CN102067429A - 用于智能型转换器数组的***及方法 - Google Patents

用于智能型转换器数组的***及方法 Download PDF

Info

Publication number
CN102067429A
CN102067429A CN2009801235590A CN200980123559A CN102067429A CN 102067429 A CN102067429 A CN 102067429A CN 2009801235590 A CN2009801235590 A CN 2009801235590A CN 200980123559 A CN200980123559 A CN 200980123559A CN 102067429 A CN102067429 A CN 102067429A
Authority
CN
China
Prior art keywords
power
transducer
array
output
transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801235590A
Other languages
English (en)
Inventor
安德鲁·福斯
米格尔·戈麦斯
唐·梅德利
罗兰·韩德尔
加里·哈森弗斯
道格·贝格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Semiconductor Corp
Original Assignee
National Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Semiconductor Corp filed Critical National Semiconductor Corp
Publication of CN102067429A publication Critical patent/CN102067429A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

用于功率产生数组中的DC至AC转换的***及方法。***及方法包含多个耦合至太阳能面板组的转换器。群组控制器协调转换器的操作以交错切换转换器。群组控制器经由局域网络、无线网络、或二者来通讯,以协调与增加的太阳能面板并联耦合的增加的转换器组之间的操作。

Description

用于智能型转换器数组的***及方法
技术领域
本发明大致上关于电力***,更特别关于用于从太阳能电池功率数组转换能量的***及方法。
背景技术
光电伏打(PV)面板(此处也称为「太阳能面板」)使用来自太阳的辐射光以产生电能。太阳能面板包含众多PV电池以将阳光转换成电能。大部份的太阳能面板使用晶圆为基础的结晶硅或以鍗化镉为基础的薄膜电池。通常用于PV电池中的晶圆形式结晶硅系从硅衍生的,通常作为半导体。PV电池是半导体装置,将光直接转换成能量。当光照射于PV电池上时,于电池上产生跨压,以及,当连接至导线时,电流流经电池。电压及电流随着数种因素变化,包含电池的实体尺寸、照射于电池上的光量、电池的温度、及外部因素。
太阳能面板(也称为PV模块)由串联及并联的PV电池制成。举例而言,PV电池首先在一组内串联耦接。然后,众多组并联耦接。类似地,PV数组(也称为「太阳能数组」)是由串联及并联配置的太阳能面板制成。实体上彼此相当接近地设置之二或更多PV数组称为PV数组场。
由每一太阳能面板产生的电力由太阳能面板的电压及电流决定。在太阳能数组电连接制成串联以取得所需的输出串电压及/或制成并联以提供所需数量的串电流源能力。在某些情形中,每一面板电压由DC-DC转换器升压或突然升高。
太阳能数组连接至电负载、电栅或电力储存装置,例如但不限于蓄电池。太阳能面板配送直流(DC)电力。当电负载、电栅或电力储存装置使用交流(AC)电(举例而言,每秒60周或60赫兹(Hz)操作时),太阳能数组经由DC-AC转换器而连接至电负载、电栅、或电力储存装置。
太阳能面板呈现它们的I-V曲线所述电压及电流特征。当太阳能电池未连接至负载时,它们的端点跨压高于它们的开路电压Vcc。当端点连接在一起以形成短路时,产生短路电流Isc。在此二情形中,由于功率系由电压乘以电流而产生的,所以,不会产生功率。最大功率点(MPP)界定太阳能面板以最大功率操作的点。
