CN102421900B - 用于抑制Eg5和VEGF基因表达的脂质配制的组合物以及方法 - Google Patents

用于抑制Eg5和VEGF基因表达的脂质配制的组合物以及方法 Download PDF

Info

Publication number
CN102421900B
CN102421900B CN201080020483.1A CN201080020483A CN102421900B CN 102421900 B CN102421900 B CN 102421900B CN 201080020483 A CN201080020483 A CN 201080020483A CN 102421900 B CN102421900 B CN 102421900B
Authority
CN
China
Prior art keywords
lipid
dsrna
nucleotide
composition
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080020483.1A
Other languages
English (en)
Other versions
CN102421900A (zh
Inventor
D·巴姆克罗特
A·阿金克
D·萨
T·诺沃布兰塞瓦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alnylam Pharmaceuticals Inc
Original Assignee
Alnylam Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alnylam Pharmaceuticals Inc filed Critical Alnylam Pharmaceuticals Inc
Priority to CN201510338694.4A priority Critical patent/CN104922699B/zh
Publication of CN102421900A publication Critical patent/CN102421900A/zh
Application granted granted Critical
Publication of CN102421900B publication Critical patent/CN102421900B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/04Uses of viruses as vector in vivo

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及在脂质制剂中含有双链核糖核酸(dsRNA)的组合物,和利用该组合物抑制人驱动蛋白家族成员11(Eg5)和血管内皮生长因子(VEGF)的表达的方法,以及利用该组合物治疗由Eg5和VEGF表达介导的病理过程例如癌症的方法。

