CN102272326B - 预测强直性脊柱炎患者对于抗TNFα抗体的临床反应的血清标记物 - Google Patents

预测强直性脊柱炎患者对于抗TNFα抗体的临床反应的血清标记物 Download PDF

Info

Publication number
CN102272326B
CN102272326B CN200980153744.4A CN200980153744A CN102272326B CN 102272326 B CN102272326 B CN 102272326B CN 200980153744 A CN200980153744 A CN 200980153744A CN 102272326 B CN102272326 B CN 102272326B
Authority
CN
China
Prior art keywords
patient
serum
leptin
marker
cd40l
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980153744.4A
Other languages
English (en)
Other versions
CN102272326A (zh
Inventor
S·维斯瓦纳桑
C·沃纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Biotech Inc
Original Assignee
Centocor Ortho Biotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centocor Ortho Biotech Inc filed Critical Centocor Ortho Biotech Inc
Publication of CN102272326A publication Critical patent/CN102272326A/zh
Application granted granted Critical
Publication of CN102272326B publication Critical patent/CN102272326B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Endocrinology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供在开始进行抗TNFα制剂治疗前对诊断为强直性脊柱炎的患者进行管理的工具。所述工具为特定的标记物和算法,所述标记物和算法可通过使用血清标记物浓度基于标准临床主要和次要终点对治疗的反应进行预测。在一个实施例中,瘦素或骨钙素的基线水平用于预测开始进行治疗后第14周的反应。在另一个实施例中,使用治疗4周后血清蛋白生物标记物的变化,例如补体成分3。