在传统的太阳能数组中,太阳能数组中所有各别的太阳能面板必须接收用于数组完整的阳光以适当地工作。假使数组的一部份被遮蔽时,或者受损时,则整体功率输出会降低,即使从那些仍然受阳光曝照的区域输出的功率也会降低。无可避免地,在很多太阳能数组中也存在有面板之间效率降低差异。因此,当这些差异未被侦测到及未被校正时,会留下未实现显著数量的能量。
以往尝试产生「微转换器」,将单一太阳能面板产生的DC功率转换成AC功率。每一面板(也称为每一模块)反向造成的重要优点包含局部化最大功率点追踪(MPPT)及随着时间以新太阳能面板更换过时的太阳能面板能力。不需要符合太阳能数组中大部份可能是过时的现有太阳能面板的电压及电流特征,即可执行过时的太阳能面板更换。
但是,在此传统***中,现存的太阳能面板以从AC电力网看到的峰值电压(例如,对于单相120V为约200V,对于三相208V为约300V)之下的电压操作。因此,此传统的***必须包含升压级。升压级需要更复杂的电路,包含昂贵的变压器及不可靠的组件。
传统的反相器设计中存在有代价交换。转换器设计的代价交换关于脉冲波调变(PWM)切换频率。较高的频率增加栅追踪的准确度,因而降低谐波失真。但是,较高的频率等于更多的切换。增加的切换会因切换损耗而降低效率。
此外,在电感器设计上,有与板上电感及实体尺寸相关的代价交换。大的、高电感电感器提供最小的谐波失真。但是,大的、高电感电感器以金钱成本及物理空间而言是昂贵的。
发明内容
提供用于太阳能电池电力***的太阳能面板数组。太阳能面板数组包含众多太阳能面板。太阳能面板数组也包含众多并联地耦合至太阳能面板的转换器。至少一组控制器配置成协调众多转换器的操作以执行交错切换。
提供用于太阳能电池电力***的转换器。转换器包含用以耦合至多个太阳能面板的正极端第一输入端。转换器也包含第一高侧开关,耦合至第一输入端;第二高侧开关,耦合至第一输入端;第一电感器,耦合于第一高侧开关与第一输出端之间;第二电感器,耦合于第二高侧开关与第二输出端之间;第一下拉开关,耦合至第一输出;第二下拉开关,耦合至第二输出;及控制器。控制器配置成改变第一及第二高侧开关及第一和第二下拉开关的操作。
提供用于光电伏打数组电流转换的方法。所述方法包含由多个转换器从多个太阳能面板接收电能。协调转换器的切换以由多个转换器执行直流能量转换成交流能量交替转换。
在了解下述实施方式之前,揭示本专利所使用某些字及词的定义是有益的。「封包」意指任何带有信息的通讯讯号,但不管其用于特定通讯讯号的格式。「应用」、「程序」、及「例程」意指一或更多计算机程序、指令集、程序、函数、对象、等级、实例、或用于以适当的计算机语言实施相关数据。「耦合」一词及其衍生词意指二或更多组件之间任何直接或间接的通讯,不论这些组件是否彼此实体接触。「传送」、「接收」及「通讯」等词与其衍生词包含直接及间接通讯。「包含」及「包括」等词及其衍生词意指包含但非限定。「或」一词是包含的,意指及/或。「相关连」及「与其相关的」等词与其衍生词意包含、包含于…之内、互连、含有、含于…之内、连接至或与…相连接、耦合至或与…耦合、可相通讯、互相协力、介于其间、并列、近似、受限于、具有、具有…的特性、等等。「控制器」一词意指任何控制至少一操作的装置、***、或其部份。控制器可以由硬件、韧体、软件、或它们之中至少二者的结合来实施。与任何特定控制器相关连的功能可以本地或远方地集中或分散。
附图说明
于下,参考配合附图说明,将可更完整地了解本发明及其优点,其中,类似代号代表类似构件:
图1A显示根据本发明的实施例太阳能数组;
图1B显示根据本发明的实施例太阳能面板;
图1C显示根据本发明的实施例经由网络连接以传送数据的温度数据输出线及天空辐射计数据线实施例;
图2显示根据本发明的实施例包含智能型转换器的太阳能数组;
图3显示根据本发明的实施例智能型转换器切换操作;
图4显示根据本发明的实施例用于以二输入电压操作的DC至AC转换器的功率转换效率相对于百分比(%)额定输出功率曲线图实施例;
图5显示根据本发明的实施例适应性功率管理的曲线图实施例;
