CN102263125B - 一种横向扩散金属氧化物功率mos器件 - Google Patents

一种横向扩散金属氧化物功率mos器件 Download PDF

Info

Publication number
CN102263125B
CN102263125B CN2011102434548A CN201110243454A CN102263125B CN 102263125 B CN102263125 B CN 102263125B CN 2011102434548 A CN2011102434548 A CN 2011102434548A CN 201110243454 A CN201110243454 A CN 201110243454A CN 102263125 B CN102263125 B CN 102263125B
Authority
CN
China
Prior art keywords
type light
light doping
type
doping section
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011102434548A
Other languages
English (en)
Other versions
CN102263125A (zh
Inventor
陈伟元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Vocational University
Original Assignee
Suzhou Vocational University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Vocational University filed Critical Suzhou Vocational University
Priority to CN2011102434548A priority Critical patent/CN102263125B/zh
Publication of CN102263125A publication Critical patent/CN102263125A/zh
Application granted granted Critical
Publication of CN102263125B publication Critical patent/CN102263125B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开一种横向扩散金属氧化物功率MOS器件,包括:位于P型的衬底层内的P型阱层和N型轻掺杂层;所述N型轻掺杂层由第一N型轻掺杂区、第二N型轻掺杂区和P型轻掺杂区组成;所述第一N型轻掺杂区的掺杂浓度高于所述P型轻掺杂区的掺杂浓度,所述P型轻掺杂区的掺杂浓度高于所述第二N型轻掺杂区的掺杂浓度;所述第一N型轻掺杂区位于所述第二N型轻掺杂区上方;所述P型轻掺杂区在水平方向上位于所述第一N型轻掺杂区的中央区域且此P型轻掺杂区在垂直方向上位于所述第一N型轻掺杂区中央区域的中下部并与所述第二N型轻掺杂区表面接触。本发明功率MOS器件提高了击穿电压并降低了器件比导通电阻,同时大大改善了器件的响应时间和频率特性。