Description

预测强直性脊柱炎患者对于抗TNFα抗体的临床反应的血清标记物
背景技术
优先权申请
本专利申请要求于2008年12月30日提交的美国专利申请No.61/141,421的优先权,所述美国专利申请全文以引用方式并入本文中。
技术领域
本发明涉及使用血清生物标记物来预测诊断为强直性脊柱炎的患者对用抗TNFα生物治疗剂治疗的反应的方法和过程。
背景技术
有关用生物制剂治疗强直性脊柱炎(AS)的决策面临诸多挑战,这些生物制剂是目前可获得的或者正处于开发阶段,例如戈利木单抗(golimumab)或阿达木单抗(adalimumab)(均为人抗TNFα抗体)、或英夫利昔单抗(infliximab)(一种鼠-人嵌合抗TNFa抗体)、或依那西普(enteracept)(一种TNFR构建体)。其中一个挑战是预测哪些受试者会对治疗有反应以及哪些受试者会在治疗后失去反应。
生物标记物被定义为“可客观测量和评价的特征,其作为一种指示物,可指示正常的生物过程、致病过程或对治疗干预的药理反应”(Biomarker Working Group,2001.Clin.Pharm.and Therap.69:89-95(生物标记物工作组,2001年,《临床药理学与治疗学》,第69卷,第89-95页))。最近,生物标记物还被定义为这样的蛋白质:其表达的改变可与疾病或疾病发展的风险增加相关,或可预测对给定治疗的反应。
通过向体外或体内***中加入抗TNFα抗体来中和TNFa,可使炎性细胞因子和许多其他血清蛋白以及非蛋白组分的表达发生改变。向培养的滑膜成纤维细胞中加入抗TNFa抗体减少了细胞因子IL-1、IL-6、IL-8和GM-CSF的表达(Feldmann & Maini(2001)Annu Rev Immunol 19:163-196(Feldmann和Maini,2001年,《免疫学年评》,第19卷,第163-196页))。类风湿性关节炎(RA)患者经英夫利昔单抗治疗后,降低了TNFR1、TNFR2、IL-1R拮抗剂、IL-6、血清淀粉样蛋白A、触珠蛋白和纤维蛋白原的血清水平(Charles 1999 J Immunol 163:1521-1528(Charles,1999年,《免疫学杂志》,第163卷,第1521-1528页))。其他研究表明,RA患者经英夫利昔单抗治疗后,降低了可溶性(s)ICAM-3和可溶性sP选择素的血清水平(Gonzalez-Gay,2006 Clin Exp Rheumatol 24:373-379(Gonzalez-Gay,2006年,《临床与实验风湿病学》,第24卷,第373-379页)),并降低了细胞因子IL-18的水平(Pittoni,2002 Ann Rheum Dis61:723-725(Pittoni,2002年,《风湿病年鉴》,第61卷,第723-725页);van Oosterhout,2005 Ann Rheum Dis 64:537-543(van Oosterhout,2005年,《风湿病年鉴》,第64卷,第537-543页))。
在患有各种免疫介导的炎性疾病的患者体内观察到高水平的C-反应蛋白(CRP)。这些观察结果表明,CRP可能具有用作抗TNFa治疗标记物的潜在价值。文献(St Clair,2004 Arthritis Rheum 50:3432-3443(St Clair,2004年,《关节炎和风湿病》,第50卷,第3432-3443页))显示,英夫利昔单抗使早期RA患者体内的CRP恢复到正常水平。对于难治性银屑病关节炎(Feletar,2004 Ann Rheum Dis 63:156-161(Feletar,2004年,《风湿病年鉴》,第63卷,第156-161页)),用英夫利昔单抗治疗也使CRP恢复到正常水平。研究还表明,CRP水平与仅用甲氨蝶呤治疗的早期RA患者的关节损伤进程相关(Smolen,2006 Arthritis Rheum 54:702-710(Smolen,2006年,《关节炎和风湿病》,第54卷,第702-710页))。当英夫利昔单抗治疗配合甲氨蝶呤治疗时,CRP水平不再与关节损伤进程相关。
在对患有RA的患者进行治疗的过程中,Charles(1999)和Strunk(2006 Rheumatol Int.26:252-256(2006年,《国际风湿病学》,第26卷,第252-256页))证实了英夫利昔单抗可降低炎症相关细胞因子例如IL-6的表达,以及血管生成相关细胞因子例如VEGF(血管内皮生长因子)的表达。Ulfgren(2000 Arthritis Rheum 43:2391-2396(2000年,《关节炎和风湿病》,第43卷,第2391-2396页))表明,英夫利昔单抗治疗在治疗两周内降低了滑膜中TNT、IL-1α和IL-1β的合成。Mastroianni(2005 Br JDermatol 153:531-536(2005年,《英国皮肤病学杂志》,第153卷,第531-536页))表明,VEGF、FGF和MMP-2的减少对用英夫利昔单抗治疗后银屑病的范围和严重程度具有显著的改善作用。Visvanathan(Ann RheumDis 2008;67;511-517;(《风湿病年鉴》,2008年,第67卷,第511-517页))表明,英夫利昔单抗治疗减少了AS患者血清中IL-6、VEGF和CRP的水平,并且这些减少与改善的疾病活动度有关系。
用英夫利昔单抗治疗AS患者引起IL-6减少,其与改善的临床指标有关(Visvanathan,2006 Arthritis Rheum 54(Suppl):S792(Visvanathan,2006年,《关节炎和风湿病》),第54卷(增刊),第S792页))。在英夫利昔单抗治疗的患者中,治疗后IL-6和CRP的早期减少与疾病活动评分的改善相关。
治疗前血清标记物浓度也与对于抗TNFa治疗的反应相关。已发现难治性RA患者中IL-2R的低基线血清水平与英夫利昔单抗的临床反应相关(Kuuliala 2006)。Visvanathan(2007a)表明,用英夫利昔单抗与MTX联合治疗RA患者引起炎症相关标记物(包括MMP-3)数量减少。该研究表明在基线处MMP-3的水平与治疗后一年的临床改善情况的指标显著相关。
因此,虽然已证实很多炎症和全身性疾病的血清蛋白和非蛋白标记物在抗TNFa治疗期间数量发生改变,但是到目前为止,还未发现一组独特的标记物和预测算法。
发明内容
本发明涉及使用多种生物标记物来预测患者对用抗TNFα治疗的反应,更具体地讲,确定患者是否会有反应。此外,本发明可用来确定患者是否对治疗有反应以及反应是否会持续。在一个方面,本发明包括采用对患者血清样本进行的多组分筛选来预测AS患者对用TNFα中和单克隆抗体治疗有反应以及无反应。
在一个实施例中,在开始进行抗TNFα治疗前,从AS患者的数据集中识别出与实际临床反应评价相关的特定标记物组,用来预测AS患者在用抗TNFα疗法治疗前的临床反应。在一个具体的实施例中,标记物组为选自以下的两种或更多种标记物:瘦素、TIMP-1、CD40配体、G-CSF、MCP-1、骨钙素、PAP、补体成分3、VEGF、胰岛素、铁蛋白和ICAM-1。
在另一个实施例中,在开始进行抗TNFα治疗之前和之后,从AS患者的数据集中识别出与实际临床反应评价相关的特定标记物组,用来预测AS患者在用抗TNFα疗法治疗前的临床反应。在一个具体的实施例中,标记物组为选自以下的两种或更多种标记物:瘦素、TIMP-1、CD40配体、G-CSF、MCP-1、骨钙素、PAP、补体成分3、VEGF、胰岛素、铁蛋白和ICAM-1。
本发明还提供基于计算机的***,用来预测AS患者对于抗TNFα治疗的反应,其中计算机使用来自患者数据集的值来与预测算法例如决策树比较,其中数据集包括一种或多种标记物的血清浓度,所述标记物选自瘦素、TIMP-1、CD40配体、G-CSF、MCP-1、骨钙素、PAP、补体成分3、VEGF、胰岛素、铁蛋白和ICAM-1。在一个实施例中,基于计算机的***为经训练的神经网络,用来处理患者数据集并产生输出,其中数据集包括一种或多种血清标记物的浓度,所述血清标记物选自瘦素、TIMP-1、CD40配体、G-CSF、MCP-1、骨钙素、PAP、胰岛素、补体成分3、VEGF和ICAM-1。
本发明还提供能够处理和检测取自AS患者的样本或样品中血清标记物的装置,其中血清标记物选自瘦素、TIMP-1、CD40配体、G-CSF、MCP-1、骨钙素、PAP、补体成分3、VEGF、胰岛素、铁蛋白和ICAM-1。
本发明还提供一种试剂盒,该试剂盒包括能够处理和检测取自AS患者的样本或样品中血清标记物的装置,其中血清标记物选自瘦素、TIMP-1、CD40配体、G-CSF、MCP-1、骨钙素、PAP、补体成分3、VEGF、胰岛素、铁蛋白和ICAM-1。
附图说明
图1-6为以决策树的形式表示的AS反应预测模型,这些模型基于血清标记物的使用并且与用ASAS20或BASDAI评价的患者临床反应相关。无反应者或“否”节点意味着该模型将此节点中的所有受试者预测为无反应者,而“是”节点意味着该模型将此节点中的所有受试者预测为反应者。节点内示出:此节点的实际无反应者数目/实际反应者数目。
图1为由基线(0周)标记物数据建立的预测模型,这些标记物数据得自接受戈利木单抗的研究患者并经过多重方法分析,并且在第14周时用ASAS20来评价反应,其中反应者的初始分类器基于瘦素(截断值<3.804,对数尺度)并且反应者的二次分类器基于CD40配体(截断值>=1.05,对数尺度)。
图2为由基线(0周)标记物数据建立的预测模型,这些标记物数据得自接受戈利木单抗的研究患者并经过多重方法分析,并且在第14周时用BASDAI的变化来评价反应,其中反应者的初始分类器标准为TIMP-1(截断值>=7.033)并且反应者的二次分类器为G-CSF(截断值<3.953);当TIMP-1低于截断值时,***酸性磷酸酶为反应者的分类器(截断值>=-1.287,对数值);当TIMP-1和PAP都低于其相应截断值时,MCP-1为反应者的分类器(<7.417,对数尺度)。
图3为由基线(0周)处的血清标记物值建立的AS反应预测模型,这些血清标记物值得自接受戈利木单抗的研究患者并通过多重方法和单个EIA定量,并且在第14周时用ASAS20来评价反应,其中骨钙素为反应者的初始分类器(截断值>=3.878,对数尺度),并且当骨钙素低于其相应截断值时,PAP用作反应者的分类器(截断值>=-1.359,对数尺度)。
图4为由基线(0周)处的血清标记物值建立的AS反应预测模型,这些血清标记物值得自接受戈利木单抗的研究患者并通过多重方法和单个EIA定量,并且在第14周时用BASDAI变化评价反应,其中骨钙素为反应者的初始分类器(截断值>=3.977,对数尺度),并且当骨钙素低于截断值时,PAP为反应者的分类器(截断值>=-1.415),并且当骨钙素和PAP都低于其相应截断值时,胰岛素用作反应者的分类器(截断值<2.711,对数尺度)。
图5为由基线以及在开始进行抗TNF治疗后从基线(0周)至第4周的血清标记物值变化建立的AS反应预测模型,这些血清标记物值得自接受戈利木单抗的研究患者并通过多重方法定量,并且在第14周时用ASAS20来评价反应,其中基线瘦素为反应者的初始分类器(截断值<3.804,对数尺度),并且当瘦素低于其截断值时,补体3从基线至第4周的变化用作反应者的分类器(截断值<-0.224),并且当瘦素和补体3都等于或高于其相应截断值时,基线VEGF用作反应者的分类器(截断值>=8.724)。
图6为由基线以及在开始进行抗TNF治疗后从基线(0周)至第4周的血清标记物值变化建立的AS反应预测模型,这些血清标记物值得自接受戈利木单抗的研究患者并通过多重方法定量,并且在第14周时用BASDAI变化评价反应,其中初次反应者标准为补体成分3从基线至第4周的变化(截断值<-0.233,对数尺度),并且当补体3的变化等于或高于截断值时,基线铁蛋白用作分类器(截断值>=7.774,对数尺度),并且当补体3的变化等于或高于截断值并且基线铁蛋白低于其相应截断值时,ICAM-1的变化用作反应者的分类器(截断值>=-0.2204,对数尺度)。
具体实施方式
缩写
定义
“生物标记物”被定义为‘[a]可客观测量和评价的特征,其作为一种客观指示物,可指示正常的生物过程、致病过程或对治疗干预的药理反应’,该定义由生物标记物定义工作组给出(Atkinson et al.2001 Clin PharmTherap 69(3):89-95(Atkinson等人,2001年,《临床药理学与治疗学》,第69卷第3期,第89-95页))。因此,解剖学或生理学过程也可如同蛋白质、基因表达(mRNA)、小分子、代谢物或矿物质水平那样作为生物标记物,例如活动范围,前提条件是该生物标记物与相关的生理、毒理、药理和临床结局之间存在经验证的联系。
所谓标记物的“血清水平”是指通常在体外用一种或多种方法(例如免疫测定法)对从样本(例如血液)制备的样品进行测定所得到的标记物的浓度。免疫测定法使用每个标记物的免疫特异性试剂(通常为抗体),并且此测定可以多种形式(包括酶偶联反应,例如EIA、ELISA、RIA,或其他直接或间接探针)进行。也可以有对样品中标记物进行定量的其他方法,例如电化学检测、荧光探针相关检测。该测定也可以是“多重的”,其中多种标记物在单个样品分析时被检测和定量。
观察研究通常将其结果报告为比值比(OR)或相对风险。两者均为暴露(例如抽烟、使用药物)与疾病或死亡之间关联大小的量度。相对风险1.0表示该暴露不会改变疾病的风险。相对风险1.75表示患者暴露时发展该疾病的机会是原来的1.75倍或罹患该疾病的风险高出75%。小于1的相对风险表示该暴露降低了风险。当相对风险不能具体计算时,比值比为病例对照研究中估计相对风险的一种方法。虽然当疾病较罕见时它是准确的,但当疾病较普遍时却不能同样准确地进行估算。
预测值有助于解释临床环境下测试的结果。过程的诊断价值通过其灵敏度、特异性、预测值和有效性来定义。任何测试方法会产生真阳性(TP)、假阴性(FN)、假阳性(FP)和真阴性(TN)。测试的“灵敏度”为所有存在有疾病、或确有反应、或测试呈阳性的患者的百分比或者(TP/TP+FN)×100%。测试的“特异性”为所有无疾病、或无反应、或测试呈阴性的患者的百分比或者(TN/FP+TN)×100%。测试的“预测值”即“PV”是值(阳性或阴性)为真值的次数的测量值(%),即所有呈真阳性的阳性测试的百分比为阳性预测值(PV+)或(TP/TP+FP)×100%。“阴性预测值”(PV-)为测试呈阴性并且不会有反应的患者的百分比或(TN/FN+TN)×100%。测试的“准确性”或“有效性”为与测试的总数目相比测试给出正确答案的次数的百分比或(TP+TN/TP+TN+FP+FN)×100%。“误差率”为预测患者会有反应却无反应以及预测患者无反应却有反应的情况所占百分比或(FP+FN/TP+TN+FP+FN)×100%。整体测试“特异性”是准确性的量度,与某个测试的灵敏度与特异性不随群体中疾病的整体可能性发生改变即预测值改变而改变的程度有关。随着医师对给定患者进行疾病存在与否或临床反应存在与否的临床评价,PV也发生改变。
生物标记物“减少的水平”或“更低水平”是指相对于称为“截断值”的预定值而言数量更小和高于定量限(LOQ)的水平,其中“截断值”是患者抽样和治疗条件相关的算法和参数所特定的。
生物标记物“更高的水平”或“高水平”是指相对于称为“截断值”的预定值而言数量更高的水平,其中“截断值”是患者抽样和治疗条件相关的算法和参数所特定的。
如本文所用,术语“人TNFα”(本文缩写为hTNFα、hTNFa或简写为TNF)意在指以17kD分泌形式和26kD膜相关形式存在的人细胞因子,其生物活性形式由非共价结合的17kD分子的三聚体构成。术语“人TNFα”意在包括重组人TNFα(rhTNFα),其可通过标准重组表达方法制备或商购获得(R&D Systems,目录号210-TA,Minneapolis,Minn.)。
所谓“抗TNFa”、“抗TNFα”、抗TNFα或简写的“抗TNF”疗法或治疗是指向患者施用能否阻断、抑制、中和、预防受体结合或防止TNFα激活TNFR的生物分子(生物药剂)。此类生物药剂的例子为针对TNFα的中和Mab,包括但不限于那些以通用名为英夫利昔单抗和阿达木单抗销售的抗体,以及处于临床开发阶段的抗体例如戈利木单抗;也包括能够结合TNFa的非抗体构建体例如称为依那西普的TNFR-免疫球蛋白嵌合体。该术语涵盖本文描述的抗TNFα人抗体和抗体部分以及美国专利No.6,090,382、6,258,562、6,509,015和美国专利申请No.09/801185和10/302356中描述的那些。在一个实施例中,用于本发明的TNFα抑制剂为抗TNFα抗体或其片段,包括英夫利昔单抗(Remicade,Johnson and Johnson;描述于美国专利No.5,656,272中,其以引用方式并入本文中)、CDP571(人源化单克隆抗TNFαIgG4抗体)、CDP 870(人源化单克隆抗TNFα抗体片段)、抗TNFdAb(Peptech)、CNTO 148(戈利木单抗;以及Centocor,参见WO02/12502)和阿达木单抗(HumiraAbbott Laboratories,人抗TNF mAb,在美国专利No.6,090,382中描述为D2E7)。其他可用于本发明的TNF抗体描述于美国专利No.6,593,458、6,498,237、6,451,983和6,448,380,各所述专利均以引用方式并入本文中。在另一个实施例中,TNFα抑制剂为TNF融合蛋白,例如依那西普(Enbrel,Amgen;描述于WO 91/03553和WO09/406476,所述专利以引用方式并入本文中)。在另一个实施例中,TNFα抑制剂为重组TNF结合蛋白(r-TBP-I)(Serono)。
所谓“样品”或“患者的样品”是指这样的样本,其为从疑似患有或表现出与TNFα相关疾病有关的症状的患者中提取、制备、采集、或以其他方式获得的细胞、组织或其流体或部分。
概述
近期在技术(例如蛋白质组学)上的进展向病理学家提出了挑战,要求将用高通量方法产生的新信息与基于临床病理学相关性并通常涵盖组织病理学发现的当前诊断模型整合在一起。医疗信息学和生物信息学领域的并行发展为以合理方式解决这些问题提供了技术和数学方法,从而向从业者和病理学家或其他医学专家提供了多变量多学科诊断预后模型形式的新工具,进而有希望提供更加准确的、个性化的基于患者的信息。循证医学(EBM)和医疗决策分析(MDA)属于这些相对新的学科,其用定量方法评价信息的价值并将所谓的最佳证据整合到多变量模型中以评价预后、对治疗的反应和选择能影响个别患者护理的实验室测试。
本发明包括如下几个方面:
1.使用血清来识别与AS患者对于抗TNF(例如戈利木单抗)治疗有反应或无反应相关的生物标记物。
2.在开始进行抗TNF治疗前,使用存在于诊断为AS患者的血清中的生物标记物来预测对于抗TNFαMab(例如戈利木单抗)治疗有反应或无反应的能力。
3.用以预测AS患者在抗TNF治疗后的结局的算法。
a.在开始进行抗TNF治疗前,可使用存在于诊断为AS患者的血清中的生物标记物,在评价时间(0周)预测AS患者在第14周时对于抗TNFα的临床反应或无反应。
b.可使用在开始进行治疗前(0周)和在开始进行治疗后第4周获得的生物标记物偏离基线值的变化,来预测AS患者在第14周时对于抗TNFa治疗的临床反应或无反应。
c.可使用在开始进行治疗前(0周)获得的生物标记物偏离基线值的变化以及在开始进行治疗后第4周时生物标记物的变化,来预测AS患者在第14周时对于抗TNFa治疗的临床反应或无反应。
4.含有使用本发明的标记物来预测AS患者对于抗TNFa治疗有反应或无反应的方法的装置、***和试剂盒。