图6显示根据本发明的实施例包含功率转换器组太阳能面板,功率转换器组经由响应中央控制器设备的单一AC切换机构而耦合至电力网;
图7A显示根据本发明的实施例而产生电流涟波的波形曲线图实施例;
图7B显示根据本发明的实施例提供电流给负载三个同步转换器的电流涟波曲线图实施例;
图7C显示根据本发明的实施例提供电流给负载三个协调的交替转换器的电流曲线图实施例;
图8显示根据本发明的实施例未经协调及经过协调的交替转换器对输出正弦波的谐波失真效果的曲线图实施例;
图9显示根据本发明的实施例无变压器、无升压DC至AC功率转换器;及
图10显示根据本发明的实施例具有转换器组的太阳能数组,转换器组以三相三角配置耦合,用于3相AC发电。
具体实施方式
于下说明图1A至10、以及用以说明本发明的原理不同实施例仅为说明之用,且无论如何不应被解释为限定本发明的范围。习于此技艺者将了解本发明的原理可以实施于任何适当配置的光电伏打数组***。
本发明的范围关于用以转换DC能量至AC能量功率转换器数组。将了解,虽然下述中揭示的实施例说明耦合至例如太阳能数组中的一或更多太阳能面板等太阳能产生装置功率转换器,但是,功率转换器可以耦合至任何DC能量产生装置、以及自其接收DC能量,举例而言但非限定,DC能量产生装置为风力发电机或风力发电场、地热能发电装置、及水或波动发电装置、或类似的电源。
图1A显示根据本发明的实施例太阳能数组。图1A中所示的太阳能数组100的实施例仅用于说明。在不悖离本发明的范围之下,可以使用其它太阳能数组的实施例。
太阳能面板105如何连接在一起以形成太阳能数组100非限定的实施例显示于图1A中。太阳能数组100包含六个太阳能面板105。将了解所示的六个太阳能面板105仅为举例说明,太阳能数组可以包含任何数目的太阳能面板105。太阳能面板105在均具有二个面板的三列中串联,例如从顶部至底部配置。举例而言,太阳能数组100可以由单一串联串形成。太阳能面板105耦合成第一太阳能面板105a的负极端耦合第二太阳能面板105b的正极端、第二太阳能面板105b的负极端耦合第三太阳能面板105c的正极端、等等。此外,第一太阳能面板105a的正极端耦合至太阳能数组100的正极输出端110。在某些实施例中,第一太阳能面板105a的正极端是太阳能数组100的正极输出端110。此外,最后的太阳能面板105f的负极端耦合至太阳能数组100的负极输出端115。在某些实施例中,最后的太阳能面板105f的负极端是太阳能数组100的负极输出端115。
太阳能数组100包含天空辐射计120、或太阳能辐射传感器。在某些实施例中,天空辐射计独立地安装于接近太阳能数组100近处。在其它及替代实施例中,天空辐射计安装于太阳能数组100上。天空辐射计120是用以测量平坦表面上宽带带的太阳辐射测光计。天空辐射计120是一种传感器,配置成测量来自华氏180度(180℉)的视场太阳辐射通量密度(瓦特/米平方)。天空辐射计120耦合至数据线122,数据线122用于传送对应于在太阳能数组100测量的宽带带太阳能辐射的资料。天空辐射计120与照射于太阳能数组100上的阳光量成正比。
图1B显示根据本发明的实施例太阳能面板105。图1B中所示的太阳能面板105的实施例仅用于说明。在本悖离本发明的范围之下,可以使用太阳能面板105的其它实施例。
在某些实施例中,在一或更多太阳能面板105之内的PV电池125的串并联地耦合。举例而言,在太阳能面板105中,PV电池125的第一串130与PV电池125的第二串140并联地耦合、等等。将了解二串130、135说明仅为举例说明,太阳能面板105可以包含任何数目的串。
每一串130、135包含众多PV电池125,众多PV电池125串联成第一PV电池125的负极端耦合至第二PV电池125的正极端、等等。此外,每一串130、135包含旁通二极管140。在每一串130、135中,旁通二极管140耦合于第一PV电池125的正极端与太阳能面板105的正极端145之间。在每一串130、135中,太阳能面板105的负极端150耦合至最后的PV电池125的负极端。