Description

用于抑制Eg5和VEGF基因表达的脂质配制的组合物以及方法
技术领域
本发明涉及含有双链核糖核酸(dsRNA)的脂质配制的组合物,以及它们在介导RNA干涉以抑制基因组合(例如Eg5和血管内皮生长因子(VEGF)基因)的表达中的用途。所述dsRNA配制成脂质制剂,且可包括脂蛋白,例如载脂蛋白E。本发明也包括所述组合物在治疗由Eg5和VEGF表达介导的病理过程,例如癌症中的用途。
相关申请的交叉引用
本申请要求2009年3月12日提交的序列号为61/159,788的美国临时申请、2009年8月5日提交的序列号为61/231,579的美国临时申请、2009年12月11日提交的序列号为61/285,947的美国临时申请的权益,为所有目的,所有这些申请以引用方式全部合并与此。
序列表参考
本申请包括创建于2010年XX月XX日、以名称为16564US_sequencelisting.txt的文本文件电子提交的序列表,其大小为XXX,XXX字节。所述序列表以引用方式合并。
背景技术
生物体内细胞群体的维持由细胞***和程序性细胞死亡的细胞过程决定。正常细胞内,与各过程的开始和完成有关的细胞事件是高度受调节的。在增殖性疾病例如癌症中,这些过程的一个或两个可能受到干扰。例如,癌细胞可能经由突变,通过正调节物的超量表达或负调节物的丧失而丧失其细胞***周期的调节(检验点控制)。
或者,癌细胞可能通过负调节物的超量表达而丧失进行程序性细胞死亡的能力。因此,需要发展能够恢复癌细胞的检验点控制和程序性细胞死亡过程的新的化疗药物。
治疗人类癌症的一种方法是靶向对细胞周期进展必不可少的蛋白质。为了使细胞周期由一个阶段进展到下一个阶段,必须完成某些先决条件事件。细胞周期内存在执行事件和阶段的适当顺序的检验点。一个这样的检验点是发生在有丝***中期阶段期间的纺锤体检验点。靶向在有丝***中具有必要功能的蛋白质的小分子可以引发纺锤体检验点阻滞细胞的有丝***。在阻滞细胞有丝***的小分子中,临床上显示抗肿瘤活性的那些小分子也诱导细胞凋亡—与程序性细胞死亡有关的形态变化。因此治疗癌症的一种有效的化学疗法可能是诱导检验点控制和程序性细胞死亡的疗法。不幸的是,几乎没有化合物能有效控制细胞内部的这些过程。已知引起有丝***阻滞和细胞凋亡的大多数化合物作为微管蛋白结合剂。这些化合物改变微管的动态不稳定性并间接改变有丝***纺锤体的功能/结构,因此引起有丝***阻滞。因为这些化合物中的大多数特异性靶向微管蛋白(其是所有微管的组分),它们也可以影响微管具有作用的许多正常细胞过程中的一种或多种。因此,仍然需要更加特异性地靶向与增殖细胞有关的蛋白质的试剂。
Eg5是集中在有丝***纺锤体的若干驱动蛋白样动力蛋白中的一种,且已知是双极有丝***纺锤体的形成和/或功能所需要的。最近报道了干扰有丝***纺锤体的双极性的小分子(Mayer,T.U.等1999.Science 286(5441)971-4,以引用方式合并于此)。更具体地,所述小分子诱导异常有丝***纺锤体的形成,其中微管的单星阵列由中央一对中心体发出,其中染色体结合至微管远端。由于单星阵列,该小分子被称为“单星素(monastrol)”。该单星阵列表型以前已经在Eg5动力蛋白免疫耗竭的有丝***细胞中观察到。该与众不同的单星阵列表型促进单星素被确定为Eg5的潜在抑制剂。事实上,单星素还在体外试验中显示抑制微管的Eg5动力-驱动的运动性。Eg抑制剂单星素对相关的驱动蛋白动力或对负责细胞内高尔基体运动的动力没有明显效果。通过免疫耗竭Eg5或抑制Eg5显示单星阵列表型的细胞阻滞在细胞周期的M-阶段。然而,由免疫耗竭或抑制Eg5而诱导的有丝***阻滞是短暂的(Kapoor,T.M.,2000.J Cell Biol 150(5)975-80)。由单星素诱导的单星阵列表型和有丝***中的细胞周期阻滞两者都是可逆的。细胞恢复以形成正常的双极有丝***纺锤体,以完成有丝***并继续细胞周期以及正常的细胞增殖。这些资料提示,诱导短暂的有丝***阻滞的Eg5抑制剂对治疗癌细胞增殖可能不是有效的。尽管如此,单星素引起有丝***阻滞的发现是吸引人的,因此需要进一步研究并识别可用于以有效治疗人类癌症的方式调整Eg5动力蛋白的化合物。还需要研究这些化合物与其他抗肿瘤剂的联合使用。
VEGF(血管内皮生长因子,又名血管通透因子,VPF)是刺激血管生成、上皮细胞增殖和内皮细胞存活的多功能细胞因子。VEGF可由多种组织生成,且其超量表达或异常表达可导致多种紊乱,包括癌症和视网膜病,例如年龄相关的黄斑变性及其他血管生成紊乱。
最近,双链RNA分子(dsRNA)已显示以被称为RNA干涉(RNAi)的高度保守调节机制阻断基因表达。WO 99/32619(Fire等)公开了利用长度至少为25个核苷酸的dsRNA来抑制线虫的基因表达。dsRNA也显示降解其他生物体包括植物(例如参见WO 99/53050,Waterhouse等;和WO99/61631,Heifetz等)、果蝇(例如参见Yang,D.,等人,Curr.Biol.(2000)10:1191-1200)和哺乳动物(参见WO 00/44895,Limmer;和DE 101 00586.5,Kreutzer等)中的靶RNA。该天然机制目前已成为开发用于治疗由基因的异常或有害调节而引起的疾病的一类新的药物制剂的焦点。
发明简述
本发明提供利用包含dsRNA的脂质配制的组合物抑制细胞中的人Eg5/KSP和VEGF基因表达的组合物和方法。
本发明组合物包含核酸脂质颗粒,所述核酸脂质颗粒含有用于抑制细胞中人驱动蛋白家族成员11(Eg5/KSP)基因表达的第一双链核糖核酸(dsRNA)以及用于抑制细胞中人VEGF表达的第二dsRNA。所述核酸脂质颗粒含有脂质制剂,所述制剂含有45-65mol%的阳离子脂质、5mol%到约10mol%的非阳离子脂质、25-40mol%的固醇和0.5-5mol%的PEG或PEG-修饰的脂质。靶向Eg5/KSP的第一dsRNA包括第一有义链和第一反义链,且所述第一有义链具有第一序列,所述第一反义链具有与SEQ ID NO:1311(5’-UCGAGAAUCUAAACUAACU-3’)的至少15个连续核苷酸互补的第二序列,其中所述第一序列和所述第二序列互补,且其中所述第一dsRNA的长度为15到30个碱基对。所述第二dsRNA包括第二有义链和第二反义链,所述第二有义链具有第三序列,且所述第二反义链具有与SEQ ID NO:1538(5’-GCACAUAGGAGAGAUGAGCUU-3’)的至少15个连续核苷酸互补的第四序列,其中所述第三序列和所述第四序列互补,且其中所述第二dsRNA的长度为15到30个碱基对。
在一个实施方式中,所述组合物的阳离子脂质具有式A,其中式A是:
其中R1和R2独立地是烷基、烯基或炔基,各自可任选被取代,R3和R4独立地是低级烷基或R3和R4可以合起来形成任选取代的杂环。
在其他实施方式中,所述阳离子脂质是XTC(2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环)。在一个相关的实施方式中,所述阳离子脂质是XTC,所述非阳离子脂质是DSPC,所述固醇是胆固醇,且所述PEG脂质具有PEG-DMG。在另一个相关实施方式中,所述阳离子脂质是XTC且所述制剂选自下组:
在另一个实施方式中,所述组合物的阳离子脂质是ALNY-100((3aR,5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八碳-9,12-二烯基)四氢-3aH-环戊二烯并[d][1,3]二氧杂环戊烯-5-胺))。在其他实施方式中,所述阳离子脂质是ALNY-100且所述制剂包括:
在其他实施方式中,所述阳离子脂质是MC3(4-(二甲基氨基)丁酸(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基酯))。在一个相关实施方式中,所述阳离子脂质是MC3且所述脂质制剂选自下组:
在另一个实施方式中,所述第一dsRNA包括由SEQ ID NO:1534(5’-UCGAGAAUCUAAACUAACUTT-3’)组成的有义链和由SEQ IDNO:1535(5’-AGUUAGUUUAGAUUCCUGATT-3’)组成的反义链,以及第二dsRNA包括由SEQ ID NO:1536(5’-GCACAUAGGAGAGAUGAGCUU-3’)组成的有义链和由SEQ IDNO:1537(5’-AAGCUCAUCUCUCCUAUGUGCUG-3’)组成的反义链。在又一个实施方式中,如下所述修饰各链,以使其包括2’-O-甲基核糖核苷酸(由小写字母“c”或“u”表示)和硫代磷酸酯(以小写字母“s”表示):所述第一dsRNA包括由SEQ ID NO:1240(5’-ucGAGAAucuAAAcuAAcuTsT-3’)组成的有义链和由SEQ IDNO:1241(5’-AGUuAGUUuAGAUUCUCGATsT)组成的反义链;所述第二dsRNA包括由SEQ ID NO:1242(5’-GcAcAuAGGAGAGAuGAGCUsU-3’)组成的有义链和由SEQ ID NO:1243(5’-AAGCUcAUCUCUCCuAuGuGCusG-3’)组成的反义链。
在其他实施方式中,所述第一和第二dsRNA包括至少一个修饰的核苷酸。在一些实施方式中,所述修饰核苷酸选自下组:2′-O-甲基修饰的核苷酸、具有5′-硫代磷酸酯基团的核苷酸和与胆固醇基衍生物或十二烷酸二癸酰胺基团连接的末端核苷酸。在另一个实施方式中,所述修饰核苷酸选自下组:2′-脱氧-2′-氟修饰的核苷酸、2′-脱氧-修饰的核苷酸、锁定核苷酸、脱碱基核苷酸、2′-氨基修饰的核苷酸、2′-烷基-修饰的核苷酸、吗啉代核苷酸、氨基磷酸酯和含非天然碱基的核苷酸。在又一个实施方式中,所述第一和第二dsRNA各自包含至少一个2′-O-甲基修饰的核苷酸和至少一个具有5′-硫代磷酸酯基团的核苷酸。
在一些实施方式中,各dsRNA的长度是19-23个碱基。在另一个实施方式中,各dsRNA的各链长度是21-23个碱基。在又一个实施方式中,所述第一dsRNA的各链的长度是21个碱基,所述第二dsRNA的有义链长度是21个碱基且所述第二dsRNA的反义链长度是23个碱基。在其他实施方式中,所述第一和第二dsRNA以等摩尔比存在。在一个实施方式中,所述组合物还含有索拉非尼(Sorafenib)。在另一个实施方式中,所述组合物还含有脂蛋白。在另一个实施方式中,所述组合物还含有载脂蛋白E(ApoE)。
在另一个实施方式中,当与表达Eg5的细胞接触时,所述组合物抑制Eg5表达至少40%。在又一个实施方式中,当与表达VEGF的细胞接触时,所述组合物抑制VEGF表达至少40%。在其他实施方式中,将所述组合物给药于细胞可减少细胞中Eg5和VEGF的表达。在一个相关的实施方式中,所述组合物以nM浓度给药。在另一个实施方式中,将所述组合物给药于细胞可增加细胞中单星体形成。
在其他实施方式中,将所述组合物给药于哺乳动物导致选自下组的至少一种效果:预防肿瘤生长、减少肿瘤生长或延长哺乳动物的存活期。在一些实施方式中,所述效果用选自下组的至少一种试验测定:体重测定、器官重量测定、肉眼检查、mRNA分析、血清AFP分析和存活率监测。
本发明也提供用于抑制细胞中Eg5/KSP和VEGF的表达的方法。所述方法包括将本发明组合物给药于细胞的步骤。本发明也提供用于抑制肿瘤生长、减少肿瘤生长或延长需要治疗癌症的哺乳动物存活期的方法。所述方法包括将本发明组合物给药于哺乳动物的步骤。在一个实施方式中,所述哺乳动物患有肝癌。在另一个实施方式中,所述哺乳动物是患有肝癌的人。在一些实施方式中,将含有0.25mg/kg到4mg/kgdsRNA的剂量给药于哺乳动物。在其他实施方式中,dsRNA以约0.01、0.1、0.5、1.0、2.5或5.0mg/kg的剂量给药于人。
在又一个实施方式中,本发明提供用于降低需要治疗癌症的哺乳动物中的肿瘤生长的方法,所述方法包括将本发明组合物给药于哺乳动物,所述方法使肿瘤生长降低至少20%。在另一实施方式中,所述方法使KSP表达减少至少60%。
附图说明
图1是显示将SNALP-siRNA给药于Hep3B小鼠模型后,肝重占体重的百分比的图。
图2A是显示PBS对Hep3B小鼠模型体重的影响的图。
图2B是显示SNALP-siRNA(VEGF/KSP)对Hep3B小鼠模型体重的影响的图。
图2C是显示SNALP-siRNA(KSP/萤光素酶)对Hep3B小鼠模型体重的影响的图。
图2D是显示SNALP-siRNA(VEGF/萤光素酶)对Hep3B小鼠模型体重的影响的图。
图3是显示SNALP-siRNA对Hep3B小鼠模型体重的影响的图。
图4是显示未经处理的对照动物的体重的图。
图5是显示对照萤光素酶-SNALP siRNA对Hep3B小鼠模型体重的影响的图。
图6是显示VSP-SNALP siRNA对Hep3B小鼠模型体重的影响的图。
图7A是显示SNALP-siRNA对Hep3B小鼠模型中相对于小鼠GAPDH水平标准化的人GAPDH水平的影响的图。
图7B是显示SNALP-siRNA对Hep3B小鼠模型中由血清ELISA测得的血清AFP水平的影响的图。
图8是显示SNALP-siRNA对Hep3B小鼠模型中相对于小鼠GAPDH水平标准化的人GAPDH水平的影响的图。
图9是显示SNALP-siRNA对Hep3B小鼠模型中相对于人GAPDH水平标准化的人KSP水平的影响的图。
图10是显示SNALP-siRNA对Hep3B小鼠模型中相对于人GAPDH水平标准化的人VEGF水平的影响的图。
图11A是显示SNALP-siRNA对Hep3B小鼠模型中相对于人GAPDH水平标准化的小鼠VEGF水平的影响的图。
图11B是显示SNALP-siRNA对Hep3B小鼠模型中人GAPDH水平和血清AFP水平的影响的一组图。
图12A是显示PBS、萤光素酶和ALN-VSP对Hep3B小鼠模型中肿瘤KSP的影响的图,其中肿瘤KSP由相对hKSP mRNA的百分比测定。
图12B是显示PBS、萤光素酶和SNALP-VSP对Hep3B小鼠模型中肿瘤VEGF的影响的图,其中肿瘤VEGF由相对hVEGF mRNA的百分比测定。
图12C是显示PBS、萤光素酶和SNALP-VSP对Hep3B小鼠模型中GAPDH水平的影响的图,其中GAPDH水平由相对hGAPDH mRNA的百分比测定。
图13A是显示SNALP si-RNA对带有肝肿瘤的小鼠的存活率的影响的图。在接种肿瘤细胞18天后开始治疗。
图13B是显示SNALP siRNA对具有肝肿瘤的小鼠的存活率的影响的图。在接种肿瘤细胞26天后开始治疗。
图14是显示SNALP-siRNA对血清甲胎蛋白(AFP)水平的影响的图。
图15A是给药2mg/kg SNALP-VSP的荷瘤动物(植入Hep3B细胞后三周)的H&E染色切片的图像。二十四小时后,处理带肿瘤肝叶用于组织学分析。箭头指示单星体。
图15B是给药2mg/kg SNALP-Luc的荷瘤动物(植入Hep3B细胞后三周)的H&E染色切片的图像。二十四小时后,处理带肿瘤肝叶用于组织学分析。
图16是显示给药SNALP配制的siRNA和索拉非尼对存活率的影响的图。
图17是管线内混合法的流程图。
图18是显示用LNP-08配制的VSP治疗后,对KSP和VEGF在小鼠肝内Hep3B肿瘤中表达的影响的图。
图19说明PEG-DSG和PEG-C-DSA的化学结构。
图20说明阳离子脂质ALNY-100、MC3和XTC的结构。
图21是显示用SNALP-1955(Luc)、ALN-VSP02、SNALP-T-VSPLNP11和LNP-12配制的VSP治疗后,对KSP和VEGF在小鼠肝内Hep3B肿瘤中表达的影响的图。
图22是用LNP08-Luc、ALN-VSP02和LNP-08和LNP08-C18配制的VSP治疗后,比较对KSP和VEGF在小鼠肝内Hep3B肿瘤中表达的影响的一组图。
发明详述
本发明提供利用dsRNA抑制细胞或哺乳动物中Eg5基因和VEGF基因表达的组合物和方法。所述dsRNA包封在脂质核酸颗粒中。本发明也提供用于治疗由Eg5基因和VEGF基因表达引起的哺乳动物的病理学病症和疾病(例如肝癌)的组合物和方法。所述dsRNA通过称为RNA干涉(RNAi)的过程控制mRNA的序列特异性降解。
以下详细说明公开了如何制备和使用包含dsRNA的组合物从而分别抑制Eg5基因和VEGF基因的表达,以及用于治疗由这些基因的表达引起的疾病和紊乱(例如癌症)的组合物和方法。本发明特征的药物组合物包括dsRNA和药学可接受的载体,所述dsRNA含有包括互补区的反义链,所述互补区的长度为小于30个核苷酸,通常长度为19-24个核苷酸,且该互补区和Eg5基因的RNA转录物的至少一部分基本上互补。本发明特征的组合物也包括dsRNA,所述dsRNA含有包括互补区的反义链,所述互补区的长度为小于30个核苷酸,通常长度为19-24个核苷酸,且该互补区和VEGF基因的RNA转录物的至少一部分基本上互补。
因此,本发明的某些方面提供药物组合物,其含有Eg5和VEGFdsRNA以及药学可接受的载体,利用该组合物分别抑制Eg5基因和VEGF基因的表达的方法,以及利用所述药物组合物治疗由Eg5和VEGF基因的表达引起的疾病的方法。
I、定义
为了方便起见,下文提供用于说明书、实施例和附加的权利要求书中的某些术语和短语的含义。如果在本说明书的其他部分的术语用法和本节提供的其定义之间有着明显差异,则以本节定义为准。
″G″、″C″、″A″和″U″通常各自代表包含分别作为碱基的鸟嘌呤、胞嘧啶、腺嘌呤和尿嘧啶的核苷酸。“T”和“dT”在本文中可互换使用,意指脱氧核糖核苷酸,其中核碱基是胸腺嘧啶,例如,脱氧核糖胸腺嘧啶。然而,应理解术语“核糖核苷酸”或“核苷酸”也可指如下文所详细描述的修饰核苷酸,或代用品替代基团。本领域技术人员应了解鸟嘌呤、胞嘧啶、腺嘌呤和尿嘧啶可被其他基团替代,而基本上不改变包含带有这种替代基团的核苷酸的寡核苷酸的碱基配对性质。例如,非限制性地,包含肌苷作为其碱基的核苷酸可与包含腺嘌呤、胞嘧啶或尿嘧啶的核苷酸形成碱基对。因此,本发明的核苷酸序列中包含尿嘧啶、鸟嘌呤或腺嘌呤的核苷酸可被例如包含肌苷的核苷酸替代。在另一个实例中,无论在寡核苷酸何处的腺嘌呤和胞嘧啶可以分别被鸟嘌呤和尿嘧啶替代,从而和目标mRNA形成G-U摆动碱基配对。包含这种替代基团的序列是本发明的实施方式。
如本发明所使用,“Eg5”指人驱动蛋白家族成员11,其又名KIF11、Eg5、HKSP、KSP、KNSL1或TRIP5。Eg5序列可作为NCBI GeneID:3832、HGNC ID:HGNC:6388和Ref Seq ID number:NM_004523发现。术语“Eg5”和“KSP”和“Eg5/KSP”可互换使用。
如本文所使用,“VEGF”,又名血管通透因子,是一种血管生长因子。VEGF是人二聚45kDa的糖蛋白,其至少以三种不同的同种型存在。VEGF同种型在内皮细胞中表达。VEGF基因包含8个外显子,其表达189个氨基酸的蛋白质同种型。165个氨基酸的同种型缺少由外显子6编码的残基,而121个氨基酸的同种型缺少由外显子6和7编码的残基。VEGF145是预计含有145个氨基酸且缺乏外显子7的同种型。VEGF可以通过结合至内皮酪氨酸激酶受体例如Flt-1(VEGFR-1)或KDR/flk-1(VEGFR-2)从而作用于内皮细胞。VEGFR-2在内皮细胞中表达并与肉皮细胞分化和血管发生有关。第三受体,VEGFR-3,参与淋巴生成。
各种同种型具有不同的生物活性和临床意义。例如,VEGF145诱导血管生成,并如同VEGF189(但是不同于VEGF165),VEGF145通过不依赖于胞外基质相关的硫酸肝素的机制有效结合至胞外基质。VEGF在体外显示作为内皮细胞促细胞***剂和化学引诱剂的活性,并诱导体内血管通透性和血管生成。VEGF由多种癌细胞类型分泌,并通过诱导肿瘤相关的脉管***的生长而促进肿瘤生长。已经显示抑制VEGF功能可以限制原发实验肿瘤的生长以及在免疫能力受损的小鼠中转移的发生率。涉及VEGF的多种dsRNA在共同未决的美国序列号11/078,073和11/340,080中描述,其以引用方式全部合并于此。
如本发明所使用,“靶序列”意指Eg5/KSP和/或VEGF基因转录期间形成的mRNA分子的核苷酸序列的相连部分,包括是初级转录产物的RNA加工产物的mRNA。
如本发明所使用,术语“包含序列的链”意指含有一连串核苷酸的寡核苷酸,所述核苷酸由使用标准核苷酸命名法提到的序列所描述。
如本发明所使用,除非另有说明,当用于描述第一核苷酸序列与第二核苷酸序列的关系时,术语“互补”意指包含第一核苷酸序列的寡核苷酸或多核苷酸在某种条件下和包含第二核苷酸序列的寡核苷酸或多核苷酸杂交并形成双链体结构的能力,如本领域技术人员所理解的。例如,这种条件可以是严格条件,其中严格条件可以包括:400mM NaCl、40mM PIPES pH 6.4、1mM EDTA、50℃或70℃下杂交12-16小时,然后冲洗。可以使用其他条件,例如可能在生物体内遇到的生理学相关条件。根据杂交核苷酸的最终应用,本领域技术人员能够决定最适合于两条序列的互补性试验的条件组。
术语“互补”包括含有第一核苷酸序列的寡核苷酸或多核苷酸与含有第二核苷酸序列的寡核苷酸或多核苷酸在所述第一和第二核苷酸序列的整个长度上的碱基配对。本发明中这种序列可以称为相对于彼此“完全互补”。然而,当第一序列称为相对于本发明第二序列“基本上互补”时,这两个序列可以是完全互补的,或者它们一经杂交,可以形成一个或多个,但通常不超过4、3或2个错配碱基对,同时保持在和其最终应用最为相关的条件下杂交的能力。然而,当两种寡核苷酸设计成一经杂交形成一个或多个单链突出端时,这种突出端在确定互补性方面将不会被认为是错配。例如,含有长度为21个核苷酸的一个寡核苷酸和长度为23个核苷酸的另一个寡核苷酸的dsRNA,当所述较长寡核苷酸包含与较短寡核苷酸完全互补的21个核苷酸的序列时,对于本发明目的,所述dsRNA仍可以称为“完全互补的”。
如本发明所使用,术语“互补”序列也可以包括非Watson-Crick碱基对和/或由非天然和修饰核苷酸形成的碱基对,或完全由非Watson-Crick碱基对和/或由非天然和修饰核苷酸形成的碱基对形成,只要满足相对于其杂交能力的上述要求。这种非Watson-Crick碱基对包括但不限于G:U Wobble或Hoogstein碱基对。
本发明术语“互补”、“完全互补”和“基本上互补”可相对于dsRNA的有义链和反义链之间或dsRNA的反义链和靶序列之间的碱基配对而使用,如将从其使用的上下文中理解。
如本发明所使用,和信使RNA(mRNA)“的至少一部分基本上互补”的多核苷酸指和包括5’非翻译区(UTR)、开放阅读框(ORF)或3’UTR的所关心的信使RNA(例如,编码Eg5/KSP和/或VEGF)的相连部分基本上互补的多核苷酸。例如,如果所述序列和编码Eg5的mRNA的非中断部分基本上互补,则多核苷酸和Eg5mRNA的至少一部分互补。
如本发明所使用,术语“双链RNA”或“dsRNA”指含有两条如上定义的反平行且基本上互补的核酸链的双链体结构。通常,各链的大多数核苷酸是核糖核苷酸,但如本发明所详细描述,各链或两条链也可以包括至少一个非核糖核苷酸,例如脱氧核糖核苷酸和/或修饰核苷酸。另外,如本说明书所使用,“dsRNA”可以包括核糖核苷酸的化学修饰,包括多个核苷酸处的实质性修饰且包括本发明公开或本领域已知的所有类型的修饰。为本说明书和权利要求书的目的,任何这种修饰(如siRNA类型分子中使用的)被“dsRNA”覆盖。
形成双链体结构的两条链可以是一个较大RNA分子的不同部分,或它们可以是单独的RNA分子。当所述两条链是一个较大分子的部分,并因此通过一条链的3’端和形成双链体结构的相应另一链的5’端之间的一连串连续核苷酸相连时,连接RNA的链称为“发夹环”。当两条链通过不同于一条链的3’端和形成双链体结构的相应另一链的5’端之间的一连串连续核苷酸的方式共价连接时,连接结构称为“连接物”。所述RNA链可以具有相同或不同数目的核苷酸。碱基对的最大数是dsRNA的最短链的核苷酸数减去存在于双链体中的任何突出端。除双链体结构之外,dsRNA可以包含一个或多个核苷酸突出端。通常,各链的大多数核苷酸是核糖核苷酸,但如本发明所详细描述,各链或两条链也可以包括至少一个非核糖核苷酸,例如脱氧核糖核苷酸和/或修饰核苷酸。另外,如本说明书所使用,“dsRNA”可以包括核糖核苷酸的化学修饰,包括多个核苷酸处的实质性修饰且包括本发明公开或本领域已知的所有类型的修饰。为本说明书和权利要求书的目的,任何这种修饰(如用于siRNA类分子)被“dsRNA”覆盖。
如本发明所使用,“核苷酸突出端”意指当dsRNA的一条链的3’端延伸超过另一条链的5’端(或反之亦然)时从dsRNA的双链体结构突出的未配对的一个或多个核苷酸。“平”或“平端”意指dsRNA的该末端没有未配对的核苷酸,即没有核苷酸突出端。“平端”dsRNA是其整个长度内均为双链的dsRNA,即,在该分子的任一端都没有核苷酸突出端。在一些实施方式中,所述dsRNA可在双链体的一端具有核苷酸突出端,在另一端具有平端。
术语“反义链”意指包括与靶序列基本上互补的区域的dsRNA链。如本发明所使用,术语“互补区”意指与一序列(例如本发明定义的靶序列)基本上互补的反义链上的区域。当互补区和靶序列不是完全互补时,错配可能存在于该分子的内部或末端区域。通常,大部分耐受性错配位于末端区域,例如,在5’和/或3’端的6、5、4、3或2个核苷酸内。
如本发明所使用,术语“有义链”意指包括与反义链区域基本上互补的区域的dsRNA链。
当涉及dsRNA时,“引入细胞”意指促进摄取或吸收进入细胞,如本领域技术人员所理解的。dsRNA的吸收或摄取可以通过未受帮助的扩散或主动细胞过程或通过助剂或装置而发生。该术语的含义不局限于体外细胞。dsRNA也可以被“引入细胞”,其中所述细胞是活生物体的一部分。在这种情况下,引入细胞将包括递送至生物体。例如,对于体内递送,dsRNA可以注射入组织部位或全身给药。体外引入细胞包括本领域已知的方法,例如电穿孔法和脂质转染法。
术语“沉默化”和“抑制表达”、“下调表达”、“阻止表达”等,当它们涉及Eg5和/或VEGF基因时,指的是至少部分抑制Eg5基因的表达,如由Eg5mRNA和/或VEGF mRNA的量的减少所表现的,所述mRNA可从Eg5和/或VEGF基因在其中转录的第一细胞或细胞组中分离,且已经处理所述细胞或细胞组,以使和基本上与第一细胞或细胞组相同,但没有如此处理的第二细胞或细胞组(对照细胞)相比,Eg5和/或VEGF基因的表达被抑制。抑制程度通常由以下公式表示:
或者,抑制程度可以根据和Eg5和/或VEGF基因表达功能上相关的参数的减少来给出,例如,由细胞产生的Eg5和/或VEGF基因编码的蛋白量,或显示某种表型例如细胞凋亡的细胞数。原则上,靶基因沉默化可在表达靶标(组成型地或通过基因工程)的任何细胞中并通过任何适当的试验确定。然而,当需要参考时,为了确定给定的dsRNA是否以某种程度抑制Eg5基因的表达并因此包括在本发明中,以下实施例提供的试验将充当这种参考。
例如,在某些情况下,通过给药本发明双链寡核苷酸使得Eg5基因(或VEGF基因)的表达被抑制至少约5%、10%、15%、20%、25%、30%、35%、40%、45%或50%。在一些实施方式中,通过给药本发明双链寡核苷酸使得Eg5和/或VEGF基因被抑制至少约60%、70%或80%。在其他实施方式中,通过给药本发明双链寡核苷酸使得Eg5和/或VEGF基因被抑制至少约85%、90%或95%。以下表格和实施例提供使用各种浓度的多种Eg5和/或VEGF dsRNA分子的表达抑制值。
如本发明所使用,在Eg5表达(或VEGF表达)的上下文中,术语“治疗(动词)”、“治疗(名词)”等指的是减轻或减缓由Eg5和/或VEGF表达介导的病理过程。在本发明的上下文中,在其涉及任何以下所述的其他病症(除了由Eg5和/或VEGF表达介导的病理过程)的范围内,术语“治疗(动词)”、“治疗(名词)”等指的是减轻或减缓与这种病症有关的至少一种症状,或延缓或逆转这种病症的发展,例如延缓肝癌发展。
如本发明所使用,短语“治疗有效量”和“预防有效量”意指在治疗、预防或控制由Eg5和/或VEGF表达介导的病理过程或由Eg5和/或VEGF表达介导的明显症状中提供治疗益处的量。特定的治疗有效量可由普通的开业医生容易地确定,且可以取决于本领域已知的因素例如由Eg5和/或VEGF表达介导的病理过程种类、患者病史和年龄、由Eg5和/或VEGF表达介导的病理过程的阶段以及其他对抗由Eg5和/或VEGF表达介导的病理过程的药剂的给药而改变。
如本发明所使用,“药物组合物”包含药理学有效量的dsRNA和药学可接受的载体。如本发明所使用,“药理学有效量”、“治疗有效量”或仅“有效量”指的是能有效产生预定药理学、治疗或预防性结果的RNA的量。例如,如果当与疾病或疾患有关的可测量参数减少至少25%时,给定的临床治疗被认为有效,则用于治疗该疾病或疾患的药物的治疗有效量是必须导致该参数减少至少25%的量。
术语“药学可接受的载体”指的是用于给药治疗剂的载体。如下文更详细地描述,这样的载体包括但不限于盐水、缓冲盐水、右旋糖、水、甘油、乙醇及其组合。该术语特别排除细胞培养基。对于经口给药的药物,药学可接受的载体包括但不限于:药学可接受的赋形剂,例如惰性稀释剂、崩解剂、粘合剂、润滑剂、甜味剂、矫味剂、着色剂和防腐剂。适当的惰性稀释剂包括碳酸钠和碳酸钙、磷酸钠和磷酸钙和乳糖,而玉米淀粉和海藻酸是适当的崩解剂。粘合剂可以包括淀粉和明胶,而润滑剂(如果存在)通常是硬脂酸镁、硬脂酸或滑石。如果需要,所述片剂可以包有例如单硬脂酸甘油酯或二硬脂酸甘油酯的材料,以延缓在胃肠道中的吸收。
本发明使用的“转化的细胞”是引入载体的细胞,该细胞可由该载体表达dsRNA分子。
II、双链核糖核酸(dsRNA)
如本发明更详细地描述,本发明提供用于抑制细胞或哺乳动物中Eg5和/或VEGF基因的表达的双链核糖核酸(dsRNA)分子,其中所述dsRNA含有包括互补区的反义链,所述互补区和在Eg5和/或VEGF基因的表达中形成的mRNA的至少一部分互补,且其中所述互补区的长度小于30个核苷酸,通常长度为19-24个核苷酸,且其中一旦所述dsRNA与表达所述Eg5和/或VEGF基因的细胞接触,就抑制所述Eg5和/或VEGF基因的表达。本发明的dsRNA还可以包含一个或多个单链核苷酸突出端。
可由如下所述的本领域已知的标准方法合成所述dsRNA,例如通过利用例如由Biosearch,Applied Biosystems,Inc公司商业可得的自动化DNA合成仪。所述dsRNA包含充分互补的两条链,以杂交形成双链体结构。所述dsRNA的一条链(反义链)包含互补区,该互补区和源自Eg5和/或VEGF基因的表达期间形成的mRNA序列的靶序列基本上互补,通常是完全互补,另一条链(有义链)包含和所述反义链互补的区域,这样当在适宜条件下结合时,两条链杂交形成双链体结构。通常,双链体的长度为15到30、或25到30、或18到25、或19到24、或19到21、或19、20或21个碱基对。在一个实施方式中,所述双链体的长度是19个碱基对。在另一个实施方式中,所述双链体的长度是21个碱基对。当两条不同的siRNA组合使用时,双链体长度可以是相同的或不同的。
本发明dsRNA的各链长度通常为15到30、或18到25、或18、19、20、21、22、23或24个核苷酸。在其他实施方式中,各链长度是25-30个碱基对。所述双链体的各链长度可以相同或不同。当两条不同的siRNA组合使用时,各siRNA的各链长度可以相同或不同。例如,组合物可含有靶向Eg5的dsRNA,其具有21个核苷酸的有义链和21个核苷酸的反义链,且含有靶向VEGF的第二dsRNA,其具有21个核苷酸的有义链和23个核苷酸的反义链。
本发明dsRNA可以包含一个或多个核苷酸的一个或多个单链突出端。在一个实施方式中,所述dsRNA的至少一端具有1到4个,通常是1或2个核苷酸的单链核苷酸突出端。在另一个实施方式中,所述dsRNA的反义链具有1-10个核苷酸的突出端,各自位于所述有义链的3′端和5′端。在其他实施方式中,所述dsRNA的有义链具有1-10个核苷酸的突出端,各自位于所述反义链的3′端和5′端。
意外地,具有至少一个核苷酸的突出端的dsRNA的抑制性质可能优于平端相应物。在一些实施方式中,存在仅一个核苷酸的突出端加强dsRNA的干涉活性,而不影响其总体稳定性。已经证实,具有仅一个突出端的dsRNA在体内以及在多种细胞、细胞培养基、血液和血清中特别稳定且有效。通常,单链突出端位于反义链的3′末端,或者,位于有义链的3′末端。所述dsRNA也可以具有通常位于反义链的5′端的平端。这种dsRNA可以具有提高的稳定性和抑制活性,因此使得可以以低剂量给药,即,小于5mg/kg接受者体重/天。通常,所述dsRNA的反义链具有位于3′端的核苷酸突出端,且5′端是平端。在另一个实施方式中,所述突出端中的一个或多个核苷酸被核苷硫代磷酸替换。
如本发明更详细地描述,本发明组合物包含靶向Eg5的第一dsRNA和靶向VEGF的第二dsRNA。所述第一和第二dsRNA可以具有相同的突出端构造,例如,各链上的核苷酸突出端数,或各dsRNA可以具体不同的构造。在一个实施方式中,靶向Eg5的第一dsRNA在各链的3′端包括2个核苷酸的突出端,且靶向VEGF的第二dsRNA在反义链的3′端包括2个核苷酸的突出端且在反义链的5′端(例如,有义链的3′端)包括平端。
在一个实施方式中,被本发明dsRNA靶向的Eg5基因是人Eg5基因。在一个实施方式中,所述靶向Eg5的dsRNA的反义链包含表1-3反义序列之一的至少15个相连核苷酸。在具体实施方式中,所述dsRNA的第一序列选自表1-3的有义链之一,且所述第二序列选自表1-3的反义序列。表1-3提供的靶向靶序列其它地方的可选反义试剂可使用靶序列和侧翼Eg5序列容易地确定。在一些实施方式中,靶向Eg5的dsRNA将包含至少两条选自表1-3所提供序列的核苷酸序列。该两条序列中的一条和该两条序列中的另一条互补,其中一条序列和在Eg5基因的表达中产生的mRNA序列基本上互补。同样地,所述dsRNA将包含两个寡核苷酸,其中一个寡核苷酸被描述为表1-3中的有义链,且第二寡核苷酸被描述为表1-3中的反义链。
在使用靶向VEGF的第二dsRNA的实施方式中,这种试剂在实施例、表4a和4b以及共同未决的美国专利序列号11/078,073和11/340,080(以引用方式合并于此)中说明。在一个实施方式中,所述靶向VEGF的dsRNA具有和表4a中描述的VEGF靶序列的至少15个相连核苷酸互补的反义链。在其他实施方式中,靶向VEGF的dsRNA包含表4b的反义序列之一,或表4b的有义序列之一,或包含表4b的双链体(有义和反义链)之一。
本领域技术人员很了解,含有20到23个,特别是21个碱基对的双链体结构的dsRNA已在诱导RNA干涉中证实为特别有效(Elbashir等人,EMBO 2001,20:6877-6888)。然而,也发现,较短或较长的dsRNA也可能是有效的。在上面描述的实施方式中,借助于表1-3提供的寡核苷酸序列的性质,本发明dsRNA可以包含至少一条长度最小为21nt的链。可以合理地预期,与上述dsRNA相比,含有表1-3序列之一在一端或两端仅减去几个核苷酸的较短dsRNA可能类似地有效。因此,本发明涉及含有来自表1-3序列之一的至少15、16、17、18、19、20或更多个相连核苷酸的部分序列、且在如下文所述的FACS试验中抑制Eg5基因表达的能力与含有全序列的dsRNA相差不超过5、10、15、20、25或30%抑制的dsRNA。此外,可使用Eg5序列和所提供的靶序列容易地制备切割表1-3提供的靶序列的dsRNA。靶向VEGF的其他dsRNA可以使用表4a和4b、实施例和共同未决的美国序列号11/078,073和11/340,080(以引用方式合并于此)中公开的序列以类似方式设计。
此外,表1-3提供的RNAi试剂识别了对基于RNAi的切割敏感的Eg5mRNA中的位点。因而,本发明还包括RNAi试剂,例如,靶向被本发明试剂之一靶向的序列内的dsRNA。如本发明所使用,如果第二RNAi试剂切割与第一RNAi试剂的反义链互补的mRNA内任何地方的信使,则称第二RNAi试剂靶向第一RNAi试剂的序列内。这种第二试剂通常由来自表1-3提供的序列之一的至少15个相连核苷酸组成,所述序列和来自与Eg5基因中选定序列相连的区域的其他核苷酸序列相连。例如,和来自靶Eg5基因的随后6个核苷酸连接的SEQ ID NO:1的最后15个核苷酸形成基于表1-3提供的序列之一的21个核苷酸的单链试剂。其他的RNAi试剂,例如,靶向VEGF的dsRNA可以使用表4a和4b、实施例和共同未决的美国序列号11/078,073和11/340,080(以引用方式合并于此)中公开的序列以类似方式设计。
本发明dsRNA可以包含与靶序列的一个或多个错配。在一个优选的实施方式中,本发明dsRNA包含不超过3个错配。如果所述dsRNA的反义链包含与靶序列的错配,优选的是,错配区域不位于互补区的中央。如果所述dsRNA的反义链包含与靶序列的错配,优选的是,所述错配限制于来自任一端的5个核苷酸,例如,来自互补区的5′或3′端的5、4、3、2或1个核苷酸。例如,对于和Eg5基因区互补的23个核苷酸的dsRNA链,通常所述dsRNA在中央的13个核苷酸内不包含任何错配。本发明描述的方法可用于确定含有与靶序列的错配的dsRNA是否能有效抑制Eg5基因的表达。具有错配的dsRNA在抑制Eg5基因表达中的有效性考虑是重要的,特别是,如果已知种群内Eg5基因中特定的互补区具有多态性序列变异。
修饰
在又一个实施方式中,化学修饰所述dsRNA以提高稳定性。可通过本领域沿用已久的方法合成和/或修饰本发明核酸,例如“Currentprotocols in nucleic acid chemistry,”Beaucage,S.L.等(Edrs.),John Wiley&Sons,Inc.,New York,NY,USA中描述的方法,该文献以引用方式合并于此。用于本发明的优选dsRNA化合物的具体例子包括含有修饰骨架或不含天然核苷间连键的dsRNA。如本说明书所定义,含有修饰骨架的dsRNA包括骨架中保留磷原子的那些和骨架中不含有磷原子的那些。为本说明书目的,以及曾经在本领域中所引用的,其核苷间骨架中不含有磷原子的修饰dsRNA也可被认为是寡核苷。
优选的修饰dsRNA骨架例如包括硫代磷酸酯、手性硫代磷酸酯、二硫代磷酸酯、磷酸三酯、氨基烷基磷酸三酯;甲基及其他烷基磷酸酯,包括3’-亚烷基磷酸酯和手性磷酸酯、亚膦酸酯;氨基磷酸酯,包括具有正常3’-5’连键的3’-氨基氨基磷酸酯和氨基烷基氨基磷酸酯、硫羰基氨基磷酸酯、硫羰基烷基磷酸酯、硫羰基烷基磷酸三酯和硼烷磷酸酯(boranophosphates),这些物质的2’-5’连接类似物,以及具有反极性的那些,其中相邻的核苷单元对是3’-5’到5’-3’或2’-5’到5’-2’连接。也包括各种盐、混合盐和游离酸形式。
教导上述含磷连键的制备的典型美国专利包括但不限于美国专利Nos.3,687,808;4,469,863;4,476,301;5,023,243;5,177,195;5,188,897;5,264,423;5,276,019;5,278,302;5,286,717;5,321,131;5,399,676;5,405,939;5,453,496;5,455,233;5,466,677;5,476,925;5,519,126;5,536,821;5,541,316;5,550,111;5,563,253;5,571,799;5,587,361;和5,625,050,各专利以引用方式合并于此。
其中不包括磷原子的优选的修饰dsRNA骨架具有由短烷基链或环烷基核苷间连键、混合的杂原子和烷基或环烷基核苷间连键、或一条或多条短链杂原子或杂环核苷间连键形成的骨架。这些骨架包括具有吗啉代连键(部分地由核苷的糖部分形成);硅氧烷骨架;硫化物、亚砜和砜骨架;甲酰基和硫代甲酰基骨架;亚甲基甲酰基和硫代甲酰基骨架;含烯烃骨架;氨基磺酸酯骨架;亚甲基亚氨基和亚甲基联氨基骨架;磺酸酯和氨磺酰骨架;酰胺骨架的骨架;以及具有混合的N、O、S和CH2组成部分的其他骨架。
教导上述寡核苷的制备的典型美国专利包括但不限于美国专利Nos.5,034,506;5,166,315;5,185,444;5,214,134;5,216,141;5,235,033;5,64,562;5,264,564;5,405,938;5,434,257;5,466,677;5,470,967;5,489,677;5,541,307;5,561,225;5,596,086;5,602,240;5,608,046;5,610,289;5,618,704;5,623,070;5,663,312;5,633,360;5,677,437;和5,677,439,各专利以引用方式合并于此。
在其他优选的dsRNA模拟物中,核苷酸单元的糖和核苷间连键两者,即骨架,被新的基团替换。保留碱基单元以用于和适当的核酸靶化合物杂交。一种这样的低聚化合物,即已经显示具有优异杂交性质的dsRNA模拟物,被称为肽核酸(PNA)。在PNA化合物中,dsRNA的糖骨架被含有骨架特别是氨基乙基甘氨酸骨架的酰胺替换。核碱基被保留并直接或间接地和骨架的酰胺部分的氮杂氮原子结合。教导PNA化合物制备的典型美国专利包括但不限于美国专利Nos.5,539,082;5,714,331;和5,719,262,各专利以引用方式合并于此。PNA化合物的更多教导可在Nielsen等人,Science,1991,254,1497-1500中发现。
本发明最优选的实施方式是具有硫代磷酸酯骨架和寡核苷的dsRNA,其具有杂原子骨架,特别是上文引用的美国专利No.5,489,677的--CH2--NH--CH2--、--CH2--N(CH3)--O--CH2--[称为亚甲基(甲基亚氨基)或MMI骨架]、--CH2--O--N(CH3)--CH2--、--CH2--N(CH3)--N(CH3)--CH2--和--N(CH3)--CH2--CH2--[其中天然磷酸二酯骨架表示为--O--P--O--CH2--],以及上文引用的美国专利No.5,602,240的酰胺骨架。具有上文引用的美国专利No.5,034,506的吗啉代骨架结构的dsRNA也是优选的。
修饰dsRNA也可以包含一个或多个取代的糖部分。优选的dsRNA包含位于2’位的以下之一:OH;F;O-、S-或N-烷基;O-、S-或N-烯基;O-、S-或N-炔基;或O-烷基-O-烷基,其中所述烷基、烯基和炔基可以是取代或未取代的C1到C10烷基或C2到C10烯基和炔基。特别优选的是O[(CH2)nO]mCH3、O(CH2)nOCH3、O(CH2)nNH2、O(CH2)nCH3、O(CH2)nONH2和O(CH2)nON[(CH2)nCH3)]2,其中n和m从1到约10。其他优选的dsRNA包括位于2’位的以下之一:C1到C10低级烷基、取代的低级烷基、烷芳基、芳烷基、O-烷芳基或O-芳烷基、SH、SCH3、OCN、Cl、Br、CN、CF3、OCF3、SOCH3、SO2CH3、ONO2、NO2、N3、NH2、杂环烷基、杂环烷芳基、氨基烷基氨基、聚烷基氨基、取代甲硅烷基、RNA切割基团、报道基团、嵌入基团、用于改善dsRNA药代动力学性质的基团或用于改善dsRNA药效学性质的基团,以及其他具有类似性质的取代基。优选的修饰包括2’-甲氧基乙氧基(2’-O--CH2CH2OCH3,也称为2’-O-(2-甲氧基乙基)或2’-MOE)(Martin等人,Helv.Chim.Acta,1995,78,486-504),即烷氧基-烷氧基基团。其他优选的修饰包括2’-二甲基氨基氧基乙氧基,即O(CH2)2ON(CH3)2基团,也称为2’-DMAOE,如以下实施例所述,以及2’-二甲基氨基乙氧基乙氧基(本领域也称为2’-O-二甲基氨基乙氧基乙基或2’-DMAEOE),即2’-O--CH2--O--CH2--N(CH2)2,也在以下实施例中描述。
其他优选的修饰包括2’-甲氧基(2′-OCH3)、2’-氨基丙氧基(2’-OCH2CH2CH2NH2)和2’-氟(2’-F)。相似的修饰也可在dsRNA的其他位置进行,特别是3’端核苷酸上的糖的3’位或2’-5’连接的dsRNAs中和5’端核苷酸的5’位。dsRNA也可以用糖模拟物,例如环丁基部分代替戊呋喃糖基糖。教导这种修饰糖结构的典型美国专利包括但不限于美国专利Nos.4,981,957;5,118,800;5,319,080;5,359,044;5,393,878;5,446,137;5,466,786;5,514,785;5,519,134;5,567,811;5,576,427;5,591,722;5,597,909;5,610,300;5,627,053;5,639,873;5,646,265;5,658,873;5,670,633;和5,700,920,其中某些是本申请所通常拥有的,且各专利以引用方式全部合并于此。
dsRNA也可以包括核碱基(本领域通常简称为“碱基”)修饰或替换。如本发明所使用,“未修饰的”或“天然的”核碱基包括嘌呤碱基腺嘌呤(A)和鸟嘌呤(G),以及嘧啶碱基胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。修饰的核碱基包括其他合成和天然的核碱基,例如5-甲基胞嘧啶(5-me-C)、5-羟甲基胞嘧啶、黄嘌呤、次黄嘌呤、2-氨基腺嘌呤、腺嘌呤和鸟嘌呤的6-甲基及其他烷基衍生物、腺嘌呤和鸟嘌呤的2-丙基及其他烷基衍生物、2-硫尿嘧啶、2-硫胸腺嘧啶和2-硫胞嘧啶、5-卤尿嘧啶和胞嘧啶、5-丙炔尿嘧啶和胞嘧啶、6-偶氮尿嘧啶、胞嘧啶和胸腺嘧啶、5-尿嘧啶(假尿嘧啶)、4-硫尿嘧啶、8-卤代、8-氨基、8-硫醇、8-硫烷基、8-羟基以及其他8-取代的腺嘌呤和鸟嘌呤、5-卤代,特别是5-溴代、5-三氟甲基及其他5-取代的尿嘧啶和胞嘧啶、7-甲基鸟嘌呤和7-甲基腺嘌呤、8-氮鸟嘌呤和8-氮腺嘌呤、7-脱氮鸟嘌呤和7-脱氮腺嘌呤和3-脱氮鸟嘌呤和3-脱氮腺嘌呤。其他核碱基包括美国专利No.3,687,808中公开的那些、The Concise EncyclopediaOf Polymer Science And Engineering,858-859页,Kroschwitz,J.L,ed.John Wiley&Sons,1990中公开的那些、Englisch等人,AngewandteChemie,International Edition,1991,30,613中公开的那些以及Sanghvi,Y S.,Chapter 15,DsRNA Research and Applications,289-302页,Crooke,S.T.和Lebleu,B.,Ed.,CRC Press,1993中公开的那些。这些核碱基中的某些对增加本发明低聚化合物的结合亲和力特别有用。这些核碱基包括5-取代的嘧啶、6-氮嘧啶和N-2、N-6和0-6取代的嘌呤,包括2-氨基丙基腺嘌呤、5-丙炔尿嘧啶和5-丙炔胞嘧啶。已显示5-甲基胞嘧啶取代基能增加核酸双链体稳定性0.6-1.2摄氏度(Sanghvi,Y.S.,Crooke,S.T.and Lebleu,B.,Eds.,DsRNA Researchand Applications,CRC Press,Boca Raton,1993,276-278页),其目前是优选的碱基取代基,尤其是当与2’-O-甲氧基乙基糖修饰结合时。
教导某些上述引用的修饰核碱基以及其他修饰核碱基的制备的典型美国专利包括但不限于上述引用的美国专利No.3,687,808以及美国专利Nos.4,845,205;5,130,30;5,134,066;5,175,273;5,367,066;5,432,272;5,457,187;5,459,255;5,484,908;5,502,177;5,525,711;5,552,540;5,587,469;5,594,121,5,596,091;5,614,617;和5,681,941,各专利以引用方式合并于此,以及美国专利No.5,750,692,其也以引用方式合并于此。
缀合物
本发明dsRNA的另一种修饰包括一种或多种提高dsRNA的活性、细胞分布或细胞摄取的部分或缀合物化学连接至dsRNA上。这种部分包括但不限于脂质部分,例如胆固醇部分(Letsinger等人,Proc.Natl.Acid.Sci.USA,199,86,6553-6556)、胆酸(Manoharan等人,Biorg.Med.Chem.Let.,1994 4 1053-1060);硫醚,例如绿玉基-S-三苯基甲硫醇(Manoharan等人,Ann.N.Y.Acad.Sci.,1992,660,306-309;Manoharan等人,Biorg.Med.Chem.Let.,1993,3,2765-2770)、巯基胆固醇(Oberhauser等人,Nucl.Acids Res.,1992,20,533-538);脂肪链,例如十二烷二醇或十一烷基残基(Saison-Behmoaras等人,EMBO J,1991,10,1111-1118;Kabanov等人,FEBS Lett.,1990,259,327-330;Svinarchuk等人,Biochimie,1993,75,49-54);磷脂,例如二-十六烷基-rac-甘油或三乙基-铵1,2-二-O-十六烷基-rac-丙三氧基-3-H磷酸酯(Manoharan等人,TetrahedronLett.,1995,36,3651-3654;Shea等人,Nucl.Acids Res.,1990,18,3777-3783);聚胺或聚乙二醇链(Manoharan等人,Nucleosides&Nucleotides,1995,14,969-973),或金刚烷乙酸(Manoharan等人,Tetrahedron Lett.,1995,36,3651-3654)、棕榈基部分(Mishra等人,Biochim.Biophys.Acta,1995,1264,229-237)或十八烷基胺或己基胺-羰基羟胆固醇部分(Crooke等人,J.Pharmacol.Exp.Ther.,1996,277,923-937)。
教导这些dsRNA缀合物的制备的典型美国专利包括但不限于美国专利Nos.4,828,979;4,948,882;5,218,105;5,525,465;5,541,313;5,545,730;5,552,538;5,578,717,5,580,731;5,591,584;5,109,124;5,118,802;5,138,045;5,414,077;5,486,603;5,512,439;5,578,718;5,608,046;4,587,044;4,605,735;4,667,025;4,762,779;4,789,737;4,824,941;4,835,263;4,876,335;4,904,582;4,958,013;5,082,830;5,112,963;5,214,136;5,082,830;5,112,963;5,214,136;5,245,022;5,254,469;5,258,506;5,262,536;5,272,250;5,292,873;5,317,098;5,371,241,5,391,723;5,416,203,5,451,463;5,510,475;5,512,667;5,514,785;5,565,552;5,567,810;5,574,142;5,585,481;5,587,371;5,595,726;5,597,696;5,599,923;5,599,928和5,688,941,各专利以引用方式合并于此。
不需要对给定化合物的所有位置进行统一修饰,事实上单个化合物甚至是dsRNA内的单个核苷中可组合一种以上上述修饰。本发明也包括为嵌合化合物的dsRNA化合物。在本发明上下文中,“嵌合的”dsRNA化合物或“嵌合体”是包含两个或更多个各自由至少一个单体单元(即,就dsRNA化合物而言是核苷酸)组成的化学上不同的区域的dsRNA化合物,特别是dsRNA。这些dsRNA通常包含至少一个区域,其中dsRNA被修饰,以赋予dsRNA增加的对核酸酶降解的抵抗力,增加的细胞摄取和/或增加的与靶核酸的结合亲和力。dsRNA的其他区域可以充当能够切割RNA:DNA或RNA:RNA杂交体的酶的底物。例如,RNase H是切割RNA:DNA双链体的RNA链的细胞核酸内切酶。因此,RNase H的活化导致RNA靶标的切割,从而极大增强了dsRNA抑制基因表达的效果。因此,当使用嵌合dsRNA时,与和相同靶区域杂交的硫代磷酸酯脱氧dsRNA比较,通常可以用较短的dsRNA得到类似结果。RNA靶标的切割可通过本领域已知的凝胶电泳,如有必要,和相关的核酸杂交技术按常规检测。
在某些情况下,可通过非配体基团修饰所述dsRNA。许多非配体分子已经和dsRNA缀合,以提高dsRNA的活性、细胞分布或细胞摄取,进行这种缀合的过程可在科学文献中得到。这种非配体部分包括脂质部分,例如胆固醇(Letsinger等人,Proc.Natl.Acad.Sci.USA,1989,86:6553)、胆酸(Manoharan等人,Bioorg.Med.Chem.Lett.,1994,4:1053);硫醚,例如己基-S-三苯基甲硫醇(Manoharan等人,Ann.N.Y.Acad.Sci.,1992,660:306;Manoharan等人,Bioorg.Med.Chem.Let.,1993,3:2765)、巯基胆固醇(Oberhauser等人,Nucl.AcidsRes.,1992,20:533);脂肪链,例如十二烷二醇或十一烷基残基(Saison-Behmoaras等人,EMBO J.,1991,10:111;Kabanov等人,FEBSLett.,1990,259:327;Svinarchuk等人,Biochimie,1993,75:49);磷脂,例如二-十六烷基-rac-甘油或三乙基铵1,2-二-O-十六烷基-rac-丙三氧基-3-H-磷酸酯(Manoharan等人,Tetrahedron Lett.,1995,36:3651;Shea等人,Nucl.Acids Res.,1990,18:3777);聚胺或聚乙二醇链(Manoharan等人,Nucleosides & Nucleotides,1995,14:969),或金刚烷乙酸(Manoharan等人,Tetrahedron Lett.,1995,36:3651)、棕榈基部分(Mishra等人,Biochim.Biophys.Acta,1995,1264:229)或十八烷基胺或己基胺-羰基羟胆固醇部分(Crooke等人,J.Pharmacol.Exp.Ther.,1996,277:923)。教导这种dsRNA缀合物的制备的典型美国专利已在上文列出。典型的缀合方案包括合成在序列的一个或多个位置上带有氨基连接基的dsRNA。然后氨基与用适当的偶联剂或活化剂缀合的分子反应。可采用仍与固相载体结合的dsRNA或在溶液相中切割dsRNA后进行所述缀合反应。通过HPLC纯化dsRNA缀合物通常得到纯缀合物。
在一些情况下,配体可以是多功能的和/或dsRNA可以缀合到一个以上配体。例如,dsRNA可以缀合到一个配体上,以提高摄取,并缀合到第二配体上,以改善释放。
载体编码的siRNA试剂
本发明的另一方面中,由转录单位表达的Eg5和VEGF特异性dsRNA分子***DNA或RNA载体中(例如参见Couture,A,等人,TIG.(1996),12:5-10;Skillern,A.,等人,国际PCT公布说明书No.WO00/22113,Conrad,国际PCT公布说明书No.WO 00/22114,以及Conrad,美国专利No.6,054,299)。这些转基因可作为线型构建体、圆形质粒或病毒载体引入,其可以被结合并作为整合入宿主基因组中的转基因遗传。也可构建转基因,以使其作为染色体外质粒遗传(Gassmann,等人,Proc.Natl.Acad.Sci.USA(1995)92:1292)。
可通过位于两个单独的表达载体上的启动子转录dsRNA的单个链并共转染入靶细胞中。或者可通过均位于同一表达质粒上的启动子转录dsRNA的各单个链。在优选的实施方式中,dsRNA可表示为通过连接子多核苷酸序列连接的反向重复,以使dsRNA具有茎和环结构。
重组dsRNA表达载体通常是DNA质粒或病毒载体。表达dsRNA的病毒载体可基于但不限于以下病毒进行构建:腺伴随病毒(综述参见Muzyczka,等人,Curr.Topics Micro.Immunol.(1992)158:97-129));腺病毒(例如参见Berkner,等人,BioTechniques(1998)6:616),Rosenfeld等(1991,Science 252:431-434),和Rosenfeld等(1992),Cell 68:143-155));或甲病毒以及本领域已知的其他病毒。逆转录病毒已用于在体外和/或体内将多种基因引入许多不同的细胞类型中,包括上皮细胞(例如参见Eglitis,等人,Science(1985)230:1395-1398;Danos and Mulligan,Proc.NatI.Acad.Sci.USA(1998)85:6460-6464;Wilson等人,1988,Proc.Natl.Acad.Sci.USA 85:3014-3018;Armentano等人,1990,Proc.Natl.Acad.Sci.USA 87:61416145;Huber等人,1991,Proc.Natl.Acad.Sci.USA 88:8039-8043;Ferry等人,1991,Proc.Natl.Acad.Sci.USA 88:8377-8381;Chowdhury等人,1991,Science 254:1802-1805;van Beusechem.等人,1992,Proc.Natl.Acad.Sci.USA 89:7640-19;Kay等人,1992,Human Gene Therapy3:641-647;Dai等人,1992,Proc.Natl.Acad.Sci.USA 89:10892-10895;Hwu等人,1993,J.Immunol.150:4104-4115;美国专利No.4,868,116;美国专利No.4,980,286;PCT申请WO 89/07136;PCT申请WO89/02468;PCT申请WO 89/05345;以及PCT申请WO 92/07573)。能够转导并表达***细胞基因组中的基因的重组逆转录病毒载体可通过将重组逆转录病毒基因组转染入适当的包装细胞系来制备,所述包装细胞系例如PA317和Psi-CRIP(Comette等人,1991,Human GeneTherapy 2:5-10;Cone等人,1984,Proc.Natl.Acad.Sci.USA 81:6349)。重组腺病毒载体可用于感染易染宿主(例如大鼠、仓鼠、狗和黑猩猩)中的多种细胞和组织(Hsu等人,1992,J.Infectious Disease,166:769),且具有不需要有丝***活性细胞用于感染的优势。
可以使用能够接受待表达的dsRNA分子的编码序列的任何病毒载体,例如源自腺病毒(AV);腺伴随病毒(AAV);逆转录病毒(例如慢病毒(LV)、棒状病毒、鼠白血病病毒);疱疹病毒等的载体。可通过使载体和包膜蛋白或来自其他病毒的其他表面抗原形成假型或视情况通过取代不同的病毒衣壳蛋白来修饰病毒载体的向性。
例如,本发明的慢病毒载体可以和来自水泡性口膜炎病毒(VSV)、狂犬病、Ebola、Mokola等的表面蛋白形成假型。通过将所述载体工程改造为表达不同的衣壳蛋白血清型,可使本发明AAV载体靶向不同的细胞。例如,表达血清型2基因组上的血清型2衣壳的AAV载体称为AAV2/2。所述AAV2/2载体中的该血清型2衣壳基因可被血清型5衣壳基因替代,以生成AAV2/5载体。构建表达不同的衣壳蛋白血清型的AAV载体的技术在本领域技术人员范围之内;例如参见Rabinowitz J E等(2002),J Virol 76:791-801,其以引用方式全部合并于此。
适用于本发明的重组病毒载体的选择、用于将用于表达dsRNA的核酸序列***所述载体的方法以及将病毒载体递送至所需细胞中的方法在本领域技术人员的范围之内。例如参见Dornburg R(1995),Gene Therap.2:301-310;Eglitis M A(1988),Biotechniques 6:608-614;Miller A D(1990),Hum Gene Therap.1:5-14;Anderson W F(1998),Nature 392:25-30;和Rubinson D A等人,Nat.Genet.33:401-406,这些文献以引用方式全部合并于此。
优选的病毒载体是来源于AV和AAV的病毒。在特别优选的实施方式中,本发明dsRNA表达为来自于重组AAV载体的两个单独的、互补的单链RNA分子,所述载体例如含有U6或H1 RNA启动子,或巨细胞病毒(CMV)启动子。
用于表达本发明dsRNA的适合的AV载体、用于构建重组AV载体的方法和用于将所述载体递送入靶细胞的方法描述在Xia H等(2002),Nat.Biotech.20:1006-1010中。
用于表达本发明dsRNA的适合的AAV载体、用于构建重组AV载体的方法和用于将所述载体递送入靶细胞的方法描述在SamulskiR等(1987),J.Virol.61:3096-3101;Fisher K J等(1996),J.Virol,70:520-532;Samulski R等(1989),J.Virol.63:3822-3826;U.S.Pat.No.5,252,479;U.S.Pat.No.5,139,941;国际专利申请No.WO 94/13788;和国际专利申请No.WO 93/24641中,这些文献以引用方式全部合并于此。
驱动本发明dsRNA在DNA质粒或病毒载体中表达的启动子可以是真核RNA聚合酶I(例如核糖体RNA启动子)、RNA聚合酶II(例如CMV早期启动子或肌动蛋白启动子或U1 snRNA启动子)或通常是RNA聚合酶III启动子(例如U6 snRNA或7SK RNA启动子)或原核启动子,例如T7启动子,前提是所述表达质粒也编码从T7启动子转录所需的T7RNA聚合酶。所述启动子也可以将转基因表达引导至胰腺(例如参见the insulin regulatory sequence for pancreas(Bucchini等人,1986,Proc.Natl.Acad.Sci.USA 83:2511-2515))。
另外,转基因的表达例如可以通过使用可诱导的调节序列和表达***来精确地调节,例如对某些生理学调节剂例如循环葡萄糖水平或激素敏感的调节序列(Docherty等人,1994,FASEB J.8:20-24)。适于控制细胞或哺乳动物中的转基因表达的这种诱导型表达***包括通过蜕皮激素、***、***、四环素、二聚作用的化学诱导剂和异丙基-β-D1-硫代吡喃半乳糖苷(EPTG)调节。本领域技术人员将能基于dsRNA转基因的预定用途选择合适的调节/启动子序列。
通常,如下所述递送能表达dsRNA分子的重组载体,并保持在靶细胞中。或者,可使用提供dsRNA分子的瞬时表达的病毒载体。这种载体可以根据需要重复给药。一旦表达,dsRNA和靶RNA结合并调节其功能或表达。dsRNA表达载体的递送可以是全身性的,例如经由静脉内或肌内给药,通过给药至从患者外植的靶细胞,然后再引入患者,或通过能够引入所需靶细胞的任何其他手段。