为了判定可用于建立基于标记物浓度的预测算法的标记物,从用戈利木单抗治疗的患者获得血清。可在治疗的基线(0周)、第4周和第14周或其他中间的或更久的时间点获得血清。对血清样品中的许多生物标记物作了分析,并对基线浓度以及治疗后生物标记物浓度的变化作了测定。然后使用生物标记物表达的基线和变化来确定生物标记物表达是否与开始进行治疗后第14周或其他指定时间点的治疗结局相关,如通过ASAS20或其他临床反应指标进行评价。在一个实施例中,使用逐步分析方法来判定与AS患者对于抗TNFα治疗的临床反应相关的标记物,并建立涉及那些标记物的血清浓度的、预测有反应或无反应的算法,其中初始相关性通过逻辑回归分析完成,其将每个患者在0周、第4周和第14周的每个生物标记物的值与该患者在第14周和第24周的临床评价相关联,一旦标记物在多个临床终点与对治疗有反应显著相关的能力被确定,用如本文所述或本领域所知的CART或其他合适的分析方法来建立基于所判定的标记物或标记物组的血清值的独特算法。
除了本文所公开的其他标记物,数据集标记物可选自一个或多个临床指标,例如年龄、性别、血压、身高和体重、身体质量指数、CRP浓度、吸烟、心率、空腹胰岛素浓度、空腹葡萄糖浓度、糖尿病状态、使用其他药物以及特定的功能或行为评价,和/或放射性或其他基于图像的评价,其中数值被用于各个测量或产生总体的数值评分。临床变量通常会被评价,并且将所得的数据在算法中与上文描述的标记物结合。
在被输入到分析过程之前,通常以三份或多重三份测量各标记物的值,从而收集每个数据集中的数据。可对数据进行操作,例如原始数据可使用标准曲线变换,并且用三份测量值的平均值来计算每个患者的平均值和标准偏差。这些值可在用于模型前进行变换,例如对数变换、Box-Cox变换(参见Box and Cox(1964)J.Royal Stat.Soc,Series B,26:211—246(Box和Cox,1964年,《皇家统计学会杂志,B辑》,第26卷,第211-246页))等。然后可将该数据输入到具有确定参数的分析过程中。
这样获得的定量数据与蛋白质标记物相关,然后使用学习算法将其他数据集组件用于具有以前确定的参数的分析过程中,即按照本文所提供的实例(实例1-3)中所述的方法输入到预测模型中。分析过程的参数可以是本文所公开的那些或者使用本文所述的指导得出的那些。将学习算法例如线性判别分析、递归特征排除法、芯片预测分析、逻辑回归、CART、FlexTree、LART、随机森林、MART或另一种机器学习算法用于合适的参考或训练数据来确定适用于AS反应或无反应分类的分析过程的参数。
该分析过程可设定用来确定样品属于给定类别的概率的阈值。概率优选地为至少50%、或至少60%、或至少70%、或至少80%、或更高。
在其他实施例中,该分析过程确定所得数据集和参考数据集之间的比较是否产生统计学上显著的差异。如果是这样,那么该数据集所源自的样品被归类为不属于参考数据集类。相反地,如果该比较与参考数据集没有统计学上显著的差异,那么该数据集所源自的样品被归类为属于参考数据集类。
一般来讲,该分析过程在形式上为通过统计学分析方法例如线性算法、二次算法、多项式算法、决策树算法、投票算法产生的模型。
使用参考/训练数据集来确定分析过程的参数
采用合适的参考或训练数据集通过任何合适的学习算法来确定用于分类(即建立预测模型)的分析过程的参数。
要使用的参考或训练数据集将取决于要测定的所需AS分类,例如反应者或无反应者。数据集可包括来自两个、三个、四个或更多个类别的数据。
例如,为了使用监督学习算法来确定用于分析过程(用来预测对于抗TNFα治疗的反应)的参数,使用包含对照样品和疾病样品的数据集作为训练集。作为另外一种选择,使用监督学习算法来建立用于AS疾病治疗的预测模型。
统计分析
以下为统计分析方法的类型的例子,这些方法可供本领域的技术人员使用,以帮助实施本发明所公开的方法。统计分析可被应用于两个任务中的一者或两者。首先,可使用这些和其他统计学方法来识别标记物和其他指标的优选子集,这些优选子集将形成优选数据集。此外,可使用这些和其他统计学方法来生成分析过程,其应用于数据集以得到结果。本文介绍的或以其他方式在本领域获得的统计学方法中的若干方法可同时完成这两个任务,并且产生适合用作分析过程的模型以实施本文所公开的方法。
在一个具体实施例中,生物标记物和其对应的特征(例如表达水平或血清水平)用于建立一种分析过程或多种分析过程以区分不同类别的患者,例如对于抗TNFα治疗的反应者和无反应者。一旦使用这些示例性数据分析算法或本领域已知的其他技术建立了分析过程,该分析过程可用于将测试受试者分类到两个或多个表型类别之一(例如预测对于抗TNFα治疗有反应的患者或不会有反应的患者)。这通过将分析过程应用于从测试受试者获得的标记物特征图来实现。因此,此类分析过程具有巨大的诊断指示价值。
在一个方面,本发明所公开的方法用于针对得自训练群体的标记物特征图来评价得自测试受试者的标记物特征图。在一些实施例中,得自训练群体的受试者以及测试受试者的每种标记物特征图包括多种不同标记物各自的特征。在一些实施例中,此比较通过如下方式实现:(i)使用得自训练群体的标记物特征图来建立分析过程以及(ii)将该分析过程应用于得自测试受试者的标记物特征图。如此,本文所公开的方法的一些实施例中应用的分析方法用来确定测试AS患者是否被预测为对于抗TNFα治疗有反应或不会有反应的患者。
因此,在一些实施例中,上述二元决策情形中的结果具有4个可能的结局:(i)真反应者,其中分析过程表明受试者会是抗TNFα治疗的反应者而受试者实际上在一定时间段内对于抗TNFα治疗作出反应(真阳性,TP);(ii)假反应者,其中分析过程表明受试者会是抗TNFα治疗的反应者而受试者在一定时间段内未对于抗TNFα治疗作出反应(假阳性,FP);(iii)真无反应者,其中分析过程表明受试者不会是抗TNFα治疗的反应者而受试者在一定时间段内未对于抗TNFα治疗作出反应(真阴性,TN);或(iv)假无反应者,其中分析过程表明患者不会是对于抗TNFα治疗的反应者而受试者实际上在一定时间段内对于抗TNFα治疗作出反应(假阴性,FN)。
用于建立分析方法的相关数据分析算法包括但不限于:判别分析,包括线性、逻辑以及更灵活的判别技术(参见例如Gnanadesikan,1977,Methods for Statistical Data Analysis of Multivariate Observations,New York:Wiley 1977(Gnanadesikan,1977年,《多元观测值的统计数据分析方法》,New York,Wiley,1977),所述文献据此全文以引用方式并入本文);树形算法,例如分类和回归树(CART)及其变型(参见例如Breiman,1984,Classification and Regression Trees,Belmont,Calif.:WadsworthInternational Group(Breiman,1984年,《分类和回归树》,WadsworthInternational Group,Belmont,Calif.),所述文献据此全文以引用方式并入本文);广义相加模型(参见例如Tibshirani,1990,Generalized AdditiveModels,London:Chapman and Hall(Tibshirani,1990年,《广义相加模型》,Chapman and Hall,London),所述文献据此全文以引用方式并入本文);以及神经网络(参见例如Neal,1996,Bayesian Learning for NeuralNetworks,New York:Springer-Verlag(Neal,1996年,《神经网络的贝叶斯学习》,Springer-Verlag,New York);以及Insua,1998,Feedforward neuralnetworks for nonparametric regression In:Practical Nonparametric andSemiparametric Bayesian Statistics,pp.181-194,New York:Springer(Insua,1998年,基于前馈神经网络的非参数回归,《实用非参数和半参数贝叶斯统计学》,第181-194页,Springer,New York),所述文献据此全文以引用方式并入本文)。
在一个具体的实施例中,本发明的数据分析算法包括分类和回归树(CART)、多重累计回归树(MART)、芯片预测分析(PAM)或随机森林分析。此类算法对得自生物材料(例如血样)的复杂谱图进行分类,以区分正常的受试者或具有表征特定疾病状态的生物标记物表达水平的受试者。在其他实施例中,本发明的数据分析算法包括ANOVA和非参数等同物、线性判别分析、逻辑回归分析、最近邻分类分析、神经网络、主成分分析、二次判别分析、回归分类器、支持向量机。
虽然此类算法可用来生成分析过程和/或增加分析方法应用的速度和效率以及避免研究者偏倚,然而本领域普通技术人员会体会到无需基于计算机的装置来实施使用本发明的预测模型的方法。
CART分析的结果
在本发明的一个方面,诊断为AS的患者体内的血清标记物的分析的关注点在于生物标记物基线值与对于抗TNFa治疗的反应之间的显著关系。在本发明的另一个方面,从基线(抗TNFα治疗之前)至治疗后第4周对诊断为AS的患者体内的血清标记物变化进行分析,该分析与稍后时间(14周)患者的临床反应或无反应相关。
在本发明的具体实施例中,已发现瘦素的基线浓度可为初始分类器;以便通过ASAS20评价来预测第14周时用戈利木单抗治疗的患者的结局。在替代实施例中,基线骨钙素可为初始分类器;以便通过ASAS20或BASDAI评价来预测第14周时用戈利木单抗治疗的患者的结局。医师可利用该信息来确定谁会受益于戈利木单抗治疗,以及同样重要的,来识别那些不能受益于此类治疗的患者。
作为另外一种选择,BASDAI用作模型的临床结局组件。并且基线处的TIMP-1、基线处的骨钙素、或补体成分3的改变为用于分类的初始标记物。当TIMP-1值提高时,分类的初始标记物还包括G-CSF的改变,以及当TIMP-1值低于截断值并且MCP-1值低于截断值时用***酸性磷酸酶预测第14周时的结局。
基线生物标记物预测对于抗TNFa治疗的反应
当构建预测算法的数据集仅包括基线生物标记物血清浓度值,并且该数据集与通过不止一种评价临床反应的方法(例如ASAS20和BASDAI)得出的、用抗TNFα治疗剂治疗的AS患者的临床反应相关时,标记物包括瘦素、TIMP-1、CD40配体、G-CSF、MCP-1、骨钙素、PAP和胰岛素。
如本文所示,当对得自AS患者的血清中基线(0周,治疗前)处的生物标记物进行分析,并通过多重分析定量时,最佳CART模型包括瘦素作为初始分类器:瘦素高于3.8(对数尺度)的受试者预测为无反应者;瘦素低于3.8的受试者则基于CD40配体的二次预测进行分类(CD40配体高于1.05预测为反应者,CD40配体低于1.05预测为无反应者)(图1)。模型灵敏度为86%,模型特异性为88%。当临床指标为BASDAI从基线至第14周的变化并且基线生物标记物数据通过多重分析定量时,不同生物标记物成为分类器:TIMP-1、***酸性磷酸酶、GCSF和MCP-1(图2),但是BASDAI模型的总体准确度类似于ASAS20模型。
当对得自AS患者的血清中基线(0周,治疗前)处的生物标记物进行分析,并通过多重分析和单个EIA两者定量时,最佳CART模型包括初始分类器骨钙素:骨钙素高于3.878的受试者(对数尺度)预测为反应者;骨钙素低于3.878的受试者则再基于***酸性磷酸酶进行分类(图3)。模型的灵敏度为90%,模型的特异性为84%。因此,通过使用得自多重分析以及单个EIA分析的数据并将该结果与BASDAI或ASAS20相关联,从而得到两种模型,两者均包括骨钙素和***酸性磷酸酶作为分类器。基于BASDAI的模型包括胰岛素作为另一分类器。该模型预测BASDAI临床反应的准确度为61/76(80%)(图4)。
这些结果表明,医师可在治疗前测量生物标记物的基线水平,以识别哪些用戈利木单抗治疗的患者会对治疗有反应或无反应。
生物标记物变化作为结局的早期预测器
已发现在第4周时AS患者的生物标记物偏离基线血清水平的变化与临床反应相关,该相关性通过不止一种评价临床反应的方法(例如ASAS20和BASDAI)得出,生物标记物包括:瘦素、VEGF、补体3、ICAM-1和铁蛋白。
当对得自AS患者的血清中基线处和第4周时的生物标记物进行分析并仅通过多重方法定量时,生物标记物模型使用瘦素作为初始分类器:瘦素高于3.8(对数尺度)的受试者预测为无反应者;瘦素低于3.8的受试者则基于另外两个分类器:i)补体3的变化,和ii)VEGF来分类(图5)。模型灵敏度为92%,模型特异性为81%。当临床指标为BASDAI从基线至第14周的变化时,总体准确度类似于ASAS20模型,补体成分3的变化为初始分类器,接着依次使用基线铁蛋白和ICAM-1变化进行两次子分类(图6)。
本文所述的产生一种可用于预测AS患者对于抗TNFα治疗有反应或无反应的算法的具体实例表明,多种标记物与AS过程相关并且每种特定生物标记物在诊断或预测对治疗的反应的定量解释迄今尚未确立。申请人已证实算法可利用对基于具体限定标记物的患者数据的抽样产生。在使用本发明标记物的一种方法中,可使用计算机辅助装置来获取患者数据并进行必要的分析。在另一方面,计算机辅助装置或***可使用本文提供的数据作为“训练数据集”以产生为应用预测分析而需要的分类器信息。
用于进行分析的仪器、试剂和试剂盒
用于预测诊断为AS患者对于抗TNF治疗的反应的血清标记物的测量,可以在临床或研究实验室或者医院或医院外地点的中央实验室使用本文所述的标准免疫化学和生物物理方法进行。标记物的定量可与例如其他标准测量如WBC计数、血小板和ESR同时进行。该分析可使用商购试剂盒或使用多重分析在单个患者样品上单独或分批进行。
在本发明的一个方面,在一个或多个步骤中使用单个和成组试剂来确定患者样品中生物标记物或生物标记物组的相对量或绝对量。可用试剂来捕获生物标记物,例如对生物标记物具有免疫特异性的抗体,该抗体形成配体生物标记物对,可通过间接测定例如酶联免疫特异性分析来测定。可进行单个分析物EIA或多重分析。多重分析为这样的技术,通过该技术可使用单个血清样品进行多个同时的基于EIA的分析。可用于在非常小的样品体积中定量大量生物标记物的平台是Rules Based Medicine(Austin,Texas)(Luminex Corporation所有)采用的xMAP技术,该技术将光学分类方案、生化检测、流式细胞仪和先进的数字信号处理硬件和软件整合在一起,实现了在单个反应容器中运行多达100路的基于微球的分析。在该技术中,多路复用通过为每个分析物特异的分析指定一个带有独特荧光标记的微球组来完成。多重分析在流式装置中分析,该装置在每个微球通过红色和绿色激光时对每个微球进行单独询问。作为另外一种选择,可使用方法和试剂来处理样品,以便检测以及使用直接的物理测量(例如质量、电荷或组合,例如通过SELDI测量)进行可能的定量。也已经开发了定量质谱多反应监测分析,例如NextGen Sciences(Ann Arbor,MI)提供的那些。
因此,根据本发明的一个方面,用来评价AS状态的生物标记物的检测需要使来自受试者的样品与基底(例如探针,其上带有捕获试剂)在允许生物标记物和试剂间结合的条件下接触,然后通过合适的方法检测结合到吸附剂的生物标记物。检测标记物的一个方法是气相离子谱,例如质谱。其他可用于此目的的检测模式包括光学方法、电化学方法(伏安法、电流分析法或电致化学发光技术)、原子力显微镜和射频方法,例如,多极共振谱。除了显微镜法(共焦和非共焦)外,示例性的光学方法还为测定荧光、发光、化学发光、吸光度、反射率、透射比和双折射率或折射率的方法(例如表面等离子体共振、椭圆光度法、共振镜法、波导光栅耦合器法或干涉测量法)以及酶偶联比色法或荧光法。
在将检测方法应用于处理过的样本或样品之前可能需要对来自患者的样本进行处理,例如但不限于浓缩、纯化标记物或将标记物与样本的其他组分分离。例如,在进行检测分析物浓度的方法之前,通常用抗凝剂处理血样并去除其中的细胞组分和血小板。作为另外一种选择,检测可通过连续处理***来完成,该***可以加入材料或试剂来完成这样的浓缩、分离或纯化步骤。在一个实施例中,处理***包括使用捕获试剂。一种捕获试剂为“色谱吸附剂”,其为通常用于色谱法的材料。色谱吸附剂包括,例如离子交换材料、金属螯合剂、固定化金属螯合物、疏水作用吸附剂、亲水作用吸附剂、染料、简单的生物分子(例如核苷酸、氨基酸、单糖和脂肪酸)、混合模式吸附剂(例如疏水引力/静电斥力吸附剂)。“生物特异性”捕获试剂是生物分子类型的捕获试剂,例如核苷酸、核酸分子、氨基酸、多肽、多糖、脂质、类固醇或这些物质的缀合物(例如,糖蛋白、脂蛋白、糖脂)。在某些情况下,生物特异性吸附剂可以是大分子结构,例如多蛋白复合体、生物膜或病毒。示例性生物特异性吸附剂为抗体、受体蛋白和核酸。生物特异性吸附剂与色谱吸附剂相比通常具有对目标分析物更高的特异性。
因此,根据本发明,生物标记物的检测和定量可通过使用特定的选择性条件(例如吸附剂或洗涤溶液)来增强。洗涤溶液是指这样的试剂(通常为溶液),其用来影响或改变吸附剂表面对分析物的吸附性和/或从表面去除未结合的材料。洗涤溶液的洗脱特性取决于例如pH、离子强度、疏水性、离液序列度、洗涤剂强度和温度。
在本发明的一个方面,样品以多重方式分析,意味着来自患者样品的标记物的处理基本上同时进行。在一个方面,用含有多种捕获试剂(代表独特的特异性)的基底接触样品。捕获试剂通常为免疫特异性的抗体或其片段。基底可为单个元件例如“生物芯片”,该术语表示这样的固体基底,其具有大致平坦的表面,其上附着捕获试剂;或者捕获试剂分隔于多个基底之间,例如结合于单个球形基底(微珠)。通常,生物芯片的表面包括多个可寻址位点,每个位点上都结合有捕获试剂。生物芯片可适于与探针接口接合,因此在气相离子谱(优选地为质谱)中用作探针。作为另外一种选择,本发明的生物芯片可安装于另一个基底上来形成探针,其可***到光谱仪中。就微珠而言,单个微珠可在暴露于待测样品后分隔或分类。
根据本发明,多种生物芯片可用于生物标记物的捕获和检测,这些生物芯片可购自例如Ciphergen Biosystems(Fremont,CA)、Perkin Elmer(Packard BioScience Company(Meriden CT)、Zyomyx(Hayward,CA)以及Phylos(Lexington,MA)、GE Healthcare,Corp.(Sunnyvale,CA)的商业来源。这些生物芯片的示例为描述于美国专利No.6,225,047(见上)和No.6,329,209(Wagner等人)和WO 99/51773(Kuimelis和Wagner)、WO00/56934(Englert等人)的那些生物芯片,特别是使用电化学和电致化学发光方法检测样品中分析物标记物的存在或含量的那些生物芯片,例如Wohlstadter等人的WO98/12539和美国专利No.6066448教导的那些多特异性、多阵列的生物芯片。
将具有生物特异性捕获和/或检测试剂的基底与样品(含有例如血清)接触一段足够的时间以允许存在的生物标记物与试剂结合。在本发明的一个实施例中,将不止一种类型的其上具有生物特异性捕获或检测试剂的基底与生物样品接触。孵育一段时间后,洗涤基底以去除未结合的材料。可使用任何合适的洗涤溶液,优选地使用水溶液。
结合到基底上的生物标记物在解吸后直接通过使用气相离子谱仪(例如飞行时间质谱仪)进行检测。生物标记物通过离子源(例如激光)离子化,产生的离子通过离子光学组件收集,然后质量分析器分散并分析通过的离子。然后检测器将检测到的离子的信息转换成质荷比。生物标记物的检测通常会涉及到信号强度的检测。因此,生物标记物的数量和质量均可测定。此类方法可用于发现生物标记物以及在某些情况下用于生物标记物的定量。
在另一个实施例中,本发明的方法是能够进行微型化液体样品处理的微流体装置和用于液相分析的分析装置,例如US5571410和USRE36350提出的那些,这些装置可用于检测和分析液相中小分子和/或大分子溶质,可任选地采用色谱分离方法、电泳分离方法、电色谱分离方法或它们的组合来进行。微流体装置或“微装置”可包括多个按一定方式布置的通道,以使得分析物流体可以被分离,并且使得生物标记物可被捕获并可任选地在装置内的可寻址位点被检测到(US5637469、US6046056和US6576478)。