旁通二极管140有助于太阳能面板105的短路保护。光电伏打电池125是特别构成的P-N接面,且当在高电流下于热天操作时会短路。在串130、135中的PV电池125短路的事件中,具有短路的PV电池125串130、135的电压将掉至其它串130、135的电压之下。举例而言,假使第一串130中的PV电池125短路,则第一串130的电压将比第二串135的电压之下的一二极管压降下降更多。因此,旁通二极管140将被反向偏压以及将停止导通,以致于具有短路的PV电池125串135对于整个太阳能面板105不会变成短路。
太阳能面板105包含温度传感器155。在某些实施例中,温度传感器155安装于太阳能面板105上。温度传感器155配置成监控太阳能面板105处或之上的温度。温度传感器155耦合至数据输出线160。每一太阳能面板105包含对应的温度数据输出线160。举例而言,如图1A所示,太阳能面板105a包含温度数据输出线160a;太阳能面板105b包含温度数据输出线160b;太阳能面板105c包含温度数据输出线160c;太阳能面板105d包含温度数据输出线160d;太阳能面板105e包含温度数据输出线160e;以及,太阳能面板105f包含温度数据输出线160f。
图1C显示根据本发明的实施例经由网络连接以传送数据的温度数据输出线及天空辐射计数据线实施例。图1C中所示温度传感器及天空辐射计经由网络连接以传送数据的实施例仅为说明之用。在不悖离本发明的范围之下,可以使用其它实施例。
例如温度输出数据线160a-160f等用于太阳能数组100的温度数据输出线160经由网络连接165而耦合至太阳能场管理器。此外,来自天空辐射计120数据线122也经由网络连接165而耦合至场管理器。网络连接可为局域网络(LAN)连接、广域网络(WAN)连接、有线连接、无线连接、或是这些的结合。
图2显示根据本发明的实施例包含智能型转换器的太阳能数组。图2中显示的太阳能数组200的实施例仅用于说明。在不悖离本发明的范围之下,可以使用其它实施例。
太阳能场包含众多太阳能面板205。太阳能面板205可以具有与上述的太阳能面板105相同的结构及配置。太阳能面板205串联耦合以致于第一太阳能面板205a的负极端耦合至第二太阳能面板205b的正极端;第二太阳能面板205b的负极端耦合至第三太阳能面板205c的正极端;以及,第三太阳能面板205c的负极端耦合至第四太阳能面板205d的正极端。将了解,四个太阳能面板205的说明仅为举例说明,太阳能数组200可以包含任何数目的太阳能面板205。
最后的太阳能面板205d的负极端耦合至负(-)DC电源线210。第一太阳能面板205a的正极端耦合至正(+)DC电源线215。
众多功率转换器220耦合至DC电源线210、215。举例而言,每一功率转换器220于其负DC负电源输入(-)222上耦合至负DC电源线210及在其正DC电源输入(+)224上耦合至正DC电源线215。
每一各别的功率转换器220包含多个对应于各别的AC正弦波输出线A、B及C。AC电力***以三相正弦波操作。量测相对于接地正弦波电压,如此,具有正峰值及负峰值。三相分别以「A」、「B」及「C」表示。每一相位与下一相位相隔一百二十度(120°)。因此,用于每一相位A、B、C的正及负峰值相对于其它相上的AC电压具有不同的相。功率转换器220经由输出线A、B、C而彼此相耦合,以致于每一相位集结至对应的相位(例如,具有相同峰值电压时序或相同相位)。举例而言,第一转换器220a的输出线A耦合至第二和第三转换器220b和220c中的每一转换器的输出线A;第一转换器220a的输出线B耦合至第二和第三转换器220b和220c中的每一转换器的输出线B;以及,第一转换器220a的输出线C耦合至第二和第三转换器220b和220c中的每一转换器的输出线C。每一相同相位的转换器220输出线耦合至众多输出线230、232、234之一。举例而言,来自每一转换器220的输出线A耦合至AC输出线230;来自每一转换器220的输出线B耦合至AC输出线232;以及,来自每一转换器220的输出线C耦合至AC输出线234。
功率转换器220包含内部AC切换装置240。切换装置240响应由转换器220内部产生的控制讯号。当太阳能数组200的输出功率在某(例如指定的)临界值之上且稳定时,切换装置240将各别的功率转换器输出A、B、C耦合至输出线230、232、234。切换装置240配置成使转换器220与输出线230、232、234断开(切断耦合),以回应断接事故。断接事故包含但不限于转换器220过热、转换器220故障、及经由网络245而从群组控制器250传送至转换器220的中断命令。网络245可为经由有线或无线通讯介质而建立的LAN连接或WAN连接。