DsRNA表达DNA质粒通常作为和阳离子脂质载体(例如Oligofectamine)或非阳离子脂质基载体(例如Transit-TKOTM)的复合物转染入靶细胞。本发明也涉及用于dsRNA-介导的抑制的多个脂质转染,所述抑制在一周或更长时间内针对单个EG5基因(或VEGF基因)或多个EG5基因(或VEGF基因)的不同区域。可通过使用各种已知方法监控本发明载体向宿主细胞内的成功引入。例如,可以用报道基因,例如荧光标记物,如绿色荧光蛋白(GFP)对瞬时转染发信号。可使用为转染细胞提供抗特定环境因素(例如,抗生素和药物)抗性,例如潮霉素B抗性的标记物来确保离体细胞的稳定转染。
Eg5特异性dsRNA分子和VEGF特异性dsRNA分子也可***载体中并用作用于人类患者的基因治疗载体。例如可通过静脉注射、局部给药(参见美国专利5,328,470)或立体定位注射(例如参见Chen等(1994)Proc.Natl.Acad.Sci.USA 91:3054-3057)将基因治疗载体递送至患者。基因治疗载体的药物制剂可以包括可接受的稀释剂中的基因治疗载体,或可以包括包埋基因递送介质的缓释基质。或者,如果可从重组细胞完整地制备完整的基因递送载体例如逆转录病毒载体,则该药物制剂可以包括一种或多种产生基因递送***的细胞。
包含dsRNA的药物组合物
在一个实施方式中,本发明提供含有本发明描述的dsRNA和药学可接受的载体的药物组合物,以及给药该药物组合物的方法。所述含有dsRNA的药物组合物用于治疗与Eg5/KSP和/或VEGF基因的表达或活性有关的疾病或疾患,例如由Eg5/KSP和/或VEGF表达介导的病理过程,例如肝癌。这种药物组合物基于递送方式配制。
剂量
本发明特征的药物组合物以足以抑制Eg5/KSP和/或VEGF基因的表达的剂量给药。通常,dsRNA的适当剂量为0.01到200.0毫克(mg)每公斤(kg)接受者体重每天,通常为1到50mg每公斤体重每天。例如,dsRNA可以0.01mg/kg、0.05mg/kg、0.5mg/kg、1mg/kg、1.5mg/kg、2mg/kg、3mg/kg、5.0mg/kg、10mg/kg、20mg/kg、30mg/kg、40mg/kg或50mg/kg每单次剂量给药。
所述药物组合物可以一天给药一次,或所述dsRNA可在一天内以适当间隔以二、三或更多次子剂量给药。单次剂量对Eg5/KSP和/或VEGF水平的效果是持久的,使得后续剂量以不超过7天间隔或以不超过1、2、3或4周间隔给药。
在一些实施方式中,所述dsRNA使用连续输注给药,或通过控释制剂递送。在那种情况下,包含于各子剂量中的dsRNA必须相应地减少,以达到总每日剂量。也可以混合所述剂量单位,用于在若干天内递送,例如,使用在若干天时间内提供dsRNA的持续释放的常用持续释放制剂。持续释放制剂是本领域熟知的,其对将试剂递送至特定部位特别有用,例如能和本发明试剂一起使用。在该实施方式中,所述剂量单位包含相应的多次日剂量。
本领域技术人员应理解,某些因素可以影响有效治疗受试者所要求的剂量和时机,包括但不限于:疾病或疾患的严重性、之前的治疗、受试者的总体健康和/或年龄及其他存在的疾病。此外,用治疗有效量的组合物治疗受试者可以包括单次治疗或一系列治疗。可使用常规方法或使用本发明其他地方描述的适当动物模型根据体内试验估计本发明涉及的个体dsRNA的有效剂量和体内半衰期。
小鼠遗传学进展已产生用于研究各种人类疾病,例如由Eg5/KSP和/或VEGF表达介导的病理过程的许多小鼠模型。这种模型用于dsRNA的体内试验,以及用于测定治疗有效剂量。适当的小鼠模型例如是含有表达人Eg5/KSP和/或VEGF的质粒的小鼠。另一种适当的小鼠模型是携带表达人Eg5/KSP和/或VEGF的转基因的转基因小鼠。
这种化合物的毒性和治疗效果可通过例如用于测定LD50(群体的50%死亡的剂量)和ED50(群体的50%治疗有效的剂量)的细胞培养或实验动物中的标准药物程序来测定。毒性与治疗效果的剂量比是治疗指数,它可以用LD50/ED50比来表示。优选具有高治疗指数的化合物。
由细胞培养试验和动物研究获得的数据可用于制定供人用的剂量范围。本发明特征的组合物剂量通常在包括ED50但几乎没有或没有毒性的循环浓度范围内。取决于所用剂型和所用给药途径,所述剂量可在该范围内改变。对于本发明特征的方法中使用的任何化合物,可最初由细胞培养试验估计治疗有效剂量。可在动物模型中制定剂量,以获得所述化合物的循环血浆浓度范围,以及如果合适,靶序列的多肽产物的循环血浆浓度范围(例如,获得降低的多肽浓度),所述浓度范围包括在细胞培养中测定的IC50(即测试化合物达到症状半数最大抑制的浓度)。这种信息可用于更精确地测定人有用的剂量。例如,可通过高效液相色谱法测定血浆水平。
除如上讨论的它们的给药以外,本发明特征的dsRNA可以和有效治疗由靶基因表达介导的病理过程的其他已知药剂联合给药。无论如何,执业医师可以根据使用本领域已知或本发明描述的功效标准测量所观察到的结果调节dsRNA给药的剂量和时机。
给药
取决于是需要局部还是全身治疗并取决于待治疗区域,本发明药物组合物可以多种方式给药。给药可以是局部、经肺(例如,通过吸入或吹入粉末或气雾剂,包括通过喷雾器)、气管内、鼻内、表皮和透皮以及皮下、经口或胃肠外,例如皮下。
通常,当治疗患有血脂质过多的哺乳动物时,dsRNA分子经由肠胃外方式全身给药。肠胃外给药法包括静脉内、动脉内、皮下、腹膜内或肌肉注射或输注;或颅内,例如,实质内、鞘内或心室内给药。例如,结合或非结合的或配制成含脂质体或不含脂质体的dsRNA可以经静脉内给药至患者。为此,dsRNA分子可以配制成组合物,例如无菌和非无菌的水溶液、在常用溶剂例如醇中的非水溶液或液体或固体油性基质中的溶液。这种溶液也可以包含缓冲液、稀释剂及其他适当的添加剂。对于胃肠外、鞘内或心室内给药,dsRNA分子可以配制成组合物,例如无菌水溶液,其也可以包含缓冲液、稀释剂及其他适当的添加剂(例如,渗透促进剂、载体化合物及其他药学可接受的载体)。本发明更详细地描述制剂。
dsRNA可以以靶向特定组织例如肝脏(例如,肝脏的肝细胞)的方式递送。
制剂
可以方便地存在于单元剂型中的本发明药物制剂可根据制药工业熟知的常规方法制备。这种技术包括使活性成分和药物载体或赋形剂混合的步骤。通常,使活性成分均匀且紧密地和液体载体或精细粉碎的固体载体或两者混合,如有必要,随后成形产品来制备所述制剂。
本发明组合物可配制成许多可能的剂型中的任一种,例如但不限于片剂、胶囊、凝胶胶囊、液体糖浆、软凝胶、栓剂和灌肠剂。本发明组合物也可以配制成水、非水或混合介质中的悬浮液。水悬浮液还可以包含增加所述悬浮液粘性的物质,包括例如羧甲基纤维素钠、山梨醇和/或右旋糖酐。悬浮液也可以包含稳定剂。
本发明药物组合物包括但不限于溶液、乳剂和含脂质体的制剂。这些组合物可由多种组分产生,所述组分包括但不限于预形成液体、自乳化固体和自乳化半固体。一方面,当治疗肝脏疾病例如高脂血症时,所述制剂是靶向肝的制剂。
另外,靶向EG5/KSP和/或VEGF基因的dsRNA可以配制成含有与其他分子、分子结构或核酸混合物混合、包封、缀合或以其他方式连接的dsRNA的组合物。例如,含有靶向EG5/KSP和/或VEGF基因的一种或多种dsRNA试剂的组合物可以包含其他治疗剂,例如其他癌症治疗剂或靶向非-EG5/KSP和/或VEGF基因的一种或多种dsRNA化合物。
经口、胃肠外、局部和生物制剂
用于口服的组合物和制剂包括粉末或颗粒、微颗粒、纳米颗粒、悬浮液或水溶液或非水介质、胶囊、凝胶胶囊、袋剂、片剂或微型片剂。增稠剂、矫味剂、稀释剂、乳化剂、分散助剂或粘合剂可能是需要的。在一些实施方式中,经口制剂是本发明特征的dsRNA和一种或多种渗透促进剂、表面活性剂和螯合剂一起给药的制剂。适当的表面活性剂包括脂肪酸和/或其酯或盐、胆汁酸和/或其盐。适当的胆汁酸/盐包括鹅去氧胆酸(CDCA)和熊去氧胆酸(UDCA)、胆酸、脱氢胆酸、脱氧胆酸、甘氨胆酸、乙醇酸、甘油脱氧胆酸、牛磺胆酸、牛磺去氧胆酸、牛磺-24,25-二氢-夫西地酸钠和甘油二氢夫西地酸钠。适当的脂肪酸包括花生四烯酸、十一烷酸、油酸、月桂酸、辛酸、癸酸、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸酯、三癸酸酯、甘油一油酸酯、甘油二月桂酸酯、甘油基1-单癸酸酯、1-十二烷基氮杂环庚烷-2-酮、酰肉碱、酰基胆碱、甘油一酸酯、甘油二酸酯或其药学可接受盐(例如,钠盐)。在一些实施方式中,使用渗透促进剂组合,例如,脂肪酸/盐和胆汁酸/盐组合。一种典型的组合是月桂酸、癸酸和UDCA的钠盐。其他渗透促进剂包括聚氧乙烯-9-月桂酯、聚氧乙烯-20-十六酯。可以包含喷雾干燥颗粒的颗粒形式或包含络合形成微米或纳米颗粒的颗粒形式经口递送本发明特征的dsRNA。dsRNA络合剂包括聚氨基酸;聚亚胺;聚丙烯酸酯;聚烷基丙烯酸酯、聚氧杂环丁烷(polyoxethanes)、聚烷基腈基丙烯酸酯;阳离子化明胶、白蛋白、淀粉、丙烯酸盐、聚乙二醇(PEG)和淀粉;聚烷基腈基丙烯酸酯;DEAE-衍生的聚亚胺、普鲁兰、纤维素和淀粉。适当的络合剂包括壳聚糖、N-三甲基壳聚糖、聚-L-赖氨酸、聚组氨酸、聚鸟氨酸、聚精胺、鱼精蛋白、聚乙烯基吡啶、聚巯基二乙基氨基甲基乙烯P(TDAE)、聚氨基苯乙烯(例如,对氨基)、聚(甲基腈基丙烯酸酯)、聚(乙基腈基丙烯酸酯)、聚(丁基腈基丙烯酸酯)、聚(异丁基腈基丙烯酸酯)、聚(己基腈基丙烯酸酯)、DEAE-异丁烯酸酯、DEAE-己基丙烯酸酯、DEAE-丙烯酰胺、DEAE-白蛋白和DEAE-右旋糖酐、聚甲基丙烯酸酯、聚己基丙烯酸酯、聚(D,L-乳酸)、聚(DL-乳酸-共-羟基乙酸(PLGA)、藻酸酯和聚乙二醇(PEG)。dsRNA的口服制剂及其制备详细地描述在美国专利6,887,906、美国专利公布说明书No.20030027780和美国专利No.6,747,014,其各自以引用方式合并于此。
胃肠外、脑实质内(进入脑)、鞘内、心室内或肝内给药的组合物和制剂可以包括无菌水溶液,其也可以包含缓冲液、稀释剂及其他适当的添加剂,例如但不限于渗透促进剂、载体化合物及其他药学可接受的载体或赋形剂。
用于局部给药的药物组合物和制剂可以包括透皮贴剂、膏剂、洗液、霜剂、凝胶、滴剂、栓剂、喷雾剂、液体和粉末。常用药物载体、水溶液、粉末或含油基质、增稠剂等可能是必要的或合意的。适当的局部制剂包括其中本发明特征化合物和局部递送剂例如脂质、脂质体、脂肪酸、脂肪酸酯、类固醇、螯合剂和表面活性剂混合的制剂。适当的脂质和脂质体包括中性(例如二油酰磷脂酰DOPE乙醇胺、二肉豆蔻酰磷脂酰胆碱DMPC、二硬脂酰磷脂酰胆碱)、阴性(例如二肉豆蔻酰磷脂酰甘油DMPG)和阳离子(例如二油酰四甲基氨基丙基DOTAP和二油酰磷脂酰乙醇胺DOTMA)。本发明特征的dsRNA也可包封在脂质体内或可以与其形成络合物,特别是和阳离子脂质体形成络合物。或者,dsRNA可以与脂质络合,特别是和阳离子脂质络合。适当的脂肪酸和酯包括但不限于花生四烯酸、油酸、花生酸、月桂酸、辛酸、癸酸、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、二癸酸酯、三癸酸酯、甘油一油酸酯、甘油二月桂酸酯、甘油基1-单癸酸酯、1-十二烷基氮杂环庚烷-2-酮、酰肉碱、酰基胆碱、或C1-10烷基酯(例如肉豆蔻酸异丙酯)、甘油一酸酯、甘油二酸酯或其药学可接受盐。局部制剂详细描述在美国专利No.6,747,014中,其以引用方式合并于此。另外,dsRNA分子可作为例如美国专利No.6,271,359中描述的生物或非生物手段给药于哺乳动物。非生物递送可通过多种方法完成,包括但不限于:(1)用本发明提供的dsRNA酸分子载荷脂质体和(2)使dsRNA分子和脂质或脂质体络合以形成核酸-脂质或核酸-脂质体络合物。所述脂质体可由通常用于体外转染细胞的阳离子和中性脂质组成。阳离子脂质可以和带负电荷的核酸络合(例如,电荷相关)以形成脂质体。阳离子脂质体的例子包括但不限于lipofectin、lipofectamine、lipofectace和DOTAP。形成脂质体的方法是本领域已知的。例如脂质体组合物可由卵磷脂、二肉豆蔻酰卵磷脂、二棕榈酰卵磷脂、二肉豆蔻酰磷脂酰甘油或二油酰磷酯酰乙醇胺形成。许多亲脂性试剂是市场可得的,包括LipofectinTM(Invitrogen/Life Technologies,Carlsbad,Calif.)和EffecteneTM(Qiagen,Valencia,Calif.)。另外,可使用市场可得的阳离子脂质例如DDAB或DOTAP优化***递送方法,每种阳离子脂质可与中性脂质例如DOPE或胆固醇混合。在一些情况下,可使用例如Templeton等(NatureBiotechnology,15:647-652(1997))描述的那些脂质体。在其他实施方式中,聚阳离子例如聚乙烯亚胺可用于完成体内和体外递送(Boletta等人,J.Am Soc.Nephrol.7:1728(1996))。关于使用脂质体递送核酸的其他信息可在美国专利No.6,271,359、PCT公布说明书WO 96/40964和Morrissey,D.等2005.Nat Biotechnol.23(8):1002-7中发现。
生物递送可通过多种方法实现,包括但不限于使用病毒载体。例如,病毒载体(例如,腺病毒和疱疹病毒载体)可用于将dsRNA分子递送到肝细胞。标准分子生物学技术可用于将一种或多种本发明提供的dsRNA引入之前开发的许多不同的病毒载体中的一种,以将核酸递送至细胞。所得的这些病毒载体可用于通过例如感染将一种或多种dsRNA递送至细胞。
脂质体制剂
除了微乳剂,已经研究了许多组织化的表面活性结构,并用于药物制剂。其包括单层、胶束、双层和囊泡。囊泡(例如脂质体)因它们在药物递送方面提供的特异性和作用持续性而备受关注。如本发明所使用,术语“脂质体”指的是以球形双层或多个球形双层方式排列的两性分子脂质组成的囊泡。
脂质体是具有由亲脂性材料和水性内部形成的膜的单层或多层囊泡。水性部分包含待递送的组合物。阳离子脂质体具有能够和细胞壁融合的优点。非阳离子脂质体虽然其不能和细胞壁有效融合,但由体内巨噬细胞摄入。
为了透过完整的哺乳动物皮肤,脂质囊泡必须在适当的透皮梯度的影响下穿透一系列直径小于50nm的细孔。因此,需要使用高度可变形的并能够穿透这种细孔的脂质体。
脂质体的其他优点包括:由天然磷脂获得的脂质体是生物相容的和可生物降解的;脂质体可以结合许多水以及脂质可溶性药物;以及脂质体可以保护其内部区室中包封的药物不被代谢和降解(Rosoff,inPharmaceutical Dosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,245页)。制备脂质体制剂中考虑的重要因素是脂质表面电荷、囊泡大小和脂质体的含水体积。
脂质体能将活性成分转移并递送至作用部位。因为脂质体膜在结构上类似于生物膜,当脂质体应用于组织时,所述脂质体开始与细胞膜融合,由于脂质体融合以及细胞前进,脂质体内容物流入活化剂可能作用的细胞。
脂质体制剂已经成为作为许多药物的递送方式的广泛研究的焦点。越来越多的证据表明,对于局部给药,脂质体具有优于其他制剂的若干优点。这种优点包括与所给药药物的高全身吸收有关的副作用的减少、所给药药物在所需靶标上积聚的增加以及能够将多种亲水性和疏水性药物给药进入皮肤。
若干报道详细描述了脂质体将含有高分子量DNA的试剂递送入皮肤的能力。已将包括止痛剂、抗体、激素和高分子量DNA的化合物给药至皮肤。大多数应用导致靶向上表皮。
脂质体分成两大类。阳离子脂质体是带正电荷的脂质体,其与带负电荷的DNA分子相互作用以形成稳定络合物。带正电荷的DNA/脂质体络合物与带负电荷的细胞表面结合并在内涵体中内在化。由于内涵体内的酸性pH,脂质体破裂,释放其内容物进入细胞质(Wang等人,Biochem.Biophys.Res.Commun.,1987,147,980-985)。
pH-敏感或带负电荷的脂质体捕获DNA而不是与其络合。由于DNA和脂质两者带有相似电荷,因此发生排斥而不是形成络合物。然而,一些DNA被捕获在这些脂质体的水性内部里。pH-敏感的脂质体已经用于将编码胸苷激酶基因的DNA递送到培养中的细胞单层中。靶细胞中检测到外源基因的表达(Zhou等人,Journal of Controlled Release,1992,19,269-274)。
脂质体组合物的一种主要类型包括不同于天然衍生的卵磷脂的磷脂。例如,中性脂质体组合物可以由二肉豆蔻酰卵磷脂(DMPC)或二棕榈酰卵磷脂(DPPC)形成。阴离子脂质体组合物通常由二肉豆蔻酰磷脂酰甘油形成,而阴离子基因融合脂质体主要由磷酯酰乙醇胺(DOPE)形成。另一种脂质体组合物由卵磷脂(PC)例如大豆PC和鸡蛋PC形成。另一种类型由磷脂和/或卵磷脂和/或胆固醇的混合物形成。
若干研究评估了脂质体药物制剂向皮肤的局部递送。包含干扰素的脂质体施加至豚鼠皮肤导致皮肤疱疹疮减少,而经由其他手段(例如作为溶液或作为乳剂)递送干扰素是无效的(Weiner等人,Journal of DrugTargeting,1992,2,405-410)。此外,其他研究测试了作为脂质体制剂的一部分给药干扰素和使用含水体系给药干扰素的效果,断定脂质体制剂优于含水给药(du Plessis等人,Antiviral Research,1992,18,259-265)。
也考察了非离子脂质体***,特别是包括非离子型表面活性剂和胆固醇的***,以确定其在将药物递送至皮肤中的效果。含有NovasomeTMI(二月桂酸甘油酯/胆固醇/聚氧乙烯-10-硬脂基醚)和NovasomeTM II(二硬脂酸甘油酯/胆固醇/聚氧乙烯-10-硬脂基醚)的非离子脂质体制剂用于将环孢菌素A递送入小鼠皮肤真皮。结果显示这种非离子脂质体***能有效促进环孢菌素A沉积进入皮肤的不同层中(Hu等人,S.T.P.Pharma.Sci.,1994,4,6,466)。
脂质体也包括“空间稳定的”脂质体,本发明使用的该术语意指含有一种或多种特殊脂质的脂质体,较之缺乏这种特殊脂质的脂质体,当结合入脂质体中时,该特殊脂质能导致增加的循环持续时间。空间稳定的脂质体的例子是脂质体的形成囊泡脂质部分的一部分(A)包含一种或多种糖脂,例如单唾液酰神经节苷脂GM1,或(B)被一种或多种亲水聚合物,例如聚乙二醇(PEG)部分衍生化的那些。不希望束缚于任何特别理论,本领域认为,至少对于包含神经节苷脂、鞘磷脂或PEG-衍生化脂质的空间稳定脂质体,这些空间稳定脂质体的增加的循环半衰期源自减少摄入网状内皮***(RES)细胞(Allen等人,FEBS Letters,1987,223,42;Wu等人,Cancer Research,1993,53,3765)。
含有一种或多种糖脂的各种脂质体是本领域已知的。Papahadjopoulos等(Ann.N.Y.Acad.Sci.,1987,507,64)报道了单唾液酰神经节苷脂GM1、硫酸半乳糖脑苷酯和磷脂酰肌醇改善脂质体的血液半衰期的能力。这些发现由Gabizon等(Proc.Natl.Acad.Sci.U.S.A.,1988,85,6949)详细说明。Allen等的美国专利No.4,837,028和WO88/04924公开了含有(1)鞘磷脂和(2)神经节苷脂GM1或半乳糖脑苷酯硫酸酯的脂质体。美国专利No.5,543,152(Webb等)公开了含有鞘磷脂的脂质体。含有1,2-sn-二肉豆蔻酰卵磷脂的脂质体公开在WO97/13499(Lim等)中。
含有被一种或多种亲水聚合物衍生化的脂质的许多脂质体及其制备方法是本领域已知的。Sunamoto等(Bull.Chem.Soc.Jpn.,1980,53,2778)描述了含有非离子去污剂2C1215G的脂质体,其含有PEG部分。Illum等(FEBS Lett.,1984,167,79)注意到含有聚合乙二醇的亲水性包衣的聚苯乙烯颗粒导致明显增加的血液半衰期。通过结合聚二醇(例如PEG)羧基修饰的合成磷脂由Sears(美国专利Nos.4,426,330和4,534,899)描述。Klibanov等(FEBS Lett.,1990,268,235)描述了证实含有用PEG或硬脂酸酯PEG衍生化的磷酯酰乙醇胺(PE)的脂质体明显增加血液循环半衰期的实验。Blume等(Biochimica et Biophysica Acta,1990,1029,91)将这种研究拓展至其他PEG-衍生化磷脂,例如,由组合二硬脂酰磷脂酰乙醇胺(DSPE)和PEG而形成的DSPE-PEG。在其外表面具有共价结合的PEG部分的脂质体描述在Fisher的欧洲专利No.EP 0 445 131 B1和WO90/04384中。包含1-20摩尔百分比的PEG衍生化PE的脂质体组合物及其使用方法由Woodle等(美国专利Nos.5,013,556和5,356,633)和Martin等(美国专利No.5,213,804和欧洲专利No.EP 0 496 813 B1)等描述。含有许多其他的脂质-聚合物缀合物的脂质体公开在WO 91/05545和美国专利No.5,225,212(Martin等)和WO 94/20073(Zalipsky等)中。含有PEG-修饰的神经酰胺脂质的脂质体描述在WO 96/10391(Choi et a1)中。美国专利No.5,540,935(Miyazaki等)和美国专利No.5,556,948(Tagawa等)描述了含有PEG的脂质体,其表面可进一步用功能性部分衍生化。
含有核酸的许多脂质体是本领域已知的。Thierry等的WO 96/40062公开了用于将高分子量核酸包封入脂质体中的方法。Tagawa等的美国专利No.5,264,221公开了蛋白质-结合的脂质体并声称这种脂质体的内容物可以包括dsRNA。Rahman等的美国专利No.5,665,710描述了将寡脱氧核糖核苷酸包封入脂质体中的某些方法。Love等的WO 97/04787公开了含有靶向raf基因的dsRNA的脂质体。
传递体是另一种脂质体,且其是高度可变形的脂质集合体,是药物递送介质的有吸引力的候选者。传递体可以描述为脂质小滴,其是如此高度可变形的,以至于它们能够容易地穿透小于小滴的细孔。传递体适合于其使用的环境,例如,它们是自优化的(适合于皮肤细孔形状)、自修复的、经常到达其靶标而不破碎和通常是自负载的。为制备传递体,可以将表面边缘活化剂,通常是表面活性剂添加到标准脂质体组合物中。传递体用于将血清清蛋白递送到皮肤。已经证实传递体介导的血清清蛋白递送和皮下注射包含血清清蛋白的溶液一样有效。
表面活性剂广泛应用于制剂例如乳剂(包括微乳剂)和脂质体中。分类并划分许多不同种类的表面活性剂(包括天然和合成的)的最常用方法是利用亲水/亲油平衡值(HLB)。亲水基(又名“头”)的性质提供了用于分类制剂中使用的不同表面活性剂的最有用的手段(Rieger,inPharmaceutical Dosage Forms,Marcel Dekker,Inc.,New York,N.Y.,1988,p.285)。
如果表面活性剂分子是非离子的,其归类为非离子型表面活性剂。非离子型表面活性剂广泛用于药物和化妆品,且可在很宽的pH值范围内使用。取决于其结构,通常其HLB值为2到约18。非离子型表面活性剂包括非离子酯,例如乙二醇酯、丙二醇酯、甘油酯、聚甘油酯、山梨聚糖酯、蔗糖酯和乙氧基化酯。非离子烷醇酰胺和醚例如乙氧基脂肪醇、丙氧基醇和乙氧基/丙氧基嵌段共聚物也包括在该类中。聚氧乙烯表面活性剂是非离子型表面活性剂类别中最常用的成员。
当所述表面活性剂分子溶解或分散在水中时,其携带负电荷,则该表面活性剂归类为阴离子表面活性剂。阴离子表面活性剂包括羰酸酯,例如肥皂;酰基乳酸酯;氨基酸酰胺;硫酸酯,例如烷基硫酸酯和乙氧基烷基硫酸酯;磺酸酯,例如烷基苯磺酸酯、酰基羟乙基磺酸酯、酰基牛磺酸酯和磺基琥珀酸酯和磷酸酯。阴离子表面活性剂类的最重要的成员是烷基硫酸酯和肥皂。
当表面活性剂分子溶解或分散在水中时,其携带正电荷,则该表面活性剂归类为阳离子表面活性剂。阳离子表面活性剂包括季铵盐和乙氧化胺。季铵盐是该类表面活性剂的最常用成员。
如果表面活性剂分子能够携带正电荷或负电荷,该表面活性剂归类为两性表面活性剂。两性表面活性剂包括丙烯酸衍生物、取代的烷基酰胺、N-烷基甜菜碱和磷脂。
述评了表面活性剂在药品、制剂和乳剂中的用途(Rieger,inPharmaceutical Dosage Forms,Marcel Dekker,Inc.,New York,N.Y.,1988,285页)。
核酸脂质颗粒
在一个实施方式中,本发明特征的dsRNA完全包封在脂质制剂中,例如,以形成核酸-脂质颗粒。通常核酸-脂质颗粒包含防止颗粒聚集的阳离子脂质、非阳离子脂质、固醇和脂质(例如,PEG-脂质缀合物)。核酸-脂质颗粒对全身应用非常有用,因为它们在静脉内(i.v.)注射后显示延长的循环持续时间并积聚在远端部位(例如,物理学上与给药部位分开的部位)。另外,当存在于本发明核酸-脂质颗粒中时,核酸在水溶液中抵抗核酸酶的降解。核酸-脂质颗粒及其制备方法公开在例如美国专利Nos.5,976,567;5,981,501;6,534,484;6,586,410;6,815,432;和PCT公布说明书No.WO 96/40964。
核酸-脂质颗粒还可以包括一种或多种其他脂质和/或组分例如胆固醇。其他脂质可出于多种目的包括在脂质体组合物中,例如以阻止脂质氧化或将配体结合在脂质体表面上。可以存在多种脂质中的任何脂质,包括两性分子、中性、阳离子和阴离子脂质。这种脂质可以单独或组合使用。本发明描述了可以存在的其他脂质组分的具体例子。
可以存在于核酸-脂质颗粒中的其他组分包括双层稳定的组分,例如聚酰胺低聚物(例如参见美国专利No.6,320,017)、肽、蛋白质、去污剂、脂质-衍生物,例如偶联至磷酯酰乙醇胺的PEG和结合至神经酰胺的PEG(参见美国专利No.5,885,613)。
核酸-脂质颗粒可以包括一种或多种第二氨基脂质或阳离子脂质、中性脂质、固醇以及为减少形成期间脂质颗粒聚集而选择的脂质,这可由阻止形成期间的电荷诱导的聚集的颗粒的立体稳定化产生。
例如,核酸-脂质颗粒包括SPLP、pSPLP和SNALP。术语“SNALP”指的是含有SPLP的稳定的核酸-脂质颗粒。术语“SPLP”指的是在脂质囊泡内包封有质粒DNA的核酸-脂质颗粒。SPLP包括“pSPLP”,其包括PCT公布说明书No.WO 00/03683中所列的包封的缩合剂-核酸络合物。
本发明颗粒的平均直径通常为约50nm到约150nm,更典型为约60nm到约130nm,更典型为约70nm到约110nm,最典型地为约70nm到约90nm,且其基本上无毒。
在一个实施方式中,脂质与药物的比例(质量/质量比)为约1∶1到约50∶1、约1∶1到约25∶1、约3∶1到约15∶1、约4∶1到约10∶1、约5∶1到约9∶1、或约6∶1到约9∶1、或约6∶1、7∶1、8∶1、9∶1、10∶1、11∶1、12∶1或33∶1。
阳离子脂质
本发明核酸-脂质颗粒通常包括阳离子脂质。例如,所述阳离子脂质可以是N,N-二油基-N,N-二甲基氯化铵(DODAC)、N,N-二硬脂基-N,N-二甲基溴化铵(DDAB)、N-(I-(2,3-二油酰氧基)丙基)-N,N,N-三甲基氯化铵(DOTAP)、N-(I-(2,3-二油基氧基)丙基)-N,N,N-三甲基氯化铵(DOTMA)、N,N-二甲基-2,3-二油基氧基)丙胺(DODMA)、1,2-二亚油基氧基-N,N-二甲基氨基丙烷(DLinDMA)、1,2-二亚麻基氧基-N,N-二甲基氨基丙烷(DLenDMA)、1,2-二亚油基氨甲酰基氧基-3-二甲基氨基丙烷(DLin-C-DAP)、1,2-二亚油基氧基-3-(二甲基氨基)乙酸基丙烷(DLin-DAC)、1,2-二亚油基氧基-3-吗啉基丙烷(DLin-MA),1,2-二亚油酰基氧基-3-二甲基氨基丙烷(DLinDAP),1,2-二亚油基硫基-3-二甲基氨基丙烷(DLin-S-DMA)、1-亚油酰-2-亚油基氧基-3-二甲基氨基丙烷(DLin-2-DMAP)、1,2-二亚油基氧基-3-三甲基氨基丙烷氯化盐(DLin-TMA.Cl)、1,2-二亚油酰基氧基-3-三甲基氨基丙烷氯化盐(DLin-TAP.Cl)、1,2-二亚油基氧基-3-(N-甲基哌嗪-1-基)丙烷(DLin-MPZ)或3-(N,N-二亚油基氨基)-1,2-丙二醇(DLinAP)、3-(N,N-二油基氨基)-1,2-丙二醇(DOAP),1,2-二亚油基氧代-3-(2-N,N-二甲基氨基)乙氧基丙烷(DLin-EG-DMA),1,2-二亚麻基氧基-N,N-二甲基氨基丙烷(DLinDMA),2,2-二亚油基-4-二甲基氨基甲基-[1,3]-二氧戊环(DLin-K-DMA)或其类似物、(3aR,5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八碳-9,12-二烯基)四氢-3aH-环戊二烯并[d][1,3]二氧杂环戊烯-5-胺(ALNY-100)、4-(二甲基氨基)丁酸(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基酯(MC3),或其混合物。
除上文具体描述的之外,在大致生理学pH下携带净正电荷的其他阳离子脂质也可以包括在本发明脂质颗粒中。这种阳离子脂质包括但不限于N,N-二油基-N,N-二甲基氯化铵(“DODAC”);N-(2,3-二油基氧基)丙基-N,N-N-三乙基氯化铵(“DOTMA”);N,N-二硬脂基-N,N-二甲基溴化铵(“DDAB”);N-(2,3-二油酰氧基)丙基)-N,N,N-三甲基氯化铵(″DOTAP″);1,2-二油基氧基-3-三甲基氨基丙烷氯化盐(“DOTAP.Cl”);3β-(N-(N′,N′-二甲基氨基乙烷)-氨甲酰基)胆固醇(“DC-Chol”);N-(1-(2,3-二油基氧基)丙基)-N-2-(精胺甲酰氨基)乙基)-N,N-二甲基铵三氟乙酸盐(“DOSPA”);双十八烷基酰氨基甘氨酰羧基精胺(dioctadecylamidoglycylcarboxyspermine,“DOGS”);1,2-二油酰-sn-3-磷脂酰乙醇胺(“DOPE”),1,2-二油酰-3-二甲基铵基丙烷(“DODAP”);N,N-二甲基-2,3-二油基氧基)丙胺(“DODMA”)和N-(1,2-二肉豆蔻基氧基丙-3-基)-N,N-二甲基-N-羟乙基溴化铵(“DMRIE”)。另外,可使用许多阳离子脂质的商业制剂,例如LIPOFECTIN(包括DOTMA核DOPE,可购自GIBCO/BRL)以及LIPOFECTAMINE(包括DOSPA和DOPE,可购自GIBCO/BRL)。在具体实施方式中,阳离子脂质是氨基脂质。
如本发明所使用,术语“氨基脂质”意味着包括具有一个或两个脂肪酸或脂肪烷基链和氨基头基(包括烷基氨基或二烷基氨基)的脂质,其可以质子化,以在生理学pH形成阳离子脂质。
其他的氨基脂质包括具有选择性的脂肪酸基团及其他二烷基氨基基团的脂质,包括其中烷基取代基不同的脂质(例如,N-乙基-N-甲基氨基-、N-丙基-N-乙基氨基-等)。对于其中R11和R12都是长链烷基或酰基基团的那些实施方式,它们可以是相同或不同的。通常,具有较少饱和酰基链的氨基脂质更容易控制尺寸,特别是为了过滤灭菌目的,所述络合物的尺寸必须低于约0.3微米。优选包含碳链长度为C14到C22的不饱和脂肪酸的氨基脂质。其他支架也可用于分离氨基脂质的氨基和脂肪酸或脂肪烷基部分。适当的支架是本领域技术人员已知的。
在某些实施方式中,本发明氨基或阳离子脂质具有至少一个可质子化或可去质子化基团,以使所述脂质在等于或低于生理学pH的pH下(例如pH7.4)是带正电荷的,且在第二pH,优选等于或大于生理学pH下是中性的。当然,应理解随pH改变的质子的添加或者去除是一种平衡过程,且提到带电荷或中性脂类指的是优势种类的性质,而不要求所有的脂质都以带电荷或中性形式存在。但本发明也不排除使用具有一个以上的可质子化或可去质子化基团的脂质,或两性离子型脂质。
在某些实施方式中,本发明可质子化脂质中可质子化基团的pKa为约4到约11。最优选的pKa为约4到约7,因为这些脂质在较低pH制剂阶段时将是阳离子的,而颗粒表面将在约pH7.4的生理学pH下大量地(但非完全地)被中和。该pKa的一个优点是至少一些和颗粒外表面相连的核酸在生理学pH下丧失其静电相互作用,并可通过简单透析去除;因此极大地减少了颗粒对清除的敏感性。
阳离子脂质的一个例子是1,2-二亚麻基氧基-N,N-二甲基氨基丙烷(DLinDMA)。包括DlinDMA的核酸-脂质颗粒的合成和制备描述在2009年4月15日提交的国际申请PCT/CA2009/00496中。
在一个实施方式中,阳离子脂质XTC(2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环)用于制备核酸-脂质颗粒。XTC的合成描述在2008年10月23日提交的美国临时专利申请号61/107,998中,其以引用方式合并于此。
在另一个实施方式中,阳离子脂质MC3(4-(二甲基氨基)丁酸(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基酯)(例如DLin-M-C3-DMA)用于制备核酸-脂质颗粒。MC3和含有MC3的制剂的合成例如描述在2009年9月22日提交的美国临时序列号No.61/244,834和2009年6月10日提交的美国临时序列号No.61/185,800,所述专利以引用方式合并于此。
在另一个实施方式中,阳离子脂质ALNY-100((3aR,5s,6aS)-N,N-二甲基-2,2-二((9Z,12Z)-十八碳-9,12-二烯基)四氢-3aH-环戊二烯并[d][1,3]二氧杂环戊烯-5-胺))用于制备核酸-脂质颗粒。ALNY-100的合成描述在2009年11月10日提交的国际专利申请PCT/US09/63933中,其以引用方式合并于此。
图20说明了ALNY-100、MC3和XTC的结构。
所述阳离子脂质可以占存在于颗粒中的总脂质的约20mol%到约70mol%或约45-65mol%或约40mol%。
非阳离子脂质
本发明核酸-脂质颗粒可以包括非阳离子脂质。所述非阳离子脂质可以是阴离子脂质或中性脂质。例子包括但不限于:二硬脂酰卵磷脂(DSPC)、二油酰卵磷脂(DOPC),二棕榈酰卵磷脂(DPPC),二油酰磷脂酰甘油(DOPG)、二棕榈酰磷脂酰甘油(DPPG)、二油酰-磷脂酰乙醇胺(DOPE)、棕榈酰油酰卵磷脂(POPC)、棕榈酰油酰磷脂酰乙醇胺(POPE)、二油酰-磷脂酰乙醇胺4-(N-马来酰亚胺基甲基)-环己胺-1-羧酸酯(DOPE-mal)、二棕榈酰磷脂酰乙醇胺(DPPE)、二肉豆蔻酰磷脂酰乙醇胺(DMPE)、二硬脂酰-磷脂酰-乙醇胺(DSPE)、16-O-单甲基PE、16-O-二甲基PE、18-1-反式PE、1-硬脂酰-2-油酰-磷脂酰乙醇胺(SOPE)、胆固醇或其混合物。
适用于本发明脂质颗粒的阴离子脂质包括但不限于磷脂酰甘油、双磷脂酰甘油、二酰基磷脂酰丝氨酸、二酰基磷脂酸、N-十二酰磷脂酰乙醇胺、N-琥珀酰磷酯酰乙醇胺、N-戊二酰磷酯酰乙醇胺、赖氨酰磷脂酰甘油和其他与中性脂质连接的阴离子修饰基团。
当存在于脂质颗粒时,中性脂质可以是多种脂质种类中的任何一种,其在生理学pH下以不带电荷或中性两性离子的形式存在。这种脂质例如包括二酰基卵磷脂、二酰基磷脂酰乙醇胺、神经酰胺、鞘磷脂、二氢鞘磷脂、脑磷脂和脑苷脂。本发明描述的颗粒中使用的中性脂质的选择通常由例如考虑血流中脂质体的脂质体大小和稳定性来指导。优选地,中性脂质组分是具有两个酰基基团的脂质(即,二酰基卵磷脂和二酰基磷脂酰乙醇胺)。具有改变链长和饱和度的多种酰基链基团的脂质是商业可得的,且可以通过熟知技术分离或合成。在一组实施方式中,优选含有碳链长度为C14到C22的饱和脂肪酸的脂质。在另一组实施方式中,使用含有碳链长度为C14到C22的单-或二-不饱和脂肪酸的脂质。另外,可以使用含有饱和与不饱和脂肪酸链的混合物的脂质。优选地,用于本发明的中性脂质是DOPE、DSPC、POPC或任何相关的卵磷脂。用于本发明的中性脂质也可以由鞘磷脂、二氢鞘磷脂或具有其他头基例如丝氨酸和肌醇的磷脂组成。
在一个实施方式中,所述非阳离子脂质是二硬脂酰卵磷脂(DSPC)。在另一个实施方式中,所述非阳离子脂质是二棕榈酰卵磷脂(DPPC)。
如果包括胆固醇,所述非阳离子脂质可占存在于颗粒的总脂质的约5mol%到约90mol%、约5mol%到约10mol%、约10mol%、或约58mol%。
缀合脂质
缀合脂质可用于核酸-脂质颗粒以阻止聚集,其包括聚乙二醇(PEG)-修饰的脂质、单唾液酰神经节苷脂Gm1和聚酰胺低聚物(“PAO”),例如(描述在美国专利No.6,320,017)。含有不带电荷的、亲水性的空间阻碍部分的其他化合物(其阻止配制期间的聚集),例如PEG、Gm1或ATTA,也可以与用于本发明方法和组合物的脂质连接。ATTA-脂质例如描述在美国专利No.6,320,017中,且PEG-脂质缀合物例如描述在美国专利Nos.5,820,873,5,534,499和5,885,613中。通常,为降低聚集而选择的脂质组分的浓度为约1到15%(脂质的摩尔百分比)。
可用于本发明的PEG-修饰的脂质(或脂质-聚氧乙烯缀合物)的具体例子可具有多种“锚定”脂质部分,以将PEG部分固定到脂质囊泡的表面。适当的PEG-修饰的脂质的例子包括PEG-修饰的磷酯酰乙醇胺和磷脂酸、PEG-神经酰胺缀合物(例如,PEG-CerC14或PEG-CerC20)(其描述在共同未决USSN 08/486,214中,以引用方式合并于此)、PEG-修饰的二烷基胺和PEG-修饰的1,2-二酰氧基丙烷-3-胺。特别优选的是PEG-修饰的甘油二酯和二烷基甘油。
在空间上较大的部分例如PEG或ATTA和脂质锚定缀合的实施方式中,脂质锚定的选择取决于缀合物以何种类型的形式和脂质颗粒缀合。众所周知,mePEG(mw2000)-二硬脂酰磷脂酰乙醇胺(PEG-DSPE)将保持和脂质体缀合,直到颗粒从循环中清除,可能是大约数天。其他的缀合物,例如PEG--CerC20具有类似的停留能力。然而,一旦和血清接触,PEG-CerC14快速从制剂中交换出来,在一些试验中的T1/2小于60分钟。如美国专利申请SN 08/486,214中所述,至少三种特征影响交换速率:酰基链的长度、酰基链的饱和度和立体障碍头基的大小。具有这些特征的适当变化的化合物可以用于本发明。在一些治疗学应用中,优选的是PEG-修饰的脂质快速从体内核酸-脂质颗粒中脱离,由此PEG-修饰的脂质将具有相对短的脂质锚定。在其他的治疗学应用中,优选的是核酸-脂质颗粒具有较长的血浆循环时间,由此PEG-修饰的脂质将具有相对长的脂质锚定。典型的脂质锚定包括长度为约C14到约C22,优选约C14到约C16的那些。在一些实施方式中,PEG部分,例如mPEG-NH2的大小为约1000、2000、5000、10000、15000或20000道尔顿。
应注意,阻止聚集的化合物不一定要求脂质缀合以适当地发挥功能。溶液中游离的PEG或游离的ATTA可足以阻止聚集。如果颗粒在制备成制剂后稳定,PEG或ATTA可以在给药于受试者之前透析除去。
抑制颗粒聚集的缀合脂质例如可以是聚乙二醇(PEG)-脂质,包括但不限于,PEG-甘油二酯(DAG)、PEG-二烷基氧基丙基(DAA)、PEG-磷脂、PEG-神经酰胺(Cer)或其混合物。例如,PEG-DAA缀合物可以是PEG-二月桂基氧基丙基(Ci2)、PEG-二肉豆蔻基氧基丙基(Ci4)、PEG-二棕榈基氧基丙基(Ci6)或PEG-二硬脂基氧基丙基(Ci8)。其他的缀合脂质包括聚乙二醇-二肉豆蔻酸甘油酯(C14-PEG或PEG-C14,其中PEG的平均分子量为2000Da)(PEG-DMG);(R)-2,3-二(十八烷基氧基)丙基1-(甲氧基聚(乙二醇)2000)丙基氨基甲酸酯)(PEG-DSG);PEG-氨甲酰基-1,2-二肉豆蔻基氧基丙胺,其中PEG的平均分子量为2000Da(PEG-cDMA);N-乙酰半乳糖胺-((R)-2,3-二(十八烷基氧基)丙基1-(甲氧基聚(乙二醇)2000)丙基氨基甲酸酯))(GalNAc-PEG-DSG);和聚乙二醇-二棕榈酸甘油酯(PEG-DPG)。
在一个实施方式中所述缀合脂质是PEG-DMG。在另一个实施方式中所述缀合脂质是PEG-cDMA。在又一个实施方式中所述缀合脂质是PEG-DPG。或者所述缀合脂质是GalNAc-PEG-DSG。
阻止颗粒聚集的缀合脂质可以是存在于颗粒的总脂质的0mol%到约20mol%或约0.5到约5.0mol%或约2mol%。
当存在时,脂质混合物的固醇组分可以是通常用于脂质体、脂质囊泡或脂质颗粒制剂领域中的任何固醇。优选的固醇是胆固醇。
在一些实施方式中,所述核酸-脂质颗粒还包括占存在于颗粒中的总脂质的例如约10mol%到约60mol%或约25到约40mol%或约48%的固醇,例如胆固醇。
脂蛋白
在一个实施方式中,本发明制剂还包含载脂蛋白。如本发明所使用的,术语“载脂蛋白”或“脂蛋白”指的是本领域技术人员已知的载脂蛋白及其变体和片段,以及指的是如下所述的载脂蛋白激动剂、其类似物或片段。
适当的载脂蛋白包括但不限于ApoA-I、ApoA-II、ApoA-IV、ApoA-V和ApoE,及其活性多晶型、同种型、变体和突变体以及片段或截断形式。在某些实施方式中,所述载脂蛋白是含硫醇的载脂蛋白。“含硫醇的载脂蛋白”指的是包含至少一个半胱氨酸残基的载脂蛋白、变体、片段或同种型。最常用的含硫醇载脂蛋白是包含一个半胱氨酸残基的ApoA-I Milano(ApoA-IM)和ApoA-I Paris(ApoA-IP)(Jia等人,2002,Biochem.Biophys.Res.Comm.297:206-13;Bielicki and Oda,2002,Biochemistry 41:2089-96)。ApoA-II、ApoE2和ApoE3也是含硫醇的载脂蛋白。分离的ApoE和/或活性片段及其多肽类似物(包括其重组生成的形式)描述在美国专利Nos.5,672,685;5,525,472;5,473,039;5,182,364;5,177,189;5,168,045;5,116,739中,所有公开以引用形式合并于此。ApoE3描述在Weisgraber,等人,″Human E apoprotein heterogeneity:cysteine-arginine interchanges in the amino acid sequence of the apo-Eisoforms,″J.Biol.Chem.(1981)256:9077-9083和Rall,等人,″Structuralbasis for receptor binding heterogeneity of apolipoprotein E from type IIIhyperlipoproteinemic subjects,″Proc.Nat.Acad.Sci.(1982)79:4696-4700中(也可参见GenBank登录号K00396)。
在某些实施方式中,所述载脂蛋白可以是其成熟形式、其前原载脂蛋白(preproapolipoprotein)形式或其原载脂蛋白形式。在本发明范围内,也可使用原ApoA-I和成熟ApoA-I(Duverger等人,1996,Arterioscler.Thromb.Vasc.Biol.16(12):1424-29)、ApoA-I Milano(Klon等人,2000,Biophys.J.79:(3)1679-87;Franceschini等人,1985,J.Biol.Chem.260:1632-35)、ApoA-I Paris(Daum等人,1999,J.Mol.Med.77:614-22)、ApoA-II(Shelness等人,1985,J.Biol.Chem.260(14):8637-46;Shelness等人,1984,J.Biol.Chem.259(15):9929-35)、ApoA-IV(Duverger等人,1991,Euro.J.Biochem.201(2):373-83)和ApoE(McLean等人,1983,J.Biol.Chem.258(14):8993-9000)的同-和杂二聚物(当可行时)。
在某些实施方式中,所述载脂蛋白可以是载脂蛋白的片段、变体或同种型。术语“片段”指的是氨基酸序列比天然载脂蛋白短的任何载脂蛋白,且该片段保持天然载脂蛋白的活性,包括脂质结合性。“变体”指的是载脂蛋白的氨基酸序列的取代或者改变,这种取代或改变(例如氨基酸残基的增加或删除)不消除天然载脂蛋白的活性,包括脂质结合性。因此,变体可以包含蛋白质或肽,所述蛋白质或肽的氨基酸序列基本上和本发明提供的天然载脂蛋白相同,其中一个或多个氨基酸残基被化学相似的氨基酸保守取代。保守取代的例子包括用至少一个疏水性残基例如异亮氨酸、缬氨酸、亮氨酸或甲硫氨酸取代其他残基。同样地,例如,本发明涉及至少一个亲水性残基例如精氨酸和赖氨酸之间、谷氨酰胺和天冬酰胺之间以及甘氨酸和丝氨酸之间的取代(参见美国专利Nos.6,004,925、6,037,323和6,046,166)。术语“同种型”指的是具有相同、更多或部分功能以及相似、相同或部分序列,并且可以是或者不是同一基因的产物以及通常是组织特异性的蛋白质(参见Weisgraber 1990,J.Lipid Res.31(8):1503-11;Hixson and Powers 1991,J.Lipid Res.32(9):1529-35;Lackner等人,1985,J.Biol.Chem.260(2):703-6;Hoeg等人,1986,J.Biol.Chem.261(9):3911-4;Gordon等人,1984,J.Biol.Chem.259(1):468-74;Powell等人,1987,Cell 50(6):831-40;Aviram等人,1998,Arterioscler.Thromb.Vase.Biol.18(10):1617-24;Aviram等人,1998,J.Clin.Invest.101(8):1581-90;Billecke等人,2000,Drug Metab.Dispos.28(11):1335-42;Draganov等人,2000,J.Biol.Chem.275(43):33435-42;Steinmetz and Utermann 1985,J.Biol.Chem.260(4):2258-64;Widler等人,1980,J.Biol.Chem.255(21):10464-71;Dyer等人,1995,J.Lipid Res.36(1):80-8;Sacre等人,2003,FEBS Lett.540(1-3):181-7;Weers,等人,2003,Biophys.Chem.100(1-3):481-92;Gong等人,2002,J.Biol.Chem.277(33):29919-26;Ohta等人,1984,J.Biol.Chem.259(23):14888-93和U.S.Pat.No.6,372,886)。
在某些实施方式中,本发明方法和组合物包括使用载脂蛋白的嵌合构造。例如,载脂蛋白的嵌合构造可以由具有高脂质结合能力的载脂蛋白域组成,所述结合能力与包含局部缺血再灌注保护特性的载脂蛋白域有关。载脂蛋白的嵌合构造可以是在载脂蛋白内包括分隔区域的构造(即,同源构造)或嵌合构造可以是在不同的载脂蛋白之间包括分隔区域的构造(即,异质结构)。含有嵌合构造的组合物也可包括为载脂蛋白变体的片断或设计成具有特定性质(例如,脂质结合、受体结合、酶、酶活化、抗氧化或还原-氧化性质)的片断(参见Weisgraber 1990,J.Lipid Res.31(8):1503-11;Hixson and Powers 1991,J.Lipid Res.32(9):1529-35;Lackner等人,1985,J.Biol.Chem.260(2):703-6;Hoeg等人,1986,J.Biol.Chem.261(9):3911-4;Gordon等人,1984,J.Biol.Chem.259(1):468-74;Powell等人,1987,Cell 50(6):831-40;Aviram等人,1998,Arterioscler.Thromb.Vasc.Biol.18(10):1617-24;Aviram等人,1998,J.Clin.Invest.101(8):1581-90;Billecke等人,2000,Drug Metab.Dispos.28(11):1335-42;Draganov等人,2000,J.Biol.Chem.275(43):33435-42;Steinmetz andUtermann 1985,J.Biol.Chem.260(4):2258-64;Widler等人,1980,J.Biol.Chem.255(21):10464-71;Dyer等人,1995,J.Lipid Res.36(1):80-8;Sorenson等人,1999,Arterioscler.Thromb.Vasc.Biol.19(9):2214-25;Palgunachari 1996,Arterioscler.Throb.Vasc.Biol.16(2):328-38:Thurberg等人,J.Biol.Chem.271(11):6062-70;Dyer 1991,J.Biol.Chem.266(23):150009-15;Hill 1998,J.Biol.Chem.273(47):30979-84)。
本发明所使用的载脂蛋白也包括重组、合成、半合成或纯化的载脂蛋白。本发明所使用的用于获得载脂蛋白或其等价物的方法是本领域熟知的。例如,载脂蛋白可例如通过密度梯度离心或免疫亲和层析从血浆或天然产物中分离,或用本领域已知的重组DNA技术或合成、半合成地制备(例如参见Mulugeta等人,1998,J.Chromatogr.798(1-2):83-90;Chung等人,1980,J.Lipid Res.21(3):284-91;Cheung等人,1987,J.LipidRes.28(8):913-29;Persson,等人,1998,J.Chromatogr.711:97-109;U.S.Pat.Nos.5,059,528,5,834,596,5,876,968和5,721,114;和PCT公布WO86/04920和WO 87/02062)。
本发明所使用的载脂蛋白还包括载脂蛋白激动剂,例如模拟ApoA-I、ApoA-I Milano(ApoA-IM)、ApoA-I Paris(ApoA-IP)、ApoA-II、ApoA-IV和ApoE的活性的肽和肽类似物。例如,所述载脂蛋白可以是美国专利Nos.6,004,925、6,037,323、6,046,166和5,840,688中描述的任何载脂蛋白,所述文献内容以引用方式合并于此。
载脂蛋白激动剂肽或肽类似物可使用本领域已知的任何肽合成技术合成或制备,例如包括美国专利Nos.6,004,925、6,037,323和6,046,166中描述的技术。例如,所述肽可使用最先由Merrifield描述的固相合成技术(1963,J.Am.Chem.Soc.85:2149-2154)制备。其他的肽合成技术可在Bodanszky等的Peptide Synthesis,John Wiley & Sons,2d Ed.,(1976)及其他本领域技术人员容易获得的参考资料中发现。多肽合成技术的概要可在Stuart和Young的Solid Phase Peptide.Synthesis,Pierce ChemicalCompany,Rockford,Ill.,(1984)中发现。肽也可以由如The Proteins,Vol.II,3d Ed.,Neurath等人,Eds.,p.105-237,Academic Press,New York,N.Y.(1976)描写的溶液法合成。用于不同的肽合成的适当的保护基团描述在以上提到的文献以及McOmie,Protective Groups in Organic Chemistry,Plenum Press,New York,N.Y.(1973)中。本发明的肽也可以通过例如载脂蛋白A-I的较大部分的化学或酶裂解而制备。
在某些实施方式中,所述载脂蛋白可以是载脂蛋白混合物。在一个实施方式中,所述载脂蛋白可以是均质混合物,即,单一种类的载脂蛋白。在另一个实施方式中,所述载脂蛋白可以是载脂蛋白的异种混合物,即,两种或更多种不同的载脂蛋白的混合物。载脂蛋白的异种混合物的实施方式例如可以包含动物来源的载脂蛋白和半合成来源的载脂蛋白的混合物。在某些实施方式中,异种混合物例如可以包含ApoA-I和ApoA-I Milano的混合物。在某些实施方式中,异种混合物例如可以包含ApoA-I Milano和ApoA-I Paris的混合物。用于本发明方法和组合物的适当混合物对本领域技术人员而言是显而易见的。
如果所述载脂蛋白由天然来源获得,它可以由植物或动物来源获得。如果所述载脂蛋白由动物来源获得,所述载脂蛋白可来自于任何物种。在某些实施方式中,所述载脂蛋白可由动物来源获得。在某些实施方式中,所述载脂蛋白可以由人类来源获得。在本发明的优选实施方式中,所述载脂蛋白源自于与给药该载脂蛋白的个体相同的物种。
其他组分
在许多实施方式中,两性分子脂质包括在本发明脂质颗粒中。“两性分子脂质”意指任何适当的材料,其中所述脂质材料的疏水部分指向疏水相,而亲水部分指向水相。这种化合物包括但不限于磷脂、氨基脂和鞘脂。典型的磷脂包括鞘磷脂、卵磷脂、磷酯酰乙醇胺、磷脂酰丝氨酸、磷脂酰纤维醇、磷脂酸、棕榈酰油酰磷脂酰胆碱、溶血卵磷脂、溶血磷酯酰乙醇胺、二棕榈酰油酰磷脂酰胆碱、二油酰卵磷脂、二硬脂酰卵磷脂或二亚油基卵磷脂。也可以使用其他的不含磷化合物,例如鞘脂、糖鞘脂家族、甘油二酯和β-酰氧基酸。这种两性分子脂质可以容易地与其他脂质例如甘油三酸酯和固醇混合。
也适于包含在本发明脂质颗粒中的是可设计的融合脂质。这种脂质颗粒具有和细胞膜融合的倾向,并递送其有效载荷直到发生给定信号事件。这使得脂质颗粒在注射入生物体或病变部位后能更均匀地分布,然后其开始和细胞融合。信号事件例如可以是pH、温度、离子环境或时间的改变。在后面一种情况下,融合延迟或“覆盖”组分,例如ATTA-脂质缀合物或PEG-脂质缀合物可随着时间流逝简单地从脂质颗粒膜中交换出来。典型的脂质锚定包括长度为约C14到约C22,优选约C14到约C16的那些。在一些实施方式中,PEG部分(例如mPEG-NH2)的大小为约1000、2000、5000、10000、15000或20000道尔顿。
与核酸试剂缀合的脂质颗粒也可包括靶向部分,例如,特异性靶向细胞类型或组织的靶向部分。利用多种靶向部分例如配体、细胞表面受体、糖蛋白、维生素(例如核黄素)和单克隆抗体的脂质颗粒的靶向之前已有描述(例如参见美国专利Nos.4,957,773和4,603,044)。所述靶向部分可以包括整个蛋白质或其片段。靶向机制通常要求靶向试剂以这样的方式位于脂质颗粒的表面上,使得靶向部分可用于和靶标(例如细胞表面受体)相互作用。多种不同的靶向试剂和方法是本领域已知和可获得的,包括描述在Sapra,P.and Allen,TM,Prog.Lipid Res.42(5):439-62(2003);和Abra,RM等人,J.Liposome Res.12:1-3,(2002)中的那些。
已经提出脂质颗粒即脂质体和亲水聚合物链例如聚乙二醇(PEG)链的表面涂层一起用于靶向(Allen,等人,Biochimica et Biophysica Acta1237:99-108(1995);DeFrees,等人,Journal of the American ChemistrySociety 118:6101-6104(1996);Blume,等人,Biochimica et Biophysica Acta1149:180-184(1993);Klibanov,等人,Journal of Liposome Research 2:321-334(1992);U.S.Patent No.5,013556;Zalipsky,BioconjugateChemistry 4:296-299(1993);Zalipsky,FEBS Letters 353:71-74(1994);Zalipsky,in Stealth Liposomes Chapter 9(Lasic and Martin,Eds)CRC Press,Boca Raton Fl(1995)。在一种方法中,用于靶向脂质颗粒的配体例如抗体与形成脂质颗粒的脂质的极性头基连接。在另一种方法中,靶向配体与形成亲水聚合物涂层的PEG链的远端相连(Klibanov,等人,Journal ofLiposome Research 2:321-334(1992);Kirpotin等人,FEBS Letters 388:115-118(1996))。
可使用偶联靶向试剂的标准方法。例如,可使用能被活化用于靶向试剂连接的磷酯酰乙醇胺,或衍生化亲脂性化合物,例如脂质-衍生化博来霉素。靶向抗体的脂质体可例如使用结合蛋白A的脂质体来构建(参见,Renneisen,等人,J.Bio.Chem.,265:16337-16342(1990)和Leonetti,等人,Proc.Natl.Acad.Sci.(USA),87:2448-2451(1990)。抗体缀合物的其他例子公开在美国专利No.6,027,726,其教导以引用方式合并于此。靶向部分的例子也可包括对细胞组分而言特异性的其他蛋白质,包括与瘤或肿瘤有关的抗原。用作靶向部分的蛋白质可经由共价键与脂质体连接(参见Heath,Covalent Attachment of Proteins to Liposomes,149 Methodsin Enzymology 111-119(Academic Press,Inc.1987))。其他靶向方法包括生物素-抗生物素蛋白体系。
核酸-脂质颗粒的制备
在一个实施方式中,本发明的核酸-脂质颗粒制剂经由挤出法或管线内混合法制备。
挤出法(也称为预成形法或分批法)是首先制备空的脂质体(即没有核酸),然后将核酸加入空的脂质体中的方法。脂质体成分通过小孔聚碳酸酯膜或不均匀的陶瓷膜而挤出导致相对较好限定的粒径分布。通常,悬浮液循环通过该膜一次或多次,直到实现所需脂质体络合物粒径分布。所述脂质体可连续挤出通过小孔膜,以实现脂质体尺寸的逐渐减少。在一些情况下,所形成的脂质-核酸组合物可在无需确定尺寸的情况下使用。这些方法公开于US 5,008,050;US 4,927,637;US 4,737,323;Biochim Biophys Acta.1979 Oct 19;557(1):9-23;Biochim Biophys Acta.1980 Oct 2;601(3):559-7;Biochim Biophys Acta.1986 Jun 13;858(1):161-8;和Biochim.Biophys.Acta 1985 812,55-65,其以引用方式全部合并于此。
管线内混合法是将脂质和核酸一起加入混合室中的方法。混合室可以是简单的T-连接器或本领域技术人员已知的任何其他混合室。这些方法公开于美国专利nos.6,534,018和US 6,855,277;US公布说明书2007/0042031和Pharmaceuticals Research,Vol.22,No.3,Mar.2005,p.362-372中,其以引用方式全部合并于此。
还应理解,本发明制剂可通过本领域技术人员已知的任何方法制备。
核酸-脂质颗粒的表征
通过标准或非挤出法制备的制剂可以类似方式表征。例如,制剂通常通过目视检查表征。它们应该是带白色的透明溶液,不含聚集物或沉淀物。脂质-纳米颗粒的粒径和粒径分布可通过光散射例如使用MalvernZetasizer Nano ZS(Malvern,USA)来测定。颗粒的大小应该为约20-300nm,例如40-100nm。粒径分布应该是单峰的。使用染料排除试验评估制剂中总siRNA浓度以及捕获部分。配制的siRNA样品可以在存在或不存在破坏制剂的表面活性剂例如0.5%Triton-X100的情况下与RNA-结合染料例如Ribogreen(Molecular Probes)孵育。可使含有表面活性剂的样品中发出的信号相对于标准曲线来测定制剂中的总siRNA。从总siRNA含量中减去“游离”siRNA含量(由不存在表面活性剂的情况下的信号测定)测定捕获部分。捕获siRNA的百分比通常为>85%。在一个实施方式中,本发明制剂被捕获至少75%、至少80%或至少90%。
对于核酸-脂质颗粒制剂,粒径为至少30nm、至少40nm、至少50nm、至少60nm、至少70nm、至少80nm、至少90nm、至少100nm、至少110nm和至少120nm。适当的范围通常是约至少50nm到约至少110nm、约至少60nm到约至少100nm、或约至少80nm到约至少90nm。
核酸-脂质颗粒制剂
LNP01
合成核酸-脂质颗粒的一个例子如下。使用类脂质ND98·4HCl(MW1487)(式1)、胆固醇(Sigma-Aldrich)和PEG-神经酰胺C16(Avanti PolarLipids)合成核酸-脂质颗粒。该核酸-脂质颗粒有时称为LNP01颗粒。各自在乙醇中的储备溶液可按如下方法制备:ND98,133mg/ml;胆固醇,25mg/ml,PEG-神经酰胺C16,100mg/ml。然后可以例如以42∶48∶10的摩尔比组合ND98、胆固醇和PEG-神经酰胺C16的储备溶液。组合的脂质溶液与水性siRNA(例如,在pH5的乙酸钠中)混合,使得最终乙醇浓度为约35-45%且最终乙酸钠浓度为约100-300mM。一旦混合,脂质-siRNA纳米颗粒通常自发形成。取决于所需粒径分布,所得纳米颗粒混合物可以例如使用热屏障挤压机,例如Lipex挤压机(NorthernLipids,Inc)挤出通过聚碳酸酯膜(例如,100nm截断值)。在一些情况下,可以省略挤出步骤。乙醇去除和同时发生的缓冲液更换可以通过例如透析或切向流过滤实现。缓冲液可以更换为例如pH约7、例如pH约6.9、pH约7.0、pH约7.1、pH约7.2、pH约7.3或pH约7.4的磷酸盐缓冲盐水(PBS)。
LNP01制剂例如描述在国际申请公布说明书No.WO2008/042973中,其以引用方式合并于此。
其他典型的核酸-脂质颗粒制剂描述在下表中。应理解,表中的核酸-脂质颗粒的名称不是限制性的。例如,如本发明所使用,术语SNALP意指包括阳离子脂质DLinDMA的制剂。
含有XTC的制剂例如描述在2009年9月3日提交的美国临时序列号61/239,686中,其以引用方式合并于此。
含有MC3的制剂例如描述在2009年9月22日提交的美国临时序列号61/244,834以及2009年6月10日提交的美国临时序列号61/185,800中,其以引用方式合并于此。
含有ALNY-100的制剂例如描述在2009年11月10日提交的国际专利申请PCT/US09/63933中,其以引用方式合并于此。
其他典型制剂描述在表25和26中。脂质指的是阳离子脂质。
表25:经由挤出法制备的典型核酸-脂质颗粒的组合物(摩尔%)
表26:经由管线内混合法制备的典型核酸-脂质颗粒的组合物
阳离子脂质的合成
用于本发明的核酸-脂质颗粒中的任何化合物,例如阳离子脂质等,可通过已知的有机合成技术(包括更详细地描述在实施例中的方法)制备。除非另有说明,所有取代基如下定义。
