种电机参数,当电机型号确定,定子电感的值也随之确定,
Figure BDA0000118550210000023
为电机转子磁链;
步骤3:计算功率角偏差e,公式如下:
e=δ_ref-δ
式中,δ_ref为功率角给定值,且其取值为40°~60°;
步骤4:采用自校正PID智能控制器对功率角进行调节,具体方法如下:
步骤4-1:利用BP神经网络对PID控制器的系数进行整定,当PID控制器输出误差小于3%时,执行步骤4-3,否则,执行步骤4-2,所述的PID控制器的系数是指比例系数kp,积分系数ki和微分系数kd
步骤4-2:采用经验法确定PID控制器的系数;
步骤4-3:采用增量式PID算法确定PID控制器的输出值,公式如下:
u(k)=u(k-1)+kp[e(k)-e(k-1)]+kie(k)+kd[e(k)-2e(k-1)+e(k-2)](3)
式中,u(k)为控制器当前周期输出电压,u(k-1)为控制器上一周期输出电压,e(k)为当前周期的误差,e(k-1)为上一周期的误差,e(k-2)为前两个周期的误差;
步骤4-4:PID控制器的输出值经电压调节输出脉冲波,把脉冲波加到变频器上,变频器中IGBT管开通和关断,变频器输出相应频率的三相交流电,控制永磁电机运行;
步骤5:如功率角的给定值与功率角计算值不相等,则反复执行步骤1~步骤5;
其中,步骤4-1所述的利用BP神经网络对PID控制器的系数进行整定,方法为:
步骤4-1-1:确定BP神经网络结构、输出层及中间层神经元数量,设定各层初始值和学习速率;
步骤4-1-2:计算BP神经网络各层的输入和输出,BP网络的最终输出即为PID控制器的比例控制参数kp、积分控制参数ki和微分控制参数kd
步骤4-1-3:采用PID算法,计算控制器输出;
步骤4-1-4:在线学习神经网络PID控制器,动态调整权重及PID三个参数;
步骤4-1-5:返回步骤4-1-2,开始新的循环。
本发明优点:本发明通过对功率角特性及稳定性的分析,提出了一种通用性强、适应范围广的功率角恒定闭环控制策略,当负载振动时,功率角稳定在期望值,有效解决了永磁同步电机无传感器运行时的失步和效率问题。本发明利用永磁同步电机d-q坐标系数学模型求取功率角,设计了自校正PID功率角智能控制器,***实时检测永磁电机功率角并将其控制在理想值附近,使得***运行稳定,效率高,电机无振荡平稳运行。
附图说明
图1为本发明实施例永磁同步电机控制***的结构框图;
图2为本发明实施例永磁同步电机控制***的主电路的电路原理图;
图3为本发明实施例永磁同步电机控制***的采样电路的电路原理图;
图4为本发明实施例永磁同步电机控制***的驱动隔离电路的电路原理图;
图5为本发明实施例永磁同步电机控制***的转速整型电路的电路原理图;
图6为本发明永磁同步电机功率角恒定自适应控制方法永磁同步电机的u相和v相电流波形图;
图7为本发明永磁同步电机功率角恒定自适应控制方法控制原理图;
图8为本发明永磁同步电机功率角恒定自适应控制方法神经网络结构图;
图9为本发明永磁同步电机功率角恒定自适应控制方法不同电压时永磁同步电机的功率角特性曲线图;
图10为本发明永磁同步电机功率角恒定自适应控制方法永磁同步电动机的转速波形图;
图11为本发明永磁同步电机功率角恒定自适应控制方法功率角波形图;
图12为本发明永磁同步电机功率角恒定自适应控制方法流程图;