Description

一种横向扩散金属氧化物功率MOS器件
技术领域
本发明涉及一种MOS器件,具体涉及一种横向扩散金属氧化物功率MOS器件。
背景技术
横向扩散金属氧化物功率MOS器件(LDMOS);随着半导体行业的迅猛发展,以大功率半导体器件为代表的电力电子技术迅速发展,应用领域不断扩大,如交流电机的控制,打印机驱动电路。在现今各种功率器件中,LDMOS具有工作电压高,工艺相对简单,因此LDMOS具有广阔的发展前景。在LDMOS器件设计中,击穿电压和导通电阻一直都是人们设计此类器件时所关注的主要目标,外延层的厚度、掺杂浓度、漂移区的长度是LDMOS最重要的参数。可以通过增加漂移区的长度以提高击穿电压,但是这会增加芯片面积和导通电阻。耐压和导通电阻对于外延层的浓度和厚度的要求是矛盾的。高的击穿电压要求厚的轻掺杂外延层和长的漂移区,而低的导通电阻则要求薄的重掺杂外延层和短的漂移区,因此必须选择最佳外延参数和漂移区长度,以便在满足一定的源漏击穿电压的前提下,得到最小的导通电阻。RESURF(降低表面电场原理)一直被广泛应用于高压器件的设计中,此原理要求漂移区电荷和衬底电荷达到电荷平衡,以做到漂移区完全耗尽时可以承受较高耐压。
尽管Single RESURF结构能满足一定的击穿电压要求,但由于漂移区浓度低而造成导通电阻较大。如果漂移区注入剂量过大而导致部分耗尽,则靠近沟道区的所述P型阱层与N型轻掺杂层之间的结内电场提前达到硅材料的临界电场而发生击穿,造成击穿电压降低;如果漂移区注入剂量过低而出现完全耗尽并同时有部分漏区也要被耗尽,则靠近漏端的漏极区与N型轻掺杂层之间的结过早发生击穿,同样使击穿电压降低。现有技术有报道在N型轻掺杂层表面注入P型轻掺杂区,从而改善漂移区的表面电场分布,这种设计虽然能提高击穿电压,但不利于降低器件比导通电阻设计;且会导致电场不均匀和相互耗尽从而导致降低LDMOS器件的截止频率。
发明内容
本发明提供一种横向扩散金属氧化物功率MOS器件,此功率MOS器件提高了击穿电压并降低了器件比导通电阻,同时大大改善了器件的响应时间和频率特性。
为达到上述目的,本发明采用的技术方案是:一种横向扩散金属氧化物功率MOS器件,包括:位于P型的衬底层内的P型阱层和N型轻掺杂层,所述P型阱层与N型轻掺杂层在水平方向相邻从而构成一PN结,一源极区位于所述P型阱层,一漏极区位于所述衬底层内,位于所述源极区和N型轻掺杂层之间区域的P型阱层上方设有栅氧层,此栅氧层上方设有一栅极区所述N型轻掺杂层由第一N型轻掺杂区、第二N型轻掺杂区和P型轻掺杂区组成;所述第一N型轻掺杂区的掺杂浓度高于所述P型轻掺杂区的掺杂浓度,所述P型轻掺杂区的掺杂浓度高于所述第二N型轻掺杂区的掺杂浓度;
所述第一N型轻掺杂区与第二N型轻掺杂区的掺杂浓度比例范围为:1.2∶1~1.3∶1;
所述第一N型轻掺杂区位于所述第二N型轻掺杂区上方;所述P型轻掺杂区在水平方向上位于所述第一N型轻掺杂区的中央区域且此P型轻掺杂区在垂直方向上位于所述第一N型轻掺杂区中央区域的中下部并与所述第二N型轻掺杂区表面接触。
作为优选,所述第一N型轻掺杂区与P型轻掺杂区的掺杂浓度比例为:1.1∶1。
作为优选,所述P型阱层和N型轻掺杂层的结深比例为2∶1。
作为优选,所述漏极区位于所述N型轻掺杂层内。
作为优选,所述N型轻掺杂层位于所述漏极区与所述P型阱层之间。
由于上述技术方案运用,本发明与现有技术相比具有下列优点和效果:
1、本发明P型轻掺杂区在垂直方向上位于所述第一N型轻掺杂区中央区域的中下部并与所述第二N型轻掺杂区接触,经过仿真测试降低了栅漏电容Cgd,截止频率提高了8%左右,形成两条电流支路,进一步降低了比导通电阻。
2、本发明所述第一N型轻掺杂区、P型轻掺杂区和第二N型轻掺杂区的掺杂浓度依次降低,且P型阱层和N型轻掺杂层的结深比例为2∶1,有利于衬底层的垂直方向耗尽区与水平方向耗尽区相互耦合,从而便于器件的击穿电压和比导通电阻的参数设计。
3、本发明所述P型轻掺杂区两侧的第一N型轻掺杂区和第二N型轻掺杂区各自的掺杂浓度不同,且第一N型轻掺杂区和第二N型轻掺杂区之间的交界面位于P型轻掺杂区下方;有利于在P型轻掺杂区两侧形成垂直方向的耗尽层,可进一步提高器件的耐高压性能。
4、本发明保持高击穿电压的同时,进一步提高N型轻掺杂层的浓度从而降低了器件的整体比导通电阻和器件的开关损耗,且P型轻掺杂区对其N型轻掺杂层内调制的电场更趋于平坦化,有效降低了P型阱层与N型轻掺杂层之间的电场强度。附图说明
附图1为本发明横向扩散金属氧化物功率MOS器件结构示意图;
附图2为本发明击穿电压和比导通率与掺杂浓度关系示意图;
附图3为本发明击穿电压和比导通率与掺杂浓度比例关系示意图;
附图4为本发明电容特性示意图。
以上附图中:1、衬底层;2、P型阱层;3、N型轻掺杂层;4、源极区;5、漏极区;6、P型轻掺杂区;7、栅氧层;8、栅极区;9、第一N型轻掺杂区;10、第二N型轻掺杂区。
具体实施方式
下面结合附图及实施例对本发明作进一步描述:
实施例:一种横向扩散金属氧化物功率MOS器件,包括:位于P型的衬底层1内的P型阱层2和N型轻掺杂层3,所述P型阱层2与N型轻掺杂层3在水平方向相邻从而构成一PN结,一源极区4位于所述P型阱层2,一漏极区5位于所述衬底层1内,位于所述源极区4和N型轻掺杂层3之间区域的P型阱层2上方设有栅氧层7,此栅氧层7上方设有一栅极区8;所述N型轻掺杂层3由第一N型轻掺杂区9、第二N型轻掺杂区10和P型轻掺杂区6组成;所述第一N型轻掺杂区9的掺杂浓度高于所述P型轻掺杂区6的掺杂浓度,所述P型轻掺杂区6的掺杂浓度高于所述第二N型轻掺杂区10的掺杂浓度;
上述第一N型轻掺杂区9与第二N型轻掺杂区10的掺杂浓度比例范围为:1.2∶1~1.3∶1;
上述第一N型轻掺杂区9位于所述第二N型轻掺杂区10上方;所述P型轻掺杂区6在水平方向上位于所述第一N型轻掺杂区9的中央区域,所述P型轻掺杂区6在垂直方向上位于所述第一N型轻掺杂区9中央区域的中下部并与所述第二N型轻掺杂区10接触。
上述第一N型轻掺杂区9与P型轻掺杂区6的掺杂浓度比例为:1.1∶1。
上述P型阱层2和N型轻掺杂层3的结深比例为2∶1。
上述漏极区5位于所述N型轻掺杂层3内。
上述N型轻掺杂层3位于所述漏极区5与所述P型阱层2之间。
采用上述一种横向扩散金属氧化物功率MOS器件时,P型轻掺杂区在垂直方向上位于所述第一N型轻掺杂区中央区域的中下部并与所述第二N型轻掺杂区接触,经过仿真测试降低了Cgd电容,截止频率提高了8%左右,形成两条电流支路进一步降低了比导通电阻;其次,所述第一N型轻掺杂区、P型轻掺杂区和第二N型轻掺杂区的掺杂浓度依次降低,且P型阱层和N型轻掺杂层的结深比例为2∶1,有利于衬底层的垂直方向耗尽区与水平方向耗尽区相互耦合,从而便于器件的击穿电压和比导通电阻的参数设计。
所述P型轻掺杂区两侧的第一N型轻掺杂区和第二N型轻掺杂区各自的掺杂浓度不同,且第一N型轻掺杂区和第二N型轻掺杂区之间的交界面位于P型轻掺杂区下方;有利于在P型轻掺杂区两侧形成垂直方向的耗尽层,可进一步提高器件的耐高压性能;再次,本发明保持高击穿电压的同时,进一步提高N型轻掺杂层的浓度从而降低了器件的整体比导通电阻和器件的开关损耗,且P型轻掺杂区对其N型轻掺杂层内调制的电场更趋于平坦化,有效降低了P型阱层与N型轻掺杂层之间的电场强度。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (1)