“烷基”指的是直链或支链、非环形或环形、饱和的包含1到24个碳原子的脂肪族烃。典型的饱和直链烷基包括甲基、乙基、正丙基、正丁基、正戊基、正己基等;而饱和的支链烷基包括异丙基、仲丁基、异丁基、叔丁基、异戊基等。典型的饱和环形烷基包括环丙基、环丁基、环戊基、环己基等;而不饱和的环形烷基包括环戊烯基和环己烯基等。
“烯基”指的是在相邻碳原子之间包含至少一个双键的如上定义的烷基。烯基包括顺式和反式异构体。典型的直链和支链烯基包括乙烯基、丙烯基、1-丁烯基、2-丁烯基、异丁烯基、1-戊烯基、2-戊烯基、3-甲基-1-丁烯基、2-甲基-2-丁烯基、2,3-二甲基-2-丁烯基等。
“炔基”指的是在相邻碳原子之间还包含至少一个三键的如上定义的任何烷基或烯基。典型的直链和支链炔基包括乙炔基、丙炔基、1-丁炔基、2-丁炔基、1-戊炔基、2-戊炔基、3-甲基-1丁炔基等。
“酰基”指的是连接点处的碳被氧基取代的任何烷基、烯基或炔基,如以下定义。例如,-C(=O)烷基、-C(=O)烯基和-C(=O)炔基是酰基基团。
“杂环”指的是5-到7-元单环、或7-到10-元二环、杂环,其可以是饱和、不饱和或芳香族的,且其包含独立选自氮、氧和硫的1或2个杂原子,且所述氮和硫杂原子可以任选被氧化,且所述氮杂原子可以任选被季铵化,所述杂环也包括任何上述杂环与苯环稠合的双环。所述杂环可经由任何杂原子或碳原子连接。杂环包括以下定义的杂芳基。杂环包括吗啉基、吡咯烷酮基(pyrrolidinonyl)、吡咯烷基、哌啶基、哌嗪基、乙内酰脲基、戊内酰胺基、环氧乙基、氧杂环丁基、四氢呋喃基、四氢吡喃基、四氢吡啶基、四氢嘧啶基、四氢噻吩基、四氢噻喃基、四氢嘧啶基、四氢噻吩基、四氢噻喃基等。
术语“任选取代的烷基”、“任选取代的烯基”、“任选取代的炔基”、“任选取代的酰基”和“任选取代的杂环”指的是,当被取代时,至少一个氢原子被取代基替换。在氧取代基(=O)的情况下两个氢原子被替换。关于这点,取代基包括氧、卤素、杂环、-CN、-ORx、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy,其中n是0、1或2,Rx和Ry相同或不同,独立为氢、烷基或杂环,且每一个所述的烷基和杂环取代基可以再被一个或多个以下基团取代:氧、卤素、-OH、-CN、烷基、-ORx、杂环基、-NRxRy、-NRxC(=O)Ry、-NRxSO2Ry、-C(=O)Rx、-C(=O)ORx、-C(=O)NRxRy、-SOnRx和-SOnNRxRy
“卤素”指的是氟、氯、溴和碘。
在一些实施方式中,本发明方法可能需要使用保护基。保护基法是本领域技术人员所熟知的(例如参见Protective Groups in OrganicSynthesis,Green,T.W.等人,Wiley-Interscience,New York City,1999)。简言之,本发明上下文内的保护基是降低或消除不需要的官能团反应性的任何基团。保护基可加给官能团以屏蔽其在某些反应期间的反应性,然后除去保护基以显示原来的官能团。在一些实施方式中,使用“醇保护基”。“醇保护基”是降低或消除不需要的醇官能团反应性的任何基团。可使用本领域熟知的技术增加并除去保护基。
式A的合成
在一个实施方式中,本发明核酸-脂质颗粒采用式A的阳离子脂质配制:
其中R1和R2独立为烷基、烯基或炔基,各基团可任选被取代,且R3和R4独立为低级烷基或R3和R4可以合起来形成任选被取代的杂环。在一些实施方式中,所述阳离子脂质是XTC(2,2-二亚油基-4-二甲基氨基乙基-[1,3]-二氧戊环)。通常,上述式A的脂质可通过以下反应方案1或2制备,其中除非另有说明,所有的取代基如上定义。
方案1
脂质A可按照方案1制备,其中R1和R2独立为烷基、烯基或炔基,各基团可任选被取代,且R3和R4独立为低级烷基或R3和R4可以合起来形成任选被取代的杂环。酮1和溴化物2可以购买或按照本领域技术人员已知的方法制备。1和2的反应生成缩酮3。用胺4处理缩酮3生成式A的脂质。可用式5的有机盐使式A的脂质转化为相应铵盐,其中X是选自卤素、氢氧根、磷酸根、硫酸根等的阴离子抗衡离子。
方案2
或者,酮1起始材料可按照方案2制备。格氏试剂6和氰化物7可以购买或按照本领域技术人员已知的方法制备。6和7的反应生成酮1。酮1到式A的相应脂质的转化如方案1所述。
MC3的合成
DLin-M-C3-DMA(即4-(二甲基氨基)丁酸(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基酯))的制备如下。在室温下搅拌(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-醇(0.53g)、4-N,N-二甲基氨基丁酸盐酸盐(0.51g)、4-N,N-二甲基氨基吡啶(0.61g)和1-乙基-3-(3-二甲基氨基丙基)碳二亚胺盐酸盐(0.53g)的二氯甲烷(5mL)溶液过夜。用稀盐酸洗涤该溶液,然后用稀释的碳酸氢钠水溶液洗涤。有机部分用无水硫酸镁干燥,过滤并在旋转蒸发器上去除溶剂。残余物通过硅胶柱(20g),使用1-5%甲醇/二氯甲烷洗脱梯度。合并含有纯化产物的级分并去除溶剂,得到无色油状物(0.54g)。
ALNY-100的合成
缩酮519[ALNY-100-100]的合成使用以下方案3进行:
515的合成:
在0℃下在氮气氛下往双颈RBF(1L)中的200ml无水THF中的LiAlH4(3.74g,0.09852mol)的搅拌的悬浮液中缓慢添加70ml THF中的514(10g,0.04926mol)。完全添加后,反应混合物加热到室温,然后加热回流4h。反应的进程由TLC监控。反应完全后(通过TLC监控),使混合物冷却到0℃,并通过小心添加饱和的Na2SO4溶液淬灭。反应混合物在室温下搅拌4h并过滤。用THF适当地洗涤残余物。混合滤液和洗液并用400ml二氧杂环己烷和26ml浓HCl稀释,并在室温下搅拌20分钟。在真空下去除挥发物,得到515的盐酸盐,为白色固体。产率:7.12g,1H-NMR(DMSO,400MHz):δ=9.34(宽,2H),5.68(s,2H),3.74(m,1H),2.66-2.60(m,2H),2.50-2.45(m,5H)。
516的合成:
往250mL双颈RBF中的100mL无水DCM中的化合物515的搅拌溶液中添加NEt3(37.2mL,0.2669mol),并在氮气氛下冷却到0℃。缓慢添加50mL无水DCM中的N-(苄氧基-羰基氧基)-琥珀酰亚胺(20g,0.08007mol)后,使反应混合物加热到室温。反应完全后(2-3h,由TLC监控),用1N HCl溶液(1x100mL)和饱和的NaHCO3溶液(1x50mL)先后洗涤混合物。然后用无水Na2SO4干燥有机层并蒸发溶剂,得到粗料,通过硅胶柱层析纯化后,得到516,为粘性团块。产率:11g(89%)。1H-NMR(CDCl3,400MHz):δ=7.36-7.27(m,5H),5.69(s,2H),5.12(s,2H),4.96(br.,1H)2.74(s,3H),2.60(m,2H),2.30-2.25(m,2H)。LC-MS[M+H]-232.3(96.94%)。
517A和517B的合成:
将环戊烯516(5g,0.02164mol)溶解在单颈500mLRBF中的220mL丙酮和水(10∶1)溶液中,在室温下往其中添加N-甲基吗啉-N-氧化物(7.6g,0.06492mol)和4.2mL的7.6%的OsO4(0.275g,0.00108mol)的叔丁醇溶液。反应完全后(约3h),通过添加固体Na2SO3淬灭混合物,在室温下搅拌所得混合物1.5h。用DCM(300mL)稀释反应混合物并用水(2x100mL)、然后是饱和NaHCO3(1x50mL)溶液、水(1x30mL)以及最后用盐水(1x50mL)洗涤。用无水Na2SO4干燥有机相并在真空中去除溶剂。用硅胶柱层析纯化粗料得到非对映体混合物,其通过制备型HPLC分离。产率:6g粗品。
517A-峰-1(白色固体),5.13g(96%)。1H-NMR(DMSO,400MHz):δ=7.39-7.31(m,5H),5.04(s,2H),4.78-4.73(m,1H),4.48-4.47(d,2H),3.94-3.93(m,2H),2.71(s,3H),1.72-1.67(m,4H).LC-MS-[M+H]-266.3,[M+NH4+]-283.5存在,HPLC-97.86%。立体化学由X-线确认。
518的合成:
使用类似于合成化合物505所述的方法获得化合物518(1.2g,41%),为无色油状物。1H-NMR(CDCl3,400MHz):δ=7.35-7.33(m,4H),7.30-7.27(m,1H),5.37-5.27(m,8H),5.12(s,2H),4.75(m,1H),4.58-4.57(m,2H),2.78-2.74(m,7H),2.06-2.00(m,8H),1.96-1.91(m,2H),1.62(m,4H),1.48(m,2H),1.37-1.25(br m,36H),0.87(m,6H).HPLC-98.65%。
合成化合物519的一般程序:
化合物518(1eq)的己烷(15mL)溶液以逐滴方式加入冰冷的LAH的THF(1M,2eq)溶液中。完全添加后,混合物在40℃加热0.5h,然后在冰浴上再次冷却。用饱和Na2SO4水溶液小心水解混合物,然后通过寅式盐(Celite)过滤,减少为油。柱色谱法提供纯化的519(1.3g,68%),其以无色油状物获得。13C NMR=130.2,130.1(x2),127.9(x3),112.3,79.3,64.4,44.7,38.3,35.4,31.5,29.9(x2),29.7,29.6(x2),29.5(x3),29.3(x2),27.2(x3),25.6,24.5,23.3,226,14.1;电喷射MS(+ve):C44H80NO2的分子量(M+H)+计算值654.6,实测值654.6。
治疗剂-脂质颗粒组合物和制剂
本发明包括含有本发明脂质颗粒和活性剂的组合物,其中所述活性剂与所述脂质颗粒结合。在具体实施方式中,所述活性剂是治疗剂。在具体实施方式中,所述活性剂包封在脂质颗粒的水性内部。在其他实施方式中,所述活性剂存在于脂质颗粒的一层或多层脂质层中。在其他实施方式中,所述活性剂和脂质颗粒的外部或内部脂质表面结合。
本发明所使用的“完全包封”指的是颗粒中的核酸暴露于明显降解游离DNA的血清或核酸酶试验后,其不被明显降解。在完全包封体系中,优选小于25%的颗粒核酸在通常降解100%的游离核酸的处理中被降解,更优选小于10%和最优选小于5%的颗粒核酸被降解。或者,完全包封可由Oligreen试验测定。Oligreen是用于定量溶液中寡核苷酸和单链DNA的超灵敏的荧光核酸染色剂(可以从Invitrogen Corporation,Carlsbad,CA获得)。完全包封也提示颗粒是血清稳定的,即,一旦体内给药,它们不会迅速分解成其组成部分。
本发明所使用的活性剂包括能够对细胞、组织、器官或受试者发挥预期效果的任何分子或化合物。这种效果例如可以是生物学、生理学或化妆品学的。活性剂可以是任何种类的分子或化合物,例如包括,核酸、肽和多肽,例如包括抗体,例如多克隆抗体、单克隆抗体、抗体片段;人源化抗体、重组抗体、重组人抗体和PrimatizedTM抗体、细胞因子、生长因子、细胞凋亡因子、分化-诱导因子、细胞表面受体及其配体;激素;和小分子,包括有机小分子或化合物。
在一个实施方式中,所述活性剂是治疗剂,或其盐或衍生物。治疗剂衍生物本身可以是治疗活性的,或它们可以是前药,其在进一步修饰后变成活性的。因此,在一个实施方式中,和未修饰试剂相比,治疗剂衍生物保持一些或全部治疗活性,而在另一个实施方式中,治疗剂衍生物缺乏治疗活性。
在多个实施方式中,治疗剂包括任何治疗有效的试剂或药物,例如抗炎化合物、抗抑郁药、***、止痛剂、抗生素、节育药物、退热药、血管扩张剂、抗血管新生剂、细胞血管剂(cytovascular agents)、信号转导抑制剂、心血管药(例如抗心律失常药)、血管收缩剂、激素和类固醇。
在某些实施方式中,所述治疗剂是肿瘤学药物,其也可以称为抗肿瘤药、抗癌药、肿瘤药、抗肿瘤剂等。可用于本发明的肿瘤学药物的例子包括但不限于亚德里亚霉素、左旋溶内瘤素、别嘌呤醇、六甲蜜胺、氨磷汀、阿那曲唑、araC、三氧化二砷、脒唑硫嘌呤、蓓萨罗丁、biCNU、博来霉素、静脉内马利兰、口服马利兰、卡培他滨(Xeloda)、卡铂、卡莫司汀、CCNU、塞来昔布、苯丁酸氮芥、顺铂、克拉屈滨、环孢菌素A、氟尿嘧啶、阿糖胞苷、柔红霉素、癌得星、柔红霉素、***、右雷佐生、多烯紫衫醇、亚德利亚霉素、亚德利亚霉素、DTIC、表柔比星、雌氮芥、磷酸依托泊苷、依托泊苷和VP-16、依西美坦、FK506、氟达拉滨、氟尿嘧啶、5-FU、吉西他滨(Gemzar)、吉妥单抗-奥佐米星、醋酸戈舍瑞林、羟基脲、去甲氧柔红霉素、异环磷酰胺、甲磺酸伊马替尼、干扰素、伊立替康(Camptostar,CPT-111)、来曲唑、甲酰四氢叶酸、克拉立平、亮丙瑞林、左旋咪唑、阿利维A酸、甲地孕酮、美法仑、L-PAM、巯乙磺酸钠、氨甲喋呤、甲氧沙林、光神霉素、丝裂霉素、米托蒽醌、氮芥、紫杉醇、氨羟二磷酸二钠、甲氧聚乙二醇琥珀酰胺腺甙脱氨酶、喷司他丁、卟吩姆钠、强的松、B细胞单克隆抗体、链脲霉素、STI-571、三苯氧胺、泰索帝、替莫唑胺、替尼泊苷、VM-26、拓扑替康(Hycamtin)、托瑞米芬、维甲酸、ATRA、戊柔比星、长春碱、长春花碱、长春新碱、VP16和长春瑞滨。可用于本发明的肿瘤学药物的其他例子是玫瑰树碱和玫瑰树碱类似物或衍生物、埃坡霉素、胞内激酶抑制剂和喜树碱。
其他制剂
乳剂
本发明组合物可制备并配制成乳剂。乳剂是典型的一种液体以直径通常超过0.1μm的小滴形式分散在另一种液体中的非均匀体系(Idson,inPharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,p.199页;Rosoff,inPharmaceutical Dosage Forms,Lieberman,Rieger和Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,245页;Block inPharmaceutical Dosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 2,p.335;Higuchi等人,inRemington′s Pharmaceutical Sciences,Mack Publishing Co.,Easton,Pa.,1985,p.301)。乳剂通常是包含紧密混合和互相分散的两种不混溶液相的两相***。通常,乳剂可以是油包水(w/)或水包油(o/w)类。当水相精细分散并以精细小滴分散在大量油相中时,得到的组合物称为油包水(w/o)乳剂。或者,当油相精细分散并以精细小滴分散在大量水相中时,得到的组合物称为水包油(o/w)乳剂。除分散相之外,乳剂可包含其他组分,活性药物可作为溶液存在于水相、油相或本身作为独立相。如果需要,药物赋形剂例如乳化剂、稳定剂、着色剂和抗氧化剂也可存在于乳剂中。药物乳剂也可以是由两相以上组成的多重乳剂,例如,油包水包油(o/w/o)和水包油包水(w/o/w)乳剂。这种复杂制剂通常提供简单的两相乳剂所没有的某些优点。多重乳剂中,o/w乳剂的单个油滴包围水滴组成w/o/w乳剂。同样,稳定存在于油连续相中的水滴包围油滴的体系提供o/w/o乳剂。
乳剂的特征在于几乎没有或没有热力学稳定性。通常,乳剂的分散或非连续相很好地分散在外相或连续相中,并通过乳化剂或制剂的粘性维持该形式。乳剂的任何一相可以是半固体或固体,乳剂类型的软膏基质和霜剂就是这样。稳定乳剂的其他方法需要利用乳化剂,其可以加入乳剂的任一相。乳化剂可以大体地分为四类:合成的表面活性剂、天然存在的乳化剂、吸收基质和精细分散固体(Idson,in PharmaceuticalDosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.199)。
合成的表面活性剂,又名表面活性剂,在乳剂制剂中具有广泛适用性,且已在文献中述评(Rieger,in Pharmaceutical Dosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,volume 1,p.285;Idson,in Pharmaceutical Dosage Forms,Lieberman,Rieger and Banker(Eds.),Marcel Dekker,Inc.,New York,N.Y.,1988,第1卷,199页)。表面活性剂通常是两性分子的,且包含亲水性和疏水性部分。表面活性剂的亲水性与疏水性的比例称为亲水/亲油平衡(HLB),其在制剂制备中是分类并选择表面活性剂的重要工具。基于亲水基的性质,表面活性剂可被分为不同类型:非离子的、阴离子的、阳离子的和两性的(Rieger,in Pharmaceutical Dosage Forms,Lieberman,Rieger andBanker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,285页)。
用于乳剂制剂的天然存在的乳化剂包括羊毛脂、蜂蜡、磷脂、卵磷脂和***树胶。吸收基质具有亲水性,这样它们可以吸收水从而形成w/o乳剂,同时仍保持其半固体粘度,例如无水羊毛脂和亲水性矿脂。精细分散固体也用作良好的乳化剂,特别是和表面活性剂组合并用于粘性制剂中。这些包括极性无机固体,例如重金属氢氧化物、非溶胀粘土例如皂土、坡缕石、锂蒙脱石、高岭土、蒙脱土、胶状硅酸铝和胶状镁铝硅酸盐、颜料和非极性固体例如碳或三硬脂酸甘油酯。
多种非乳化材料也可包括在乳剂制剂中并有助于乳剂的性质。这些包括脂肪、油、蜡、脂肪酸、脂肪醇、脂肪酸酯、保湿剂、亲水胶体、防腐剂和抗氧化剂(Block,in Pharmaceutical Dosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,335页;Idson,in Pharmaceutical Dosage Forms,Lieberman,Rieger andBanker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,199页)。
亲水胶体或水状胶体包括天然存在的树胶和合成聚合物,例如多糖(例如,***树胶、琼脂、藻酸、角叉菜胶、瓜尔胶、刺梧桐树胶和黄芪胶)、纤维素衍生物(例如,羧甲基纤维素和羧丙基纤维素)和合成聚合物(例如,卡波姆、纤维素醚和羧乙烯聚合物)。这些物质分散在水中或在水中溶胀以形成胶体溶液,其通过形成围绕分散相小滴的强大界面膜和通过增加外相的粘性使乳剂稳定。
由于乳剂通常包含许多容易支持微生物生长的成分,例如碳水化合物、蛋白质、固醇和磷脂,因此这些制剂中通常加入防腐剂。乳剂制剂中的常用防腐剂包括对于羟苯甲酸甲酯、对羟苯甲酸丙酯、季铵盐、杀藻铵、对羟基苯甲酸酯和硼酸。通常也在乳剂制剂中加入抗氧化剂,以阻止制剂变质。所用的抗氧化剂可以是自由基清除剂,例如生育酚、没食子酸烷基酯、丁基羟基苯甲醚、丁基羟基甲苯;或还原剂,例如抗坏血酸和焦亚硫酸钠;以及抗氧化剂协同剂,例如柠檬酸、酒石酸和卵磷脂。
乳剂制剂经由皮肤、经口和胃肠外途径的应用及其制备方法已在文献中述评(Idson,in Pharmaceutical Dosage Forms,Lieberman,Rieger andBanker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,199页)。经口递送的乳剂制剂由于制剂便利性以及就吸收和生物利用率而言的功效已经得到广泛应用(Rosoff,in Pharmaceutical Dosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,245页;Idson,in Pharmaceutical Dosage Forms,Liebeman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,199页)。矿物油基质轻泻剂、油溶性维生素和高脂肪营养制剂是通常作为o/w乳剂经口给药的材料。
在本发明的一个实施方式中,dsRNA和核酸组合物配制成微乳剂。微乳剂可以定义为水、油和两性分子体系,其是单一光学各向同性和热力学稳定的液体溶液(Rosoff,in Pharmaceutical Dosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,245页)。通常微乳剂是通过如下方法制备的体系:首先将油分散在表面活性剂水溶液中,然后添加足量的第四种组分,通常是中等链长的醇,以形成透明体系。因此,微乳剂也被称为两种不溶混液体的热力学稳定的、各向同性透明的分散体,其通过表面活性分子的界面膜稳定(Leung和Shah,in:Controlled Release of Drugs:Polymers and AggregateSystems,Rosoff,M.,Ed.,1989,VCH Publishers,New York,185-215页)。微乳剂通常经由组合三到五种组分来制备,包括油、水、表面活性剂、助表面活性剂和电解质。微乳剂是否是油包水(w/o)或水包油(o/w)型取决于所使用的油和表面活性剂性质以及表面活性剂分子的极性头部和碳氢化合物尾部的结构和几何组装(Schott,in Remington′s PharmaceuticalSciences,Mack Publishing Co.,Easton,Pa.,1985,271页)。
本领域技术人员已经广泛研究了利用相位图的现象学方法,并获得了如何配制微乳剂的综合知识(Rosoff,in Pharmaceutical Dosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,245页;Block,in Pharmaceutical Dosage Forms,Lieberman,Rieger and Banker(Eds.),1988,Marcel Dekker,Inc.,New York,N.Y.,第1卷,335页)。较之传统乳剂,微乳剂具有使水不溶性药物溶解在自发形成的热力学稳定的小滴制剂中的优点。
用于制备微乳剂的表面活性剂包括但不限于离子型表面活性剂、非离子型表面活性剂、Brij96、聚氧乙烯油烯基醚、脂肪酸聚甘油酯、单月桂酸四甘油酯(ML310)、单油酸四甘油酯(MO310)、单油酸六甘油酯(PO310)、五油酸六甘油酯(PO500)、单癸酸十甘油酯(MCA750)、单油酸十甘油酯(MO750)、倍半油酸十甘油酯(SO750)、十油酸十甘油酯(DAO750),它们单独使用或和助表面活性剂组合。由于表面活性剂分子之间产生的间隙,助表面活性剂(通常是短链醇,例如乙醇、1-丙醇和1-丁醇)通过渗透入表面活性剂膜并因此生成异常膜从而适用于增加界面流动性。然而,微乳剂可以在不使用助表面活性剂的情况下制备,且无醇自乳化微乳剂体系是本领域已知的。通常,水相可以是但不限于水、药物水溶液、甘油、PEG300、PEG400、聚丙三醇、丙二醇、和乙二醇的衍生物。油相可以包括但不限于以下材料:例如Captex 300、Captex355、Capmul MCM、脂肪酸酯、中链(C8-C12)单、二和三甘油酯、聚氧乙烯的脂肪酸甘油酯、脂肪醇、聚乙二醇化甘油酯、饱和的聚乙二醇化C8-C10甘油酯、植物油和硅油。
在药物溶解和提高药物吸收方面,微乳剂是特别值得关注的。脂质基微乳剂(o/w和w/o)已被提议用于提高药物(包括肽)的口服生物利用率(Constantinides等人,Pharmaceutical Research,1994,11,1385-1390;Ritschel,Meth.Find.Exp.Clin.Pharmacol.,1993,13,205)。微乳剂具有如下优点:改善药物溶解、避免药物被酶水解、由于表面活性剂诱导的膜流体性和渗透性的变化而可能提高药物吸收、易于制备、比固体剂型易于口服、临床功效改善和毒性降低(Constantinides等人,PharmaceuticalResearch,1994,11,1385;Ho等人,J.Pharm.Sci.,1996,85,138-143)。当在环境温度下微乳剂的组分混合在一起时,通常微乳剂可以自发形成。当配制不耐热药物肽或dsRNA时,这可能是特别有利的。在化妆品和药物应用中,微乳剂在透皮递送活性组分中也是有效的。可预期,本发明微乳剂组合物和制剂将促进dsRNA和核酸从胃肠道中的增加的全身吸收,以及改善dsRNA和核酸的局部细胞摄取。
本发明微乳剂也可以包含其他组分和添加剂,例如失水山梨醇单硬脂酸酯(Grill3)、Labrasol和渗透促进剂,以改善制剂的性质并提高本发明dsRNA和核酸的吸收。用于本发明微乳剂的渗透促进剂可以分为属于五大类之一--表面活性剂、脂肪酸、胆汁盐、螯合剂和非螯合非表面活性剂(Lee等人,Critical Reviews in Therapeutic Drug Carrier Systems,1991,p.92)。这些种类中的每一类已在上文讨论。
渗透促进剂
在一个实施方式中,本发明使用多种渗透促进剂以使核酸特别是dsRNA有效递送至动物皮肤。大部分药物以离子化或非离子化形式存在于溶液中。然而,通常仅脂质可溶性或亲脂性药物易于透过细胞膜。已经发现,如果用渗透促进剂处理需要透过的膜,甚至非亲脂性药物也可以透过细胞膜。除帮助非亲脂性药物扩散透过细胞膜之外,渗透促进剂也提高亲脂性药物的渗透性。
渗透促进剂可以分为属于五大类之一,即表面活性剂、脂肪酸、胆汁盐、螯合剂和非螯合非表面活性剂(Lee等人,Critical Reviews inTherapeutic Drug Carrier Systems,1991,p.92)。每一种上述种类的渗透促进剂详细描述如下。
表面活性剂:根据本发明,表面活性剂是这样的化学实体,当溶解在水溶液中时,其能减少溶液的表面张力或水溶液和另一种液体之间的界面张力,导致dsRNA通过黏膜的吸收增加。除胆汁盐和脂肪酸之外,这些渗透促进剂例如包括,十二烷基硫酸钠、聚氧乙烯-9-月桂基醚和聚氧乙烯-20-鲸蜡基醚(Lee等人,Critical Reviews in Therapeutic DrugCarrier Systems,1991,p.92);和全氟化学乳剂,如FC-43。Takahashi等人,J.Pharm.Pharmacol.,1988,40,252)。
脂肪酸:作为渗透促进剂的多种脂肪酸及其衍生物例如包括油酸、月桂酸、癸酸(正癸酸)、肉豆蔻酸、棕榈酸、硬脂酸、亚油酸、亚麻酸、二癸酸、三癸酸、甘油一油酸酯(1-单油酰-rac-甘油)、甘油二月桂酸酯、辛酸、花生四烯酸、甘油1-单癸酸酯、1-十二烷基氮杂环庚烷-2-酮、酰肉碱、酰基胆碱、其C1-10烷基酯(例如,甲基、异丙基和叔丁基)及其单-和二-甘油酯(即油酸酯、月桂酸酯、癸酸酯、豆蔻酸酯、棕榈酸酯、硬脂酸酯、亚油酸酯等)(Lee等人,Critical Reviews in Therapeutic DrugCarrier Systems,1991,p.92;Muranishi,Critical Reviews in TherapeuticDrug Carrier Systems,1990,7,1-33;El Hariri等人,J.Pharm.Pharmacol.,1992,44,651-654)。
胆汁盐:胆汁的生理学作用包括促进脂质和脂溶性维生素的分散和吸收(Brunton,Chapter 38 in:Goodman&Gilman′s The PharmacologicalBasis of Therapeutics,9th Ed.,Hardman等Eds.,McGraw-Hill,New York,1996,pp.934-935)。多种天然胆汁盐及其合成衍生物作为渗透促进剂。因此术语“胆汁盐”包括任何天然存在的胆汁组分以及任何其合成衍生物。适当的胆汁盐例如包括胆酸(或其药学可接受的钠盐,胆酸钠)、脱氢胆酸(脱氢胆酸钠)、脱氧胆酸(脱氧胆酸钠)、甘氨胆酸(甘氨胆酸钠)、乙醇酸(乙醇酸钠)、甘氨脱氧胆酸(甘氨脱氧胆酸钠)、牛磺胆酸(牛磺胆酸钠)、牛磺去氧胆酸(牛磺去氧胆酸钠)、鹅去氧胆酸(鹅去氧胆酸钠)、熊去氧胆酸(UDCA)、牛磺-24,25-二氢-夫西地酸钠(STDHF)、甘油二氢夫西地酸钠和聚氧乙烯-9-月桂基醚(POE)(Lee等人,Critical Reviews inTherapeutic Drug Carrier Systems,1991,page 92;Swinyard,Chapter 39 In:Remington′s Pharmaceutical Sciences,18th Ed.,Gennaro,ed.,MackPublishing Co.,Easton,Pa.,1990,第782-783页;Muranishi,CriticalReviews in Therapeutic Drug Carrier Systems,1990,7,1-33;Yamamoto等人,J.Pharm.Exp.Ther.,1992,263,25;Yamashita等人,J.Pharm.Sci.,1990,79,579-583)。
螯合剂:本发明所使用的螯合剂可定义为通过与金属离子形成络合物而将金属离子从溶液中去除,从而导致dsRNA通过黏膜的吸收增加的化合物。当其在本发明中用作渗透促进剂时,螯合剂还具有作为DNase抑制剂的额外的优点,由于大部分特性化DNA核酸酶需要二价金属离子的催化,因此被螯合剂抑制(Jarrett,J.Chromatogr.,1993,618,315-339)。适当的螯合剂包括但不限于乙二胺四乙酸二钠(EDTA)、柠檬酸、水杨酸盐(例如,水杨酸钠、5-甲氧基水杨酸盐和高香兰酸盐)、胶原的N-酰基衍生物、月桂醇聚醚-9和β-双酮(烯胺)的N-氨基酰基衍生物(Lee等人,Critical Reviews in Therapeutic Drug Carrier Systems,1991,page 92;Muranishi,Critical Reviews in Therapeutic Drug Carrier Systems,1990,7,1-33;Buur等人,J.Control Rel.,1990,14,43-51)。
非螯合非表面活性剂:如本发明所使用,非螯合非表面活性剂渗透促进剂化合物可以定义为不显示明显的螯合剂或表面活性剂活性,但仍然提高dsRNA通过营养黏膜吸收的化合物(Muranishi,Critical Reviewsin Therapeutic Drug Carrier Systems,1990,7,1-33)。这类渗透促进剂例如包括非饱和环状尿素、1-烷基-和1-烯基氮杂环-烷酮衍生物(Lee等人,Critical Reviews in Therapeutic Drug Carrier Systems,1991,page 92);和非甾体抗炎药,例如双氯灭痛、吲哚美辛和苯基丁氮酮(Yamashita等人,J.Pharm.Pharmacol.,1987,39,621-626)。
提高dsRNA在细胞水平的摄取的试剂也可添加到本发明的药物及其他组合物中。例如,已知阳离子脂质,例如脂质体(lipofectin)(Junichi等,U.S.Pat.No.5,705,188);阳离子甘油衍生物;和聚阳离子分子,例如聚赖氨酸(Lollo等人,PCT申请WO 97/30731)能提高dsRNA的细胞摄取。
可以使用其他试剂提高给药的核酸的渗透性,包括二醇,例如乙二醇和丙二醇;吡咯,例如2-吡咯;氮酮;以及萜烯,例如柠檬油精和孟铜。
载体
本发明dsRNA可配制在药学可接受的载体或稀释剂中。“药学可接受的载体”(本发明也称为“赋形剂”)是药学可接受的溶剂、悬浮剂或任何其他药理学惰性介质。药学可接受的载体可以是液体或固体,且可以根据计划的给药方式选择,以提供所需容积、相容性及其他相关的运送和化学性质。典型的药学可接受的载体例如包括但不限于:水;盐溶液;粘合剂(例如,聚乙烯吡咯烷酮或羟丙基甲基纤维素);填充剂(例如,乳糖及其他糖、凝胶或硫酸钙);润滑剂(例如,淀粉、聚乙二醇或乙酸钠);崩解剂(例如,淀粉或淀粉羟基乙酸钠);和润湿剂(例如,十二烷基硫酸钠)。
本发明某些组合物制剂中还结合有载体化合物。如本发明所使用,“载体化合物”或“载体”可以意指核酸或其类似物,其是惰性的(即,本身不具有生物活性),但被体内过程识别为核酸,其例如通过降解生物学活性的核酸或促进其从循环中去除而降低具有生物活性的核酸的生物利用率。核酸和载体化合物的共同给药(通常后者物质过量)可导致肝脏、肾脏或其他外循环贮库中回收的核酸量的显著减少,这可能是由于载体化合物和核酸对共同受体的竞争。例如,当其与聚肌苷酸、葡聚糖硫酸酯、聚胞苷酸或4-乙酸胺基-4′异硫氰基-二苯乙烯-2,2-二磺酸共同给药时,肝组织中部分硫代磷酸酯dsRNA的回收率可降低(Miyao等人,DsRNA Res.Dev.,1995,5,115-121;Takakura等人,DsRNA&Nucl.AcidDrug Dev.,1996,6,177-183。
赋形剂
与载体化合物相反,“药物载体”或“赋形剂”是用于将一种或多种核酸递送给动物的药学可接受的溶剂、悬浮剂或任何其他的药理学惰性介质。所述赋形剂可以是液体或固体,且以计划的给药方式选择,从而在和给定的药物组合物的核酸及其他组分结合时,提供所需的容积、相容性等。典型的药物载体包括但不限于:粘合剂(例如,预胶化玉米淀粉、聚乙烯吡咯烷酮或羟丙基甲基纤维素等);填充剂(例如,乳糖及其他糖、微晶纤维素、胶质、凝胶、硫酸钙、乙基纤维素、聚丙烯酸酯或磷酸氢钙等);润滑剂(例如,硬脂酸镁、滑石、硅石、胶体二氧化硅、硬脂酸、金属硬脂酸盐、氢化植物油、玉米淀粉、聚乙二醇、苯甲酸钠、乙酸钠等);崩解剂(例如,淀粉、淀粉羟基乙酸钠等);和润湿剂(例如十二烷硫酸钠等)。
也可以使用不与核酸起有害反应的、适于非肠胃外给药的药学可接受的有机或无机赋形剂来配制本发明组合物。适当的药学可接受载体包括但不限于:水、盐溶液、醇、聚乙二醇、凝胶、乳糖、直链淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、羟甲基纤维素、聚乙烯吡咯烷酮等。
用于局部给药核酸的制剂可以包括无菌和非无菌水溶液、常用溶剂例如醇中的非水溶液,或液体或固体油性基质中的核酸溶液。所述溶液也可以包含缓冲液、稀释剂及其他适当的添加剂。也可以使用不与核酸起有害反应的、适于非肠胃外给药的药学可接受的有机或无机赋形剂。
适当的药学可接受的赋形剂包括但不限于:水、盐溶液、醇、聚乙二醇、凝胶、乳糖、直链淀粉、硬脂酸镁、滑石、硅酸、粘性石蜡、羟甲基纤维素、聚乙烯吡咯烷酮等。
其他组分
本发明组合物还可以以本领域已确定的使用水平包含通常用于药物组合物的其他辅助组分。因此,例如,所述组合物可包含其他相容的药学活性物质,例如,止痒剂、收剑剂、局部麻醉剂或抗炎剂,或可以包含用于物理上配制本发明组合物的各种剂型的其他材料,例如着色剂、矫味剂、防腐剂、抗氧化剂、遮光剂、增稠剂和稳定剂。然而,当添加这种材料时,其应不会不适当地干扰本发明组合物组分的生物活性。如有需要,所述制剂可以灭菌,并与助剂混合,例如,不与所述制剂的核酸起有害反应的润滑剂、防腐剂、稳定剂、润湿剂、乳化剂、用于影响渗透压的盐、缓冲液、着色剂、矫味剂和/或芳香族物质等。
水性悬浮液可以包含增加悬浮液粘性的物质,例如包括羧甲基纤维素钠、山梨醇和/或右旋糖苷。所述悬浮液也可以包含稳定剂。
联合疗法
一方面,本发明组合物可用于联合疗法。术语“联合疗法”包括在给药于受试者化合物时组合其他生物学活性成分(例如但不限于:第二种且不同的抗肿瘤剂)和非药物疗法(例如但不限于:外科手术或放射治疗)。例如,本发明化合物可与其他药学活性化合物,优选能提高本发明化合物的效果的化合物组合使用。本发明化合物可以和其他药物疗法同时(作为单个制剂或分开制剂)或相继施用。通常,联合疗法预期在治疗的单个循环或疗程期间给药两种或更多种药物。
本发明的一方面,主题化合物可与一种或多种单独试剂联合给药,以调节与多种疾病病症有关的蛋白激酶。这种激酶的例子可以包括但不限于:丝氨酸/苏氨酸特异性激酶、受体酪氨酸特异性激酶和非受体酪氨酸特异性激酶。丝氨酸/苏氨酸激酶包括有丝***原活化的蛋白激酶(MAPK)、减数***特异性激酶(MEK)、RAF和极光激酶。受体激酶家族的例子包括表皮生长因子受体(EGFR)(例如HER2/neu、HER3、HER4、ErbB、ErbB2、ErbB3、ErbB4、Xmrk、DER、Let23)、成纤维细胞生长因子(FGF)受体(例如FGF-R1、GFF-R2/BEK/CEK3、FGF-R3/CEK2、FGF-R4/TKF、KGF-R)、肝细胞生长/分散因子受体(HGFR)(例如MET、RON、SEA、SEX)、胰岛素受体(例如IGFI-R)、Eph(例如CEK5、CEK8、EBK、ECK、EEK、EHK-I、EHK-2、ELK、EPH、ERK、HEK、MDK2、MDK5、SEK);AxI(例如Mer/Nyk,Rse);RET;血小板衍生的生长因子受体(PDGFR)(例如PDGFα-R、PDGβ-R、CSF1-R/FMS、SCF-R/C-KIT、VEGF-R/FLT、NEK/FLK1、FLT3/FLK2/STK-1)。非受体酪氨酸激酶家族包括但不限于:BCR-ABL(例如p43abl,ARG);BTK(例如ITK/EMT、TEC);CSK、FAK、FPS、JAK、SRC、BMX、FER、CDK和SYK。
本发明的另一方面,主题化合物可与调节非激酶生物靶标或过程的一种或多种试剂联合给药。这种靶标包括组蛋白脱乙酰基酶(HDAC)、DNA甲基转移酶(DNMT)、热休克蛋白(例如HSP90)和蛋白体。
在一个实施方式中,主题化合物可与抑制一种或多种生物靶标的抗肿瘤剂(例如小分子、单克隆抗体、反义RNA和融合蛋白)联合,例如伏立诺他(Zolinza)、特罗凯、易瑞沙、拉帕替尼(Tykerb)、格列卫、索坦、达沙替尼(Sprycel)、Nexavar、索拉非尼、CNF2024、RG108、BMS387032、Affmitak、Avastin、曲妥珠单抗(Herceptin)、西妥昔单抗(Erbitux)、AG24322、PD325901、ZD6474、PD 184322、Obatodax、ABT737和AEE788。这种联合的治疗功效相对于单独使用任何试剂获得的功效有提高,且可以抑制或延迟抗突变变体的出现。
在某些优选的实施方式中,本发明化合物与化疗剂联合给药。化疗剂包括肿瘤学领域的许多治疗法。这些试剂在疾病的各种阶段给药,以缩小肿瘤、消灭外科手术后留下的残存癌细胞、诱导缓解、保持缓解和/或减轻与癌症或其治疗有关的症状。这种试剂的例子包括但不限于:烷化剂,例如芥子气衍生物(氮芥、环磷酰胺、苯丁酸氮芥、美法仑、异环磷酰胺)、乙烯亚胺(三胺硫膦、六甲嘧胺)、烷基磺酸盐(马利兰)、肼和三嗪(六甲嘧胺、甲苯肼、氮烯唑胺和替莫唑胺)、亚硝基脲(卡莫司汀、环己亚硝脲和链脲霉素)、异环磷酰胺和和金属盐(卡铂、顺铂、奥沙利铂);植物碱,例如鬼臼毒素(鬼臼亚乙苷和鬼臼噻吩苷)、紫杉烷类(紫杉醇、多西紫杉醇)、长春花生物碱(长春新碱、长春花碱、去乙酰长春酰胺和长春瑞宾)和喜树碱类似物(伊立替康、拓扑替康);抗肿瘤抗生素,例如色霉素(更生霉素和光神霉素)、蒽环类(亚德利亚霉素、柔红霉素、表柔比星、米托蒽醌、戊柔比星和去甲氧柔红霉素)和其他抗生素,例如丝裂霉素、放线菌素和博来霉素;抗代谢物,例如叶酸拮抗剂(氨甲喋呤、培美曲塞、雷替曲塞、蝶啶胺)、嘧啶拮抗剂(5-氟尿嘧啶、氟尿苷、氟尿嘧啶、卡培他滨和吉西他滨)、嘌呤拮抗剂(6-巯基嘌呤和6-硫鸟嘌呤)和腺苷脱氨酶抑制剂(克拉屈滨、氟达拉滨、巯基嘌呤、氯法拉滨、硫鸟嘌呤、奈拉滨和喷司他丁);拓扑异构酶抑制剂,例如拓扑异构酶I抑制剂(依立替康、拓扑替康)和拓扑异构酶II抑制剂(安吖啶、鬼臼亚乙苷、鬼臼亚乙苷磷酸盐、表鬼臼毒噻吩糖苷);单克隆抗体(阿仑单抗、吉妥单抗奥唑米星、利妥昔单抗、曲妥珠单抗、替伊莫单抗、西妥昔单抗、帕尼单抗、托西莫单抗、贝伐单抗);和其他抗肿瘤剂,例如核糖核苷酸还原酶抑制剂(羟基脲);皮质激素抑制剂(米托坦);酶(天冬酰胺酶和培加帕酶);抗微管剂(雌氮芥);和类维生素A(蓓萨罗丁、异维甲酸、维甲酸(ATRA))。在某些优选实施方式中,本发明化合物与化疗保护剂联合给药。化疗保护剂能保护机体或使化疗的副作用最小化。这种试剂的例子包括但不限于:阿米斯丁、巯乙磺酸钠和右雷佐生。
本发明的一方面,主题化合物与放射治疗联用。放射线通常内部递送(将放射性物质植入癌症位置附近)或由使用光子(x-光或γ-光)或微粒放射的机器外部递送。当联合治疗还包括放射治疗时,所述放射治疗可以在任何适当时候进行,只要能从治疗剂和放射治疗组合的共同作用中获得有益效果。例如,在适当的情况下,当放射治疗暂时从给药治疗剂中去除时,仍能获得有益效果,也许数天乃至数周。
应理解,本发明化合物可用于和免疫治疗剂联合使用。免疫疗法的一种形式是通过在远离肿瘤位置给药疫苗组合物从而产生宿主来源的主动全身肿瘤特异性免疫应答。已经提议多种类型的疫苗,包括分离的肿瘤-抗原疫苗和抗-独特型疫苗。另一种方法是使用来自待治疗受试者的肿瘤细胞,或这种细胞的衍生物(由Schirrmacher等(1995)J.CancerRes.Clin.Oncol.121:487述评)。Hanna Jr.等的美国专利No.5,484,596要求保护一种用于治疗可切除的肿瘤从而预防复发或转移的方法,包括手术去除所述肿瘤,用胶原酶分散所述细胞,照射所述细胞以及用大约107个细胞的至少三剂连续剂量给患者接种。
应理解,本发明化合物可有利地用于和一种或多种辅助治疗剂联合。用于辅助治疗的适当试剂的例子包括类固醇,例如皮质类固醇(安西缩松、培他米松、培他米松二丙酸盐、培他米松戊酸盐、布地缩松、氯倍他索、氯倍他索醋酸盐、氯倍他索丁酸盐、氯倍他索17-丙酸盐、可的松、地夫可特、去羟米松、双氟米松戊酸盐、***、***磷酸钠、羟泼尼缩松、糠酸盐、氟轻松醋酸酯、肤轻松醋酸酯、哈西缩松、氢化可的松、氢化可的松丁酸盐、氢化可的松琥珀酸钠、氢化可的松戊酸盐、泼尼卡酯、脱氢皮质醇、去炎松、曲安奈德和卤贝他索丙酸酯);5HTi激动剂,例如曲坦(例如舒马曲坦或诺拉替坦);腺苷Al激动剂;EP配体;NMDA调节剂,例如甘氨酸拮抗剂;钠通道阻滞剂(例如拉莫三嗪);P物质拮抗剂(例如NKi拮抗剂);***素;扑热息痛或非那西汀;5脂氧化酶抑制剂;白细胞三烯受体拮抗体;DMARD(例如氨甲喋呤);加巴喷丁及相关化合物;三环类抗抑郁药(例如阿米替林);神经细胞稳定抗癫痫药;单-胺能摄取抑制剂(例如文拉法辛);基质金属蛋白酶抑制剂;氧化氮合酶(NOS)抑制剂,例如iNOS或nNOS抑制剂;肿瘤坏死因子释放或作用抑制剂;抗体疗法,例如单克隆抗体疗法;抗病毒剂,例如核苷抑制剂(例如拉米夫定)或免疫***调节剂(例如干扰素);阿片样物质止痛剂;局部麻醉剂;***,包括咖啡因;H2-拮抗剂(例如甲胺呋硫);质子泵抑制剂(例如奥美拉唑);抗酸剂(例如铝或氢氧化镁);抗气胀药(例如二甲基硅油);减充血剂(例如新福林、苯丙醇胺、假麻黄碱、羟甲唑啉、肾上腺素、萘甲唑啉、丁苄唑啉、六氢脱氧麻黄碱或左脱氧麻黄碱);止咳药(例如可待因、氢可酮、卡腊米芬、维静宁或右美沙芬);利尿药;或塞达特或非塞达特抗组胺剂。
本发明化合物可以与靶向其他基因的siRNA一起给药。例如,本发明化合物可以与靶向c-Myc基因的siRNA一起给药。在一个实施方式中,AD-12115可以和c-Myc siRNA一起给药。c-Myc靶向的siRNA的例子公开在美国专利申请号12/373,039中,其以引用方式合并于此。
治疗由Eg5和VEGF基因的表达引起的疾病的方法
本发明尤其涉及含有至少两种dsRNA(一种靶向Eg5基因,一种靶向VEGF基因)的组合物在治疗癌症,例如肝癌中的用途,用于抑制肿瘤生长和肿瘤转移。例如,组合物,例如药物组合物,可以用于治疗实体瘤,例如,如可能在肝癌中发生的肝内肿瘤。含有靶向Eg5的dsRNA和靶向VEGF的dsRNA的组合物也可用于治疗其他肿瘤和癌症,例如乳腺癌、肺癌、头颈癌、脑癌、腹部癌、结肠癌、结肠直肠癌、食道癌、胃肠癌、神经胶质瘤、舌癌、神经母细胞瘤、骨肉瘤、卵巢癌、胰腺癌、***癌、视网膜母细胞瘤、Wilm肿瘤、多发性骨髓瘤和用于治疗皮肤癌、类黑素瘤,用于治疗淋巴瘤和血癌。本发明还涉及含有Eg5dsRNA和VEGF dsRNA的组合物在抑制不同种类癌症中腹水和胸腔积液积聚中的用途,所述癌症例如肝癌、乳腺癌、肺癌、头癌、颈癌、脑癌、腹部癌、结肠癌、结肠直肠癌、食道癌、胃肠癌、神经胶质瘤、舌癌、神经母细胞瘤、骨肉瘤、卵巢癌、胰腺癌、***癌、视网膜母细胞瘤、Wilm肿瘤、多发性骨髓瘤、皮肤癌、黑素瘤,淋巴瘤和血癌。因为对Eg5和VEGF表达的抑制效果,本发明组合物或由其制得的药物组合物可以提高生活质量。
在一个实施方式中,治疗患有与AFP表达有关的肿瘤,或分泌AFP的肿瘤,例如肝癌或畸胎瘤的患者。在某些实施方式中,患者患有恶性畸胎瘤、内胚窦瘤(卵黄囊癌)、神经母细胞瘤、肝胚细胞瘤、肝细胞癌、睾丸癌或卵巢癌。
本发明还涉及dsRNA或其药物组合物的用途,例如,用于治疗癌症或用于预防肿瘤转移,所述药物组合物和其他药物和/或其他治疗方法组合,例如,和已知药物和/或已知治疗方法(例如目前用于治疗癌症和/或用于预防肿瘤转移的方法)组合。
本发明也可通过包括特定RNAi试剂和其他抗癌化疗剂例如任何传统化疗剂组合而实施。特异性结合试剂和所述其他试剂的组合可以加强化疗方法。能够与本发明方法结合的许多化疗方法将呈现在本领域从业者的脑海中。可以使用任何化疗剂,包括烷化剂、抗代谢物、激素和拮抗剂、放射性同位素以及天然产物。例如,本发明化合物可与抗生素例如亚德利亚霉素及其他蒽环类似物、氮芥子气例如环磷酰胺、嘧啶类似物例如5-氟尿嘧啶、顺铂、羟基脲、泰克索及其天然和合成衍生物等一起给药。作为另一个实例,对于混合瘤,例如***的腺瘤,其中所述肿瘤包括***-依赖的和***-非依赖的细胞,所述化合物可以和亮丙瑞林或性激素素阻滞药(LH-RH的合成肽类似物)一起给药。其他的抗肿瘤方法包括使用四环素化合物和另一种治疗形式,例如,外科手术、放射等,本发明也称为“辅助抗肿瘤形式”。因此,本发明方法可以和这种传统方法一起使用,能有利地减少副作用并增强功效。
用于抑制Eg5基因和VEGF基因表达的方法
在又一方面,本发明提供用于抑制Eg5基因和VEGF基因在哺乳动物中表达的方法。所述方法包括将本发明特征组合物给药于哺乳动物,从而沉默化靶标Eg5基因和靶标VEGF基因的表达。
在一个实施方式中,用于抑制Eg5基因表达和VEGF基因表达的方法包括将含有两种不同的dsRNA分子的组合物给药于需要治疗的哺乳动物,其中一种dsRNA分子的核苷酸序列和Eg5基因的RNA转录物的至少一部分互补,且另一种dsRNA分子的核苷酸序列和VEGF基因的RNA转录物的至少一部分互补。当需要治疗的生物体是哺乳动物例如人时,所述组合物可以本领域已知的任何方法给药,包括但不限于经口或胃肠外途径,包括静脉内、肌内、皮下、透皮、气道(气雾剂)、经鼻、直肠和局部(包括经颊和舌下)给药。在优选实施方式中,所述组合物通过静脉内输注或注射给药。
制备脂质颗粒的方法
本发明组合物的方法使用某些阳离子脂质,其合成、制备和表征在下文和所附实施例中描述。另外,本发明提供制备脂质颗粒的方法,所述颗粒包括与治疗剂结合的那些,例如核酸。在本发明描述的方法中,脂质混合物与核酸缓冲水溶液混合从而制备含有包封在脂质颗粒中的核酸的中间体混合物,其中所述包封的核酸以核酸/脂质比为约3wt%到约25wt%,优选5到15wt%存在。任选地可调整中间体混合物的尺寸,以获得脂质-包封的核酸颗粒,其中脂质部分是单层囊泡,优选直径为30到150nm,更优选为约40到90nm。然后提高pH以中和脂质-核酸颗粒上的表面电荷的至少一部分,从而提供至少部分表面中和的脂质-包封的核酸组合物。
如上所述,这些阳离子脂质中的若干是氨基脂质,其在低于氨基pKa的pH下带电荷,且在高于pKa的pH下基本上为中性。这些阳离子脂质被称为可滴定的阳离子脂质,并可通过使用两步骤方法而用于本发明制剂中。第一,在较低pH下在核酸存在下用可滴定的阳离子脂质及其他囊泡组分形成脂质囊泡。在该方式中,所述囊泡将包封并捕获核酸。第二,通过将介质的pH提高到高于所存在的可滴定的阳离子脂质的pKa的水平,即生理学pH或更高,从而中和新形成的囊泡的表面电荷。该方法的特别有利的方面包括易于除去任何表面吸附的核酸,以及生成的核酸递送介质具有中性表面。具有中性表面的脂质体或脂质颗粒预期能避免被迅速从循环中清除,以及避免与阳离子脂质体制剂有关的某些毒性。关于这种可滴定的阳离子脂质在核酸-脂质颗粒制剂中的这些用途的其他细节提供于美国专利6,287,591和美国专利6,858,225中,其以引用方式合并于此。
还注意到,以该方式形成的囊泡提供具有均一囊泡大小和高含量核酸的制剂。另外,所述囊泡的尺寸范围为约30到约150nm,优选约30到约90nm。
不束缚于任何特别理论,据信核酸包封的非常高的效率是在低pH下的静电相互作用的结果。在酸性pH(例如pH4.0)下,所述囊泡表面是带电荷的,且通过静电相互作用与一部分核酸结合。当外来酸性缓冲液替换偏中性的缓冲液(例如pH7.5)时,脂质颗粒或脂质体的表面被中和,从而去除任何外部核酸。配制方法的更多详细信息提供于多种出版物(例如美国专利6,287,591和美国专利6,858,225)中。
鉴于上述,本发明提供制备脂质/核酸制剂的方法。在本发明描述的方法中,脂质混合物与核酸的缓冲水溶液混合,从而制备含有包封在脂质颗粒中的核酸的中间体混合物,例如,其中所述包封核酸以核酸/脂质比为约10wt%到约20wt%存在。任选地可调整中间体混合物的尺寸,以获得脂质-包封的核酸颗粒,其中脂质部分是单层囊泡,优选直径为30到150nm,更优选为约40到90nm。然后提高pH以中和脂质-核酸颗粒上的表面电荷的至少一部分,从而提供至少部分表面中和的脂质-包封的核酸组合物。
在某些实施方式中,所述脂质混合物包括至少两种脂质组分:本发明的第一氨基脂质组分,其选自具有这样的pKa的脂质,以至于在低于所述pKa的pH下,所述脂质是阳离子的,在高于所述pKa的pH下,所述脂质是中性的,以及第二脂质组分,其选自在脂质-核酸颗粒形成期间阻止颗粒聚集的脂质。在具体实施方式中,所述氨基脂质是本发明新颖的阳离子脂质。
在制备本发明的核酸-脂质颗粒中,脂质混合物通常是脂质在有机溶剂中的溶液。然后该脂质混合物能够干燥以形成薄膜或冻干以形成粉末,然后与水性缓冲液水合以形成脂质体。或者,在优选的方法中,可将所述脂质混合物溶解在水溶性醇例如乙醇中,将该乙醇溶液添加到水性缓冲液中,导致脂质体自发形成。在最优选的实施方式中,以商业可得的形式使用醇。例如,使用无水乙醇(100%),或95%乙醇,其余是水。该方法更详细地描述在美国专利5,976,567中。
根据本发明,所述脂质混合物与可包含核酸的缓冲水溶液混合。所述缓冲水溶液通常是缓冲液的pH小于脂质混合物中可质子化脂质的pKa的溶液。适当的缓冲液的例子包括柠檬酸盐、磷酸盐、醋酸盐和MES。特别优选的缓冲液是柠檬酸盐缓冲液。优选的缓冲液中的阴离子在1-1000mM范围内,取决于被包封核酸的化学性质,且优化缓冲液浓度对于实现高载荷水平而言可能是重要的(例如参见美国专利6,287,591和美国专利6,858,225)。或者,可使用用氯化物、硫酸盐等酸化到pH5-6的纯水。在这种情况下,适合添加5%葡萄糖,或另一种非离子溶质,当透析所述颗粒以去除乙醇、升高pH、或与药学可接受的载体例如生理盐水混合时,其能平衡透过颗粒膜的渗透压。缓冲液中核酸含量可以改变,但通常为约0.01mg/mL到约200mg/mL,更优选为约0.5mg/mL到约50mg/mL。
混合脂质和治疗核酸的缓冲水溶液的混合物从而提供中间体混合物。所述中间体混合物通常是具有包封核酸的脂质颗粒混合物。另外,所述中间体混合物也可以包含一部分核酸,由于带负电荷的核酸和脂质颗粒表面上带正电荷的脂质的离子吸引(组成可质子化第一脂质组分的氨基脂质或其他脂质在pH小于脂质上可质子化基团的pKa的缓冲液中是带正电荷的),这些核酸连接在脂质颗粒(脂质体或脂质囊泡)表面。在一组优选的实施方式中,脂质混合物是脂质的醇溶液,调节各溶液的体积,使得一旦组合,所得的醇含量为约20%体积到约45%体积。组合混合物的方法可以包括任何种类的处理,通常取决于所制备制剂的规模。例如,当总体积为约10-20mL或更少时,可在试管中混合溶液并使用涡旋搅拌器搅拌在一起。大规模处理可以在适当的生产规模的玻璃器皿中进行。
任选地,可以调整通过混合脂质混合物和治疗剂(核酸)的缓冲水溶液而制备的脂质-包封的治疗剂(例如,核酸)络合物的尺寸,以获得所需的尺寸范围和相对窄的脂质粒径分布。优选地,本发明提供的组合物的平均直径为约70到约200nm,更优选约90到约130nm。可使用若干技术将脂质体调整为所需尺寸。一种调整尺寸的方法描述在美国专利No.4,737,323中,其以引用方式合并于此。通过浴或探针超声法超声处理脂质体悬浮液能使尺寸逐渐减少,从而获得尺寸小于约0.05微米的小单层囊泡(SUV)。匀化作用是另一种方法,其依靠剪切能,以将较大脂质体粉碎成较小脂质体。在典型的匀化作用过程中,多层囊泡通过标准乳剂匀化器再循环,直到观察到所选脂质体尺寸,通常为约0.1到0.5微米。在这两种方法中,可通过常用的激光束粒径测定仪来监测粒径分布。在本发明的某些方法中,使用挤出以获得均一的囊泡尺寸。
通过小孔聚碳酸酯膜或不对称陶瓷膜挤出脂质体组合物获得相对良好限定的粒径分布。通常,悬浮液循环通过该膜一次或多次,直到达到所需的脂质体络合物粒径分布。所述脂质体可连续挤出通过小孔膜,以实现脂质体尺寸的逐渐减少。在一些情况下,所形成的脂质-核酸组合物可在无需调整尺寸的情况下使用。
在具体实施方式中,本发明方法还包括中和脂质-核酸组合物的脂质部分上的至少一些表面电荷的步骤。通过至少部分地中和表面电荷,未包封的核酸从脂质颗粒表面释放,并可使用常规方法从组合物去除。优选地,未包封和表面吸附的核酸通过替换缓冲溶液从所得的组合物中去除。例如,用HEPES-缓冲盐水(HBS,pH约7.5)溶液替换柠檬酸盐缓冲液(pH约4.0,用于形成组合物)导致脂质体表面的中和和核酸从表面的释放。然后可以通过层析法用标准方法去除释放的核酸,然后转换成pH大于所使用脂质的pKa的缓冲液。
任选地,脂质囊泡(即脂质颗粒)可通过在水性缓冲液中水合而形成并使用上述任何方法调整尺寸,然后加入核酸。如上所述,水性缓冲液的pH应该低于氨基脂质的pKa。然后将核酸溶液添加到这些尺寸调整的、预形成的囊泡中。为将核酸包封入这种“预形成”的囊泡中,所述混合物应包含醇,例如乙醇。在使用乙醇的情况下,它应该以约20%(w/w)到约45%(w/w)的浓度存在。另外,取决于脂质囊泡组成和核酸的性质,可能有必要加热预形成的囊泡和核酸在水性缓冲液-乙醇混合物中的混合物到约25℃到约50℃的温度。本领域技术人员清楚,优化包封过程以获得脂质囊泡中所需的核酸水平将要求控制变量,例如乙醇浓度和温度。用于包封核酸的适宜条件的例子提供于实施例中。一旦核酸被包封在预形成的囊泡内,可升高外部pH以至少部分地中和表面电荷。然后可如上所述去除未包封的和表面吸附的核酸。
使用方法
本发明脂质颗粒可用于在体外或体内将治疗剂递送到细胞。在具体实施方式中,所述治疗剂是核酸,其使用本发明核酸-脂质颗粒递送至细胞。使用本发明脂质颗粒和相关药物组合物的多种方法的以下描述通过与核酸-脂质颗粒相关的描述进行说明,应理解这些方法和组合物可容易地用于递送用于治疗受益于这种治疗的任何疾病或疾患的任何治疗剂。
在某些实施方式中,本发明提供用于将核酸引入细胞的方法。用于引入细胞的优选核酸是siRNA、免疫-刺激的寡核苷酸、质粒、反义和核酶。这些方法可通过使本发明颗粒或组合物和细胞接触一段足以发生胞内递送的时间来进行。
本发明组合物可吸附在几乎任何细胞类型上。一旦吸附,核酸-脂质颗粒可以被一部分细胞内吞,与细胞膜交换脂质,或与细胞融合。络合物的核酸部分的转移或结合可经由这些途径的任何一个发生。不为限制本发明范围,据信在颗粒通过内吞作用被细胞吸收的情况中,颗粒然后与内体膜相互作用,导致内体膜失稳,这也许是通过形成非双层相,导致包封的核酸进入细胞质。类似地,在颗粒和细胞质膜直接融合的情况下,当融合发生时,脂质体膜整合入细胞膜中,且脂质体内容物与胞内液结合。细胞和脂质-核酸组合物之间的接触(当在体外进行时)将发生在生物学相容的介质中。取决于具体应用,可以改变组合物的浓度,但通常为约1μmol到约10mmol。在某些实施方式中,用脂质-核酸组合物对细胞的处理通常在生理温度(约37℃)下进行约1到24小时,优选约2到8小时。对于体外应用,核酸可递送至培养中生长的不管是植物或动物来源、脊椎动物或无脊椎动物,以及任何组织或类型的任何细胞。在优选实施方式中,所述细胞是动物细胞,更优选是哺乳动物细胞,最优选是人细胞。
在一组实施方式中,将脂质-核酸颗粒悬浮液添加到60-80%汇合的细胞中,所述细胞的细胞密度为约103到约105个细胞/mL,优选约2×104个细胞/mL。加到细胞中的悬浮液浓度优选为约0.01到20μg/mL,更优选约1μg/mL。
典型应用包括使用熟知方法提供siRNA的胞内递送,以抑制或沉默化特定细胞靶标。另外,应用包括递送编码治疗上有用的多肽的DNA或mRNA序列。以该方式,通过提供不足的或缺少的基因产物基因产物为遗传疾病提供治疗(即,对于Duchenne肌营养不良,参见Kunkel,等人,Brit.Med.Bull.45(3):630-643(1989),对于囊性纤维化,参见Goodfellow,Nature 341:102-103(1989))。本发明组合物的其他用途包括将反义寡核苷酸引入细胞(参见Bennett,等人,Mol.Pharm.41:1023-1033(1992))。
或者,本发明组合物也可通过本领域技术人员已知的方法用于将核酸递送至体内细胞。关于本发明用于递送DNA或mRNA序列的应用,以引用方式合并于此的Zhu等的Science 261:209-211(1993)描述了使用DOTMA-DOPE络合物静脉内递送巨细胞病毒(CMV)-氯霉素乙酰转移酶(CAT)表达质粒。以引用方式合并于此的Hyde等Nature 362:250-256(1993)描述了使用脂质体将囊性纤维化跨膜传导调节蛋白(CFTR)基因递送至小鼠气道上皮和肺的肺泡。以引用方式合并于此的Brigham等的Am.J.Med.Sci.298:278-281(1989)描述了用编码胞内酶,氯霉素乙酰转移酶(CAT)的功能性原核基因体内转染小鼠肺。因此,本发明组合物可用于治疗传染性疾病。
对于体内给药,药物组合物优选胃肠外给药,即,关节内、静脉内、腹内、皮下或肌肉。在具体实施方式中,药物组合物通过快速浓注静脉内或腹内给药。作为一个例子,参见Stadler等的美国专利No.5,286,634,其以引用方式合并于此。胞内核酸递送也在Straubringer等Methods inEnzymology,Academic Press,New York.101:512-527(1983);Mannino,等人,Biotechniques 6:682-690(1988);Nicolau,等人,Crit.Rev.Ther.DrugCarrier Syst.6:239-271(1989),和Behr,Acc.Chem.Res.26:274-278(1993)中讨论。给药基于脂质的治疗剂的其他方法例如在Rahman等人,美国专利No.3,993,754;Sears,美国专利No.4,145,410;Papahadjopoulos等人,美国专利No.4,235,871;Schneider,美国专利No.4,224,179;Lenk等人,美国专利No.4,522,803;以及Fountain等人,美国专利No.4,588,578中描述。
在其他方法中,所述药物制剂可通过将制剂直接应用到组织来与靶组织接触。所述应用可通过局部、“开放”或“封闭”程序进行。“局部”意指将药物制剂直接应用到暴露于环境的组织,例如皮肤、口咽、外耳道等。“开放”程序是切开患者皮肤并直接显现施加药物制剂的在下面的组织。这通常通过外科手术过程实现,例如到达肺的胸廓切开术,到达腹部内脏的腹部剖腹术,或接近靶组织的其他直接外科手术。“封闭”程序是侵入性程序,其中内靶组织不直接显现,但通过皮肤中的小伤口经由***仪器到达。例如,所述制剂可通过针灌洗给药至腹膜。类似地,所述药物制剂可在腰椎穿刺期间通过输注给药至脑膜或脊髓,然后如脊椎麻醉或脊髓甲泛醣胺成像通常操作的那样定位患者。或者,所述制剂可通过内窥镜装置给药。
脂质-核酸组合物也可以以吸入肺的气雾剂来给药(参见Brigham,等人,Am.J.Sci.298(4):278-281(1989))或通过直接注入病变部位来给药(Culver,Human Gene Therapy,MaryAnn Liebert,Inc.,Publishers,NewYork.pp.70-71(1994))。
本发明方法也可在多种宿主中进行。优选的宿主包括哺乳动物种类,例如人、非人灵长类动物、狗、猫、牛、马、羊等。
本发明脂质-治疗剂颗粒的剂量将取决于治疗剂与脂质的比例以及基于年龄、体重和患者病症的主治医师的意见。
在一个实施方式中,本发明提供调节靶多核苷酸或多肽的表达的方法。这些方法通常包括使细胞与本发明脂质颗粒接触,所述脂质颗粒与能够调节靶多核苷酸或多肽的表达的核酸结合。如本发明所使用,术语“调节”意指改变靶多核苷酸或多肽的表达。在不同的实施方式中,调节可以指增加或加强,或它可以指减少或降低。测定靶多核苷酸或多肽的表达水平的方法是本领域已知且可获得的,包括,例如,使用反转录-聚合酶链反应(RT-PCR)和免疫组织化学技术的方法。在具体实施方式中,较之适当的对照值,靶多核苷酸或多肽的表达水平增加或减少至少10%、20%、30%、40%、50%或大于50%。例如,如果需要增加多肽表达,所述核酸可以是包括编码所需多肽的多核苷酸的表达载体。另一方面,如果需要减少多核苷酸或多肽的表达,则所述核酸例如可以是包含与编码靶多肽的多核苷酸特异性杂交的多核苷酸序列的反义寡核苷酸、siRNA或微RNA,从而干扰靶多核苷酸或多肽的表达。或者,所述核酸可以是表达这种反义寡核苷酸、siRNA或微RNA的质粒。
在一个具体实施方式中,本发明提供调节细胞的多肽表达的方法,包括将脂质颗粒提供给细胞,所述脂质颗粒由式A的阳离子脂质、中性脂质、固醇、PEG或PEG-修饰的脂质组成或基本上由式A的阳离子脂质、中性脂质、固醇、PEG或PEG-修饰的脂质组成,例如摩尔比为约35-65%的式A的阳离子脂质、3-12%的中性脂质、15-45%的固醇和0.5-10%的PEG或PEG-修饰的脂质,其中所述脂质颗粒与能够调节多肽表达的核酸结合。在具体实施方式中,脂质摩尔比为约60/7.5/31/1.5或57.5/7.5/31.5/3.5(mol%脂质A/DSPC/胆固醇/PEG-DMG)。在另一组实施方式中,这些组合物中的中性脂质被DPPC(二棕榈酰卵磷脂)、POPC、DOPE或SM替换。
在具体实施方式中,所述治疗剂选自siRNA、微RNA、反义寡核苷酸和能够表达siRNA、微RNA或反义寡核苷酸的质粒,且其中所述siRNA、微RNA或反义RNA包含与编码所述多肽的多核苷酸或其互补体特异性结合的多核苷酸,以使多肽表达降低。