由生物标记物检测产生的数据可用可编程数字计算机进行分析。计算机程序对数据进行分析以指示检测到的标记物的数量和信号的强度。数据分析包括测定生物标记物的信号强度以及去除偏离预定统计分布的数据的步骤。例如,数据可相对于某个基准归一化。计算机可将所得的数据转化成各种格式,以用于显示(如果需要)或用于进一步的分析。
人工神经网络
在一些实施例中,使用神经网络。可针对所选定的标记物组来构造神经网络。神经网络为两步回归或分类模型。神经网络具有层状结构,其包括通过权重层与输出单元层连接的输入单元(和偏置)层。对于回归,输出单元层通常只包括一个输出单元。然而,神经网络可以无缝方式处理多个定量反应。
在多层神经网络中,有输入单元(输入层)、隐单元(隐藏层)和输出单元(输出层)。此外,还有单个的偏置单元,其连接到除输入单元外的每个单元。神经网络描述于Duda et al.,2001,Pattern Classification,SecondEdition,John Wiley & amp;Sons,Inc.,New York(Duda等人,2001年,《模式分类》,第二版,John Wiley & Sons,Inc.,New York);和Hastie et al.,2001,The Elements of Statistical Learning,Springer-Verlag,New York(Hastie等人,2001年,《统计学习原理》,Springer-Verlag,New York)。
使用神经网络的基本方法是从未训练的网络开始,向输入层提供一种训练模式,例如训练数据集中来自患者的标记物特征图,并将信号通过网络,然后在输出层决定输出,例如训练数据集中患者的预后。然后,将这些输出与目标值(例如训练数据集中患者的实际结局)比较;差异对应误差。该误差或准则函数为权重的某种标量函数,当网络输出与所需输出匹配时该误差被最小化。因此,调整权重以减少这种误差的量。对于回归,此误差可为误差平方和。对于分类,此误差可为平方误差或交叉熵(偏差)。参见例如Hastie et al.,2001,The Elements of Statistical Learning,Springer-Verlag,NewYork(Hastie等人,2001年,《统计学习原理》,Springer-Verlag,NewYork)。
三种常用的训练方案为随机、分批和在线。在随机训练中,从训练集中随机选择模式并且对各模式表示更新网络权重。经梯度下降法(例如随机反向传播)训练的多层非线性网络在用网络拓扑定义的模型中进行权重值的极大似然估计。在批训练中,所有模式在学习开始前提供给网络。通常,在批训练中,通过训练数据完成几次通过。在线训练中,各模式被提供给网络一次且仅为一次。
在一些实施例中,考虑了权重的起始值。如果权重接近零,那么常用于神经网络隐藏层的S型函数的操作部分(参见Hastie et al.,2001,TheElements of Statistical Learning,Springer-Verlag,New York(Hastie等人,2001年,《统计学习原理》,Springer-Verlag,New York))大致呈线形,因此神经网络坍缩成近似线性的模型。在一些实施例中,权重的起始值选择为接近零的随机值。因此,模型开始时几乎呈线性,并随着权重的增加变为非线性。各个单元局限于各处,并在需要的地方引入非线性。使用精确零权重可导致零导数和完美的对称,并且算法不会变动。作为另外一种选择,从较大权重开始常常得到劣解。
由于输入量的缩放决定了底层中权重的有效缩放,这可对最终解的质量有重大影响。因此,在一些实施例中,在开始时将所有表达式数值标准化成平均值为0并且标准偏差为1。这使得所有输入在规则化过程中被同等处理,并允许为随机起始权重选择有意义的范围。就标准化输入而言,通常选取范围为-0.7至+0.7的随机均匀权重。
在使用具有隐藏层的网络时经常发生的问题是在网络中使用的隐单元的最优数。网络的输入和输出数由待求解问题确定。对于本文公开的方法,给定神经网络的输入数可为所选标记物组中的标记物数。
神经网络的输出数通常仅为一个:是或否。然而,在一些实施例中,使用不止一个输出,以便网络可定义不止两个状态。
用来分析数据的软件可包括将算法应用于信号分析的代码,以确定信号是否代表对应于根据本发明的生物标记物的信号峰值。该软件也可将与观察到的生物标记物信号有关的数据用于分类树或ANN分析,以确定是否存在指示患者疾病的诊断或状态的生物标记物或生物标记物组合的信号。
因此,该过程可分成学习阶段和分类阶段。在学习阶段,学习算法应用于包括要进行分类的不同类别的成员的数据集,例如来自诊断为AS并且对于抗TNFa治疗有反应的患者的多个样品的数据以及来自结果为阴性的患者(即,对于抗TNFa治疗无反应的AS患者)的多个样品的数据。用来分析数据的方法包括但不限于人工神经网络、支持向量机、遗传算法和自组织映射以及分类和回归树分析。这些方法描述于:例如2001年5月3日提交的WO01/31579(Barnhill等人);2002年1月24日提交的WO02/06829(Hitt等人)和2002年5月30日提交的WO02/42733(Paulse等人)。学习算法产生针对特定数据元素的分类算法,这些数据元素例如特定的标记物和特定的标记物浓度(通常结合在一起),能够将未知的样品分类为两个类别中的一种,例如反应者或无反应者。分类算法最终用于预测测试。
软件(不管是免费软件还是专有软件)可极为有效地分析数据模式并按任何预定的成功标准设计另外的模式。
试剂盒
在另一方面,本发明提供用于确定哪些AS患者对用抗TNFa试剂(例如戈利木单抗)治疗有反应或无反应的试剂盒,这些试剂盒用于检测根据本发明的血清标记物。试剂盒筛选血清标记物和标记物组合的存在,在AS患者中这些血清标记物和标记物组合含量存在差异。
在一个方面,试剂盒包括用于采集样品的装置,例如造成皮肤“戳孔”的柳叶刀或穿刺工具。试剂盒也可任选地包括用来从戳孔采集血液的探针,例如毛细管。
在一个实施例中,试剂盒包括具有一种或多种生物特异性捕获试剂的基片,这些生物特异性捕获试剂用来结合根据本发明的标记物。试剂盒可包括多于一种类型的生物特异性捕获试剂,每种试剂存在于相同或不同的基片上。
在另一个实施例中,此种试剂盒可包括标签或单独插页形式的有关合适操作参数的说明书。例如,说明书可告知消费者如何采集样品或者如何清空或洗涤探针。在另一个实施例中,试剂盒可包括一个或多个含有生物标记物样品的容器,这些生物标记物样品用作校准的标准品。
在使用本发明的算法来预测AS患者对于抗TNF治疗有反应的方法中,在抗TNF治疗前并在开始进行治疗后的特定时间段从患者体内采集血液或其他流体。可对血液进行处理以提取血清组分或者采用全血。血液或血清样品可被稀释成例如1∶2、1∶5、1∶10、1∶20、1∶50或1∶100,或不稀释直接使用。在一种格式中,将血清或血液样品涂敷在预制的测试条或棒上,并在室温下温育特定时间,例如1分钟、5分钟、10分钟、15分钟、1小时或更长的时间。在规定的分析时间后,样品和结果可直接从测试条上读出。例如,结果显示为不同色调的彩色或灰色带,表示一种或多种标记物的浓度范围。测试条试剂盒会提供说明,解释基于一种或多种标记物的相对浓度得出的结果。作为另外一种选择,可提供能够检测测试条上标记物检测***的色彩饱和度的装置,所述装置可任选地提供基于标记物系列的合适诊断算法得出的测试解释的结果。
使用本发明的方法
本发明提供通过分析诊断为AS的患者体内检测到的生物标记物,来预测对用抗TNFα制剂(例如戈利木单抗)治疗的反应性的方法。在本发明的方法中,先由富有经验的专家用主观和客观标准诊断患者患有AS。
AS发病原因的现行调查着重识别起始因子、下游事件、炎症介质和过程的调节因子。据估计形成AS的风险大约90%是可遗传的。最强的遗传风险因子与HLA-B27分子相关。考虑到HLA-B27对风险的重要作用,已经提出了几种可能的机制。然而,尽管业界对此兴趣浓厚并且研究活跃,但还是没有就HLA-B27如何造成疾病易感性达成共识。环境因素的作用仍然令人困惑,同样难以理解的是,AS往往牵涉韧带和肌腱与骨的结合部(附着点)或骶髂关节。
AS主要的临床特征包括骶髂关节炎引起的炎性背痛、中轴骨骼中其他位点的炎症、外周关节炎、附着点炎和前葡萄膜炎。结构的变化主要是由于骨质增生而不是骨破坏造成的。韧带骨赘和关节强直是这种疾病最突出的特征。AS的特征症状为下背部疼痛、臀部疼痛、脊柱活动受限、髋关节疼痛、肩膀疼痛、外周关节炎和附着点炎。神经***症状可伴随脊髓或脊神经压迫,由该疾病的几种并发症引起。椎体骨折可在具有强直脊柱的患者中发生,但很少或没有造成创伤。最普遍的骨折位点在C5-6间隙。临床上显著的寰枢椎半脱位可在高达21%的AS患者中发生并导致脊髓压迫。马尾综合征是长期AS的罕见并发症;其发病机制知之甚少并包括炎症、蛛网膜炎、机械拉伸、神经根压迫、脱髓鞘和局部缺血。
临床评价方法
根据临床特征和通过某种成像方法获得的骶髂关节炎证据的组合作出AS的诊断,该成像方法由1984年修正的纽约标准(van der Linden S,Valkenburg HA,Cats A:Evaluation of diagnostic criteria for ankylosingspondylitis.A proposal for modification of the New York criteria.Arthritis Rheum27:361-368,1984(van der Linden S、Valkenburg HA、Cats A,“对强直性脊柱炎诊断标准的评价—纽约标准修正建议”,《关节炎和风湿病》,第27卷,第361-368页,1984年))定义。研究已表明,疾病的实验室标记物(例如红细胞沉降率(ESR)和C-反应蛋白(CRP)水平)对于评价疾病活动性或监测对治疗的反应没有帮助(Spooorenberg A et al.1999 JRheumatol 26:980-4(Spooorenberg A等人,1999年,《风湿病学杂志》,第26卷,第980-984页))。
临床标准为:1)持续时间超过3个月的下背部疼痛和僵硬,其随着运动而改善但不能通过休息缓解;2)腰椎在矢状面和额状(冠状)面的活动受限;以及3)相对于根据年龄和性别矫正的正常值,胸部扩张受限。X线标准为双侧骶髂关节炎2级或更高,或者单侧3级或更高。关节炎的X线分级评分由5级组成:0级是正常的脊柱;1级表示疑似变形;2级表示硬化并带有一些侵蚀;3级表示严重的侵蚀、关节间隙的假性扩张和不全强直;4级表示完全强直。当1个X线标准与至少1个临床标准相关时,存在确定的AS。如果有三个临床标准存在或者X线标准存在但没有病征或症状来满足临床标准时,考虑可能是AS。临床等级可用作部分数据集来产生对治疗有反应的预测算法。
一旦AS的诊断确立了,医师通常纵向监测临床结局以便识别处于疾病恶化风险的患者。强直性脊柱炎评价研究组(ASAS)已经定义了很多用于管理疾病的核心参数。AS患者的疼痛通常限于背部,但是轴外位点为对具有外周疾病临床表现的患者进行缓解疼痛治疗的主要关注点。使用单个100mm的水平视觉模拟评分(VAS)来测量夜间和一般脊柱疼痛。在用抗TNF疗法治疗的AS患者中,ASAS已建立反应标准。这些标准中的几个在下文概述或可通过联系美国风湿病学家学会(American Society ofRhuematologists)获得。
ASAS20反映了对用来产生“评分”的几个标准的改善程度达20%(Anderson JJ et al.2001 Arthritis Rheum 44:1876-1886(Anderson JJ等人,2001年,《关节炎和风湿病》,第44卷,第1876-1886页))。ASAS改善标准把对治疗的阳性反应定义成首先具有20%的相对改善,其次在4个领域(炎症、功能、患者的痛觉和患者总体健康,在第四领域没有恶化)中的3个领域有10个单位的绝对改善。
BASDAI(Bath强直性脊柱炎疾病活动指数)定义了AS患者的炎症活动性。炎症可通过评价患者经历的不适和晨僵程度作出临床评价。BASDAI是自评指数,每个问题限定在100mm VAS(范围0-100,其中0=没有僵硬和100=非常严重的僵硬)。已显示评分对治疗引起的变化较敏感。
BASMI(Bath强直性脊柱炎计量指数)是定量的、医师评价的、对AS患者经历的脊柱活动受限的量度。BASMI是经验证的指数,其由5个临床测量指标组成,包括颈椎旋转度、耳屏至墙距离、脊柱侧屈度、腰椎屈曲度和踝间距,其反映了轴节段受累。研究表明,BASMI表现出良好的观察者间信度;然而BASMI不能区分身体受限是由急性炎症造成还是由慢性疾病损伤造成。没有公布的纵向研究表明BASMI可在患者的寿命期有进展,但人们认为患者的BASMI评分会随着AS患者发展进程性疾病的时间逐步增加。BASMI与脊柱照片的相关性在某些情况下表明与放射损伤有显著的关联。
BASFI(Bath强直性脊柱炎功能指数)使用身体机能测量指标来评价患者执行日常任务能力的受限程度。身体机能用BASFI和Dougados功能指数(DFI)测量。然而,BASFI是在临床实践和临床试验中最为广泛地使用的测量指标。
应当认识到本文所述的临床指标为患者数据集的一部分并且可指定一个数字评分。
以往治疗的失效
ASAS制订了关于需要对AS进行抗TNF治疗的共识声明(Braun et al2003 Annals Rheumatic Diseases 62:817-824(Braun等人,2003年,《风湿病年鉴》,第62卷,第817-824页))。对于AS的所有三种表现,即中轴疾病、外周关节炎和附着点炎,治疗失效定义为进行至少3个月标准NSAID治疗的试验。在开始抗TNF治疗前,患者必须按照最大推荐或耐受的抗炎剂量接受使用至少两种NSAID的充分治疗试验,除非这些药物为禁忌的。
所有如下三种表现要求中断NSAID治疗:中轴疾病、外周关节炎和附着点炎:
对于中轴疾病症状,要求在开始进行抗TNF治疗前不进行其他治疗。
对于外周关节炎症状,通常要求中断对寡关节炎进行关节内皮质类固醇治疗(至少两次注射)。除非是禁忌的或不能耐受的,否则应以多达3g/天的最大耐受剂量的柳氮磺吡啶进行4个月标准DMARD治疗。
对于附着点炎症状,通常要求进行至少两次局部类固醇类注射的充分的治疗试验,只要这些注射不是禁忌的。
TNFa治疗的适用性
抗TNFα制剂可商购获得,例如英夫利昔单抗,并已用来治疗AS很多年。抗TNFα制剂已显示极大地改善了强直性脊柱炎,缓解了疾病的不同症状并改善了生活质量。可以根据除了临床评价外的其他标准以及任选地对替代疗法例如NSAID和物理疗法、柳氮磺胺吡啶或甲氨蝶呤或双膦酸盐的反应的失效,将AS患者视为抗TNFα治疗的候选者。
患者管理
在本发明预测或评价对于抗TNF治疗的早期反应性的方法中,在开始进行抗TNF治疗前,从要用抗TNF疗法治疗的患者获取在“基线随访”、基线或“0周”的样品。样品可为任何这样组织,其可用来评价与本发明的方法相关的生物标记物。在一个实施例中,样品是选自血液、血清、尿液、***和粪便的流体。在一个具体的实施例中,样品是得自患者血液的血清样品,患者血液通过直接静脉穿刺的标准方法或通过静脉内导管吸取。
此外,在基线随访时,将有关患者的人口统计学数据和AS病史的信息记录在标准表格上或病例报告表上。诸如从患者诊断起算的时间、既往病史、合并用药、C-反应蛋白(CRP)水平和疾病活动的评价(即BASDAI、BASMI)之类的数据将被记录。
患者在基线随访时或24-48小时内接受首次剂量的抗TNF治疗。在基线随访时,安排对患者进行第4周随访。
在第4周随访时,即在初始施用抗TNFa治疗后大约28天,获取第二个患者样品,优选地使用与基线样品相同的方案和途径进行。对患者进行检查并且可按照健康护理专家规定的方法或按照所示出的研究设计采集或监测其他指标、影像或信息。安排对患者进行后续的随访,例如第8周、第12周、第14周、第28周等进行随访,目的是使用如ASAS和BASDAI所示出的此类标准进行疾病的评价以及获取患者样品用于生物标记物的评价。
在治疗前、期间或随后的任何时间或上述时间,可对从患者获得的样品或其他流体或组织样品进行其他参数和标记物的评价。这些参数和标记物包括标准血液学参数,例如血红蛋白含量、血细胞比容、红细胞容积、平均红细胞直径、红细胞沉降率(ESR)等等。其他标记物(已确定可用于评价AS的存在)可在一些或全部患者的样品中定量,例如CRP(Spoorenberg Aet al.1999.J Rheumatol 26:980-984(Spoorenberg A等人,1999年,《风湿病学杂志》,第26卷,第980-984页))和IL-6,以及软骨退变的标记物例如血清1型N-端肽(NTX)、尿II型胶原C-端肽(尿型CTX-II)和血清基质金属蛋白酶3(MMP3,基质溶素1)(参见US20070172897)。
可用于评价对治疗的反应的另外炎症相关标记物可为炎性细胞因子,例如IL-8或IL-1;炎性趋化因子,例如ENA-78/CXCL5、RANTES、MIP-1β;血管生成相关蛋白(EGF、VEGF);另外的蛋白酶,例如MMP-9、TIMP-1;作用于细胞免疫***(TH-1)的分子,例如IFNγ、IL-12p40、IP-10;以及作用于体液免疫***(TH-2)的分子,包括IL-4和IL-13;生长因子,例如碱性FGF;一般的炎症标记物,包括绿过氧物酶;以及粘附相关分子,例如ICAM-1。
医疗专家对反应的临床判断不应被测试结果所否定。然而,测试可有助于作出中止继续用戈利木单抗治疗的决定。在预测模型(算法)具有90%的灵敏度以及60%的特异性的一个测试中,其中50%的患者显示临床反应并且50%未显示符合临床反应的评价分数或评价。这将意味着:反应者中,45%会准确地识别为反应者(5%会报告为可能的无反应者)以及30%的无反应者会准确地识别为无反应者(20%会归类为可能的反应者)。因此,总体效果是60%的所有真无反应者可免于不必要的治疗或者在早期时间点(第4周)中止治疗。5%假阴性的“反应者”(识别为可能的无反应者)会被治疗,以及对于所有患者而言,其反应在第14周或更后时间决定继续或中止治疗前会经临床判断。20%的假阴性“无反应者”(识别为可能的反应者)必须进行临床判断,并且会用通常的时间来作出中止治疗的决定。
实例1:样本采集和分析
从参与多中心、随机、双盲、安慰剂对照的3组研究Centocor ProtocolC0524T09的患者获得血清样品并进行评价。这3个组由安慰剂组和戈利木单抗100mg或戈利木单抗50mg这两种剂量水平的抗TNFa Mab处理组构成;每4周皮下注射患有活动期强直性脊柱炎的患者。在第14周和第24周作了初步功效评价。在基线(0周)、第4周和第14周从100名患者采集了血清样品用于生物标记物研究。
采用商购的检测分析法对血清进行生物标记物分析,这些检测分析法或者采用Rules Based Medicine(Austin,TX)进行的多重分析或者采用单个分析物ELISA。所有样品被保存于-80℃直至测试。这些样品在室温下融化、涡旋并以13,000×g自旋5分钟来澄清,并且将150μL移入主微孔板用于抗原分析。使用自动移液,将每个样品的等分试样注入分析物的捕获微球多路通道之一中。将这些样品和捕获微球的混合物彻底混合并在室温下温育1个小时。对各路通道使用生物素化的记者抗体的多重混合物并使用链霉抗生物素蛋白-藻红蛋白进行检测。用Luminex 100仪器进行分析,并且用由Rules-Based Medicine开发并授权给Qiagen Instrument的专有数据分析软件解释所得的数据流。对于各路通道,均采用校准物和对照物。首先确定各路通道的高、中和低对照物的测试结果,以确保适当的分析性能。使用包括于数据分析包中的4和5参数的、加权和非加权的曲线拟合算法,确定定位于某路具体通道中的每个分析物的未知值。在每个时间点,对总共92个蛋白生物标记物作了分析(表1)。