1.一种横向扩散金属氧化物功率MOS器件,包括:位于P型的衬底层(1)内的P型阱层(2)和N型轻掺杂层(3),所述P型阱层(2)与N型轻掺杂层(3)在水平方向相邻从而构成一PN结,一源极区(4)位于所述P型阱层(2),一漏极区(5)位于所述衬底层(1)内,位于所述源极区(4)和N型轻掺杂层(3)之间区域的P型阱层(2)上方设有栅氧层(7),此栅氧层(7)上方设有一栅极区(8);其特征在于:所述N型轻掺杂层(3)由第一N型轻掺杂区(9)、第二N型轻掺杂区(10)和P型轻掺杂区(6)组成;所述第一N型轻掺杂区(9)的掺杂浓度高于所述P型轻掺杂区(6)的掺杂浓度,所述P型轻掺杂区(6)的掺杂浓度高于所述第二N型轻掺杂区(10)的掺杂浓度;
所述第一N型轻掺杂区(9)与第二N型轻掺杂区(10)的掺杂浓度比例范围为:1.2∶1~1.3∶1;
所述第一N型轻掺杂区(9)位于所述第二N型轻掺杂区(10)上方;所述P型轻掺杂区(6)在水平方向上位于所述第一N型轻掺杂区(9)的中央区域且此P型轻掺杂区(6)在垂直方向上位于所述第一N型轻掺杂区(9)中央区域的中下部并与所述第二N型轻掺杂区(10)表面接触。
CN2011102434548A 2011-08-24 2011-08-24 一种横向扩散金属氧化物功率mos器件 Expired - Fee Related CN102263125B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102434548A CN102263125B (zh) 2011-08-24 2011-08-24 一种横向扩散金属氧化物功率mos器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102434548A CN102263125B (zh) 2011-08-24 2011-08-24 一种横向扩散金属氧化物功率mos器件

Publications (2)

Publication Number Publication Date
CN102263125A CN102263125A (zh) 2011-11-30
CN102263125B true CN102263125B (zh) 2013-04-03