在其他实施方式中,所述核酸是编码多肽或其功能性变体或片段的质粒,以使多肽或其功能性变体或片段的表达增加。
在相关实施方式中,本发明提供用于治疗受试者中以超量表达多肽为特征的疾病或疾患的方法,包括将本发明药物组合物提供给所述受试者,其中所述治疗剂选自siRNA、微RNA、反义寡核苷酸和能够表达siRNA、微RNA或反义寡核苷酸的质粒,且其中所述siRNA、微RNA或反义RNA包含与编码所述多肽的多核苷酸或其互补体特异性结合的多核苷酸。
在一个实施方式中,所述药物组合物包含脂质颗粒,所述脂质颗粒由脂质A、DSPC、胆固醇和PEG-DMG、PEG-C-DOMG或PEG-DMA组成或基本上由脂质A、DSPC、胆固醇和PEG-DMG、PEG-C-DOMG或PEG-DMA组成,例如摩尔比为约35-65%的式A的阳离子脂质、3-12%的中性脂质、15-45%的固醇和0.5-10%的PEG或PEG-修饰的脂质PEG-DMG、PEG-C-DOMG或PEG-DMA,其中所述脂质颗粒与治疗用核酸结合。在具体实施方式中,脂质摩尔比为约60/7.5/31/1.5或57.5/7.5/31.5/3.5(mol%脂质A/DSPC/胆固醇/PEG-DMG)。在另一组实施方式中,这些组合物中的中性脂质被DPPC、POPC、DOPE或SM替换。
在另一个相关实施方式中,本发明包括治疗受试者中以多肽表达不足为特征的疾病或疾患的方法,包括将本发明药物组合物提供给受试者,其中所述治疗剂是编码多肽或其功能性变体或片段的质粒。
除非另有定义,本发明所使用的所有技术和科学术语具有如本发明所属领域的技术人员所通常理解的相同含义。适当的方法和材料描述如下,虽然和本发明所述类似或等效的方法和材料也可用于实施或测试本发明。本文所提到的所有出版物、专利申请、专利及其他参考资料以引用方式全部合并于此。在冲突的情况下,以本说明书(包括定义)为准。另外,所述材料、方法和实施例仅仅是说明性的而非限制性的。
实施例
实施例1:dsRNA合成
试剂来源
当本发明没有专门给出试剂来源时,这种试剂可以以分子生物学中应用的质量/纯度标准从任何分子生物学试剂供应商获得。
siRNA合成
为筛选dsRNA,使用Expedite 8909合成仪(Applied Biosystems,Applera Deutschland GmbH,Darmstadt,Germany)和作为固体支持体的可控孔度玻璃(CPG,Proligo Biochemie GmbH,Hamburg,Germany)通过固相合成以1μmol规模来制备单链RNA。分别使用相应的亚磷酰胺和2′-O-甲基亚磷酰胺(Proligo Biochemie GmbH,Hamburg,Germany)通过固相合成生成RNA和含有2′-O-甲基核苷酸的RNA。使用例如Currentprotocols in nucleic acid chemistry,Beaucage,S.L等(Edrs.),John Wiley&Sons,Inc.,New York,NY,USA中描述的标准核苷亚磷酰胺化学方法将这些构块结合在寡核糖核苷酸链序列内的选定位点。通过用Beaucage试剂(Chruachem Ltd,Glasgow,UK)的乙腈(1%)溶液替换碘氧化剂溶液从而引入硫代磷酸酯键。此外辅助试剂从Mallinckrodt Baker(Griesheim,Germany)获得。
根据规定程序通过阴离子交换HPLC进行粗的寡核糖核苷酸的脱保护和纯化。使用分光光度计(DU 640B,Beckman Coulter GmbH,Unterschleiβheim,Germany)通过相应RNA的溶液在260nm波长处的紫外吸收测定产率和浓度。通过将等摩尔的互补链溶液在退火缓冲液(20mM磷酸钠,pH 6.8;100mM氯化钠)中混合,在85-90℃的水浴中加热3分钟并在3-4小时内冷却到室温,从而生成双链RNA。退火的RNA溶液贮存在-20℃直到使用。
靶向Eg5基因的dsRNA
初始筛选组
进行siRNA设计以鉴别靶向Eg5(也称为KIF11、HSKP、KNSL1和TRIP5)的siRNA。使用Eg5的人mRNA序列,RefSeq ID号:NM_004523。
设计与人和小鼠Eg5交叉反应的siRNA双链体。合成二十四个双链体用于筛选。(表1a)。用靶向人Eg5及其恒河猴直向同源物(表2a)的266个siRNA定义第二筛选组。用靶向人Eg5的328个siRNA选择扩展的筛选组,不需要命中其他物种的任何Eg5mRNA(表3a)。
从NCBI核苷酸数据库中下载人和部分恒河猴Eg5 mRNA的序列,人序列进一步用作参考序列(人Eg5:NM_004523.2,4908bp,恒河猴Eg5:XM_001087644.1,878bp(仅人Eg5的5’部分)。
对于表格:关键词:A,G,C,U-核糖核苷酸:T-脱氧胸苷:u,c-2’-O-甲基核苷酸:s-硫代磷酸酯键。
表1a.Eg5/KSP dsRNA双链体的序列
表1b.Eg5/KSP ds双链体的分析
表2a.Eg5/KSP dsRNA双链体的序列
表2b.Eg5/KSP dsRNA双链体的分析
表3.Eg5/KSP dsRNA双链体的序列和分析
靶向VEGF基因的dsRNA
在VEGF-A121 mRNA序列的外显子1-5内鉴别了四百个靶序列。参照转录物是:NM_003376。
1   augaacuuuc ugcugucuug ggugcauugg agccuugccu ugcugcucua ccuccaccau
61  gccaaguggu cccaggcugc acccauggca gaaggaggag ggcagaauca ucacgaagug
121 gugaaguuca uggaugucua ucagcgcagc uacugccauc caaucgagac ccugguggac
181 aucuuccagg aguacccuga ugagaucgag uacaucuuca agccauccug ugugccccug
241 augcgaugcg ggggcugcug caaugacgag ggccuggagu gugugcccac ugaggagucc
301 aacaucacca ugcagauuau gcggaucaaa ccucaccaag gccagcacau aggagagaug
361 agcuuccuac agcacaacaa augugaaugc agaccaaaga aagauagagc aagacaagaa
421 aaaugugaca agccgaggcg guga(SEQ ID NO:1539)
表4a包括鉴定的靶序列。靶向这些序列的相应siRNA进行生物信息学筛选。
为确保该序列对VEGF序列而非对来自任何其他基因的序列是特异性的,使用NCBI提供的BLAST搜索引擎对照Genbank中的序列校对核靶序列。BLAST算法的使用在Altschul等人,J.Mol.Biol.215:403,1990;和Altschul and Gish,Meth.Enzymol.266:460,1996中描述。
也根据与猴、大鼠和人VEGF序列交叉反应的能力将siRNA按优先顺序排列。
在这400条潜在的靶序列中选择80条用于通过实验筛选进行分析,以鉴别少量先导候选物。对这80个靶序列114设计总共114个siRNA分子(表4b)。
表4a.VEGF-121中的靶序列
表4b:靶向VEGF的双链体
链:S=有义,AS=反义
实施例2:经由细胞增殖的Eg5 siRNA的体外筛选
由于Eg5的沉默化已经显示引起有丝***阻滞(Weil,D,et al[2002]Biotechniques 33:1244-8),细胞存活力试验用于siRNA活性筛选。将HeLa细胞(HeLa cell)(14000个每孔[筛选1和3]或10000每孔[筛选2])接种在96-孔平板并同时用孔中最终siRNA浓度为30nML的ipofectamine 2000(Invitrogen)转染,用于第一次筛选的最终浓度为50nM,用于第二次筛选的最终浓度为25nM。双链体亚组在第三次筛选在25nM测试(表5)。
转染后七十二小时,往培养基中添加WST-1试剂(Roche),随后测定450nm处得吸光度,测试细胞增殖。对照(非转染)细胞的吸光度值被认为是100%,转染孔的siRNA的吸光率与对照值相比。三次筛选中每次试验进行六次。再在一系列siRNA浓度下测试siRNA的亚组。在HeLa细胞中进行试验(14000个每孔;方法和上述一样,表5)。
表5:25nM的靶向Eg5的双链体对细胞存活力的影响
表5中显示最大生长抑制的9个siRNA双链体在HeLa细胞中以一系列siRNA浓度再测试。所测试的siRNA浓度为100nM、33.3nM、11.1nM、3.70nM、1.23nM、0.41nM、0.14nM和0.046nM。试验重复进行六次,计算导致百分之五十的细胞增殖抑制(IC50)的各siRNA浓度。对于各双链体,该剂量-反应分析进行二到四次。平均IC50值(nM)在表6中给出。
表6:siRNA的IC50:HeLa细胞中的细胞增殖
  双链体   平均IC50
  AL-DP-6226   15.5
  AL-DP-6229   3.4
  AL-DP-6231   4.2
  AL-DP-6232   17.5
  AL-DP-6239   4.4
  AL-DP-6242   5.2
  AL-DP-6243   2.6
  AL-DP-6244   8.3
  AL-DP-6248   1.9
实施例3:经由mRNA抑制的Eg5 siRNA的体外筛选
在转染之前不久,将HeLa S3(ATCC-Number:CCL-2.2,LCGPromochem GmbH,Wesel,Germany)细胞以1.5x104个细胞/孔接种在96-孔板(Greiner Bio-One GmbH,Frickenhausen,Germany)中的75μl生长培养基(Ham’s F12,10%胎牛血清,100u青霉素/100μg/ml链霉素,均来自Bookroom AG,Berlin,Germany)中。转染重复进行四次。在各孔中0.5μl的Lipofectamine2000(Invitrogen GmbH,Karlsruhe,Germany)和12μl的Opti-MEM(Invitrogen)混合,并在室温下孵育15min。对于100μl的转染体积中siRNA浓度是50nM的情况,每孔中1μl的5μM siRNA和11.5μl的Opti-MEM混合,与Lipofectamine2000-Opti-MEM混合物合并并在室温下再孵育15分钟。将siRNA-Lipofectamine2000-复合物完全加到细胞中,细胞在37℃下在湿润孵箱(Heroes GmbH,Hanau)的5%CO2中孵育24h。单剂量筛选分别在50nM和25nM进行一次。
通过将50μl的裂解混合物(来自Genospectra,Fremont,USA的QuantiGene bDNA-试剂盒的内容物)应用到含有100μl的生长培养基的各孔中来收获细胞,并在53℃下裂解30min。然后,取50μl与对人Eg5和人GAPDH特异性的探针组孵育并根据供应商用于QuantiGene的方案进行操作。最后,在Victor2-Light(Perkin Elmer,Wiesbaden,Germany)中测量化学发光作为RLU(相对光单位),将hEg5探针组得到的值相对于各孔相应的GAPDH值标准化。针对Eg5的siRNA得到的值与设置为100%的非特异性siRNA(针对HCV)得到的值有关(表1b、2b和3b)。
进一步用剂量反应曲线使筛选得到的有效的siRNA特征化。剂量反应曲线的转染以下列浓度进行:100nM、16.7nM、2.8nM、0.46nM、77picoM、12.8picoM、2.1picoM、0.35picoM、59.5fM、9.9fM和模拟物(没有siRNA),并根据上述方案用Opti-MEM稀释至12.5μl的最终浓度。使用Microsoft Excel嵌入软件XL-fit 4.2(IDBS,Guildford,Surrey,UK)并应用剂量反应型号205进行数据分析(表1b、2b和3b)。
通过应用来自Roche的WST-增殖试验(如上所述)另外分析先导siRNA AD12115。
通过以最终浓度为100nM到10fM在HeLa细胞中转染测试显示最大活性的来自表2的34个双链体亚组。转染重复进行四次。各双链体进行两次剂量-反应试验。计算各双链体使KSP mRNA减少20%(IC20)、50%(IC50)和和80%(IC80)的浓度(表7)。
表7:HeLa细胞中Eg5/KSP双链体的剂量反应mRNA抑制以pM给出的浓度
(ND-未测定)
实施例4:LNP01配制的siRNA的单剂快速浓注给药后幼年大鼠 肝Eg5/KSP的沉默化
从出生直到约23天龄,在生长的大鼠肝中可检测到Eg5/KSP表达。使用双链体AD-6248评估幼年大鼠中配制的Eg5/KSP siRNA的靶沉默化。
测定的KSP双链体
方法
动物给药。经由尾静脉注射向雄性、幼年Sprague-Dawley大鼠(19天大)给药单剂量脂质体(“LNP01”)配制的siRNA。各组中的十只动物接受每公斤体重10毫克剂量(mg/kg)的AD6248或非特异性siRNA。剂量水平意指制剂中给药的siRNA双链体的量。第三组接受磷酸盐缓冲盐水。给药siRNA两天后处死动物。切下肝,快速冷冻在液氮中并研磨成粉末。
mRNA测定。测定来自所有处理组的肝的Eg5/KSP mRNA的水平。在含有蛋白酶K的组织裂解缓冲液中匀化各肝粉末样品(大约十毫克)。使用Quantigene分支DNA试验(GenoSpectra)测定各样品的Eg5/KSP和GAPDH mRNA的水平,重复测定三次。各样品的Eg5/KSP的平均值相对于平均GAPDH值标准化。确定各实验的组平均值并相对于PBS组标准化。
统计分析。通过ANOVA以及随后的Tukey事后检验确定显著性。
结果
数据总结
给出Eg5/KSP mRNA的平均值(±标准差)。显示对比PBS组的统计显著性(p值)(ns,不显著[p>0.05])。
表8、实验1
                       KSP/GAPDH     P值
PBS                    1.0±0.47
AD6248    10mg/kg      0.47±0.12    <0.001
非特异性  10mg/kg      1.0±0.26     ns
用制剂AD6248以10mg/kg的剂量给药后,获得肝Eg5/KSP mRNA的统计显著性降低。
实施例5:静脉内输注LNP01配制的VSP后大鼠肝VEGF的沉默
将含有两种siRNA的等摩尔混合物的“类脂质”制剂给药于大鼠。如本发明所使用,VSP意指含有两种siRNA的组合物,一种siRNA针对Eg5/KSP,另一种siRNA针对VEGF。该实验中,使用针对VEGF的双链体AD3133和针对Eg5/KSP的AD12115。因为Eg5/KSP表达在成年大鼠肝中几乎是不可检测的,因此siRNA处理后仅测量VEGF水平。
给药的siRNA双链体(VSP)
关键词:A,G,C,U-核糖核苷酸;c,u-2′-O-Me核苷酸;s-硫代磷酸酯。各链的未修饰形式和各siRNA的靶标如下:
方法
动物给药。将类脂质(“LNP01”)配制的siRNA通过在两小时内输注入股静脉给药于成年、雌性Sprague-Dawley大鼠。各组中的四只动物接受剂量为5、10和15毫克每公斤体重(mg/kg)的配制siRNA。剂量水平指的是制剂中给药的siRNA双链体的总量。第四组接受磷酸盐缓冲盐水。siRNA输注结束后72小时处死动物。切下肝,快速冷冻在液氮中并研磨成粉末。
配制方法
类脂质ND98·4HCl(MW 1487)(上式1)、胆固醇(Sigma-Aldrich)和PEG-神经酰胺C16(Avanti Polar Lipids)用于制备脂质-siRNA纳米颗粒。各自在乙醇中的储备溶液可按如下方法制备:ND98,133mg/ml;胆固醇,25mg/ml,PEG-神经酰胺C16,100mg/ml。然后以42∶48∶10的摩尔比混合ND98、胆固醇和PEG-神经酰胺C16的储备溶液。混合的脂质溶液与含水siRNA(在pH5的乙酸钠中)混合,使得最终乙醇浓度为约35-45%且最终乙酸钠浓度为约100-300mM。一旦混合,脂质-siRNA纳米颗粒自发形成。取决于所需粒径分布,所得纳米颗粒混合物在一些情况下使用热屏障挤压机(Lipex Extruder,Northern Lipids,Inc)挤出通过聚碳酸酯膜(100nm截断值)。在其他情况下,省略挤出步骤。除去乙醇和同时发生的缓冲液更换可以通过透析或切向流过滤完成。缓冲液用pH7.2的磷酸盐缓冲盐水(PBS)更换。
制剂的表征
通过标准方法或无挤出方法制备的制剂可以类似方式表征。制剂首先通过外观检查表征。它们应该是带白色的半透明溶液,不含聚集物或沉淀物。脂质-纳米颗粒的粒径和粒径分布通过动态光散射使用MalvernZetasizer Nano ZS(Malvern,USA)来测定。颗粒的大小应该为约20-300nm,理想地为40-100nm。粒径分布应该是单峰的。使用染料排除试验评估制剂中总siRNA浓度以及捕获部分。制成制剂的siRNA样品在存在或不存在破坏制剂的表面活性剂0.5%Triton-X100的情况下与RNA-结合染料Ribogreen(分子探针)孵育。可用来自含有表面活性剂的样品的信号与标准曲线相比来测定制剂中的总siRNA。通过从总siRNA含量中减去“游离”siRNA含量(由不存在表面活性剂的情况下的信号确定)测定捕获部分。捕获siRNA的百分比通常为>85%。对于SNALP制剂,粒径为至少30nm、至少40nm、至少50nm、至少60nm、至少70nm、至少80nm、至少90nm、至少100nm、至少110nm和至少120nm。优选范围是约至少50nm到约至少110nm、优选约至少60nm到约至少100nm、最优选约至少80nm到约至少90nm。在一个实例中,各粒径包含至少约1∶1比例的Eg5dsRNA和VEGF dsRNA。
mRNA测定。在含有蛋白酶K的组织裂解缓冲液中匀化各肝粉末样品(大约十毫克)。使用Quantigene分支DNA试验(GenoSpectra)测定各样品的VEGF和GAPDH mRNA的水平,重复测定三次。各样品的VEGF平均值相对于平均GAPDH值标准化。测定各实验的组平均值并相对于PBS组标准化。
蛋白质测定
在1ml RIPA缓冲液中匀化各肝粉末样品(大约60毫克)。使用MicroBCA蛋白质分析试剂盒(Pierce)测定总蛋白质浓度。使用来自各动物的总蛋白质样品用VEGF ELISA试验(R&D***)测定VEGF蛋白水平。测定各实验的组平均值并相对于PBS组标准化。
统计分析。通过ANOVA以及随后的Tukey事后检验确定显著性。
结果
数据总结
显示各处理组的mRNA(VEGF/GAPDH)和蛋白质(rel.VEGF)的平均值(±标准差)。显示各实验对比PBS组的统计显著性(p值)。
表9
所有三种siRNA剂量水平中测得肝VEGF mRNA和蛋白的统计显著性减少。
实施例6:人肝肿瘤的小鼠模型中VSP SNALP的评估
这些研究利用包含靶向KSP/Eg5的dsRNA和靶向VEGF的dsRNA的VSP siRNA混合物。如本发明所使用,VSP意指含有两种siRNA的组合物,一种siRNA针对Eg5/KSP,另一种siRNA针对VEGF。该实验中,使用双链体AD3133(针对VEGF)和AD12115(针对Eg5/KSP)。siRNA混合物按照如下所述配制成SNALP。
最大研究规模使用20-25只小鼠。为测试siRNA SNALP混合物治疗肝癌的功效,将1x10^6个肿瘤细胞直接注入测试小鼠的左侧叶。通过缝合闭合切口,使小鼠恢复2-5小时。小鼠在48-72小时内完全恢复。接种肿瘤后8-11天开始SNALP siRNA治疗。
所使用的SNALP制剂是(i)VSP(KSP+VEGF siRNA混合物(1∶1摩尔比));(ii)KSP(KSP+Luc siRNA混合物);和(iii)VEGF(VEGF+LucsiRNA混合物)。所有制剂包含等量(mg)的各种活性siRNA。所有小鼠接受总siRNA/脂质剂量,且各混合物使用原有柠檬酸盐缓冲液条件配制成1∶57 cDMA SNALP(1.4%PEG-cDMA;57.1%DLinDMA;7.1%DPPC和34.3%胆固醇),6∶1脂质∶药物。
人Hep3B研究A:VSP-SNALP的抗肿瘤活性
通过肝内接种在scid/米色小鼠中形成人肝细胞瘤Hep3B肿瘤。向A组(n=6)动物施以PBS;B组(n=6)动物施以VSP SNALP;C组(n=5)动物施以KSP/Luc SNALP;D组(n=5)动物施以VEGF/Luc SNALP。
接种肿瘤八天后开始SNALP处理。SNALP以3mg/kg总siRNA给药,每周两次(周一和周四),总共六次剂量(累积18mg/kg siRNA)。最后剂量在第25天给药,终点在第27天。
通过(a)体重;(b)肝重;(c)第27天目视检查+摄影;(d)人特异性mRNA分析;和(e)第27天测定血甲胎蛋白水平来测定肿瘤负荷。
下表10说明了接种的(左侧)肝叶中测定的肿瘤负荷的目测得分结果。得分:“-”=没有可见的肿瘤;“+”=注射部位有明显肿瘤组织;“++”=从肝叶突出的离散的肿瘤结节;“+++”=从两侧肝叶突出的大肿瘤;“++++”=遍布肝叶的大肿瘤,多个结节。
表10
肝重相对于体重的百分比显示于图1。图2A、图2B、图2C和图2D显示了PBS、VSP、KSP和VEGF对具有人肝细胞瘤Hep3B肿瘤的小鼠体重的影响。
从该研究得到以下结论:(1)VSP SNALP在Hep3B 1H模型中显示潜在的抗肿瘤效果;(2)VSP混合物的抗肿瘤活性似乎和KSP组分非常相关;(3)抗-KSP活性通过单剂量组织学分析得到证实;和(4)VEGFsiRNA显示对该模型的肿瘤生长的抑制没有可检测的影响。
人Hep3B研究B:用VSP处理后延长的存活期
在第二Hep3B研究中,通过肝内接种入scid/米色小鼠形成人肝细胞瘤Hep3B肿瘤。这些小鼠的淋巴细胞和自然杀伤细胞是有缺陷的,这是免疫介导的抗肿瘤效果的最小范围。A组(n=6)小鼠未经处理;给B组(n=6)小鼠施以萤光素酶(luc)1955 SNALP(Lot No.AP10-02);给C组(n=7)小鼠施以VSP SNALP(Lot No.AP10-01)。SNALP是1∶57cDMASNALP,以及6∶1脂质∶药物。
接种肿瘤八天后开始SNALP处理。SNALP以3mg/kg siRNA给药,每周两次(周一和周四),总共六次剂量(累积18mg/kg siRNA)。最后剂量在第25天给药,该研究的终点在第27天。
通过(1)体重;(2)第27天目视检查+摄影;(3)人特异性mRNA分析;和(4)第27天测定血甲胎蛋白水平来测定肿瘤负荷。
图3显示给药的每天(第8、11、14、18、21和25天)和处死当天测得的体重。
表11
得分:“-”=没有可见的肿瘤;“+”=注射部位有明显肿瘤组织;“++”=从肝叶突出的离散的肿瘤结节;“+++”=从两侧肝叶突出的大肿瘤;“++++”=遍布肝叶的大肿瘤,多个结节。
体重和肿瘤负荷之间的相关性显示于图4、5和6。图4显示未经处理的小鼠在27天内的体重百分比。图5显示1955 Luc SNALP处理的小鼠在27天内的体重百分比。图6显示VSP SNALP处理的小鼠在27天内的体重百分比。
通过组织学染色检测,单剂量VSP SNALP(2mg/kg)给药于Hep3B小鼠导致肝组织样品中形成有丝***纺锤体。
通过定量RT-PCR(pRT-PCR)(Taqman)量化肿瘤负荷。人GAPDH通过物种特异性Taqman试验相对于小鼠GAPDH标准化。图7A显示与GADPH水平有关的上表中通过肉眼观察所显示的肿瘤得分。
进行血清ELISA以测定由肿瘤分泌的甲胎蛋白(AFP)。如下所述,如果处理后AFP水平下降,则肿瘤没有生长。图7B显示与用对照物处理相比,用VSP处理降低一些动物的AFP水平。
人HepB3研究C
在第三研究中,将人HCC细胞(HepB3)直接注射入SCID/米色小鼠的肝脏中,20天后开始处理。给A组动物施以PBS;给B组动物施以4mg/kg Luc-1955SNALP;给C组动物施以4mg/kg SNALP-VSP;给D组动物施以2mg/kg SNALP-VSP;给E组动物施以1mg/kgSNALP-VSP。进行单剂量静脉内(iv)处理,24小时后处死小鼠。
通过qRT-PCR(Taqman)测定肿瘤负荷和靶标沉默化。也如上所述通过肉眼测定肿瘤得分,结果显示于下表。如图8所示的hGAPDH水平和下表所示的肉眼观察的肿瘤得分相关。
表12
得分:“-”=可见肿瘤/一些小肿瘤;“++”=从肝叶突出的离散的肿瘤结节;“+++”=从两侧肝叶突出的大肿瘤。
由Taqman分析测定人(肿瘤来源的)KSP沉默化,结果显示于图9。hKSP表达相对于hGAPDH标准化。4mg/kg SNALP-VSP观察到约80%肿瘤KSP沉默化,1mg/kg时的功效是明显的。图9清晰的棒状图显示了来自小(低GAPDH)肿瘤的结果。
由Taqman分析测定人(肿瘤来源的)VEGF沉默化,结果显示于图10。hVEGF表达相对于hGAPDH标准化。4mg/kg SNALP-VSP观察到约60%肿瘤VEGF沉默化,1mg/kg时的功效是明显的。图10清晰的棒状图显示了来自小(低GAPDH)肿瘤的结果。
通过Taqman分析测定小鼠(肝来源的)VEGF沉默化,结果显示于图11A。mVEGF表达相对于hGAPDH标准化。4mg/kg SNALP-VSP观察到约50%肝VEGF沉默化,1mg/kg时的功效是明显的。
人HepB3研究D:各dsRNA对肿瘤生长的贡献
在第四研究中,将人HCC细胞(HepB3)直接注射入SCID/米色小鼠的肝脏中,8天后开始处理。该处理采用静脉内(iv)快速浓注,每周两次,总共六次剂量。最后剂量在第25天给药,终点在第27天。
通过总组织学、人特异性mRNA分析(hGAPDH qPCR)和血甲胎蛋白水平(经由ELISA测定的血清AFP)来测定肿瘤负荷。
在研究1中,A组用PBS处理,B组用SNALP-KSP+Luc(3mg/kg)处理,C组用SNALP-VEGF+Luc(3mg/kg)处理,D组用SNALP-VSP(3mg/kg)处理。
在研究2中,A组用PBS处理,B组用SNALP-KSP+Luc(1mg/kg)处理,C组用ALN-VSP02(1mg/kg)处理。
用SNALP-VSP处理后GAPDH mRNA水平和血清AFP水平均显示降低(如图11B所示)。
组织学研究
通过在小鼠肝内接种形成人肝细胞瘤Hep3B肿瘤。接种肿瘤后20天开始SNALP处理。用单剂量的(i)VSP SNALP或(ii)对照(Luc)SNALP(2mg/kg总siRNA)静脉内(IV)处理带有肿瘤的小鼠(每组三只)。
单次SNALP给药后24小时收集肝/肿瘤样品用于常规H&E组织学。
尸体解剖时肉眼观察到的大肿瘤结节(5-10mm)很明显。
SNALP-VSP在Hep3B小鼠中的效果
SNALP-VSP(KSP dsRNA和VEGF dsRNA的混合物)处理降低了肿瘤负荷和肿瘤来源的KSP和VEGF的表达。给药SNALP-VSP dsRNA后,也观察到GAPDH mRNA水平(肿瘤负荷的量度)降低(显示于图12A、图12B和图12C中)。给药SNALP-VSP后,肉眼观察到的肿瘤负荷缩小也是明显的。
单次IV快速浓注SNALP-VSP也导致有丝***纺锤体形成,这在Hep3B小鼠肝组织样品中明显地检测到。该结果指示细胞周期停滞。
实施例7:SNALP-VSP动物对比经SNALP-Luc处理动物的存活
为测定siRNA SNALP对癌症受试者存活率的影响,通过在小鼠肝内接种形成肿瘤并用SNALP-siRNA处理小鼠。这些研究使用含有靶向KSP/Eg5和VEGF的dsRNA的VSP siRNA混合物。对照是靶向Luc的dsRNA。siRNA混合物配制成SNALP。
将肿瘤细胞(人肝细胞瘤Hep3B,1x10^6)直接注射入scid/米色小鼠的左侧叶中。这些小鼠的淋巴细胞和自然杀伤(NK)细胞是有缺陷的,这是免疫-介导的抗肿瘤效果的最小范围。通过缝合闭合切口,使小鼠恢复2-5小时。小鼠在48-72小时内完全恢复。
所有小鼠接受总siRNA/脂质静脉内(iv)剂量,且各混合物使用原有柠檬酸盐缓冲液条件配制成1∶57cDMA SNALP(1.4%PEG-cDMA;57.1%DLinDMA;7.1%DPPC和34.3%胆固醇),6∶1脂质∶药物。
接种肿瘤后在以下显示的天数(18或26天)开始siRNA-SNALP处理。18或26天后以4mg/kg的剂量每周两次给药siRNA-SNALP,给药三周。监测存活率,基于人替代终点(例如,动物体重、腹部膨胀/褪色和总体健康)处死动物。
接种肿瘤后18天开始处理的存活率数据概括在表13、表14和图13A中。
表13.Kaplan-Meier(存活率)数据(%存活)
  天   SNALP-Luc   SNALP-VSP
  18   100%   100%
  22   100%   100%
  25   100%   100%
  27   100%   100%
  28   100%   100%
  28   86%   100%
  29   86%   100%
  32   86%   100%
  33   86%   100%
  33   43%   100%
  35   43%   100%
  36   43%   100%
  36   29%   100%
  38   29%   100%
  38   14%   100%
  38   14%   88%
  40   14%   88%
  43   14%   88%
  45   14%   88%
  49   14%   88%
  51   14%   88%
  51   14%   50%
  53   14%   50%
  53   14%   25%
  55   14%   25%
  57   14%   25%
  57   0%   0%
表14.各动物的存活天数
图13A显示相对于接种肿瘤后的天数,SNALP-VSP动物和SNALP-Luc处理的动物的平均存活率。SNALP-VSP动物的平均存活期比SNALP-Luc处理的动物延长大约15天。
表15.各动物在处理前和处理结束时的血清甲胎蛋白(AFP)浓度(浓度以μg/ml表示)
在实验期间用血清AFP水平监测肿瘤负荷。甲胎蛋白(AFP)是在胎儿生命期间由卵黄囊和肝脏生成的主要血浆蛋白质。该蛋白质被认为是血清白蛋白的胎儿对应物,且人AFP和白蛋白基因以相同的转录方向串联存在于染色体4上。发现AFP以单体、二聚体和三聚体形式存在,且结合铜、镍、脂肪酸和胆红素。AFP水平在出生后逐渐降低,在8-12个月达到成年人水平。正常成年人的AFP水平是低的,但是可检测的。AFP在正常成年人中没有已知功能,成年人中的AFP表达通常和一部分肿瘤例如肝细胞瘤和畸胎瘤有关。AFP是用于监测睾丸癌症、卵巢癌和恶性畸胎瘤的肿瘤标记物。分泌AFP的主要肿瘤包括内胚层窦瘤(卵黄囊癌)、神经母细胞瘤、肝胚细胞瘤和肝细胞癌。在患有分泌AFP的肿瘤的患者中,AFP的血清水平通常与肿瘤大小有关。血清水平可用于评估对治疗的反应。通常,如果治疗后AFP水平下降,则肿瘤没有生长。化疗后AFP立即暂时增加指示的可能不是肿瘤生长,而是它在缩小(且由于肿瘤细胞死亡而释放AFP)。切除术通常伴有血清水平降低。如图14所示,SNALP-VSP处理的动物中肿瘤负荷明显降低。
植入后第26、29、32、35、39和42天用SNALP-siRNA处理重复实验。数据显示于图13B。SNALP-VSP动物的平均存活期延长大约15天,SNALP-Luc处理的动物延长大约19天,或38%。
实施例8:单星体在已形成肿瘤中的诱导
***细胞中KSP的抑制导致单星体形成,其可在组织切片中容易地观察到。为测定单星体形成是否在SNALP-VSP处理的肿瘤中发生,将2mg/kg SNALP-VSP经由尾静脉注射给药于荷瘤动物(Hep3B细胞植入后三周)。对照动物接受2mg/kg SNALP-Luc。且各混合物使用原有柠檬酸盐缓冲液条件配制成1∶57cDMA SNALP(1.4%PEG-cDMA;57.1%DLinDMA;7.1%DPPC和34.3%胆固醇),6∶1脂质∶药物。
二十四小时后处死动物,处理荷瘤肝叶用于组织学分析。H&E染色的组织切片的典型图像显示于图15。在SNALP-VSP处理(A)而不是SNALP-Luc处理(B)的肿瘤中,广泛单星体形成是明显的。在后者,正常的有丝***图像是明显的。单星体生成是KSP抑制的特征,还提供SNALP-VSP在已形成的肝肿瘤中具有明显活性的证明。
实施例9:ALN-VSP02(SNALP-VSP)的制备方法和产品规格
ALN-VSP02产品包含配制成用于经由输注IV给药的灭菌脂质颗粒制剂(称为SNALP)的2mg/mL的药物物质ALN-VSPDS01。药物物质ALN-VSPDS01由等摩尔比例的两种siRNA(靶向KSP的ALN-12115和靶向VEGF的ALN-3133)组成。药物产品以5mL的填充体积包装在10mL小玻璃瓶中。
药物物质例如可以和阳离子脂质XTC、ALNY-100和MC3配制成本发明所述的其他核酸-脂质颗粒制剂。
本发明使用以下术语:
*可选名称=AD-12115、AD12115;**可选名称=AD-3133、AD3133
9.1、药物物质ALN-VSPDS01的制备
使用商业可得的合成装置和原料化学合成药物物质ALN-VSPDS01的两种siRNA组分,ALN-12115和ALN-3133。制备方法包括通过常规固相寡核苷酸合成使用亚磷酰胺化学和2’羟基用叔丁基二甲基甲硅烷基(TBDMS)保护或2’羟基被2’甲氧基(’OMe)替换的5’O二甲氧基三苯基甲基(DMT)保护基合成各双链体的两条单链寡核苷酸(ALN 12115的19562有义和19563反义和ALN 3133的3981有义和3982反义)。寡核苷酸链通过亚磷酰胺法组装在固体支持体例如可控孔度玻璃或聚苯乙烯上。循环由5’脱保护、偶联、氧化和加帽反应组成。使用5(乙基巯基)1H四唑试剂活化适当保护的核糖、2’OMe或脱氧核糖核苷酰胺,然后偶联支持体固定的被保护的核苷或寡核苷酸的游离5’羟基来进行各偶联反应。在适当次数的循环后,通过酸处理除去最终的5’保护基。用甲胺水溶液处理以及伴随除去氰乙基保护基以及核碱基保护基从固体支持体上切割粗寡核苷酸。然后使用包含氟化氢的试剂切割2’O TBDMS基以生成粗寡核糖核苷酸,使用强阴离子交换高效液相色谱法(HPLC)然后使用超滤脱盐纯化粗寡核糖核苷酸。分析纯化单链以确认正确的分子量、分子序列、杂质分布图和寡核苷酸含量,然后退火成双链体。将退火的双链体中间体ALN 12115和ALN 3133冻干并贮存在20℃,或以1∶1摩尔比混合并冻干溶液以生成药物物质ALN VSPDS01。如果双链体中间体以干燥粉末贮存,混合前它们在水中再溶解。通过HPLC法监控混合过程实现等摩尔比例。
实例规格显示于表16a。
表16a.ALN-VSPDS01的实例规格
ALN-VSPDS01药物物质直到12个月的稳定性试验结果显示于表16b。选择测定法以评估物理性质(外观、pH、含水量)、纯度(通过SEC和变性阴离子交换层析)和功效(通过变性阴离子交换层析)[AX-HPLC]。
表16b:药物物质的稳定性
9.2、药物产品ALN-VSP02的制备
ALN VSP02是两种siRNA(以1∶1摩尔比)和脂质赋形剂在等渗缓冲液中的灭菌制剂。脂质赋形剂与两种siRNA结合,保护它们避免在循环***中降解,并有助于它们递送至靶组织。通过比较大量不同制剂的物理化学性质、稳定性、药效学、药代动力学、毒性和产品可制造性的重复系列实验选择具体脂质赋形剂和各自的数量比例(显示于表17中)。赋形剂DLinDMA是在低pH下带正电荷的可滴定氨基脂质,例如在哺乳动物细胞内涵体中发现的那些,但其在全血的更加中性pH下相对不带电荷。该特征促进带负电荷的siRNA在低pH下的有效包封,阻止空颗粒形成,但允许在使用前用更加中性的存储缓冲液替代制剂缓冲液从而调节(减少)颗粒电荷。引入胆固醇和中性脂质DPPC以提供颗粒的物理化学稳定性。聚乙二醇脂质缀合物PEG2000C DMA有助于药物产品稳定性,并为建议的用途提供优化循环时间。ALN VSP02脂质颗粒的平均直径为约80-90nm,具有低的多分散性值。在中性pH,该颗粒基本上不带电荷,ζ电势值小于6mV。基于该制备方法没有空(无负载的)颗粒的证据。
表17:ALN-VSP02的定量组合物
*药物产品中的两种siRNA的1∶1摩尔比在整个药物产品颗粒的粒径分布中保持。
混合并稀释脂质(乙醇中)和ALN VSPDS01药物物质(含水缓冲液中)的溶液,以形成siRNA脂质颗粒的胶体分散体,平均粒径约为80-90nm。然后该分散体通过0.45/0.2μm过滤器过滤、浓缩并通过切向流过滤渗滤。在工艺中测试以及浓度调节至2.0mg/mL后,该产品过滤除菌,无菌条件下填入小玻璃瓶中,塞住,盖帽并置于5±3℃下。乙醇和所有含水缓冲液组分是美国药典等级;所使用的所有水是美国药典注射用无菌水等级。ALN-VSP02。
类似方法用于配制ALN-VSPDS01的其他脂质制剂,例如,含有阳离子脂质XTC、ALNY-100和MC3的那些。
实施例10:ALN-VSP02对人癌细胞系的体外功效
处理后通过测定KSP mRNA、VEGF mRNA和细胞存活力来测定ALN-VSP02处理对人癌细胞系的功效。测定各细胞系中KSP和VEGF的IC50(nM)值。
表19:细胞系
在第一天将细胞接种在96孔平板中的完全培养基中,以在第二天达到70%的密度。第二天,将培养基更换为Opti-MEM降低的血清培养基(InVitrogen Cat N:11058-021),并用浓度范围为1.8μM到10pM的ALN-VSP02或对照SNALP-Luc转染细胞。6小时后将培养基更换为完全培养基。各实验中各细胞系重复接种三个平板。
如表17所述配制ALN-VSP02。
转染后24小时收获细胞。用bDNA测定KSP水平;用人TaqMan试验测定VEGF mRNA水平。
在48和/或72小时根据制造商建议使用Cell Titer Blue试剂(Promega Cat N:G8080)测定存活力。
如表20所示,nM浓度的VSP02能有效降低多种人细胞系中KSP和VEGF的表达。经处理细胞的存活力没有
表20:结果
实施例11:已形成的Hep3B肝内肿瘤中VSP SNALP对比索拉非 尼的抗肿瘤功效
研究了多剂量VSP SNALP对比索拉非尼在带有已形成的Hep3B肝内肿瘤的scid/米色小鼠中的抗肿瘤效果。索拉非尼是批准为用于治疗肝细胞癌(HCC)的蛋白激酶的小分子抑制剂。
如本发明所述,通过在scid/米色小鼠的肝内接种形成肿瘤。接种后11天开始处理。用索拉非尼和对照siRNA-SNALP、索拉非尼和VSPsiRNA-SNALP或仅用VSP siRNA-SNALP处理小鼠。对照小鼠仅用缓冲液处理(DMSO代替索拉非尼,PBS代替siRNA-SNALP)。从周一到周五非胃肠道内给药索拉非尼,给药三周,剂量为15mg/kg体重,总共注射15次。注射SNALP后最少1小时给药索拉非尼。在第1、4、7、10、14和17天根据最新记录的体重(10ml/kg)以3mg/kg经由侧尾静脉静脉内给药siRNA-SNALPS,给药三周(总共6剂)。
各siRNA-SNALP使用原有柠檬酸盐缓冲液条件配制成1∶57cDMASNALP(1.4%PEG-cDMA;57.1%DLinDMA;7.1%DPPC和34.3%胆固醇),6∶1脂质∶药物。
基于对肿瘤负荷的评估处死小鼠,包括逐渐的重量减轻和临床征象(包括病症、腹部膨胀/褪色和灵活性)。
存活率百分比数据显示于图16。较之单独给药索拉非尼或VSPsiRNA-SNALP,VSP siRNA-SNALP和索拉非尼的共同给药增加了存活比例。较之索拉非尼,VSP siRNA-SNALP增加了存活比例。
实施例12:使用AD-12115和AD-3133的变体的VSP体外功效
设计并合成靶向Eg5/KSP和VEGF的两组双链体。各组包括在AD-12115和AD-3133中任一的靶位点的各方向延伸(tiling)10个核苷酸的双链体。
各双链体的靶标、有义链和反义链序列显示于下表中。
使用本发明描述的试验测定各双链体对表达的抑制。单独和/或组合给药双链体,例如,Eg5/KSP dsRNA和VEGF dsRNA组合。在一些实施方式中,dsRNA以核酸脂质颗粒(例如本发明描述的SNALP制剂)给药。
表21:靶向VEGF和Eg5/KSP的dsRNA序列(延伸)
实施例13:具有单个平端的靶向VEGF的dsRNA
设计并合成一组靶向VEGF的dsRNA双链体。各组包括在AD-3133的靶位点的各方向延伸10个核苷酸的双链体。各双链体在相当于反义链3’端的末端包括2个碱基的突出端,且在相当于反义链的5’端的末端没有突出端,例如平端。
这些双链体的各链序列显示于下表中。
使用本发明描述的试验测定各双链体对表达的抑制。单独和/或与Eg5/KSP dsRNA(例如AD-12115)组合给药VEGF双链体。在一些实施方式中,dsRNA以核酸脂质颗粒(例如本发明描述的SNALP制剂)给药。
表22:靶向VEGF的平端dsRNA的靶序列
表23:靶向VEGF的平端dsRNA的链序列
实施例14:dsRNA寡核苷酸合成
合成
在AKTAoligopilot合成仪上合成所有寡核苷酸。使用商业可得的可控孔度玻璃固体支持体(dT-CPG,Prime Synthesis)和带有标准保护基的RNA亚磷酰胺,5’-O-二甲氧三苯甲基N6-苯甲酰基-2’-叔丁基二甲基甲硅烷基-腺苷-3’-O-N,N’-二异丙基-2-腈乙基亚磷酰胺、5’-O-二甲氧三苯甲基-N4-乙酰基-2’-叔丁基二甲基甲硅烷基-胞苷-3’O-N,N’-二异丙基-2-腈乙基亚磷酰胺、5’-O-二甲氧三苯甲基-N2-异丁基-2’-叔丁基二甲基甲硅烷基-鸟苷-3’-O-N,N’-二异丙基-2-腈乙基亚磷酰胺以及5’-O-二甲氧三苯甲基-2’-叔丁基二甲基甲硅烷基-尿苷-3’-O-N,N’-二异丙基-2-腈乙基亚磷酰胺(Pierce Nucleic Acids Technologies)来合成寡核苷酸。2’-F亚磷酰胺、5’-O-二甲氧三苯甲基-N4-乙酰基-2’-氟-胞苷-3’-O-N,N’-二异丙基-2-腈乙基-亚磷酰胺和5’-O-二甲氧三苯甲基-2’-氟-尿苷-3’-O-N,N’-二异丙基-2-氰乙基-亚磷酰胺购自(Promega)。所有的亚磷酰胺以0.2M浓度的乙腈(CH3CN)溶液使用,除了鸟苷,其以0.2M浓度的10%THF/ANC(v/v)溶液使用。使用的偶联/再循环时间为16分钟。活化剂是5-乙基巯基四唑(0.75M,American International Chemicals);对于PO氧化,使用碘/水/吡啶,对于PS-氧化,使用PADS(2%)的2,6-二甲基吡啶/ACN(1∶1v/v)溶液。
用含有相应配体的固体支持体合成3’-配体缀合的链。例如由羟基脯氨醇-胆固醇亚磷酰胺进行将胆固醇单元引入该序列。经由6-氨基己酸酯键将胆固醇结合至反-4-羟基脯氨醇,以获得羟基脯氨醇-胆固醇部分。由购自Biosearch Technologies的相应的Quasar-570(Cy-3)亚磷酰胺合成5’-端Cy-3和Cy-5.5(荧光团)标记的siRNA。通过使用适当保护的配体-亚磷酰胺结构单元获得结合至5’-端和或内部位置的配体缀合物。在5-(乙基巯基)-1H-四唑活化剂的存在下使亚磷酰胺在无水CH3CN中的0.1M溶液与固体-支持体结合的寡核苷酸延长偶联15min。使用如(1)报告的标准碘-水或通过用叔丁基过氧化氢/乙腈/水(10∶87∶3)处理(缀合的寡核苷酸为10min氧化等待时间)进行核苷酸间亚磷酸酯到磷酸酯的氧化。通过使用硫转移剂例如DDTT(购自AM Chemicals)、PADS和或Beaucage试剂将亚磷酸酯氧化为硫代磷酸酯而引入硫代磷酸酯。内部合成胆固醇亚磷酰胺并以在二氯甲烷中的0.1M浓度使用。胆固醇亚磷酰胺的偶联时间为16分钟。
脱保护I(核碱基脱保护)
合成完成后,将支持体转移到100mL玻璃瓶(VWR)中。从支持体上切下寡核苷酸,同时在55℃用80mL的乙醇氨[氨∶乙醇(3∶1)]混合物脱保护碱基和磷酸基6.5h。在冰上短暂冷却瓶子,然后将乙醇氨混合物过滤到新的250-mL瓶子中。用2x40mL份的乙醇/水(1∶1v/v)洗涤CPG。然后通过旋转蒸发器(roto-vap)将混合物体积降低至约30mL。然后混合物在干冰上冷冻并用真空离心浓缩器(speed vac)在真空中干燥。
脱保护II(去除2’-TBDMS基团)
干燥残余物再悬浮在26mL的三乙胺、三乙胺三氢氟化物(TEA·3HF)或吡啶-HF和DMSO(3∶4∶6)中并在60℃加热90分钟以去除2’位的叔丁基二甲基甲硅烷基(TBDMS)。然后用50mL的20mM乙酸钠淬灭反应并将pH调节至6.5。寡核苷酸贮存在冰箱中直到纯化。
分析
用高效液相色谱(HPLC)分析寡核苷酸,然后纯化,缓冲液和柱的选择取决于序列和或缀合配体的性质。
HPLC纯化
通过反相制备型HPLC纯化配体-缀合的寡核苷酸。在内部填充的TSK凝胶柱上通过阴离子交换HPLC纯化非缀合寡核苷酸。缓冲液是10%CH3CN中的20mM磷酸钠(pH 8.5)(缓冲液A)和10%CH3CN、1MNaBr中的20mM磷酸钠(pH 8.5)(缓冲液B)。合并含有全长寡核苷酸的级分。脱盐并冻干。大约0.15OD的脱盐寡核苷酸在水中稀释为150μL,然后用移液管移入特殊小瓶中,用于CGE和LC/MS分析。然后通过LC-ESMS和CGE分析化合物。
siRNA制备
为制备siRNA,将等摩尔量的有义和反义链在1xPBS中95℃加热5min并缓慢冷却到室温。由HPLC分析证实双链体的完整性。合成本发明描述的AD-3133和AD-AD-12115。
实施例15:缀合脂质的合成
使用以下方法合成PEG-脂质,例如mPEG2000-1,2-二-O-烷基-sn3-氨甲酰基甘油酯(PEG-DMG):
mPEG2000-1,2-二-O-烷基-sn3-氨甲酰基甘油酯
化合物4a的制备:将1,2-二-O-十四基-sn-甘油酯1a(30g,61.80mmol)和N,N’-琥珀酰亚胺碳酸酯(DSC,23.76g,1.5eq)加入二氯甲烷(DCM,500mL)中并在冰水混合物中搅拌。将三乙胺(25.30mL,3eq)加入搅拌的溶液中,随后使反应混合物在环境温度下搅拌过夜。由TLC监控反应进程。用DCM(400mL)稀释反应混合物,用水(2X500mL)、NaHCO3水溶液(500mL)洗涤有机层,随后是标准操作。获得的残余物在环境温度下在高度真空中干燥过夜。干燥后,由此获得的粗碳酸酯2a溶解在二氯甲烷(500mL)并在冰浴中搅拌。在氩气气氛下往搅拌溶液中加入mPEG2000-NH2(3,103.00g,47.20mmol,购自NOF Corporation,Japan)和无水吡啶(80mL,过量)。在一些实施方式中,甲氧基-(PEG)x-胺中的x=45-49,优选47-49,更优选49。然后在环境温度搅拌反应混合物过夜。在真空下去除溶剂和挥发物,将残余物溶解在DCM(200mL)中,并上柱到用乙酸乙酯填充的硅胶柱上。首先用乙酸乙酯随后用二氯甲烷中的5-10%甲醇的梯度洗脱柱子,得到所需的PEG-脂质4a,为白色固体(105.30g,83%)。1H NMR(CDCl3,400MHz)δ=5.20-5.12(m,1H),4.18-4.01(m,2H),3.80-3.70(m,2H),3.70-3.20(m,-O-CH2-CH2-O-,PEG-CH2),2.10-2.01(m,2H),1.70-1.60(m,2H),1.56-1.45(m,4H),1.31-1.15(m,48H),0.84(t,J=6.5Hz,6H)。MS范围实测值2660-2836。
4b的制备:1,2-二-O-十六烷基-sn-甘油酯1b(1.00g,1.848mmol)和DSC(0.710g,1.5eq)一起加入二氯甲烷(20mL)中并在冰水混合物中冷却至0℃。往其中加入三乙胺(1.00mL,3eq)并搅拌过夜。该反应继之以TLC、用DCM稀释、用水(2次)、NaHCO3溶液洗涤并用硫酸钠干燥。减压下去除溶剂,残余物2b在高度真空中过夜。该化合物无需额外纯化直接用于下一步反应。在氩气气氛下将MPEG2000-NH2 3(1.50g,0.687mmol,购自NOF Corporation,Japan)和来自上步反应的化合物2b(0.702g,1.5eq)溶解在二氯甲烷(20mL)中。反应冷却到0℃。往其中加入吡啶(1mL,过量)并搅拌过夜。由TLC监控反应。在真空下去除溶剂和挥发物,通过层析(首先用乙酸乙酯然后用5-10%MeOH/DCM梯度洗脱)纯化残余物,得到所需化合物4b,为白色固体(1.46g,76%)。1H NMR(CDCl3,400MHz)δ=5.17(t,J=5.5Hz,1H),4.13(dd,J=4.00Hz,11.00Hz,1H),4.05(dd,J=5.00Hz,11.00Hz,1H),3.82-3.75(m,2H),3.70-3.20(m,-O-CH2-CH2-O-,PEG-CH2),2.05-1.90(m,2H),1.80-1.70(m,2H),1.61-1.45(m,6H),1.35-1.17(m,56H),0.85(t,J=6.5Hz,6H)。MS范围实测值:2716-2892。
4c的制备:1,2-二-O-十八烷基-sn-甘油酯1c(4.00g,6.70mmol)和DSC(2.58g,1.5eq)一起加入二氯甲烷(60mL)中并在冰水混合物中冷却至0℃。往其中加入三乙胺(2.75mL,3eq)并搅拌过夜。该反应继之以TLC、用DCM稀释、用水(2次)、NaHCO3溶液洗涤并用硫酸钠干燥。减压下去除溶剂,残余物2b在高度真空中过夜。该化合物无需额外纯化直接用于下一步反应。在氩气气氛下将MPEG2000-NH23(1.50g,0.687mmol,购自NOF Corporation,Japan)和来自上步反应的化合物2c(0.760,1.5eq)溶解在二氯甲烷(20mL)中。反应冷却到0℃。往其中加入吡啶(1mL,过量)并搅拌过夜。由TLC监控反应。在真空下去除溶剂和挥发物,通过层析(首先用乙酸乙酯然后用5-10%MeOH/DCM梯度洗脱)纯化残余物,得到所需化合物4c,为白色固体(0.92g,48%)。1H NMR(CDCl3,400MHz)δ=5.22-5.15(m,1H),4.16(dd,J=4.00Hz,11.00Hz,1H),4.06(dd,J=5.00Hz,11.00Hz,1H),3.81-3.75(m,2H),3.70-3.20(m,-O-CH2-CH2-O-,PEG-CH2),1.80-1.70(m,2H),1.60-1.48(m,4H),1.31-1.15(m,64H),0.85(t,J=6.5Hz,6H)。MS范围实测值:2774-2948。
实施例16:挤出法的通用方案
根据所需摩尔比将脂质(例如,脂质A、DSPC、胆固醇、DMG-PEG)在乙醇中溶解并混合。由乙醇注射法形成脂质体,其中混合脂质加入pH为5.2的乙酸钠缓冲液中。这导致脂质体在35%乙醇中自发形成。将脂质体挤压通过0.08μm的聚碳酸酯膜至少2次。在乙酸钠中制备siRNA储备溶液,将35%乙醇加入脂质体以装载。siRNA-脂质体溶液在37℃孵育30min,随后稀释。去除乙醇,通过透析或切向流过滤替换为PBS缓冲液。
实施例17:管线内混合法的通用方案
制备单独和分离的储备溶液:一个包含脂质另一个包含siRNA。通过溶解在90%乙醇中制备例如包含脂质A、DSPC、胆固醇和PEG脂质的脂质储备液。其余10%是低pH柠檬酸盐缓冲液。脂质储备液的浓度是4mg/mL。取决于所使用的致融脂质种类,该柠檬酸盐缓冲液的pH可以为3-5。siRNA也以4mg/mL的浓度溶解在柠檬酸盐缓冲液中。对于小规模,制备5mL的各储备溶液。
储备溶液是完全透明的,且在与siRNA混合之前脂质必须是完全溶解的。因此储备溶液可加热至完全溶解脂质。用于该方法的siRNA可以是未修饰的寡核苷酸或修饰的寡核苷酸,且可与亲脂性部分例如胆固醇缀合。
通过将各溶液泵入T-接头混合单独储备液。双头Watson-Marlow泵用于同时控制两种物流的开始和停止。将1.6mm聚丙烯管再缩小到0.8mm管,以增加线性流速。聚丙烯管线(ID=0.8mm)与T-接头的任一侧连接。聚丙烯T的线性边缘为1.6mm,所得体积为4.1mm3。聚丙烯管线每一大端(1.6mm)置于含有溶解的脂质储备液或溶解的siRNA的试管中。单个管道设置于T-接头后,合并流将在此流出。然后管道延伸入含有2倍体积PBS的容器中。快速搅拌PBS。泵的流速设置在300rpm或110mL/min。去除乙醇并通过透析用PBS替换。然后用离心或渗滤将脂质制剂浓缩至适当的使用浓度。
图17显示管线内混合法的示意图。
实施例18:通过LNP-08配制的VSP使小鼠肝内Hep3B肿瘤中的 siRNA沉默化
静脉内给药在含有XTC的核酸-脂质颗粒例如LNP-08中配制的siRNA后,在正位(肝内)Hep3B肿瘤中进行VSP(VEGF和KSP)的沉默化。
通过将1X106Hep3B细胞移植入8周大的雌性Fox scid/米色小鼠的右侧腹形成肿瘤。遗传工程化细胞以稳定表达荧火虫萤光素酶。使用IVIS体系(Caliper,Inc.)通过体内生物光子成像每周监控肿瘤负荷。植入肿瘤后大约4周,荷瘤动物组接受如下测试制品的静脉内(尾静脉)注射:
LNP08-1955是配制有siRNA AD-1955(靶向荧火虫萤光素酶)的脂质纳米颗粒,其含有XTC(60mol%)、DSPC(7.5mol%)、胆固醇(31mol%)和PEG-cDMG(1.5mol%),N∶P比为约3.0。
LNP08-VSP是siRNAs AD-12115(靶向KSP)和AD-3133(靶向VEGF)以1∶1摩尔比配制的脂质纳米颗粒,其含有XTC(60mol%)、DSPC(7.5mol%)、胆固醇(31mol%)和PEG-cDMG(1.5mol%),N∶P比例为约3.0。
处理后一天,处死动物并收集带肿瘤肝叶用于分析。提取总RNA,然后通过随机引物合成cDNA。使用人特异性定制Taqman测试(Applied Biosystems,Inc.)测定相对于人GAPDH标准化的人KSP和人VEGF水平。计算组平均值并相对于LNP08-1955处理组标准化。
如图18所示,较之LNP08-1955处理(组1),用LNP08-VSP(组2)处理导致肿瘤KSP mRNA减少大于60%,例如68%(p<0.001),且VEGFmRNA减少至少40%(p<0.05)。
实施例19:小鼠Hep3b肿瘤模型中LNP-011和LNP-012脂质制 剂的评估
比较各种VSP制剂对小鼠肝内Hep3B肿瘤中KSP和VEGF表达的影响。经由直接肝内外科手术将悬浮在0.025cc PBS中的1X10^6Hep3B-Luc细胞注入三十五只雌性Fox Scid米色小鼠中。经由Luc读数通过Xenogen监测肿瘤生长。
小鼠接受单剂快速浓注(4mg/kg)的以下制剂之一:SNALP-1955(萤光素酶对照);ALN-VSP02;SNALP-T-VSP(含C-18PEG)-VSP;LNP-11-VSP和LNP-12VSP。给药24小时后处死动物,TaqMan方法用于测定肿瘤特异性的KSP和VEGF抑制。
结果显示于图21。较之ALN-VSP02,SNAPL-T-VSP、LNP-11-VSP和LNP-12VSP显示增加的KSP表达的抑制。
实施例20:LNP-08+/-C18脂质制剂在小鼠Hep3b肿瘤模型中的 评估
在HEP3B肿瘤模型中测试以下VSP制剂的效果。将以下制剂之一注射入(肝内)荷瘤小鼠中,所述制剂根据上述方法制备并以单剂快速浓注IV方式给药:
ALN-VSP02制剂如实施例9所述。
LNP08-Luc是siRNA AD-1955(靶向荧火虫萤光素酶)配制的脂质纳米颗粒,其含有XTC(60mol%)、DSPC(7.5mol%)、胆固醇(31mol%)和PEG-cDMG(1.5mol%),N∶P比例为约3.0。
LNP08-VSP是siRNA AD-12115(靶向KSP)和AD-3133(靶向VEGF)以1∶1摩尔比配制的脂质纳米颗粒,其含有XTC(60mol%)、DSPC(7.5mol%)、胆固醇(31mol%)和PEG-cDMG(1.5mol%),N∶P比例为约3.0。
LNP08-C18-VSP是siRNA AD-12115(靶向KSP)和AD-3133(靶向VEGF)以1∶1摩尔比配制的脂质纳米颗粒,其含有XTC(60mol%)、DSPC(7.5mol%)、胆固醇(31mol%)和PEG-cDSG(1.5mol%),N∶P比为约3.0。
图19说明了PEG-DSG和PEG-C-DSA的化学结构。PEG-DSG是聚乙二醇二苯乙烯基甘油,其中PEG是C18-PEG或PEG-C18,且PEG的平均分子量为2000Da。
处理后二十四小时,处死动物并收集肿瘤用于分析。从肿瘤中提取总RNA,然后由随机引物合成cDNA。使用人特异性定制Taqman测试(Applied Biosystems,Inc.)测定相对于人GAPDH标准化的人KSP和人VEGF水平。
结果以图表形式显示于图22中,该结果显示可与通过ALN-VSP02引起的沉默化相比较的KSP和VEGF沉默化。
实施例21:ApoE在脂质体在HeLa细胞中的细胞摄取中的作用
LNP配制的dsRNA通过添加重组人ApoE制备。在HeLa细胞中测试所得的LNP-ApoE配制的dsRNA对细胞摄取dsRNA的影响。使用ApoE和可离子化脂质的组合物和方法描述在国际专利申请No.PCT/US10/22614中,其以引用方式全部合并于此。
实验方法
将HeLa细胞以每孔6000个细胞接种在96孔平板(Grenier)中过夜。Alexa-fluor 647标记的GFP siRNA的三种不同的脂质体制剂:1)LNP01,2)SNALP,3)LNP05,在三种培养基条件之一中稀释成最终浓度为50nM。所测试的培养基条件是OptiMem、含10%FBS的DMEM或含10%FBS加10ug/mL的人重组ApoE(Fitzgerald Industries)的DMEM。将在培养基中或在和ApoE预复合10分钟的培养基中的指定脂质体加入细胞4、6或24小时。各实验条件重复进行三次。在指定时间点加入平板中的HeLa细胞后,细胞在4%多聚甲醛中固定15分钟,然后用DAPI和Syto染料染色细胞核和细胞质。使用来自Perkin Elmer的Opera旋转盘自动化共焦体系获得图像。使用Acapella软件进行Alexa Fluor 647siRNA摄取的定量。量化四种不同参数:1)细胞数目、2)每个区域的siRNA阳性斑点的数目、3)每个细胞的siRNA阳性斑点的数目和4)综合斑点信号或每个细胞的平均siRNA斑点数乘以平均斑点强度。因此平均斑点信号是每个细胞的siRNA含量总数的粗略估计值。
另外,在以下细胞系中测试4种不同的LNP-ApoE配制的dsRNA(SNALP(DLinDMa)、XTC、MC3、ALNY-100),并测定对细胞的dsRNA摄取的影响:
A375(黑素瘤)、B16F10(黑素瘤)、BT-474(乳腺癌)、GTL-16(胃癌)、Hct116(结肠癌)、Hep3b(肝癌)、HepG2(肝癌)、HeLa(***)、HUH 7(肝癌)、MCF7(乳腺癌)、Mel-285(眼色素层黑素瘤)、NCI-H1975(肺癌)、OMM-1.3(眼色素层黑素瘤)、PC3(***癌)、SKOV-3(卵巢癌)、U87(胶质母细胞瘤)。
实施例22:存在ApoE时KSP siRNA的K d
在多种细胞系中评估ApoE对LNP-08配制的靶向KSP的siRNA的Kd(亲和性)的影响。使用LNP08和LNP08与C18PEG配制的siRNA。靶向KSP的siRNA双链体是AL-DP-6248。
使用以下细胞系。
  细胞系   细胞种类   物种
  HeLa   ***   人
  HCT116   结肠癌   人
  A375   黑素瘤   人
  MCF7   ***腺癌   人
  B16F10   黑素瘤   小鼠
  Hep3b   肝癌   人
  HUH 7   肝癌   人
  HepG2   肝癌   人
  Skov 3   卵巢癌   人
  U87   胶质母细胞瘤   人
  PC3   ***癌   人
第一天,将细胞以20000个细胞/孔接种在96孔平板上。第二天,用包含血清的培养基+/-ApoE在37℃孵育配制的siRNA 15-30分钟。从细胞中去除培养基,预加温的复合物以100uL/孔铺放在细胞上,siRNA浓度为20nM。在1.0、3.0、9.0和20.0μg/ml滴定ApoE浓度。用配制的双链体孵育细胞24小时。第三天,裂解并制备细胞用于bDNA分析和kD计算。
Apo E的存在改善了在包括HCT-116、HeLa、A375和B16F10的许多细胞系中的kD(数据未显示)。
实施例23:存在ApoE时KSP siRNA的IC 50
在多种细胞系中评估ApoE对LNP-08配制的靶向KSP的siRNA的IC50(功效)的影响。使用LNP08和LNP08与C18PEG配制的siRNA。靶向KSP的siRNA双链体是AL-DP-6248。
第0天,将细胞以15000-20000个细胞/孔接种在96孔平板上。第一天,包含血清的培养基、配制的双链体和+/-3ug/ml ApoE在37℃孵育15-30分钟。在0.01nM到1.0μM范围内使用siRNA的连续稀释液。从细胞中去除培养基,预加温的复合物以100uL/孔铺放在细胞上。用siRNA孵育细胞24小时。在第二天,裂解并制备细胞用于本发明所述的bDNA分析。使用Quantigene 1.0测定KSP mRNA水平以确定KSP水平,并与GAPDH比较。阴性对照是靶向萤光素酶的siRNA,AD-1955。
结果显示于下表。LNP-08配制的siRNA在所有细胞系中都是有活性的。在一些细胞系中,添加ApoE提高了siRNA处理的功效,如较低IC50所证实。
实施例24:人中Eg5/KSP和VEGF表达的抑制
用药物组合物,例如含有靶向Eg5/KSP基因的dsRNA和靶向VEGF基因的dsRNA的核酸-脂质颗粒治疗人受试者,以抑制核酸-脂质颗粒中Eg5/KSP和VEGF基因的表达。例如,所述核酸-脂质颗粒包含XTC、MC3或ALNY-100。
选择或鉴别需要治疗的受试者。所述受试者可能需要癌症治疗,例如肝癌。
在零时,适当的第一剂量的组合物皮下给药于受试者。所述组合物如本发明所述配制。一段时间之后,例如通过测定肿瘤生长、测定血清AFP水平等评估受试者的病情。所述测定可以伴随着测定所述受试者中的Eg5/KSP和/或VEGF表达,和/或测定Eg5/KSP和/或VEGF mRNA的成功的siRNA-靶向的产物。也测定其他相关标准。根据受试者的需要调整剂量数目和强度。
治疗后,将受试者的病情与治疗前存在的病情相比较,或与患有类似病症但未经治疗的受试者的病情相比。
本领域技术人员熟知除在本发明中特别列出的方法和组合物之外的方法和组合物,其将允许他们在所附权利要求书的全部范围内实施本发明。