图中,1、DSP 2、驱动隔离电路3、逆变电路4、整流电路5、直流母线电压检测电路6、第二电压调理电路7、PMSM电机8、编码器9、电路检测电路10、第一电流调理电路11、转速整形电路12、DAC电路13、示波器。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本实施例中,一种采用永磁同步电机功率角恒定自适应控制方法进行控制的装置,其结构如图1所示,包括主电路、采样电路、控制电路和驱动电路,其中,主电路包括整流电路4和逆变电路3,中间直流环节采用极性电容进行稳压滤波,并且采用两个电阻串联分压,进行直流母线电压采样;采样电路负责采集两路信号:第一路信号为直流母线电压信号,另一路信号为PMSM电机7的定子电流和电机转速信号,并将这两路信号传递给控制电路进行处理;控制电路的核心器件是DSP1,实时检测直流母线电压、电机定子电流,为了检验估计转速的准确性,利用DSP的QEP模块实时对电机的实际转速和估计转速做差进行比较;DSP1发出的PWM信号必须经过驱动电路才能用来驱动逆变器,驱动隔离电路2不仅可以起到驱动的作用还可以起到隔离作用,以抑制主电路对控制电路的干扰;为了监视***的内部变量以方便调试,利用DSP的SPI模块和外部DAC电路12相连,将需要的内部数字量输出后可以通过示波器13实时进行观测,上位机通过RS232通讯接口对DSP1进行控制,同时还可通过RS232通讯接口将结果传递给上位机。
本实施例各部件的型号为:控制电路中DSP的型号为DSP2812,驱动隔离电路包括光电耦合器和驱动器,其型号分别为:光电耦合器的型号为6N137,驱动器的型号为IR2110;DAC电路包括运算放大器和串行数模转换器,其中运算放大器的型号为LF347N,串行数模转换器的型号为TLC5620I;电流检测电路采用电流霍尔传感器,且其型号为LEM LTS 25-NP;电压调理电路包括光耦隔离芯片,且其型号为TLP521-2;
主电路的电路原理图如图2所示,逆变电路3的三个输出端u相电流、v相电流和w相电流分别连接PMSM永磁电机的三相电流输入端;
控制电路中DSP与采样电路的连接如图3所示,逆变电路的u相电路和v相电流作为霍尔传感器的输入信号,经霍尔传感器9的输出端OUT将信号传递给第一电流调理电路10,第一电流调理电路10由3个运算放大器组成,三个运算放大器分别构成电压跟随电路,比例电路和电压跟随电路,经第一电流调理电路10后输出DSP能够接受的电流信号给DSP的数据输入端ADCINA端口,实现对电机定子电流的采样;同时,采样电路的第二电压调理电路6的输出端连接DSP的另一个数据输入端ADCINA4,对采集到的直流母线电压Udc进行调理;
DSP的EV模块输出6路的PWM信号给驱动隔离电路,所述的驱动隔离电路由如图4所示,包括2个光电耦合器和2个驱动器,第一光电耦合器的3脚连接DSP的PWM1信号输出端,第一光电耦合器的6脚连接第一驱动器的HIN脚,第一驱动器的HO脚连接逆变电路的上桥臂,第二光电耦合器的3脚连接DSP的PWM2信号输出端,第二光电耦合器的6号脚连接第二驱动器的LIN脚,第二驱动器的LO脚连接逆变电路的下桥臂;
DSP与DAC电路通过SPI接口进行通讯,其连接关系为:DSP的SPICLKA端、SPISIMOA端分别连接串行数模转换器的CLK端和DATA端,串行数模转换器的DACA端连接运算放大器的输入端2IN,运算放大器的输出端2OUT连接示波器;