每一转换器220经由数据连接255而耦合至网络245。在某些实施例中,数据连接255是多线数字数据线连接。功率转换器220及群组控制器250中的网络245与内部线驱动器(未具体显示)能够执行使用此领域中熟知的通信协议的双向(例如,双路)数字数据流动,举例而言,通信协议可为RS-485。
群组控制器250包含一或更多处理器及内存装置,内存装置配置成接收及储存来自每一转换器220的输出电压数据及电流数据。群组控制器250藉由网络245以接收及输出来自转换器组中的转换器220的输出电压数据及电流数据。群组控制器250使用收到的输出电压数据及电流数据,以将转换器组中的转换器220的输出功率维持在输出功率最佳功率带或最少的转换损耗范围之内。
包含于每一太阳能面板205中的一或更多温度及/或电压传感器270以及一或更多辐射计(例如未特别显示的天空辐射计)经由网络245而传送数据给群组控制器250。群组控制器250经由网络245,将命令传送给功率转换器220以改变输出电流,以便将太阳能至电力的转换维持在MPP。增加地及替代地,使用无线数据传送器/接收器260和天线265,群组控制器250可以将从太阳能面板205及功率转换器220收集到数据经由无线数据网络传送给中央共享设备(未显示)。
在某些实施例中,使用例如但非限定通讯端口或调制解调器等有线接口(未显示),群组控制器250经由无线数据网络而将数据传送给中央共享设备。群组控制器250响应经由天线265及传送器/接收器260而自中央共享设备收到的命令。命令接收包含但不限于转换器组关机命令,转换器组关机命令是检测及维修太阳能数组200中的一或更多组件时所需的。
图3显示根据本发明的实施例智能型转换器切换操作。图3中所示的操作300的实施例仅用于说明。在不悖离本发明的范围之下,可以使用其它实施例。
在步骤305中使一或更多转换器赋能。因此,被赋能的转换器将功率输出至例如但非限定配电栅等AC电负载。
在步骤310中,相对于转换器的最佳功率带的功率上限,测量转换器的输出功率。由转换器各别地、由群组控制器使用自转换器收到的数据来测量功率、或是由此二者测量功率。假使输出功率未超过转换器的最佳功率带的上限,则处理重复步骤310,其中,连续地或以指定间隔,测量输出功率。
在操作转换器的输出功率超过一个转换器的最佳功率带的功率上限情形中,则在步骤315中将该组中的第二(例如另一)转换器赋能。使增加的转换器(例如,假使一个转换器先前被赋能则为第二转换器,假使二个转换器先前被赋能则为第三转换器)赋能,以致于总输出功率由多个转换器分担。举例而言,假使使第二转换器赋能时,则二操作转换器将接着均分先前为一个转换器的最佳功率带的上限的总输出功率的50%。因此,二操作转换器在最佳功率带之内操作,但是,接近最佳功率带的功率下限。
在增加的实施例中,假使在步骤310中群组中的二个转换器之前被赋能且二个操作转换器的输出功率超过二个转换器的最佳功率带的功率上限时,则该组中的第三个转换器则赋能,以致于三个操作转换器接着将平分(例如33.3%)二转换器的最佳功率带的功率上限功率。如此,三个操作转换器在最佳功率带之内操作。
在一个以上的功率转换器被赋能时,则在步骤320中,群组控制器测量转换器的输出功率以及将测量值与最佳功率带的功率下限相比较。由各别转换器个别地测量功率,由群组控制器使用自转换器收到的数据来测量功率、或是由此二者测量功率。假使输出功率超过最佳功率带的下限,则处理返回至步骤310,其中,连续地或以指定间隔,测量输出功率。
在群组的输出功率进入最佳功率带的功率下限之下时,在步骤325中使转换器之一失能,以便将维持操作每一转换器的输出功率带回至最佳功率带之内。之后,处理返回至步骤310,其中,连续地或以指定间隔,测量输出功率。
图4显示根据本发明的实施例用于以二输入电压操作的DC至AC转换器的功率转换效率相对于百分比(%)额定输出功率曲线图实施例。图4中所示的曲线图400的实施例仅为说明之用。在不悖离本发明的范围之下,可以使用其它实施例。