Claims (17)

1.组合物,其包含核酸脂质颗粒,所述核酸脂质颗粒含有用于抑制细胞中人驱动蛋白家族成员11(Eg5/KSP)基因表达的第一双链核糖核酸(dsRNA)以及用于抑制细胞中人VEGF表达的第二dsRNA,其中:
所述核酸脂质颗粒含有脂质制剂,所述制剂含有45-65mol%的阳离子脂质、5mol%到10mol%的非阳离子脂质、25-40mol%的固醇和0.5-5mol%的PEG或PEG-修饰的脂质,其中所述阳离子脂质含有MC3(4-(二甲基氨基)丁酸(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基酯),
所述第一dsRNA由第一有义链和第一反义链组成,且所述第一有义链由SEQ ID NO:1534(5’-UCGAGAAUCUAAACUAACUTT-3’)组成,所述第一反义链由SEQ ID NO:1535(5’-AGUUAGUUUAGAUUCCUGATT-3’)组成;且
所述第二dsRNA由第二有义链和第二反义链组成,所述第二有义链由SEQ ID NO:1536(5’-GCACAUAGGAGAGAUGAGCUU-3’)组成,且所述第二反义链由SEQ ID NO:1537(5’-AAGCUCAUCUCUCCUAUGUGCUG-3’)组成。
2.权利要求1的组合物,其中所述阳离子脂质含有MC3且所述脂质制剂选自下组:
3.权利要求1的组合物,其中如下所述修饰各链,以使其包括以小写字母“c”或“u”表示的2’-O-甲基核糖核苷酸和以小写字母“s”表示的硫代磷酸酯:
所述第一dsRNA由有义链和反义链组成,所述有义链由SEQ ID NO:1240(5’-ucGAGAAucuAAAcuAAcuTsT-3’)组成,所述反义链由SEQ IDNO:1241(5’-AGUuAGUUuAGAUUCUCGATsT)组成;
所述第二dsRNA由有义链和反义链组成,所述有义链由SEQ ID NO:1242(5’-GcAcAuAGGAGAGAuGAGCUsU-3’)组成,所述反义链由SEQID NO:1243(5’-AAGCUcAUCUCUCCuAuGuGCusG-3’)组成。
4.权利要求1或2的组合物,其中所述第一和第二dsRNA包括至少一个修饰核苷酸。
5.权利要求4的组合物,其中所述修饰核苷酸选自下组:2'-O-甲基修饰核苷酸、具有5'-硫代磷酸酯基团的核苷酸和与胆固醇基衍生物或十二烷酸二癸基酰胺基团连接的末端核苷酸。
6.权利要求4的组合物,其中所述修饰核苷酸选自下组:2'-脱氧-2'-氟修饰的核苷酸、2'-脱氧-修饰的核苷酸、锁定核苷酸、脱碱基核苷酸、2'-氨基修饰的核苷酸、2'-烷基-修饰的核苷酸、吗啉代核苷酸、氨基磷酸酯和含非天然碱基的核苷酸。
7.权利要求1或2的组合物,其中所述第一和第二dsRNA各自包含至少一个2'-O-甲基修饰的核糖核苷酸和至少一个具有5'-硫代磷酸酯基团的核苷酸。
8.权利要求1或2的组合物,其中所述第一和第二dsRNA以等摩尔比存在。
9.权利要求1或2的组合物,还含有索拉非尼。
10.权利要求1或2的组合物,还含有脂蛋白。
11.权利要求1或2的组合物,还含有载脂蛋白E(ApoE)。
12.权利要求1-11任一项的组合物在制备用于抑制细胞中Eg5/KSP和VEGF的表达的药物中的用途。
13.权利要求1-11任一项的组合物在制备用于预防肿瘤生长、减少肿瘤生长或延长需要治疗癌症的哺乳动物存活期的药物中的用途。
14.权利要求13的用途,其中所述哺乳动物患有肝癌。
15.权利要求13或14的用途,其中所述哺乳动物是患有肝癌的人。
16.权利要求1-11任一项的组合物在制备用于降低需要治疗癌症的哺乳动物中的肿瘤生长的药物中的用途,所述药物使肿瘤生长降低至少20%。
17.权利要求16的用途,其中所述药物使KSP表达减少至少60%。
CN201080020483.1A 2009-03-12 2010-03-12 用于抑制Eg5和VEGF基因表达的脂质配制的组合物以及方法 Active CN102421900B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510338694.4A CN104922699B (zh) 2009-03-12 2010-03-12 脂质配制的组合物以及用于抑制Eg5和VEGF基因表达的方法