Family

ID=45009688

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102434548A Expired - Fee Related CN102263125B (zh) 2011-08-24 2011-08-24 一种横向扩散金属氧化物功率mos器件

Country Status (1)

Country Link
CN (1) CN102263125B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569404B (zh) * 2012-01-18 2014-11-26 苏州市职业大学 低导通电阻的横向扩散mos半导体器件
CN103367431B (zh) * 2012-03-31 2016-12-28 中芯国际集成电路制造(上海)有限公司 Ldmos晶体管及其制造方法
CN103280455B (zh) * 2013-04-28 2016-05-18 苏州市职业大学 横向扩散型低导通电阻mos器件
CN104752499A (zh) * 2013-12-25 2015-07-01 上海华虹宏力半导体制造有限公司 射频ldmos器件及工艺方法
CN103928529B (zh) * 2014-04-30 2016-11-23 西安电子科技大学 4H-SiC金属半导体场效应晶体管
CN107302025B (zh) * 2017-07-27 2019-11-01 电子科技大学 一种具有抗单粒子效应的vdmos器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099242A (zh) * 2005-01-06 2008-01-02 英飞凌科技股份公司 Ldmos晶体管
CN101414630A (zh) * 2007-10-15 2009-04-22 天钰科技股份有限公司 横向扩散金属氧化物晶体管
CN101916730A (zh) * 2010-07-22 2010-12-15 中国科学院上海微***与信息技术研究所 一种具有线性缓冲层的soi超结ldmos制作方法
US7868378B1 (en) * 2005-07-18 2011-01-11 Volterra Semiconductor Corporation Methods and apparatus for LDMOS transistors
CN201936885U (zh) * 2011-01-14 2011-08-17 苏州英诺迅科技有限公司 射频横向扩散p型mos管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099242A (zh) * 2005-01-06 2008-01-02 英飞凌科技股份公司 Ldmos晶体管
US7868378B1 (en) * 2005-07-18 2011-01-11 Volterra Semiconductor Corporation Methods and apparatus for LDMOS transistors
CN101414630A (zh) * 2007-10-15 2009-04-22 天钰科技股份有限公司 横向扩散金属氧化物晶体管
CN101916730A (zh) * 2010-07-22 2010-12-15 中国科学院上海微***与信息技术研究所 一种具有线性缓冲层的soi超结ldmos制作方法
CN201936885U (zh) * 2011-01-14 2011-08-17 苏州英诺迅科技有限公司 射频横向扩散p型mos管

Also Published As

Publication number Publication date
CN102263125A (zh) 2011-11-30

Similar Documents

Publication Publication Date Title
CN101969074B (zh) 一种高压ldmos器件
CN102263125B (zh) 一种横向扩散金属氧化物功率mos器件
CN104201206A (zh) 一种横向soi功率ldmos器件
CN103219386B (zh) 一种具有高k绝缘区的横向功率器件
CN103280457B (zh) 一种超低比导通电阻的横向高压功率器件及制造方法
CN102723355B (zh) 槽栅半导体功率器件
CN105448961A (zh) 超结器件的终端保护结构
CN103413830A (zh) 一种横向高压mosfet及其制造方法
CN102723363A (zh) 一种vdmos器件及其制作方法
CN104124274A (zh) 超结横向双扩散金属氧化物半导体场效应管及其制作方法
CN102709325A (zh) 一种高压ldmos器件
CN107170801B (zh) 一种提高雪崩耐量的屏蔽栅vdmos器件
CN204632762U (zh) 结终端延伸的终端版图结构及其终端结构
CN102790092A (zh) 一种横向高压dmos器件
CN116469924A (zh) 漂移区电场优化的屏蔽栅mosfet
CN102569404B (zh) 低导通电阻的横向扩散mos半导体器件
CN109065629A (zh) 一种槽栅超结器件
CN103280455B (zh) 横向扩散型低导通电阻mos器件
CN103426913A (zh) 一种部分soi超结高压功率半导体器件
CN104617139A (zh) Ldmos器件及制造方法
CN112186028A (zh) 一种集成npn穿通三极管的屏蔽栅mosfet器件
CN203690304U (zh) 纵向超结金属氧化物场效应晶体管
WO2015145913A1 (ja) 半導体装置
CN203242638U (zh) 横向扩散型低导通电阻mos器件
CN202205752U (zh) 一种横向功率mos器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130403

Termination date: 20150824

EXPY Termination of patent right or utility model