转速整型电路的电路原理图如图5所示,转速整形电路包括2个光电耦合器,第一光电耦合器的输出端6脚连接DSP的CAP1QEP1端,第一光电耦合器的输出端的第一输入端连接光电编码器的第一信号输出端A,第二光电耦合器的6脚连接DSP的CAP2QEP2端,第二光电耦合器的第二输入端连接光电编码器的第一信号输出端B;
本实施例一种永磁同步电机功率角恒定自适应控制方法,如图12所示,包括以下步骤:
步骤1:电机定子u相电流ia和v相电流ib,其波形如图6所示,直流侧母线电压Udc=300V,设定功率角给定值δ_ref=50°;
步骤2:利用步骤1所得的数据,实时计算功率角δ;
步骤3:计算功率角偏差e=50°-δ;
步骤4:本实施例中的采用神经网络与传统PID控制相结合的方法来实现功率角控制,在电机初始运行阶段采用常规PID控制,利用经验对参数进行设置。在用常规PID调节器调节的过程中进行采样,获得样本集,在PID控制的基础上进行神经网络的学习,网络学习一段时间后,切换到经过改进的BP神经网络在线自整定PID控制,实现电机功率角的自适应控制,如图7所示,利用电机参数和功率角实时计算永磁电机功率角作为功率角的反馈,将功率角给定值与功率角的计算值的差作为PID控制器的输入,投入运行初期,由于PID控制器的输出误差较大,故采用经验法来确定PID控制器的三个参数并直接进行控制,与此同时,利用BP神经网络在线整定PID控制器的三个参数,当PID控制器输出误差小于3%时,由传统PID控制器转换为基于神经网络的PID控制器实现控制,PID控制器的输出根据V/F特性曲线进行电压调节,并通过变频器控制永磁电机,实现功率角恒定的闭环控制,具体步骤分为:
初始阶段,采用经验法确定某一时刻传统PID控制器的三个参数分别为:Kp=0.571,Ki=26.5,Kd=0;采用增量式PID算法确定PID控制器的输出值,将该输出值进行电压调节后输出给变频器,实现对电机的控制,再根据电机参数和电流实时计算永磁电机功率角,重复上面的过程;
与此同时,神经网络对一段时间内的PID控制器的三个参数进行调节,当PID控制器的输出误差小于3%时,将此时刻由神经网络确定的三个参数作为PID控制器的三个参数值,停止传统的PID控制,采用基于神经网络的PID控制器进行控制;采用增量式PID算法确定PID控制器的输出值,将该输出值进行电压调节后输出给变频器,实现对电机的控制,再重新采集数据,计算永磁电机功率角;
步骤5:只要功率角的给定值与功率角的计算值不相等,就重复执行步骤1~步骤5进行调节;
本实施例中,步骤4所述的BP神经网络如图8所示,本实施例中采用3层BP神经网络结构,其中,第1层为输入层;第2层为隐含层;第3层为输出层;x=[x1,x2,x3]T为输入信号值,BP神经网络输入
Figure BDA0000118550210000061
为:
O j ( 1 ) = x j , j = 1,2,3 - - - ( 4 )
式中:x1为期望值;x2为反馈;x3为误差;j为输入层节点数;隐含层的输入
Figure BDA0000118550210000063
输出
Figure BDA0000118550210000064
分别为:
net i ( 2 ) = Σ j = 1 3 w ij ( 2 ) O j ( 1 ) - - - ( 5 )
O i ( 2 ) = f 1 [ net i ( 2 ) ] , i = 1,2 , . . . , 5 - - - ( 6 )
式中:
Figure BDA0000118550210000067