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US15978809P 2009-03-12 2009-03-12
US61/159,788 2009-03-12
US23157909P 2009-08-05 2009-08-05
US61/231,579 2009-08-05
US28594709P 2009-12-11 2009-12-11
US61/285,947 2009-12-11
PCT/US2010/027210 WO2010105209A1 (en) 2009-03-12 2010-03-12 LIPID FORMULATED COMPOSITIONS AND METHODS FOR INHIBITING EXPRESSION OF Eg5 AND VEGF GENES

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510338694.4A Division CN104922699B (zh) 2009-03-12 2010-03-12 脂质配制的组合物以及用于抑制Eg5和VEGF基因表达的方法

Publications (2)

Publication Number Publication Date
CN102421900A CN102421900A (zh) 2012-04-18
CN102421900B true CN102421900B (zh) 2015-07-22

Family

ID=42199883

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201080020483.1A Active CN102421900B (zh) 2009-03-12 2010-03-12 用于抑制Eg5和VEGF基因表达的脂质配制的组合物以及方法
CN201510338694.4A Active CN104922699B (zh) 2009-03-12 2010-03-12 脂质配制的组合物以及用于抑制Eg5和VEGF基因表达的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201510338694.4A Active CN104922699B (zh) 2009-03-12 2010-03-12 脂质配制的组合物以及用于抑制Eg5和VEGF基因表达的方法

Country Status (9)