表1.
92个生物标记物中的每个都有定量下限(LOQ)。分析中使用生物标记物的标准要求至少20%的样品中生物标记物在定量限之上。来自300个样品的92个生物标记物中,有63个(68%)达到了分析的纳入标准。对每个生物标记物分布作出评价以确定该生物标记物的对数变换是否得到保证。该评价在未考虑处理组的情况下作出。总的说来,分析集之中的63个生物标记物的60个经log2变换。表2确认最终分析中包括的生物标记物、LOQ以及对数变换是否可能。
另外的基线生物标记物分析
除了Rules Based Medicine多重分析之外,另外的血清生物标记物数据集可使用不包括于多重测试菜单中的特定生物标记物的单个EIA方法生成。将另外的标记物与多重生物标记物数据集结合以确定基于单个和多重标记物之组合的模型准确度。这些数据仅作为预测模型的组成部分而包括在内。
表2.
还评价了样品相关矩阵的平均两两相关性;所有样品表现出与其他样品至少平均89%的相关性,表明生物标记物数据在全部受试者样品上一致。
生物标记物的汇总统计示出于表3中。基线生物标记物水平的分布在三个处理组之间基本平衡。
表3.
  标记物   平均值   标准偏差   最小值   最大值   ANOVA p 1
  脂联素   1.330   0.762   -0.713   3.585   0.525
  α1抗胰蛋白酶   1.216   0.418   0.138   2.609   0.884
  α2巨球蛋白   -0.995   0.707   -2.252   0.848   0.816
  α胎蛋白   1.130   0.695   -1.218   3.585   0.337
  标记物   平均值   标准偏差   最小值   最大值   ANOVA p 1
  载脂蛋白A1   -1.273   0.463   -2.120   0.585   0.232
  载脂蛋白CIII   5.850   0.680   4.248   7.983   0.037
  载脂蛋白H   7.769   0.350   6.267   9.574   0.974
  β2微球蛋白   0.729   0.345   -0.074   1.585   0.481
  脑源性神经营养因子   4.406   0.539   2.036   5.322   0.626
  C反应蛋白   3.321   2.070   -2.737   5.615   0.544
  癌抗原125   3.846   0.718   2.070   6.845   0.061
  癌抗原19.9   0.747   1.579   -2.000   4.170   0.731
  癌胚抗原   0.368   0.832   -0.252   3.700   0.513
  CD40   -0.904   0.540   -2.644   0.379   0.533
  CD40配体   2.094   1.419   0.020   6.600   0.662
  补体3   0.423   0.390   -0.556   1.263   0.364
  EGF   6.650   1.494   2.888   9.260   0.628
  EN-RAGE   6.236   1.153   3.459   8.071   0.564
  ENA-78   1.100   0.808   -0.474   3.907   0.814
  嗜酸细胞活化趋化因子   6.580   0.690   5.358   7.966   0.372
  因子VII   9.260   0.628   7.539   10.834   0.706
  铁蛋白   6.677   1.228   3.700   9.022   0.148
  纤维蛋白原   -6.238   0.392   -6.673   -5.059   0.239
  G-CSF   2.943   0.722   2.322   4.700   0.931
  谷胱甘肽S转移酶   1.631   0.606   -0.105   2.868   0.361
  生长激素   -1.593   1.620   -2.943   2.722   0.453
  触珠蛋白   1.273   0.977   -1.690   3.087   0.435
  ICAM-1   7.053   0.445   5.492   8.459   0.152
  IgA   2.485   1.218   0.290   7.300   0.606
  IgE   4.923   1.612   3.807   9.430   0.863
  IGF-1   3.606   1.403   2.000   7.055   0.509
  IgM   -0.022   0.716   -1.737   1.926   0.513
  IL-16   9.123   0.610   7.707   10.944   0.309
  IL-18   7.656   0.607   5.755   9.324   0.072
  IL-1ra   6.195   1.130   3.907   9.177   0.499
  IL-7   5.937   0.432   5.728   8.028   0.860
  IL-8   4.234   1.451   1.807   9.685   0.632
  胰岛素   2.403   1.830   -0.218   6.870   0.405
  瘦素   2.551   1.892   -2.474   6.524   0.995
  脂蛋白a   5.383   1.452   3.217   9.313   0.746
  MCP-1   7.507   0.678   5.781   9.474   0.153
  MDC   8.903   0.503   7.322   10.024   0.702
  MIP-1α   4.099   0.710   3.700   6.700   0.335
  MIP-1β   7.718   0.828   5.248   10.436   0.450
  MMP-3   3.106   1.092   0.926   7.022   0.230
  绿过氧物酶   9.613   1.255   6.087   11.750   0.714
  标记物   平均值   标准偏差   最小值   最大值   ANOVA p 1
  肌红蛋白   3.021   0.853   1.000   5.807   0.178
  PAI-1   7.318   0.406   5.907   8.508   0.817
  游离***特异性抗原   -2.824   2.051   -5.442   1.000   0.593
  ***酸性磷酸酶   -1.744   0.555   -3.059   -0.454   0.152
  RANTES   4.697   0.766   2.459   6.392   0.990
  血清淀粉样蛋白P   5.106   0.408   3.202   5.807   0.731
  SGOT   2.573   0.607   1.888   4.000   0.370
  SHBG   5.044   0.751   3.459   7.313   0.598
  干细胞因子   7.841   0.592   6.304   9.780   0.601
  促甲状腺激素   1.462   0.741   0.380   5.000   0.810
  甲状腺结合球蛋白   5.939   0.341   4.322   6.794   0.950
  TIMP-1   7.068   0.291   6.285   7.925   0.554
  TNF-α   2.210   0.492   2.000   5.426   0.146
  TNF-RII   1.595   0.463   0.585   2.828   0.355
  VCAM-1   8.498   0.319   7.864   9.468   0.558
  VEGF   8.891   0.941   6.322   11.499   0.433
  冯威勒布兰特因子   4.820   0.646   2.787   6.150   0.845
在戈利木单抗治疗组,多个标记物从基线水平至第4周和第14周显著变化。非常有限的标记物组在安慰剂处理受试者中变化。通常,两个戈利木单抗剂量组之间的差异不显著。将受试者内偏离基线的变化在戈利木单抗组(剂量组组合)和安慰剂组之间比较。大约一半标记物经测定显示,偏离基线的变化在戈利木单抗组和安慰剂组之间存在显著的差异(表4),并且5)示出了偏离基线的变化在组合的戈利木单抗组和安慰剂组之间存在显著(p<0.01)差异的标记物。
表4
表5.
实例2:标记物和关联
为了建立预测模型或算法,与研究临床终点相关联地评价了标记物数据。在本研究中有六个临床终点,定义为第14周ASAS20、第24周ASAS20、第14周BASMI的变化、第14周BASFI的变化、和第14周BASDAI的变化。这些研究终点是评价患者疾病状态的公认临床方法。所收集的在蛋白生物标记物分支研究和研究终点的100名患者在下面示出(表6)。
表6.
临床反应主要终点示出于表7中,其中条目代表该组的反应者/总数。虽然不是生物标记物分支研究的主要关注点,但是仍有助于解释在该队列中对临床终点的治疗效果评价的研究。如表7所示出,戈利木单抗治疗组的反应在整个评价的临床终点范围内(除BASMI外)显著优于安慰剂组。
表7.
在参与蛋白标记物研究的研究患者中,性别与六个临床终点的三个有显著关联(表8)。性别也与很多蛋白生物标记物显著相关。因此,性别用作调整模型的协变量,该模型用于测试生物标记物值和临床终点之间的关联。如果不进行该调整,则与性别相关联的标记物(如***特异性抗原)似乎与临床终点关联,但是该关联是性别/终点关联的假象。CRP为通常与AS关联的标记物,然而,在该研究中CRP的基线值在统计学上与临床终点不相关。
表8.
 终点   性别   年龄   重量   CRP
 第14周ASAS20   0.012   0.489   0.134   0.226
 第24周ASAS20   0.036   0.936   0.323   0.186
 早期脱离   0.417   0.830   0.714   0.628
 第14周ΔBASMI   0.381   0.681   0.155   0.114
 第14周ΔBSF   0.004   0.608   0.009   0.455
第14周ΔBASDAI   0.264   0.235   0.634   0.363
实例3:预测模型建立
评价了生物标记物在基线、第4周、和第14周的关联。这些分析得出了若干发现。92个检测的标记物与临床反应几乎没有关联。表现出显著效果的标记物、以及这些标记物的标记物与终点关系,通常在全部的若干主要和次要终点上是一致的。由于对临床结局无剂量效应,使用的数据是组合的戈利木单抗治疗组(所有患者接受戈利木单抗治疗)。评价了生物标记物在基线、第4周、和第14周的关联。
所有分析均使用R进行(R:A Language and Environment for StatisticalComputing,2008,Author:R Development Core Team,R Foundation forStatistical Computing,Vienna,Austria,ISBN 3-900051-07-0(《R:一种用于统计计算的语言和环境》,2008年,R核心开发团队,R Foundation forStatistical Computing(Vienna,Austria),ISBN 3-900051-07-0))。偏离基线的变化使用单样本t检验进行检验。临床因子与基线生物标记物的关联使用稳健线性回归模型评价。使用稳健逻辑回归模型检验生物标记物与临床终点的关联。临床终点变量“是”/“否”使用1/0编码。连续临床终点转化为1/0变量用于该分析,该转化通过将阈值应用于所有受试者的中值进行。
在全部时间点和临床终点上被一致识别出的基线标记物为瘦素、触珠蛋白、胰岛素、ENA78、和载脂蛋白C3、骨钙素、P1NP、和IL6(通过EIA)。每个这些标记物在至少三个临床终点具有显著性,并且在至少一个终点具有大于1.5的比值比。对于这些标记物,表9示出了它们与临床终点关联的比值比和p-值。在表9中,比值比(OR)用log2尺度的1个单位变化或线性尺度加倍来表示临床反应增加的几率。
为了增加该研究结果的可靠性,重点放在识别整个多个终点的多个时间点表现出显著关联的标记物。在基线,在整个临床终点一致识别出的多重确定的标记物为瘦素、触珠蛋白、胰岛素、ENA78、和载脂蛋白C3。此外还有血清样品的单个ELISA测试识别的骨钙素、P1NP、和IL-6。这八个标记物中的每个在至少三个临床终点具有小于0.05的p值,并且在至少一个终点具有大于1.5的比值比(OR)。对于这些标记物,表9示出了它们与临床终点关联的比值比和p-值。OR用log2尺度的1个单位变化或线性尺度加倍来表示临床反应增加的几率。
表9.
其偏离基线的早期(第4周)变化在全部时间点和临床终点上被一致预测到的标记物为触珠蛋白、血清淀粉样蛋白、CRP、α-1抗胰蛋白酶、冯威勒布兰特因子、补体因子3、和血清标记物IL-6(ELISA)。这七个标记物中的每个在至少3个临床终点具有显著性,并且在至少一个终点具有大于3的比值比。对于这些标记物,表10示出了它们与临床终点关联的比值比和p值。
表10
安慰剂
与在戈利木单抗治疗组中观察到的生物标记物/临床终点关联相反,在安慰剂组中生物标记物值与临床终点反应的关联如果有也很少(未示出)。该结果作为见于戈利木单抗生物标记物分析的更显著生物标记物结果的内参或基准。
基线生物标记物预测方法
建立了分类和回归树(CART)预测模型以用于确定哪些生物标记物可用于预测患者对治疗的长期临床反应。所有预测模型使用留一法交叉验证。CART模型以决策树的形式显示(图1-6)。树的节点用分类预测(“是”表示预测的临床终点反应者,“否”表示预测的临床无反应者)和两个数字(x/y,其中x是研究中落入该节点的无反应者的实际数目,并且y是研究中落入该节点的反应者的实际数目)标记。模型的总体准确度为整个‘否’端节点的x数目加上全部‘是’端节点上的y数目。建立的模型用于主要临床终点第14周ACR20,以及选择的次要临床终点。通常,次要终点模型在它们的灵敏度和特异性方面与主要终点模型非常类似。
预测模型用于确定哪些生物标记物可用于预测患者对治疗的反应。一个模型基于在基线获取的标记物的值建立,这些值通过多重检测并使用ASAS20(主要)终点进行分析(图1)。使用该模型分析样品的结果表明,当该模型应用于样品时,该模型在61/76(80%)测试患者中是正确的。这意味着在用该模型分析的患者样品中,结果可预测80%患者在第14周的临床反应(ASAS20)。该模型的图表在图1中给出。生物标记物模型使用瘦素作为初始分类器:也就是说,瘦素高于或等于3.8(对数尺度)的患者预测为无反应者。而那些瘦素水平低于3.8的患者则基于第二标记物CD40配体的使用来分类。CD40配体结果高于1.05的患者预测为反应者,而瘦素水平低于3.8并且CD40配体低于1.05的患者预测为无反应者。使用该模型预测的灵敏度为86%。使用该模型结果的特异性为88%。
BASDAI终点的预测模型在图2中示出。该模型选择了不同的生物标记物,并且BASDAI模型的总体准确度与ASAS20模型类似。图2中的算法基于大于或等于7.033(对数尺度)的TIMP-1水平,该TIMP-1水平作为对于抗TNF治疗有反应的初始分类器。TIMP-1水平大于或等于7.033的患者使用G-CSF进一步分类,G-CSF小于3.953被分类为预测的反应者,并且G-CSF大于或等于3.953分类为预测的无反应者。TIMP-1水平小于7.033的患者使用PAP水平进一步分类,其中小于-1.287的水平预测为反应者,并且大于-1.287水平的患者根据MCP-1水平进一步分类,其中MCP-1小于7.417预测为反应者,并且MCP-1大于或等于7.417预测为无反应者。
当使用单路EIA检测(非多重检测)和3重检测(Luminex)分析的标记物包括于CART分析时,不论临床终点是ASAS20还是BASDAI(分别在图3和4中),所得算法(决策树)均依靠骨钙素作为初始分类器。结果发现附加的标记物增强了标记物组的预测能力。基线生物标记物/血清生物标记物模型通过第14周ASAS20评价来预测临床反应的准确度为67/76(88%)(图3)。该生物标记物模型使用骨钙素(通过单路EIA检测)作为初始分类器:骨钙素大于或等于3.878(对数尺度)的患者预测为反应者;骨钙素低于3.878的患者根据PAP归类。模型准确度为88%,灵敏度为90%,并且模型特异性为84%。
在类似分析中,BASDAI终点的预测模型在图4中示出。在这种情况下,BASDAI和ASAS20模型看起来是非常相似的(二者都包括骨钙素和PAP,BASDAI模型增加了胰岛素作为一个附加分类器)。该模型预测BASDAI临床反应的准确度为61/76(80%)。
基线浓度和第4周偏离基线的变化
建立了使用多重数据的附加预测模型,以确定治疗第4周生物标记物的变化是否可纳入第14周临床结局的预测。预测ASAS20的算法在图5中示出。对于预测ASAS20的仅采用基线的算法,基线瘦素是初始分类器:瘦素大于或等于3.8(对数尺度)的患者预测为无反应者;瘦素低于3.8的患者根据以下两个额外的预测值进一步分类:i)补体3的变化,和ii)基线VEGF。在该模型中,预测第14周临床反应(ASAS20)的准确度是64/76(84%)。模型的灵敏度为92%,并且特异性为81%。
BASDAI终点的预测模型在图6中示出。虽然BASDAI模型的总体准确度与ASAS20模型类似,但是在该分析中选择和使用了不同的生物标记物:初始标记物为补体成分3从0周至第4周的变化,其中降低小于0.233(对数尺度)的患者预测为反应者;补体成分3降低大于或等于0.2333的患者根据基线铁蛋白进一步归类,其中如果铁蛋白值大于截断值7.774,则患者被分类为预测的反应者,并且其中铁蛋白小于7.774,则患者被分类为预测的无反应者;那些根据铁蛋白预测为无反应者的子集,再根据ICAM-1水平的变化进一步分类,其中0周和第4周之间ICAM-1的降低大于或等于0.02204的那些被分类为预测的反应者,并且其余0周和第4周之间ICAM-1的降低小于0.02204的患者被分类为预测的无反应者。
概述
蛋白生物标记物研究的结果表明戈利木单抗治疗引起多个生物标记物显著变化。与此相反,很少观察到安慰剂对照组中生物标记物的变化。建立了两种类型的基于新型生物标记物临床反应预测模型,一种只使用基线生物标记物值预测患者临床反应,另一种使用生物标记物值的早期(第4周)变化预测长期(第14、24周)临床反应。该模型表明,标记物子集的变化与对戈利木单抗的临床反应相关,而不是与仅为非特异性治疗效果的临床反应相关。这可通过查看多个临床终点由稳健逻辑回归分析推断。
重要的是,标记物值(在基线或第4周的变化)先于临床结局出现。这表明可建立一组生物标记物,用于以良好的准确度预测AS患者对戈利木单抗治疗的最终反应或无反应。
对戈利木单抗的临床反应(病征和症状)的最佳生物标记物模型(基于特异性和灵敏度)包括图3和4中所示出的基线水平的骨钙素和***酸性磷酸酶。