为隐含层权重;i为隐含层节点数;f1为隐含层神经元激活函数,本实施例采用S型函数:
f1=1/1+e-x              (7)
输出层的输入
Figure BDA0000118550210000068
输出
Figure BDA0000118550210000069
分别为:
net l ( 3 ) = Σ i = 0 H w li ( 3 ) O i ( 2 ) - - - ( 8 )
O l ( 3 ) = f 2 [ net l ( 3 ) ] , l = 1,2,3 , . . . - - - ( 9 )
式中:为输出层权重;l为输出层节点数;f2为输出层神经元激活函数:
f2=x                (10)
功率角闭环控制器具体调节过程如下:
分别选取几种运行状况,在用常规PID调节器调节的过程中,使电动机过渡过程的各种性能达到允许范围之内,同时在运行过程中进行采样,获得样本集,为使样本空间更全面,采取几种运行状态。例如:空载稳定运行后突加负载的情况;带额定负载,稳定运行后突甩50%负载的情况;稳定运行时转速突变的情况,分别获得样本并加到样本集中去。采样完成后,将网络进行训练。为防止过度训练,在训练过程中,当误差平方和不再减小时停止训练,将网络投入运行。
如图9所示,T1max为端电压U1下电机所能输出的最大电磁转矩,当不采用功率角闭环控制器进行调节时,假设初始状态电机运行于图9中特性曲线U1的a点,此时功率角δ=50°,输出电磁转矩为T1,某一时刻出现扰动负载突增至T4(T4>T1max),导致电磁转矩小于负载转矩,电机减速运行,定子磁链矢量
Figure BDA0000118550210000071
的旋转速度大于转子磁链矢量
Figure BDA0000118550210000072
的旋转速度,功率角增大至b点,此时电机将在特性曲线U1上沿着a→b→c→d→e运行,直至电机失步。
如图9所示,T1max为端电压U1下电机所能输出的最大电磁转矩,当采用功率角闭环控制器进行调节时,同样假设初始状态电机运行于图8中特性曲线U1的a点,此时功率角δ=50°,输出电磁转矩为T1,某一时刻出现扰动负载突增至T4(T4>T1max),导致电磁转矩小于负载转矩,电机减速运行,定子磁链矢量
Figure BDA0000118550210000073
的旋转速度大于转子磁链矢量
Figure BDA0000118550210000074
的旋转速度,功率角增大至b点,此时在功率角基于神经网络的PID控制器的作用下,增大电机端电压,控制电机由特性曲线U1逐步向特性曲线U4运行,电机运行曲线为a→b→f→g→h→i,最终稳定运行于i点附近,输出电磁转矩T4,功率角δ=50°,扰动消除负载转矩恢复至T1,导致电磁转矩大于负载转矩,电机加速运行,定子磁链矢量
Figure BDA0000118550210000075
的旋转速度小于转子磁链矢量
Figure BDA0000118550210000076
的旋转速度,功率角减小至j点,此时功率角知能控制器控制电机端电压减小,永磁同步电机沿曲线i→j→k→l→m→a运行,最终稳定运行于a点附近,输出电磁转矩T1,功率角δ=50°。
图10可以看出,实际转速跟随给定转速,在负载突变时电机转速有微小的超调,并能快速恢复到给定值,***动态性能良好。
图11可以看出,永磁电机功率角能够很好地跟随功率角给定值,在负载突减时能迅速稳定在给定值。