Country Link
US (2) US20100267806A1 (zh)
EP (1) EP2406376A1 (zh)
JP (2) JP6032724B2 (zh)
CN (2) CN102421900B (zh)
AU (1) AU2010223967B2 (zh)
CA (1) CA2754043A1 (zh)
HK (2) HK1169676A1 (zh)
NZ (1) NZ594995A (zh)
WO (1) WO2010105209A1 (zh)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832154B1 (fr) 2001-11-09 2007-03-16 Centre Nat Rech Scient Oligonucleotides inhibiteurs et leur utilisation pour reprimer specifiquement un gene
WO2005089224A2 (en) 2004-03-12 2005-09-29 Alnylam Pharmaceuticals, Inc. iRNA AGENTS TARGETING VEGF
SG170780A1 (en) 2006-03-31 2011-05-30 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expression of eg5 gene
US8598333B2 (en) * 2006-05-26 2013-12-03 Alnylam Pharmaceuticals, Inc. SiRNA silencing of genes expressed in cancer
EA201301171A1 (ru) 2008-03-05 2014-10-30 Элнилэм Фармасьютикалз, Инк. Композиции и способы ингибирования экспрессии генов eg5 и vegf
NZ588583A (en) 2008-04-15 2012-08-31 Protiva Biotherapeutics Inc Novel lipid formulations for nucleic acid delivery
CN102281899B (zh) * 2008-11-10 2015-07-15 阿尔尼拉姆医药品有限公司 用于递送治疗剂的脂质和组合物
US20100233270A1 (en) 2009-01-08 2010-09-16 Northwestern University Delivery of Oligonucleotide-Functionalized Nanoparticles
US20120101148A1 (en) * 2009-01-29 2012-04-26 Alnylam Pharmaceuticals, Inc. lipid formulation
US20100285112A1 (en) * 2009-05-05 2010-11-11 Tatiana Novobrantseva Methods of delivering oligonucleotides to immune cells
IL292615B2 (en) 2009-07-01 2023-11-01 Protiva Biotherapeutics Inc Nucleic acid-lipid particles, preparations containing them and their uses
CN102639115A (zh) 2009-09-15 2012-08-15 阿尔尼拉姆医药品有限公司 脂质配制的组合物及抑制eg5和vegf基因的表达的方法
ME03091B (me) 2009-12-01 2019-01-20 Translate Bio Inc Isporuka irnk za povećanje ekspresije proteina i enzima u humanim genetskim oboljenjima
EP3391877A1 (en) 2010-04-08 2018-10-24 The Trustees of Princeton University Preparation of lipid nanoparticles
WO2012000104A1 (en) 2010-06-30 2012-01-05 Protiva Biotherapeutics, Inc. Non-liposomal systems for nucleic acid delivery
EP3485913A1 (en) 2010-10-21 2019-05-22 Sirna Therapeutics, Inc. Low molecular weight cationic lipids for oligonucleotide delivery
WO2012061259A2 (en) 2010-11-05 2012-05-10 Merck Sharp & Dohme Corp. Novel low molecular weight cyclic amine containing cationic lipids for oligonucleotide delivery
US9339513B2 (en) 2010-11-09 2016-05-17 Alnylam Pharmaceuticals, Inc. Lipid formulated compositions and methods for inhibiting expression of Eg5 and VEGF genes
US8853377B2 (en) 2010-11-30 2014-10-07 Shire Human Genetic Therapies, Inc. mRNA for use in treatment of human genetic diseases
EP2649182A4 (en) 2010-12-10 2015-05-06 Alnylam Pharmaceuticals Inc COMPOSITIONS AND METHOD FOR INCREASING AN ERYTHROPOIETIN (EPO) PREPARATION
PE20140797A1 (es) 2011-06-08 2014-07-11 Shire Human Genetic Therapies COMPOSICIONES Y METODOS PARA ADMINISTRACION DE ARNm
EP3536787A1 (en) 2012-06-08 2019-09-11 Translate Bio, Inc. Nuclease resistant polynucleotides and uses thereof
US20150366997A1 (en) 2012-12-07 2015-12-24 Shire Human Genetics Therapies, Inc. COMPOSITIONS AND METHODS FOR mRNA DELIVERY
AU2013355258A1 (en) * 2012-12-07 2015-06-11 Alnylam Pharmaceuticals, Inc. Improved nucleic acid lipid particle formulations
MX365409B (es) 2013-03-14 2019-05-31 Shire Human Genetic Therapies Composiciones de ácido ribonucleico mensajero del regulador transmembrana de fibrosis quística y métodos y usos relacionados.
DK2970955T3 (en) 2013-03-14 2019-02-11 Translate Bio Inc METHODS FOR CLEANING MESSENGER RNA
EP3431592A1 (en) 2013-03-14 2019-01-23 Translate Bio, Inc. Mrna therapeutic compositions and use to treat diseases and disorders
EP2994167B1 (en) 2013-05-06 2020-05-06 Alnylam Pharmaceuticals, Inc. Dosages and methods for delivering lipid formulated nucleic acid molecules
AU2014292926B2 (en) 2013-07-25 2020-03-05 Exicure Operating Company Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
US10568898B2 (en) 2013-08-13 2020-02-25 Northwestern University Lipophilic nanoparticles for drug delivery
EP3060303B1 (en) 2013-10-22 2018-11-14 Translate Bio, Inc. Mrna therapy for argininosuccinate synthetase deficiency
WO2015061491A1 (en) 2013-10-22 2015-04-30 Shire Human Genetic Therapies, Inc. Mrna therapy for phenylketonuria
AU2014383024B2 (en) 2013-12-03 2020-04-30 Exicure, Inc. Liposomal particles, methods of making same and uses thereof
AR094658A1 (es) * 2014-01-14 2015-08-19 Fast Rehydration Llc Formulación de sales de rehidratación liposomal
US10751283B2 (en) 2014-01-14 2020-08-25 Capability Building, Inc. Liposomal rehydration salt formulation and associated methods of use
US10821175B2 (en) 2014-02-25 2020-11-03 Merck Sharp & Dohme Corp. Lipid nanoparticle vaccine adjuvants and antigen delivery systems
CN106164248B (zh) 2014-04-25 2019-10-15 川斯勒佰尔公司 信使rna的纯化方法
EP3508198A1 (en) 2014-06-04 2019-07-10 Exicure, Inc. Multivalent delivery of immune modulators by liposomal spherical nucleic acids for prophylactic or therapeutic applications
EP3186365A4 (en) * 2014-08-29 2018-04-25 Immunomedics, Inc. Identification of cancer genes by in-vivo fusion of human cancer cells and animal cells
WO2016045732A1 (en) * 2014-09-25 2016-03-31 Biontech Rna Pharmaceuticals Gmbh Stable formulations of lipids and liposomes
KR20170104550A (ko) 2015-01-14 2017-09-15 엑시큐어, 인크. 코어 모티프를 갖는 핵산 나노구조
CA2984512A1 (en) 2015-05-06 2016-11-10 Benitec Biopharma Limited Reagents for treatment of hepatitis b virus (hbv) infection and use thereof
US11564893B2 (en) * 2015-08-17 2023-01-31 Modernatx, Inc. Methods for preparing particles and related compositions
US11273151B2 (en) 2015-11-04 2022-03-15 Icahn School Of Medicine At Mount Sinai Methods of treating tumors and cancer, and identifying candidate subjects for such treatment
RU2755544C2 (ru) 2016-04-14 2021-09-17 Бенитек Биофарма Лимитед Реагенты для лечения окулофарингеальной мышечной дистрофии (OPMD) и их применение
WO2017189730A1 (en) 2016-04-26 2017-11-02 Icahn School Of Medicine At Mount Sinai Treatment of hippo pathway mutant tumors and methods of identifying subjects as candidates for treatment
US10967072B2 (en) 2016-04-27 2021-04-06 Northwestern University Short interfering RNA templated lipoprotein particles (siRNA-TLP)
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
WO2018075592A1 (en) 2016-10-21 2018-04-26 Merck Sharp & Dohme Corp. Influenza hemagglutinin protein vaccines
EP3585417B1 (en) 2017-02-27 2023-02-22 Translate Bio, Inc. Method of making a codon-optimized cftr mrna
CA3063531A1 (en) 2017-05-16 2018-11-22 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mrna encoding cftr
US11786607B2 (en) 2017-06-15 2023-10-17 Modernatx, Inc. RNA formulations
CA3069909A1 (en) 2017-07-13 2019-02-14 Northwestern University General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles
EP3675817A1 (en) 2017-08-31 2020-07-08 Modernatx, Inc. Methods of making lipid nanoparticles
WO2019126766A1 (en) * 2017-12-21 2019-06-27 Taiwan Liposome Co., Ltd. Sustained-release triptan compositions and method of use the same through subdermal route or the like
EP3746462A4 (en) 2018-01-29 2022-01-05 Merck Sharp & Dohme Corp. STABILIZED F RSV PROTEINS AND THEIR USES
CA3103675A1 (en) 2018-06-21 2019-12-26 University Of Rochester Methods of treating or inhibiting onset of huntington's disease
CN112930396B (zh) 2018-08-24 2024-05-24 川斯勒佰尔公司 用于纯化信使rna的方法
EP3923962A2 (en) 2019-02-13 2021-12-22 University of Rochester Gene networks that mediate remyelination of the human brain
CN112111488A (zh) * 2019-06-21 2020-12-22 苏州吉玛基因股份有限公司 siRNA修饰物及其在抑制血管新生中的应用
US20230123584A1 (en) 2020-02-14 2023-04-20 Merck Sharp & Dohme Llc Hpv vaccine
CN117098541A (zh) 2020-11-25 2023-11-21 阿卡格拉医药公司 用于递送核酸的脂质纳米粒及相关使用方法
TW202245835A (zh) 2021-02-04 2022-12-01 美商默沙東有限責任公司 用於肺炎球菌結合物疫苗之奈米乳化液佐劑組合物
US20240122883A1 (en) * 2021-02-16 2024-04-18 National Jewish Health Methods of treating a subject exposed to a toxic inhaled chemical with mesna
EP4308130A1 (en) * 2021-03-18 2024-01-24 Alnylam Pharmaceuticals, Inc. Stearoyl-coa desaturase 5 (scd5) irna agent compositions and methods of use thereof
EP4353268A1 (en) 2021-06-11 2024-04-17 Nibec Co., Ltd. Nanoparticle comprising peptide-lipid conjugate for delivering oligonucleotide into target cell and pharmaceutical composition comprising same
AU2022331279A1 (en) 2021-08-19 2024-02-15 Merck Sharp & Dohme Llc Thermostable lipid nanoparticle and methods of use thereof
CN115894281A (zh) * 2021-09-22 2023-04-04 广州谷森制药有限公司 新型阳离子脂质化合物、其制备方法、组合物及应用
WO2023133275A1 (en) * 2022-01-07 2023-07-13 Sanford Burnham Prebys Medical Discovery Institute Inhibition of glutaryl-coa dehydrogenase for the treatment of melanoma
CN115869286B (zh) * 2022-11-10 2023-08-18 海南卓泰制药有限公司 一种含安吖啶的包封组合物及其制备方法

Family Cites Families (237)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US513030A (en) 1894-01-16 Machine for waxing or coating paper
US564562A (en) 1896-07-21 Joseph p
US3687808A (en) 1969-08-14 1972-08-29 Univ Leland Stanford Junior Synthetic polynucleotides
US3993754A (en) 1974-10-09 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Liposome-encapsulated actinomycin for cancer chemotherapy
US4086257A (en) 1976-10-12 1978-04-25 Sears Barry D Phosphatidyl quaternary ammonium compounds
CH624011A5 (zh) 1977-08-05 1981-07-15 Battelle Memorial Institute
US4235871A (en) 1978-02-24 1980-11-25 Papahadjopoulos Demetrios P Method of encapsulating biologically active materials in lipid vesicles
US4469863A (en) 1980-11-12 1984-09-04 Ts O Paul O P Nonionic nucleic acid alkyl and aryl phosphonates and processes for manufacture and use thereof
US4534899A (en) 1981-07-20 1985-08-13 Lipid Specialties, Inc. Synthetic phospholipid compounds
US4426330A (en) 1981-07-20 1984-01-17 Lipid Specialties, Inc. Synthetic phospholipid compounds
US5023243A (en) 1981-10-23 1991-06-11 Molecular Biosystems, Inc. Oligonucleotide therapeutic agent and method of making same
US4522803A (en) 1983-02-04 1985-06-11 The Liposome Company, Inc. Stable plurilamellar vesicles, their preparation and use
US4476301A (en) 1982-04-29 1984-10-09 Centre National De La Recherche Scientifique Oligonucleotides, a process for preparing the same and their application as mediators of the action of interferon
JPS5927900A (ja) 1982-08-09 1984-02-14 Wakunaga Seiyaku Kk 固定化オリゴヌクレオチド
US4603044A (en) 1983-01-06 1986-07-29 Technology Unlimited, Inc. Hepatocyte Directed Vesicle delivery system
FR2540122B1 (fr) 1983-01-27 1985-11-29 Centre Nat Rech Scient Nouveaux composes comportant une sequence d'oligonucleotide liee a un agent d'intercalation, leur procede de synthese et leur application
US4605735A (en) 1983-02-14 1986-08-12 Wakunaga Seiyaku Kabushiki Kaisha Oligonucleotide derivatives
US4948882A (en) 1983-02-22 1990-08-14 Syngene, Inc. Single-stranded labelled oligonucleotides, reactive monomers and methods of synthesis
US4824941A (en) 1983-03-10 1989-04-25 Julian Gordon Specific antibody to the native form of 2'5'-oligonucleotides, the method of preparation and the use as reagents in immunoassays or for binding 2'5'-oligonucleotides in biological systems
US4588578A (en) 1983-08-08 1986-05-13 The Liposome Company, Inc. Lipid vesicles prepared in a monophase
US4587044A (en) 1983-09-01 1986-05-06 The Johns Hopkins University Linkage of proteins to nucleic acids
US5118802A (en) 1983-12-20 1992-06-02 California Institute Of Technology DNA-reporter conjugates linked via the 2' or 5'-primary amino group of the 5'-terminal nucleoside
US5118800A (en) 1983-12-20 1992-06-02 California Institute Of Technology Oligonucleotides possessing a primary amino group in the terminal nucleotide
US4828991A (en) 1984-01-31 1989-05-09 Akzo N.V. Tumor specific monoclonal antibodies
US5008050A (en) 1984-06-20 1991-04-16 The Liposome Company, Inc. Extrusion technique for producing unilamellar vesicles
US5550111A (en) 1984-07-11 1996-08-27 Temple University-Of The Commonwealth System Of Higher Education Dual action 2',5'-oligoadenylate antiviral derivatives and uses thereof
FR2567892B1 (fr) 1984-07-19 1989-02-17 Centre Nat Rech Scient Nouveaux oligonucleotides, leur procede de preparation et leurs applications comme mediateurs dans le developpement des effets des interferons
US5258506A (en) 1984-10-16 1993-11-02 Chiron Corporation Photolabile reagents for incorporation into oligonucleotide chains
US5367066A (en) 1984-10-16 1994-11-22 Chiron Corporation Oligonucleotides with selectably cleavable and/or abasic sites
US5430136A (en) 1984-10-16 1995-07-04 Chiron Corporation Oligonucleotides having selectably cleavable and/or abasic sites
AU587989B2 (en) 1984-10-16 1989-09-07 Mitsubishi Chemical Corporation DMA fragments, expression vectors, proteins, hosts, and process for production of the proteins
US4828979A (en) 1984-11-08 1989-05-09 Life Technologies, Inc. Nucleotide analogs for nucleic acid labeling and detection
FR2575751B1 (fr) 1985-01-08 1987-04-03 Pasteur Institut Nouveaux nucleosides de derives de l'adenosine, leur preparation et leurs applications biologiques
WO1986004920A1 (en) 1985-02-13 1986-08-28 Biotechnology Research Partners, Limited Human metallothionein-ii promoter in mammalian expression system
US5405938A (en) 1989-12-20 1995-04-11 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US5185444A (en) 1985-03-15 1993-02-09 Anti-Gene Deveopment Group Uncharged morpolino-based polymers having phosphorous containing chiral intersubunit linkages
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5166315A (en) 1989-12-20 1992-11-24 Anti-Gene Development Group Sequence-specific binding polymers for duplex nucleic acids
US4762779A (en) 1985-06-13 1988-08-09 Amgen Inc. Compositions and methods for functionalizing nucleic acids
US4980286A (en) 1985-07-05 1990-12-25 Whitehead Institute For Biomedical Research In vivo introduction and expression of foreign genetic material in epithelial cells
EP0228458B2 (en) 1985-07-05 1997-10-22 Whitehead Institute For Biomedical Research Epithelial cells expressing foreign genetic material
WO1987002062A1 (en) 1985-10-04 1987-04-09 Biotechnology Research Partners, Ltd. Recombinant apolipoproteins and methods
US5139941A (en) 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
US4737323A (en) 1986-02-13 1988-04-12 Liposome Technology, Inc. Liposome extrusion method
US5317098A (en) 1986-03-17 1994-05-31 Hiroaki Shizuya Non-radioisotope tagging of fragments
JPS638396A (ja) 1986-06-30 1988-01-14 Wakunaga Pharmaceut Co Ltd ポリ標識化オリゴヌクレオチド誘導体
US4837028A (en) 1986-12-24 1989-06-06 Liposome Technology, Inc. Liposomes with enhanced circulation time
US4920016A (en) 1986-12-24 1990-04-24 Linear Technology, Inc. Liposomes with enhanced circulation time
US5276019A (en) 1987-03-25 1994-01-04 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
GB8712540D0 (en) 1987-05-28 1987-07-01 Ucb Sa Expression of human proapolipoprotein a-i
US4904582A (en) 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
DE3851889T2 (de) 1987-06-24 1995-04-13 Florey Howard Inst Nukleosid-derivate.
EP0378576B1 (en) 1987-09-11 1995-01-18 Whitehead Institute For Biomedical Research Transduced fibroblasts and uses therefor
US5585481A (en) 1987-09-21 1996-12-17 Gen-Probe Incorporated Linking reagents for nucleotide probes
US4924624A (en) 1987-10-22 1990-05-15 Temple University-Of The Commonwealth System Of Higher Education 2,',5'-phosphorothioate oligoadenylates and plant antiviral uses thereof
US5188897A (en) 1987-10-22 1993-02-23 Temple University Of The Commonwealth System Of Higher Education Encapsulated 2',5'-phosphorothioate oligoadenylates
US5525465A (en) 1987-10-28 1996-06-11 Howard Florey Institute Of Experimental Physiology And Medicine Oligonucleotide-polyamide conjugates and methods of production and applications of the same
DE3738460A1 (de) 1987-11-12 1989-05-24 Max Planck Gesellschaft Modifizierte oligonukleotide
JP2914692B2 (ja) 1987-12-11 1999-07-05 ホワイトヘツド・インスチチユート・フオー・バイオメデイカル・リサーチ 内皮細胞の遺伝子修飾
EP0732397A3 (en) 1988-02-05 1996-10-23 Whitehead Institute For Biomedical Research Modified hepatocytes and uses therefor
US5082830A (en) 1988-02-26 1992-01-21 Enzo Biochem, Inc. End labeled nucleotide probe
EP0406309A4 (en) 1988-03-25 1992-08-19 The University Of Virginia Alumni Patents Foundation Oligonucleotide n-alkylphosphoramidates
US5278302A (en) 1988-05-26 1994-01-11 University Patents, Inc. Polynucleotide phosphorodithioates
US5109124A (en) 1988-06-01 1992-04-28 Biogen, Inc. Nucleic acid probe linked to a label having a terminal cysteine
US5216141A (en) 1988-06-06 1993-06-01 Benner Steven A Oligonucleotide analogs containing sulfur linkages
US5175273A (en) 1988-07-01 1992-12-29 Genentech, Inc. Nucleic acid intercalating agents
US5262536A (en) 1988-09-15 1993-11-16 E. I. Du Pont De Nemours And Company Reagents for the preparation of 5'-tagged oligonucleotides
GB8824593D0 (en) 1988-10-20 1988-11-23 Royal Free Hosp School Med Liposomes
US5512439A (en) 1988-11-21 1996-04-30 Dynal As Oligonucleotide-linked magnetic particles and uses thereof
US4927637A (en) 1989-01-17 1990-05-22 Liposome Technology, Inc. Liposome extrusion method
US4957773A (en) 1989-02-13 1990-09-18 Syracuse University Deposition of boron-containing films from decaborane
US5457183A (en) 1989-03-06 1995-10-10 Board Of Regents, The University Of Texas System Hydroxylated texaphyrins
US5599923A (en) 1989-03-06 1997-02-04 Board Of Regents, University Of Tx Texaphyrin metal complexes having improved functionalization
US5328470A (en) 1989-03-31 1994-07-12 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
US5391723A (en) 1989-05-31 1995-02-21 Neorx Corporation Oligonucleotide conjugates
US4958013A (en) 1989-06-06 1990-09-18 Northwestern University Cholesteryl modified oligonucleotides
US5168045A (en) 1989-08-18 1992-12-01 The Scripps Research Institute Diagnostic systems and methods using polypeptide analogs of apolipoprotein e
US5177189A (en) 1989-08-18 1993-01-05 The Scripps Research Institute Polypeptide analogs of Apolipoprotein E
US5473039A (en) 1989-08-18 1995-12-05 The Scripps Research Institute Polypeptide analogs of apolipoprotein E, diagnostic systems and methods using the analogs
US5182364A (en) 1990-02-26 1993-01-26 The Scripps Research Institute Polypeptide analogs of apolipoprotein E
US5451463A (en) 1989-08-28 1995-09-19 Clontech Laboratories, Inc. Non-nucleoside 1,3-diol reagents for labeling synthetic oligonucleotides
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
US5254469A (en) 1989-09-12 1993-10-19 Eastman Kodak Company Oligonucleotide-enzyme conjugate that can be used as a probe in hybridization assays and polymerase chain reaction procedures
US5591722A (en) 1989-09-15 1997-01-07 Southern Research Institute 2'-deoxy-4'-thioribonucleosides and their antiviral activity
US5286634A (en) 1989-09-28 1994-02-15 Stadler Joan K Synergistic method for host cell transformation
US5225212A (en) 1989-10-20 1993-07-06 Liposome Technology, Inc. Microreservoir liposome composition and method
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5356633A (en) 1989-10-20 1994-10-18 Liposome Technology, Inc. Method of treatment of inflamed tissues
US5399676A (en) 1989-10-23 1995-03-21 Gilead Sciences Oligonucleotides with inverted polarity
DK0942000T3 (da) 1989-10-24 2004-11-01 Isis Pharmaceuticals Inc 2'-modificerede oligonukleotider
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US5292873A (en) 1989-11-29 1994-03-08 The Research Foundation Of State University Of New York Nucleic acids labeled with naphthoquinone probe
US5177198A (en) 1989-11-30 1993-01-05 University Of N.C. At Chapel Hill Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5486603A (en) 1990-01-08 1996-01-23 Gilead Sciences, Inc. Oligonucleotide having enhanced binding affinity
US5578718A (en) 1990-01-11 1996-11-26 Isis Pharmaceuticals, Inc. Thiol-derivatized nucleosides
US5681941A (en) 1990-01-11 1997-10-28 Isis Pharmaceuticals, Inc. Substituted purines and oligonucleotide cross-linking
US5587470A (en) 1990-01-11 1996-12-24 Isis Pharmaceuticals, Inc. 3-deazapurines
US5670633A (en) 1990-01-11 1997-09-23 Isis Pharmaceuticals, Inc. Sugar modified oligonucleotides that detect and modulate gene expression
US5587361A (en) 1991-10-15 1996-12-24 Isis Pharmaceuticals, Inc. Oligonucleotides having phosphorothioate linkages of high chiral purity
US5646265A (en) 1990-01-11 1997-07-08 Isis Pharmceuticals, Inc. Process for the preparation of 2'-O-alkyl purine phosphoramidites
US5459255A (en) 1990-01-11 1995-10-17 Isis Pharmaceuticals, Inc. N-2 substituted purines
US5214136A (en) 1990-02-20 1993-05-25 Gilead Sciences, Inc. Anthraquinone-derivatives oligonucleotides
WO1991013080A1 (en) 1990-02-20 1991-09-05 Gilead Sciences, Inc. Pseudonucleosides and pseudonucleotides and their polymers
US5321131A (en) 1990-03-08 1994-06-14 Hybridon, Inc. Site-specific functionalization of oligodeoxynucleotides for non-radioactive labelling
US5470967A (en) 1990-04-10 1995-11-28 The Dupont Merck Pharmaceutical Company Oligonucleotide analogs with sulfamate linkages
US5665710A (en) 1990-04-30 1997-09-09 Georgetown University Method of making liposomal oligodeoxynucleotide compositions
GB9009980D0 (en) 1990-05-03 1990-06-27 Amersham Int Plc Phosphoramidite derivatives,their preparation and the use thereof in the incorporation of reporter groups on synthetic oligonucleotides
ES2116977T3 (es) 1990-05-11 1998-08-01 Microprobe Corp Soportes solidos para ensayos de hibridacion de acidos nucleicos y metodos para inmovilizar oligonucleotidos de modo covalente.
US5608046A (en) 1990-07-27 1997-03-04 Isis Pharmaceuticals, Inc. Conjugated 4'-desmethyl nucleoside analog compounds
US5218105A (en) 1990-07-27 1993-06-08 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5541307A (en) 1990-07-27 1996-07-30 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogs and solid phase synthesis thereof
US5602240A (en) 1990-07-27 1997-02-11 Ciba Geigy Ag. Backbone modified oligonucleotide analogs
US5677437A (en) 1990-07-27 1997-10-14 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
US5489677A (en) 1990-07-27 1996-02-06 Isis Pharmaceuticals, Inc. Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5138045A (en) 1990-07-27 1992-08-11 Isis Pharmaceuticals Polyamine conjugated oligonucleotides
US5623070A (en) 1990-07-27 1997-04-22 Isis Pharmaceuticals, Inc. Heteroatomic oligonucleoside linkages
EP0544824B1 (en) 1990-07-27 1997-06-11 Isis Pharmaceuticals, Inc. Nuclease resistant, pyrimidine modified oligonucleotides that detect and modulate gene expression
US5618704A (en) 1990-07-27 1997-04-08 Isis Pharmacueticals, Inc. Backbone-modified oligonucleotide analogs and preparation thereof through radical coupling
US5688941A (en) 1990-07-27 1997-11-18 Isis Pharmaceuticals, Inc. Methods of making conjugated 4' desmethyl nucleoside analog compounds
US5610289A (en) 1990-07-27 1997-03-11 Isis Pharmaceuticals, Inc. Backbone modified oligonucleotide analogues
US5245022A (en) 1990-08-03 1993-09-14 Sterling Drug, Inc. Exonuclease resistant terminally substituted oligonucleotides
JPH06502300A (ja) 1990-08-03 1994-03-17 サノフィ 遺伝子発現の抑制のための化合物及び方法
US5512667A (en) 1990-08-28 1996-04-30 Reed; Michael W. Trifunctional intermediates for preparing 3'-tailed oligonucleotides
US5214134A (en) 1990-09-12 1993-05-25 Sterling Winthrop Inc. Process of linking nucleosides with a siloxane bridge
US5561225A (en) 1990-09-19 1996-10-01 Southern Research Institute Polynucleotide analogs containing sulfonate and sulfonamide internucleoside linkages
AU662298B2 (en) 1990-09-20 1995-08-31 Gilead Sciences, Inc. Modified internucleoside linkages
US5432272A (en) 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
EP0556345B2 (en) 1990-10-31 2005-10-12 Cell Genesys, Inc. Retroviral vectors useful for gene therapy
JP3172178B2 (ja) 1990-11-08 2001-06-04 ハイブライドン インコーポレイテッド 合成オリゴヌクレオチドに対する多重リポータ基の組込み
GB9100304D0 (en) 1991-01-08 1991-02-20 Ici Plc Compound
JP3220180B2 (ja) 1991-05-23 2001-10-22 三菱化学株式会社 薬剤含有タンパク質結合リポソーム
US5714331A (en) 1991-05-24 1998-02-03 Buchardt, Deceased; Ole Peptide nucleic acids having enhanced binding affinity, sequence specificity and solubility
US5719262A (en) 1993-11-22 1998-02-17 Buchardt, Deceased; Ole Peptide nucleic acids having amino acid side chains
US5539082A (en) 1993-04-26 1996-07-23 Nielsen; Peter E. Peptide nucleic acids
WO1993000443A1 (en) 1991-06-26 1993-01-07 Bio-Technology General Corp. Purification of recombinant apolipoprotein e from bacteria
US5371241A (en) 1991-07-19 1994-12-06 Pharmacia P-L Biochemicals Inc. Fluorescein labelled phosphoramidites
US5571799A (en) 1991-08-12 1996-11-05 Basco, Ltd. (2'-5') oligoadenylate analogues useful as inhibitors of host-v5.-graft response
EP0538194B1 (de) 1991-10-17 1997-06-04 Novartis AG Bicyclische Nukleoside, Oligonukleotide, Verfahren zu deren Herstellung und Zwischenprodukte
US5594121A (en) 1991-11-07 1997-01-14 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
US5252479A (en) 1991-11-08 1993-10-12 Research Corporation Technologies, Inc. Safe vector for gene therapy
US5484908A (en) 1991-11-26 1996-01-16 Gilead Sciences, Inc. Oligonucleotides containing 5-propynyl pyrimidines
SE9103701D0 (sv) 1991-12-13 1991-12-13 Kabi Pharmacia Ab Apolipoprotein
US5359044A (en) 1991-12-13 1994-10-25 Isis Pharmaceuticals Cyclobutyl oligonucleotide surrogates
US5595726A (en) 1992-01-21 1997-01-21 Pharmacyclics, Inc. Chromophore probe for detection of nucleic acid
US5565552A (en) 1992-01-21 1996-10-15 Pharmacyclics, Inc. Method of expanded porphyrin-oligonucleotide conjugate synthesis
FR2687679B1 (fr) 1992-02-05 1994-10-28 Centre Nat Rech Scient Oligothionucleotides.
DE4203923A1 (de) 1992-02-11 1993-08-12 Henkel Kgaa Verfahren zur herstellung von polycarboxylaten auf polysaccharid-basis
US5633360A (en) 1992-04-14 1997-05-27 Gilead Sciences, Inc. Oligonucleotide analogs capable of passive cell membrane permeation
US5434257A (en) 1992-06-01 1995-07-18 Gilead Sciences, Inc. Binding compentent oligomers containing unsaturated 3',5' and 2',5' linkages
US5587308A (en) 1992-06-02 1996-12-24 The United States Of America As Represented By The Department Of Health & Human Services Modified adeno-associated virus vector capable of expression from a novel promoter
US6372886B1 (en) 1992-06-23 2002-04-16 Arch Development Corp. Expression and purification of kringle domains of human apolipoprotein (a) in E. coli
EP0577558A2 (de) 1992-07-01 1994-01-05 Ciba-Geigy Ag Carbocyclische Nukleoside mit bicyclischen Ringen, Oligonukleotide daraus, Verfahren zu deren Herstellung, deren Verwendung und Zwischenproduckte
US5272250A (en) 1992-07-10 1993-12-21 Spielvogel Bernard F Boronated phosphoramidate compounds
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
SE9203753D0 (sv) 1992-12-11 1992-12-11 Kabi Pharmacia Ab Expression system for producing apolipoprotein ai-m
US5574142A (en) 1992-12-15 1996-11-12 Microprobe Corporation Peptide linkers for improved oligonucleotide delivery
JP3351476B2 (ja) 1993-01-22 2002-11-25 三菱化学株式会社 リン脂質誘導体及びそれを含有するリポソーム
US5476925A (en) 1993-02-01 1995-12-19 Northwestern University Oligodeoxyribonucleotides including 3'-aminonucleoside-phosphoramidate linkages and terminal 3'-amino groups
US6020317A (en) 1993-02-19 2000-02-01 Nippon Shinyaku Co. Ltd. Glycerol derivative, device and pharmaceutical composition
US5395619A (en) 1993-03-03 1995-03-07 Liposome Technology, Inc. Lipid-polymer conjugates and liposomes
GB9304618D0 (en) 1993-03-06 1993-04-21 Ciba Geigy Ag Chemical compounds
JPH08508492A (ja) 1993-03-30 1996-09-10 スターリング ウィンスロップ インコーポレイティド 非環式ヌクレオシド類似体及びそれらを含むオリゴヌクレオチド配列
CA2159629A1 (en) 1993-03-31 1994-10-13 Sanofi Oligonucleotides with amide linkages replacing phosphodiester linkages
DE4311944A1 (de) 1993-04-10 1994-10-13 Degussa Umhüllte Natriumpercarbonatpartikel, Verfahren zu deren Herstellung und sie enthaltende Wasch-, Reinigungs- und Bleichmittelzusammensetzungen
US5502177A (en) 1993-09-17 1996-03-26 Gilead Sciences, Inc. Pyrimidine derivatives for labeled binding partners
US5540935A (en) 1993-12-06 1996-07-30 Nof Corporation Reactive vesicle and functional substance-fixed vesicle
US5457187A (en) 1993-12-08 1995-10-10 Board Of Regents University Of Nebraska Oligonucleotides containing 5-fluorouracil
US5446137B1 (en) 1993-12-09 1998-10-06 Behringwerke Ag Oligonucleotides containing 4'-substituted nucleotides
US5519134A (en) 1994-01-11 1996-05-21 Isis Pharmaceuticals, Inc. Pyrrolidine-containing monomers and oligomers
US5596091A (en) 1994-03-18 1997-01-21 The Regents Of The University Of California Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides
US5840688A (en) 1994-03-22 1998-11-24 Research Corporation Technologies, Inc. Eating suppressant peptides
US5627053A (en) 1994-03-29 1997-05-06 Ribozyme Pharmaceuticals, Inc. 2'deoxy-2'-alkylnucleotide containing nucleic acid
US5625050A (en) 1994-03-31 1997-04-29 Amgen Inc. Modified oligonucleotides and intermediates useful in nucleic acid therapeutics
US6054299A (en) 1994-04-29 2000-04-25 Conrad; Charles A. Stem-loop cloning vector and method
US5525711A (en) 1994-05-18 1996-06-11 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Pteridine nucleotide analogs as fluorescent DNA probes
US5534499A (en) 1994-05-19 1996-07-09 The University Of British Columbia Lipophilic drug derivatives for use in liposomes
US5543152A (en) 1994-06-20 1996-08-06 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
US5597696A (en) 1994-07-18 1997-01-28 Becton Dickinson And Company Covalent cyanine dye oligonucleotide conjugates
US5597909A (en) 1994-08-25 1997-01-28 Chiron Corporation Polynucleotide reagents containing modified deoxyribose moieties, and associated methods of synthesis and use
US5580731A (en) 1994-08-25 1996-12-03 Chiron Corporation N-4 modified pyrimidine deoxynucleotides and oligonucleotide probes synthesized therewith
US5885613A (en) 1994-09-30 1999-03-23 The University Of British Columbia Bilayer stabilizing components and their use in forming programmable fusogenic liposomes
AU3559695A (en) 1994-09-30 1996-04-26 Inex Pharmaceuticals Corp. Glycosylated protein-liposome conjugates and methods for their preparation
US5820873A (en) 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
SE9500778D0 (sv) 1995-03-03 1995-03-03 Pharmacia Ab Process for producing a protein
US5981501A (en) 1995-06-07 1999-11-09 Inex Pharmaceuticals Corp. Methods for encapsulating plasmids in lipid bilayers
ES2231819T3 (es) 1995-06-07 2005-05-16 Inex Pharmaceuticals Corp Particulas de lipido-acido nucleico preparadas a traves de un intermedio complejo de lipido-acido nucleico hidrofobo y uso para transferir genes.
US7422902B1 (en) 1995-06-07 2008-09-09 The University Of British Columbia Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
US5756122A (en) 1995-06-07 1998-05-26 Georgetown University Liposomally encapsulated nucleic acids having high entrapment efficiencies, method of manufacturer and use thereof for transfection of targeted cells
DE69629702T2 (de) 1995-08-01 2004-06-17 Isis Pharmaceuticals, Inc., Carlsbad Liposomale oligonukleotidzusammensetzungen
US5672685A (en) 1995-10-04 1997-09-30 Duke University Source of apolipoprotein E and method of isolating apolipoprotein E
US5858397A (en) 1995-10-11 1999-01-12 University Of British Columbia Liposomal formulations of mitoxantrone
US5994316A (en) 1996-02-21 1999-11-30 The Immune Response Corporation Method of preparing polynucleotide-carrier complexes for delivery to cells
EP1027033B1 (en) 1997-05-14 2009-07-22 The University Of British Columbia High efficiency encapsulation of nucleic acids in lipid vesicles
CA2294988C (en) 1997-07-01 2015-11-24 Isis Pharmaceuticals Inc. Compositions and methods for the delivery of oligonucleotides via the alimentary canal
US6037323A (en) 1997-09-29 2000-03-14 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6046166A (en) 1997-09-29 2000-04-04 Jean-Louis Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6004925A (en) 1997-09-29 1999-12-21 J. L. Dasseux Apolipoprotein A-I agonists and their use to treat dyslipidemic disorders
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
US6320017B1 (en) 1997-12-23 2001-11-20 Inex Pharmaceuticals Corp. Polyamide oligomers
JP5015373B2 (ja) 1998-04-08 2012-08-29 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション 改良表現型を得るための方法及び手段
AR020078A1 (es) 1998-05-26 2002-04-10 Syngenta Participations Ag Metodo para alterar la expresion de un gen objetivo en una celula de planta
AU747597B2 (en) 1998-07-20 2002-05-16 Inex Pharmaceuticals Corporation Liposomal encapsulated nucleic acid-complexes
IL142490A0 (en) 1998-10-09 2002-03-10 Ingene Inc ENZYMATIC SYNTHESIS OF ssDNA
BR9914773A (pt) 1998-10-09 2002-02-05 Ingene Inc Conjunto de elementos genéricos, método para a produção de dna de cordão único, transcrição de mrna, construção de ácido nucléico, transcrição de ssdna, vetor, sistema vetor, célula hospedeira, conjunto para a produção de uma sequência de ácido nucléico de cordão único, método para a produção in vivo ou in vitro de uma sequência de ácido nucléico de cordão único, transcrição de cdna de cordão único, ácido nucléico inibidor, molécula heteroduplex, e composição farmacêutica
JP2002529240A (ja) 1998-11-13 2002-09-10 オプタイム セラピュウティクス, インコーポレイテッド リポソーム生成のための方法および装置
DE19956568A1 (de) 1999-01-30 2000-08-17 Roland Kreutzer Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
WO2000050050A1 (en) 1999-02-23 2000-08-31 Isis Pharmaceuticals, Inc. Multiparticulate formulation
US6271359B1 (en) 1999-04-14 2001-08-07 Musc Foundation For Research Development Tissue-specific and pathogen-specific toxic agents and ribozymes
US20050112141A1 (en) * 2000-08-30 2005-05-26 Terman David S. Compositions and methods for treatment of neoplastic disease
DE10100586C1 (de) 2001-01-09 2002-04-11 Ribopharma Ag Verfahren zur Hemmung der Expression eines Ziegens
AU2001247951A1 (en) * 2000-02-07 2001-08-14 Roche Diagnostics Corporation Novel cationic amphiphiles
US20030170891A1 (en) * 2001-06-06 2003-09-11 Mcswiggen James A. RNA interference mediated inhibition of epidermal growth factor receptor gene expression using short interfering nucleic acid (siNA)
US20040009216A1 (en) * 2002-04-05 2004-01-15 Rodrigueza Wendi V. Compositions and methods for dosing liposomes of certain sizes to treat or prevent disease
US20040115201A1 (en) * 2002-09-25 2004-06-17 Paz Einat Mitotic kinesin-like protein-1, MKLP1, and uses thereof
EP2305812A3 (en) * 2002-11-14 2012-06-06 Dharmacon, Inc. Fuctional and hyperfunctional sirna
AR050920A1 (es) * 2003-03-07 2006-12-06 Astrazeneca Ab Enantiomeros de heterociclos fusionados seleccionados y usos de los mismos
CA2546616A1 (en) * 2003-11-21 2005-06-09 Alza Corporation Gene delivery mediated by liposome-dna complex with cleavable peg surface modification
ATE537263T1 (de) * 2004-06-07 2011-12-15 Protiva Biotherapeutics Inc Kationische lipide und verwendungsverfahren
JP4796062B2 (ja) * 2004-06-07 2011-10-19 プロチバ バイオセラピューティクス インコーポレイティッド 脂質封入干渉rna
TWI335352B (en) * 2005-03-31 2011-01-01 Calando Pharmaceuticals Inc Inhibitors of ribonucleotide reductase subunit 2 and uses thereof
WO2007012191A1 (en) 2005-07-27 2007-02-01 Protiva Biotherapeutics, Inc. Systems and methods for manufacturing liposomes
CA2628300C (en) * 2005-11-02 2018-04-17 Protiva Biotherapeutics, Inc. Modified sirna molecules and uses thereof
SG170780A1 (en) * 2006-03-31 2011-05-30 Alnylam Pharmaceuticals Inc Compositions and methods for inhibiting expression of eg5 gene
US8598333B2 (en) * 2006-05-26 2013-12-03 Alnylam Pharmaceuticals, Inc. SiRNA silencing of genes expressed in cancer
WO2008042973A2 (en) 2006-10-03 2008-04-10 Alnylam Pharmaceuticals, Inc. Lipid containing formulations
JP2010510807A (ja) * 2006-11-27 2010-04-08 アイシス ファーマシューティカルズ, インコーポレーテッド 高コレステロール血症を治療するための方法
US20080213350A1 (en) * 2007-02-20 2008-09-04 Texas Tech University System Encapsulation of nucleic acids in liposomes
US7858592B2 (en) * 2007-02-26 2010-12-28 The Board Of Regents Of The University Of Texas System Interfering RNAs against the promoter region of P53
EP2224912B1 (en) * 2008-01-02 2016-05-11 TEKMIRA Pharmaceuticals Corporation Improved compositions and methods for the delivery of nucleic acids
MX2010008394A (es) * 2008-01-31 2010-11-12 Alnylam Pharmaceuticals Inc Metodos optimizados para administracion de arndc focalizando el gen pcsk9.
EA201301171A1 (ru) * 2008-03-05 2014-10-30 Элнилэм Фармасьютикалз, Инк. Композиции и способы ингибирования экспрессии генов eg5 и vegf
NZ588583A (en) * 2008-04-15 2012-08-31 Protiva Biotherapeutics Inc Novel lipid formulations for nucleic acid delivery
CN102245590B (zh) * 2008-10-09 2014-03-19 泰米拉制药公司 改善的氨基脂质和递送核酸的方法
EP3431076B1 (en) * 2009-06-10 2021-10-06 Arbutus Biopharma Corporation Improved lipid formulation
US10799808B2 (en) 2018-09-13 2020-10-13 Nina Davis Interactive storytelling kit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Development of Sorafenib and Other Molecularly Targeted Agents in Hepatocellular Carcinoma;Andrew X等;《CANCER》;20080115;第112卷(第2期);全文 *

Also Published As

Publication number Publication date
AU2010223967A1 (en) 2011-09-29
JP2012520082A (ja) 2012-09-06
CN102421900A (zh) 2012-04-18
US20100267806A1 (en) 2010-10-21
EP2406376A1 (en) 2012-01-18
WO2010105209A1 (en) 2010-09-16
HK1215180A1 (zh) 2016-08-19
US20140288154A1 (en) 2014-09-25
JP6032724B2 (ja) 2016-11-30
CA2754043A1 (en) 2010-09-16
JP2016168053A (ja) 2016-09-23
NZ594995A (en) 2013-06-28
CN104922699A (zh) 2015-09-23
HK1169676A1 (zh) 2013-02-01
AU2010223967B2 (en) 2015-07-30
CN104922699B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
CN102421900B (zh) 用于抑制Eg5和VEGF基因表达的脂质配制的组合物以及方法
CN105267233B (zh) 用于抑制Eg5和VEGF基因表达的组合物和方法
CN102458366B (zh) 靶向pcsk9基因的脂质配制的dsrna
US9051567B2 (en) Methods for increasing efficacy of lipid formulated siRNA
JP2018141019A (ja) 改善された脂質製剤
CN102639115A (zh) 脂质配制的组合物及抑制eg5和vegf基因的表达的方法
CN103370054A (zh) 用于抑制Eg5和VEGF基因的表达的脂质配制的组合物和方法
WO2011017548A1 (en) Lipid formulated compositions and methods for inhibiting expression of eg5 and vegf genes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1169676

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1169676

Country of ref document: HK