Claims (9)

1.能够定量瘦素和CD40配体存在的预制备底物在制备用于预测诊断为强直性脊柱炎的患者对于抗TNFα治疗的反应的试剂盒中的用途,所述预测包括:
a) 测定血清标记物瘦素和CD40配体的浓度;以及
b) 将所述测定浓度与截断值进行比较,所述截断值通过分析一组诊断为AS的患者的所述标记物的血清浓度值而确定,所述患者接受了抗TNFα治疗并且根据一个或多个临床终点归类为反应者或无反应者。
2.根据权利要求1所述的用途,其中附加的标记物浓度在血清中测定,所述附加的标记物选自所述患者的血液或血清样品中的触珠蛋白、血清淀粉样蛋白、CRP、α-1抗胰蛋白酶、冯威勒布兰特因子以及胰岛素。
3.能够定量瘦素和CD40配体存在的预制备底物在制备用于预测诊断为强直性脊柱炎的患者对于抗TNFα治疗的反应的试剂盒中的用途,所述预测包括:
a) 测定瘦素和CD40配体在所述患者的血液或血清样品中的浓度;以及
b) 将瘦素在所述AS样品中的所述浓度与瘦素截断值进行比较,其中如果所述浓度测定为大于或等于所述截断值,则所述患者预测为抗TNFα治疗的无反应者,并且如果瘦素的所述血清值低于所述截断值,则
c) 将CD40配体在所述患者样品中的所述浓度与CD40配体截断值进行比较,其中高于或等于所述CD40配体截断值的CD40配体浓度是所述患者对TNFα治疗剂有反应的表征,并且低于所述CD40配体值的值和低于所述瘦素截断值的瘦素作为对TNFα中和治疗剂的无反应者的预测。
4.根据权利要求3所述的用途,其中所述样品为血清。
5.根据权利要求4所述的用途,其中瘦素在血清中的所述浓度是经对数变换的并且所述瘦素截断值为3.804。
6.根据权利要求3所述的用途,其中CD40配体在血清中的浓度是经对数变换的并且所述CD40配体截断值为1.05。
7.根据权利要求3所述的用途,其中所述测定步骤同时进行。
8.根据权利要求3所述的用途,其中所述测定步骤由计算机辅助装置执行。
9.根据权利要求1-5中任一项所述的用途,其中所述患者用非TNF中和治疗剂治疗。
CN200980153744.4A 2008-12-30 2009-12-09 预测强直性脊柱炎患者对于抗TNFα抗体的临床反应的血清标记物 Expired - Fee Related CN102272326B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14142108P 2008-12-30 2008-12-30
US61/141,421 2008-12-30
US61/141421 2008-12-30
PCT/US2009/067282 WO2010077722A1 (en) 2008-12-30 2009-12-09 Serum markers predicting clinical response to anti-tnf antibodies in patients with ankylosing spondylitis