Claims (1)

1.永磁同步电机功率角恒定自适应控制方法,其特征在于:包括以下步骤:
步骤1:利用霍尔传感器、电阻分压电路和光电编码器进行数据采样,所述数据包括电机定子                                                
Figure 2011104097888100001DEST_PATH_IMAGE001
相电流
Figure 851126DEST_PATH_IMAGE002
、电机定子
Figure 2011104097888100001DEST_PATH_IMAGE003
相电流
Figure 557307DEST_PATH_IMAGE004
、直流侧母线电压和电机转子旋转速度
Figure 756207DEST_PATH_IMAGE006
;以实现***的闭环控制和功率角计算;
步骤2:利用步骤1所得的数据,实时计算功率角,公式如下:
      
Figure 2011104097888100001DEST_PATH_IMAGE007
       (1)
式中,
Figure 362769DEST_PATH_IMAGE008
分别为电机三相定子电流,
Figure 2011104097888100001DEST_PATH_IMAGE009
分别为定子电流矢量的
Figure 293816DEST_PATH_IMAGE010
分量;
Figure 48145DEST_PATH_IMAGE012
轴和
Figure 2011104097888100001DEST_PATH_IMAGE013
轴间夹角;
                     
Figure 722840DEST_PATH_IMAGE014
                       (2)
式中,
Figure 2011104097888100001DEST_PATH_IMAGE015
为定子磁链和转子磁链间夹角,即功率角,
Figure 682444DEST_PATH_IMAGE016
分别为定子电感的
Figure 49971DEST_PATH_IMAGE010
分量,且,其中为定子电感,是一种电机参数,当电机型号确定,定子电感的值也随之确定,
Figure 2011104097888100001DEST_PATH_IMAGE019
为电机转子磁链;
步骤3:计算功率角偏差,公式如下:
Figure 2011104097888100001DEST_PATH_IMAGE021
式中, 
Figure 85557DEST_PATH_IMAGE022
为功率角给定值,且其取值为
Figure 2011104097888100001DEST_PATH_IMAGE023
步骤4:采用自校正PID智能控制器对功率角进行调节,具体方法如下:
步骤4-1:利用BP神经网络对PID控制器的系数进行整定,当PID控制器输出误差小于3%时,执行步骤4-3,否则,执行步骤4-2,所述的PID控制器的系数是指比例系数
Figure 2011104097888100001DEST_PATH_IMAGE025
,积分系数和微分系数
Figure 2011104097888100001DEST_PATH_IMAGE027
,包括以下步骤:
步骤4-1-1:确定BP神经网络结构、输出层及中间层神经元数量,设定各层初始值和学习速率;
步骤4-1-2:计算BP神经网络各层的输入和输出,BP网络的最终输出即为PID控制器的比例控制参数
Figure 605291DEST_PATH_IMAGE025
、积分控制参数
Figure 103268DEST_PATH_IMAGE026
和微分控制参数
Figure 874915DEST_PATH_IMAGE027
步骤4-1-3:采用PID算法,计算控制器输出;
步骤4-1-4:在线学习神经网络PID控制器,动态调整权重及PID三个参数;
步骤4-1-5:返回步骤4-1-2,开始新的循环;
    步骤4-2:采用经验法确定PID控制器的系数;
步骤4-3:采用增量式PID算法确定PID控制器的输出值,公式如下:
Figure 763237DEST_PATH_IMAGE028
   (3)
式中,
Figure 2011104097888100001DEST_PATH_IMAGE029
为控制器当前周期输出电压,
Figure 583425DEST_PATH_IMAGE030
为控制器上一周期输出电压,
Figure 2011104097888100001DEST_PATH_IMAGE031
为当前周期的误差,
Figure 372127DEST_PATH_IMAGE032
为上一周期的误差,
Figure 2011104097888100001DEST_PATH_IMAGE033
为前两个周期的误差;
步骤4-4:PID控制器的输出值经电压调节输出脉冲波,把脉冲波加到变频器上,变频器中IGBT管开通和关断,变频器输出相应频率的三相交流电,控制永磁电机运行; 
    步骤5:如功率角的给定值与功率角计算值不相等,则反复执行步骤1~步骤5。
CN201110409788.8A 2011-12-12 2011-12-12 永磁同步电机功率角恒定自适应控制方法 Expired - Fee Related CN102497153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110409788.8A CN102497153B (zh) 2011-12-12 2011-12-12 永磁同步电机功率角恒定自适应控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110409788.8A CN102497153B (zh) 2011-12-12 2011-12-12 永磁同步电机功率角恒定自适应控制方法

Publications (2)

Publication Number Publication Date
CN102497153A CN102497153A (zh) 2012-06-13
CN102497153B true CN102497153B (zh) 2014-01-08

Family

ID=46188951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110409788.8A Expired - Fee Related CN102497153B (zh) 2011-12-12 2011-12-12 永磁同步电机功率角恒定自适应控制方法

Country Status (1)