Publications (2)

Publication Number Publication Date
CN102272326A CN102272326A (zh) 2011-12-07
CN102272326B true CN102272326B (zh) 2014-11-12

Family

ID=42310120

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980153744.4A Expired - Fee Related CN102272326B (zh) 2008-12-30 2009-12-09 预测强直性脊柱炎患者对于抗TNFα抗体的临床反应的血清标记物

Country Status (12)

Country Link
US (1) US20110251099A1 (zh)
EP (1) EP2384367A4 (zh)
JP (2) JP5684724B2 (zh)
KR (1) KR20110110247A (zh)
CN (1) CN102272326B (zh)
AU (1) AU2009333489A1 (zh)
BR (1) BRPI0923806A2 (zh)
CA (1) CA2750155A1 (zh)
CO (1) CO6341487A2 (zh)
IL (1) IL213245A (zh)
MX (1) MX2011007030A (zh)
WO (1) WO2010077722A1 (zh)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9528160B2 (en) 2008-11-07 2016-12-27 Adaptive Biotechnolgies Corp. Rare clonotypes and uses thereof
US9506119B2 (en) 2008-11-07 2016-11-29 Adaptive Biotechnologies Corp. Method of sequence determination using sequence tags
US8748103B2 (en) 2008-11-07 2014-06-10 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
US9365901B2 (en) 2008-11-07 2016-06-14 Adaptive Biotechnologies Corp. Monitoring immunoglobulin heavy chain evolution in B-cell acute lymphoblastic leukemia
US8628927B2 (en) 2008-11-07 2014-01-14 Sequenta, Inc. Monitoring health and disease status using clonotype profiles
SG195652A1 (en) 2008-11-07 2013-12-30 Sequenta Inc Methods of monitoring conditions by sequence analysis
HUE029424T2 (en) 2009-01-15 2017-02-28 Adaptive Biotechnologies Corp Adaptive immunity profiling and a method for producing monoclonal antibodies
JP2012531202A (ja) 2009-06-25 2012-12-10 フレッド ハチンソン キャンサー リサーチ センター 適応免疫を測定する方法
WO2011047358A1 (en) 2009-10-15 2011-04-21 Crescendo Bioscience Biomarkers and methods for measuring and monitoring inflammatory disease activity
ES2564290T3 (es) 2010-11-02 2016-03-21 Kypha, Inc. Inmunoensayo de flujo lateral para la activación de complemento y métodos de uso para evaluación del sitio de atención de trastornos asociados a complemento
EP3384939A1 (en) 2011-03-11 2018-10-10 Vib Vzw Molecules and methods for inhibition and detection of proteins
US10385475B2 (en) 2011-09-12 2019-08-20 Adaptive Biotechnologies Corp. Random array sequencing of low-complexity libraries
EP2768982A4 (en) 2011-10-21 2015-06-03 Adaptive Biotechnologies Corp QUANTIFICATION OF ADAPTIVE IMMUNOCELL GENOMES IN A COMPLEX MIX OF CELLS
EP2773773B1 (en) * 2011-11-04 2017-01-11 Adaptive Biotechnologies Corporation T-cell receptor clonotypes shared among ankylosing spondylitis patients
EP2788509B1 (en) 2011-12-09 2018-07-11 Adaptive Biotechnologies Corporation Diagnosis of lymphoid malignancies and minimal residual disease detection
US9499865B2 (en) 2011-12-13 2016-11-22 Adaptive Biotechnologies Corp. Detection and measurement of tissue-infiltrating lymphocytes
EP2823060B1 (en) 2012-03-05 2018-02-14 Adaptive Biotechnologies Corporation Determining paired immune receptor chains from frequency matched subunits
US9275334B2 (en) * 2012-04-06 2016-03-01 Applied Materials, Inc. Increasing signal to noise ratio for creation of generalized and robust prediction models
DK2831276T3 (da) 2012-05-08 2016-08-01 Adaptive Biotechnologies Corp Sammensætninger og fremgangsmåde til at måle og kalibrere amplifikations-bias i multipleks-PCR-reaktioner
ES2749118T3 (es) 2012-10-01 2020-03-19 Adaptive Biotechnologies Corp Evaluación de la inmunocompetencia por la diversidad de los receptores de inmunidad adaptativa y caracterización de la clonalidad
WO2015160439A2 (en) 2014-04-17 2015-10-22 Adaptive Biotechnologies Corporation Quantification of adaptive immune cell genomes in a complex mixture of cells
US9708657B2 (en) 2013-07-01 2017-07-18 Adaptive Biotechnologies Corp. Method for generating clonotype profiles using sequence tags
JP6512828B2 (ja) 2014-01-07 2019-05-15 三星電子株式会社Samsung Electronics Co.,Ltd. c−Met阻害剤の効能予測または効能検証のためのバイオマーカー
EP2899543A1 (en) * 2014-01-28 2015-07-29 Predemtec GmbH Biomarker and methods for early diagnosis of Alzheimer's disease
WO2015134787A2 (en) 2014-03-05 2015-09-11 Adaptive Biotechnologies Corporation Methods using randomer-containing synthetic molecules
US10066265B2 (en) 2014-04-01 2018-09-04 Adaptive Biotechnologies Corp. Determining antigen-specific t-cells
CA2943821A1 (en) 2014-04-02 2015-10-08 Crescendo Bioscience Biomarkers and methods for measuring and monitoring juvenile idiopathic arthritis activity
CA2950771A1 (en) * 2014-06-10 2015-12-17 Crescendo Bioscience Biomarkers and methods for measuring and monitoring axial spondyloarthritis disease activity
CN105372431A (zh) * 2014-08-15 2016-03-02 同济大学附属上海市肺科医院 一组结节病血清特异性标志蛋白及其检测试剂盒
CA2966201A1 (en) 2014-10-29 2016-05-06 Adaptive Biotechnologies Corp. Highly-multiplexed simultaneous detection of nucleic acids encoding paired adaptive immune receptor heterodimers from many samples
US10246701B2 (en) 2014-11-14 2019-04-02 Adaptive Biotechnologies Corp. Multiplexed digital quantitation of rearranged lymphoid receptors in a complex mixture
US11066705B2 (en) 2014-11-25 2021-07-20 Adaptive Biotechnologies Corporation Characterization of adaptive immune response to vaccination or infection using immune repertoire sequencing
AU2016222788B2 (en) 2015-02-24 2022-03-31 Adaptive Biotechnologies Corp. Methods for diagnosing infectious disease and determining HLA status using immune repertoire sequencing
AU2016242967B2 (en) 2015-04-01 2021-07-01 Adaptive Biotechnologies Corp. Method of identifying human compatible T cell receptors specific for an antigenic target
CA3207751A1 (en) 2015-09-29 2017-04-06 Laboratory Corporation Of America Holdings Biomarkers and methods for assessing psoriatic arthritis disease activity
WO2017058999A2 (en) 2015-09-29 2017-04-06 Crescendo Bioscience Biomarkers and methods for assessing response to inflammatory disease therapy withdrawal
EP3150716A1 (en) 2015-09-29 2017-04-05 Institut Pasteur Immunological signatures and parameters predicting therapeutic responses to anti-tnf therapy
US10018637B2 (en) 2015-10-06 2018-07-10 Celgene International Ii Sarl Methods for treating inflammatory and other diseases and the use of biomarkers as predictors of clinical sensitivity to treatment with apremilast
EP3359967B1 (en) * 2015-10-06 2021-08-18 Amgen (Europe) GmbH Methods for treating inflammatory and other diseases and the use of biomarkers as predictors of clinical sensitivity to treatment with apremilast
GB2547406A (en) * 2015-11-20 2017-08-23 Folkersen Lasse Apparatus and methods of using of biomarkers for predicting TNF-inhibitor response
US11694802B2 (en) * 2016-01-22 2023-07-04 Otraces Inc. Systems and methods for improving diseases diagnosis
US10428325B1 (en) 2016-09-21 2019-10-01 Adaptive Biotechnologies Corporation Identification of antigen-specific B cell receptors
WO2018147915A1 (en) 2017-02-07 2018-08-16 Janssen Biotech, Inc. Anti-tnf antibodies, compositions, and methods for the treatment of active ankylosing spondylitis
US20180299445A1 (en) * 2017-04-03 2018-10-18 Biodetego Llc Biomarkers and methods of using same
US11254980B1 (en) 2017-11-29 2022-02-22 Adaptive Biotechnologies Corporation Methods of profiling targeted polynucleotides while mitigating sequencing depth requirements
JP6954568B2 (ja) * 2020-03-31 2021-10-27 クラシエホールディングス株式会社 健康管理支援システム、健康管理支援方法、及びプログラム
CA3205027A1 (en) * 2020-12-17 2022-06-23 Janssen Biotech, Inc. Anti-tnf antibodies, compositions, and methods for the treatment of active ankylosing spondylitis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010008774A1 (en) * 1987-04-27 2001-07-19 Conopco Inc. Assays
US20040214241A1 (en) * 1994-08-12 2004-10-28 The Regents Of The University Of Michigan Bone precursor cells: compositions and methods
US20060062784A1 (en) * 2004-09-17 2006-03-23 Domantis Limited Compositions monovalent for CD40L binding and methods of use
US20060286571A1 (en) * 2005-04-28 2006-12-21 Prometheus Laboratories, Inc. Methods of predicting methotrexate efficacy and toxicity
US20070172449A1 (en) * 2000-03-02 2007-07-26 Xencor, Inc. TNF-alpha VARIANT FORMULATIONS FOR THE TREATMENT OF TNF-alpha RELATED DISORDERS
US20070212721A1 (en) * 2006-01-27 2007-09-13 Tripath Imaging, Inc. Methods for identifying patients with an increased likelihood of having ovarian cancer and compositions therefor

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451983B2 (en) 1989-08-07 2002-09-17 Peptech Limited Tumor necrosis factor antibodies
US5959087A (en) 1989-08-07 1999-09-28 Peptide Technology, Ltd. Tumour necrosis factor binding ligands
WO1991003553A1 (en) 1989-09-05 1991-03-21 Immunex Corporation TUMOR NECROSIS FACTOR-α AND -β RECEPTORS
US5656272A (en) 1991-03-18 1997-08-12 New York University Medical Center Methods of treating TNF-α-mediated Crohn's disease using chimeric anti-TNF antibodies
US5637469A (en) 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
AU670125B2 (en) 1992-09-15 1996-07-04 Immunex Corporation Method of treating tnf-dependent inflammation using tumor necrosis factor antagonists
US5571410A (en) 1994-10-19 1996-11-05 Hewlett Packard Company Fully integrated miniaturized planar liquid sample handling and analysis device
CA2213854C (en) 1995-03-10 2010-08-10 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
US6207369B1 (en) 1995-03-10 2001-03-27 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
US6090382A (en) 1996-02-09 2000-07-18 Basf Aktiengesellschaft Human antibodies that bind human TNFα
HU230048B1 (hu) 1996-02-09 2015-06-29 Abbvie Biotechnology Ltd Humán TNFalfa-kötő antitestek alkalmazása
US5942443A (en) 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
NZ516848A (en) 1997-06-20 2004-03-26 Ciphergen Biosystems Inc Retentate chromatography apparatus with applications in biology and medicine
US6537749B2 (en) 1998-04-03 2003-03-25 Phylos, Inc. Addressable protein arrays
US6576478B1 (en) 1998-07-14 2003-06-10 Zyomyx, Inc. Microdevices for high-throughput screening of biomolecules
US6406921B1 (en) 1998-07-14 2002-06-18 Zyomyx, Incorporated Protein arrays for high-throughput screening
WO2000056934A1 (en) 1999-03-24 2000-09-28 Packard Bioscience Company Continuous porous matrix arrays
WO2001031579A2 (en) 1999-10-27 2001-05-03 Barnhill Technologies, Llc Methods and devices for identifying patterns in biological patterns
AU2001280581A1 (en) 2000-07-18 2002-01-30 Correlogic Systems, Inc. A process for discriminating between biological states based on hidden patterns from biological data
UA81743C2 (uk) 2000-08-07 2008-02-11 Центокор, Инк. МОНОКЛОНАЛЬНЕ АНТИТІЛО ЛЮДИНИ, ЩО СПЕЦИФІЧНО ЗВ'ЯЗУЄТЬСЯ З ФАКТОРОМ НЕКРОЗУ ПУХЛИН АЛЬФА (ФНПα), ФАРМАЦЕВТИЧНА КОМПОЗИЦІЯ, ЩО ЙОГО МІСТИТЬ, ТА СПОСІБ ЛІКУВАННЯ РЕВМАТОЇДНОГО АРТРИТУ
WO2002042733A2 (en) 2000-11-16 2002-05-30 Ciphergen Biosystems, Inc. Method for analyzing mass spectra
WO2004074511A1 (en) * 2003-02-21 2004-09-02 Garvan Institute Of Medical Research Diagnosis and treatment of baff-mediated autoimmune diseases and cancer
CA2537818A1 (en) * 2003-09-15 2005-03-31 Oklahoma Medical Research Foundation Method of using cytokine assays to diagnose, treat, and evaluate inflammatory and autoimmune diseases
EP2312315A1 (en) * 2005-05-18 2011-04-20 Novartis AG Methods for diagnosis and treatment of diseases having an autoimmune and/or inflammatory component
RU2438704C2 (ru) 2005-11-01 2012-01-10 Эбботт Байотекнолоджи Лтд. Способы и композиции для диагностики анкилозирующих спондилитов с использованием биомаркеров
JP5237366B2 (ja) * 2007-06-20 2013-07-17 メルク・シャープ・アンド・ドーム・コーポレーション 炎症性関節疾患に対する抗il−17a治療のための関節破壊のバイオマーカー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010008774A1 (en) * 1987-04-27 2001-07-19 Conopco Inc. Assays
US20040214241A1 (en) * 1994-08-12 2004-10-28 The Regents Of The University Of Michigan Bone precursor cells: compositions and methods
US20070172449A1 (en) * 2000-03-02 2007-07-26 Xencor, Inc. TNF-alpha VARIANT FORMULATIONS FOR THE TREATMENT OF TNF-alpha RELATED DISORDERS
US20060062784A1 (en) * 2004-09-17 2006-03-23 Domantis Limited Compositions monovalent for CD40L binding and methods of use
US20060286571A1 (en) * 2005-04-28 2006-12-21 Prometheus Laboratories, Inc. Methods of predicting methotrexate efficacy and toxicity
US20070212721A1 (en) * 2006-01-27 2007-09-13 Tripath Imaging, Inc. Methods for identifying patients with an increased likelihood of having ovarian cancer and compositions therefor

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
CALGUNERI ET AL.ecretory IgA: Immune Defence Pattern in Ankylosing Spondylitis and Klebsiella.《ANNALS OF THE RHEUMATIC DISEASES》.1981,第40卷(第6期),600-604. *
DEN BROEDER ET AL.Long Term Anti-Tumour Necrosis Factor a Monotherapy in Rheumatoid Arthritis: Effect on Radiological Course and Prognostic Value of Markers of Cartilage Turnover and Endothelial Activation.《ANN RHEUM DIS》.2002,第61卷(第4期),311-318. *
ecretory IgA: Immune Defence Pattern in Ankylosing Spondylitis and Klebsiella;CALGUNERI ET AL;《ANNALS OF THE RHEUMATIC DISEASES》;19811231;第40卷(第6期);600-604 *
Effects of infliximab on markers of inflammation and bone turnover and associations with bone mineral density in patients with ankylosing spondylitis;S Visvanathan et al;《ANN RHEUM DIS》;20080521;第68卷(第2期);175 - 182 *
FABRE ET AL.Protein Biochip Array Technology for Cytokine Profiling Predicts Etanercept Responsiveness in Rheumatoid Arthritis.《 Clinical and Experimental Immunology》.2008,第53卷(第2期),188-195. *
KRAETSCH ET AL.Successful Treatment of A small Cohort of Patients with Adult Onset of Still"s Disease with Infliximab: First Experiences.《ANN RHEUM DIS》.2001,第60卷(第sppl.3期),III55-III57. *
Long Term Anti-Tumour Necrosis Factor a Monotherapy in Rheumatoid Arthritis: Effect on Radiological Course and Prognostic Value of Markers of Cartilage Turnover and Endothelial Activation;DEN BROEDER ET AL;《ANN RHEUM DIS》;20020430;第61卷(第4期);311-318 *
Min-Chan Park et al.Pro-inflammatory effect of leptin on peripheral blood mononuclear cells of patients with ankylosing spondylitis.《Joint Bone Spine》.2008,第76卷(第2期),170-175. *
Pro-inflammatory effect of leptin on peripheral blood mononuclear cells of patients with ankylosing spondylitis;Min-Chan Park et al;《Joint Bone Spine》;20081206;第76卷(第2期);170-175 *
Protein Biochip Array Technology for Cytokine Profiling Predicts Etanercept Responsiveness in Rheumatoid Arthritis;FABRE ET AL;《 Clinical and Experimental Immunology》;20080618;第53卷(第2期);188-195 *
S Visvanathan et al.Effects of infliximab on markers of inflammation and bone turnover and associations with bone mineral density in patients with ankylosing spondylitis.《ANN RHEUM DIS》.2008,第68卷(第2期),175 - 182. *
Successful Treatment of A small Cohort of Patients with Adult Onset of Still"s Disease with Infliximab: First Experiences;KRAETSCH ET AL;《ANN RHEUM DIS》;20011130;第60卷(第sppl.3期);III55-III57 *

Also Published As

Publication number Publication date
IL213245A (en) 2014-09-30
JP2014197013A (ja) 2014-10-16
BRPI0923806A2 (pt) 2015-07-14
KR20110110247A (ko) 2011-10-06
WO2010077722A1 (en) 2010-07-08
IL213245A0 (en) 2011-07-31
JP5684724B2 (ja) 2015-03-18
JP2012514208A (ja) 2012-06-21
CA2750155A1 (en) 2010-07-08
EP2384367A4 (en) 2013-07-10
EP2384367A1 (en) 2011-11-09
AU2009333489A1 (en) 2010-07-08
CN102272326A (zh) 2011-12-07
US20110251099A1 (en) 2011-10-13
MX2011007030A (es) 2011-07-20
CO6341487A2 (es) 2011-11-21

Similar Documents

Publication Publication Date Title
CN102272326B (zh) 预测强直性脊柱炎患者对于抗TNFα抗体的临床反应的血清标记物
CN102576015B (zh) 预测银屑病关节炎患者对抗TNFα抗体的临床反应的血清标记物
JP5675829B2 (ja) 炎症性疾患活動性を測定およびモニタリングするためのバイオマーカーおよび方法
Bilello The agony and ecstasy of “OMIC” technologies in drug development
WO2012061821A1 (en) Biomarkers for predicting progressive joint damage
CN103370624A (zh) 监控神经精神疾病治疗的生物标记
EP3126846A1 (en) Biomarkers and methods for measuring and monitoring juvenile idiopathic arthritis activity
US20200249243A1 (en) Adjusted multi-biomarker disease activity score for inflammatory disease assessment
US20140200826A1 (en) Methods For Inflammatory Disease Management
Connolly et al. Analytical validation of a multi-biomarker algorithmic test for prediction of progressive kidney function decline in patients with early-stage kidney disease
US20220057395A1 (en) Biomarkers and methods for assessing response to inflammatory disease therapy
CN103403556A (zh) Armet作为慢性阻塞性肺病(copd)的标志物
US20180356419A1 (en) Biomarkers for detection of tuberculosis risk
CN103415771A (zh) Fen1作为慢性阻塞性肺病(copd)的标志物
CN103430027A (zh) Apex1作为慢性阻塞性肺病(copd)的标志物
CA3021343C (en) Biomarkers and methods for assessing response to inflammatory disease therapy
CN112748241A (zh) 一种用于检测i型骨质疏松症的蛋白芯片及其制作方法与应用
CN103415770A (zh) Nnmt作为慢性阻塞性肺病(copd)的标志物
EASTMAN et al. Patent 3021343 Summary

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141112

Termination date: 20151209

EXPY Termination of patent right or utility model