Country Link
CN (1) CN102497153B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103133320B (zh) * 2013-02-25 2015-05-06 长春工业大学 基于转矩角控制的空压机变转速调节方法
CN103185387B (zh) * 2013-03-28 2015-10-21 广东美的制冷设备有限公司 空调器及其出风温度控制方法
CN103259479B (zh) * 2013-05-28 2016-08-10 江苏大学 一种永磁同步电机神经网络左逆状态观测方法
CN105099293A (zh) * 2014-04-30 2015-11-25 合肥美的洗衣机有限公司 变频波轮洗衣机及其控制方法
WO2015165349A1 (zh) * 2014-04-30 2015-11-05 合肥美的洗衣机有限公司 变频波轮洗衣机及其控制方法
CN105099292A (zh) * 2014-04-30 2015-11-25 合肥美的洗衣机有限公司 变频波轮洗衣机及其控制方法
CN105140931B (zh) * 2015-09-17 2017-06-20 华南理工大学 同步电机并网后功角曲线的获取方法
CN105511360A (zh) * 2016-01-08 2016-04-20 东华大学 基于上位机的直流电机控制优化***
CN106826918A (zh) * 2017-01-03 2017-06-13 深圳市众为创造科技有限公司 机械臂调校方法、机械臂调校装置及机械臂
CN111391939B (zh) * 2020-03-17 2021-05-18 浙江工业大学 一种agv移栽***模块化机构及设计方法
CN116317733B (zh) * 2023-05-19 2023-08-01 小神童创新科技(广州)有限公司 一种位置控制型直流有刷电机控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484058B2 (ja) * 1997-10-17 2004-01-06 東洋電機製造株式会社 位置および速度センサレス制御装置
JP4692328B2 (ja) * 2006-02-27 2011-06-01 株式会社日立製作所 永久磁石同期モータの制御装置,制御方法、及びモジュール
CN201374678Y (zh) * 2009-02-11 2009-12-30 江苏大学 无轴承永磁同步电机的控制器
CN101753091A (zh) * 2009-12-30 2010-06-23 重庆红宇精密工业有限责任公司 永磁同步电机的电流环控制方法
CN101964624B (zh) * 2010-10-15 2012-08-22 浙江工业大学 永磁同步电机的无传感器控制***
CN201869153U (zh) * 2010-10-29 2011-06-15 哈尔滨理工大学 电动汽车用永磁同步电动机驱动控制器

Also Published As

Publication number Publication date
CN102497153A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
CN102497153B (zh) 永磁同步电机功率角恒定自适应控制方法
CN103312253B (zh) 基于定子参考磁链优化模型的转矩预测控制式电驱动方法
CN203117392U (zh) 用于电机测试的电机对拖平台
CN103378788B (zh) 变频空调用压缩机的驱动方法和装置
CN107359837A (zh) 基于滑模观测器和自抗扰控制的永磁同步电机转矩控制***及方法
CN107017810A (zh) 永磁同步电机无权值模型预测转矩控制***及方法
CN103036496B (zh) 自适应反推控制的永磁同步电机dtc***及其控制方法
CN103780187B (zh) 永磁同步电机高动态响应电流控制方法及***
CN105871282A (zh) 一种基于电机转动惯量的控制器pi参数整定方法
CN104767435A (zh) 基于中性点电压的无传感器无刷电机换相相位实时校正方法
CN107017817B (zh) 一种高速内嵌式永磁同步电机电流解耦控制方法
CN107302330B (zh) 一种表贴式永磁同步电机最小损耗控制方法
CN101931353B (zh) 汽车空调风扇用无刷直流电机控制方法
CN103312244A (zh) 基于分段式滑模变结构的无刷直流电机直接转矩控制方法
CN103731084A (zh) 永磁同步电机低逆变器功耗直接转矩控制方法及装置
CN103997269B (zh) 一种电力机器人驱动***的控制方法
CN105048896B (zh) 一种无刷直流电机直接转矩自适应模糊控制方法
CN104393814B (zh) 一种永磁同步电机控制方法
CN105811826A (zh) 一种感应电机新型趋近律滑模控制方法
CN108306570A (zh) 永磁同步电机直接转矩控制方法及***
CN106788049A (zh) 基于级联滑模观测器的无速度传感器转矩控制***及方法
CN102025313A (zh) 基于反电势前馈控制的矢量控制方法
Yan et al. Torque estimation and control of PMSM based on deep learning
CN103647493B (zh) 一种永磁同步电机的h无穷转速估计方法
CN108123650A (zh) 五相逆变器双三相电机***驱动电路及直接转矩控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140108

Termination date: 20141212

EXPY Termination of patent right or utility model