具有350伏特DC及597伏特DC输入用于图3中所示的转换器最佳功率带的实施例显示于图4中。无论输入电压为何,峰值功率转换效率为额定的最大输出功率的55%。因此,仅由转换器额定值及真实的输出功率,可以决定额定的最大输出功率50%至85%的最佳功率带。
图5显示根据本发明的实施例适应性功率管理的曲线图实施例。图5中所示的曲线图500的实施例仅用于说明。在不悖离本发明的范围之下,可以使用其它实施例。
曲线图500显示图2的实施例表示,其中,一个2400瓦特(W)额定值的转换器与三个1000瓦特(W)额定值的转换器相比较。随着对二种转换器配置功率输出增加至2400W,单一一个转换器在1000W进入其最佳功率带以及在1800W移出其最佳功率带。在三个1000W转换器的情形中,随着愈多换器被赋能,第一转换器在500W进入其最佳的功率带以及维持在其最佳功率带之内。增加的转换器将额外的功率加至输出,同时,所有转换器输出维持在最佳功率带之内。
图6显示根据本发明的实施例包含功率转换器组太阳能面板,功率转换器组经由响应中央控制器设备的单一AC切换机构而耦合至电力网。图6中所示的太阳能数组600的实施例仅为说明之用。在不悖离本发明的范围之下,可以使用其它实施例。
太阳能数组600包含三个功率转换器组602、604、606。这三组602、604、606是并联地耦合。因此,来自每一组602、604、606的输出功率会总合在一起以及经由AC功率需量计610而传送给电力网(或其它AC电负载)。
每一组602、604、606包含三个功率转换器。功率转换器可以与上述参考图2所述的功率转换器220具有相同的结构及配置。将了解三组均包含三个功率转换器的功率转换器组仅为举例说明,在不悖离本发明的范围之下,可以使用具有不同数目的组及每组具有不同数目的转换器实施例。
第一功率转换器组602包含功率转换器611、612、613及群组控制器622。第二功率转换器组604包含功率转换器614、615、616及群组控制器624。第三功率转换器组606包含功率转换器617、618、619及群组控制器626。此外,每一群组控制器622、624、626均包含数据收发器(举例而言,在某些实施例中也为传送器及接收器)。举例而言,群组控制器622包含耦合至天线630数据收发器628;群组控制器624包含耦合至天线634数据收发器632;群组控制器626包含耦合至天线638数据收发器636。
转换器组602、604、606依相位耦合至三相开关640。转换器组602、604、606将来自转换器611-619中的每一转换器的输出A、B、及C耦合至三相开关640之内的对应切换组件。举例而言,来自转换器611-619的第一输出经由第一输入线642耦合至三相开关640中的第一切换组件;来自转换器611-619的第二输出经由第二输入线644耦合至三相开关640中的第二切换组件;以及,来自转换器611-619的第三输出经由第三输入线646耦合至三相开关640中的第三切换组件。在某些实施例中,三相开关640是三相操作开关,其中,每一分别的开关耦合至来自每一组602、604、606对应的相位A、B、C。三相开关包含耦合至天线650收发器648。三相开关640可以操作以将输入线642、644、646耦合(例如连接及断接)至AC功率需量计610的各别相位输入652、654、656。举例而言,三相开关640配置成将第一输入线642耦合至相位输入652;将第二输入线644耦合至相位输入654;将第三输入线644耦合至相位输入654。
AC功率需量计610包含耦合至电负载输出导线,电负载为例如但不限于电力配电网。AC功率需量计610测量横跨输出导线线对线电压,其为电力网的AC电压。在增加的及替代的实施例中,AC功率需量计610测量输出导线的线对地电压。AC功率需量计610测量正经由AC功率需量计610的相位输入652、654、656传送AC电流三转换器组602、604、606所产生的总线电流。在某些实施例中,AC功率需量计610经由收发器658及天线660传送测量的电压及输出AC线电流给无线数据网络670。
无线数据网络670包含耦合至无线路由器674天线672。无线数据网络670与远程控制器676相通讯。在某些实施例中,远程控制器676经由经过因特网无线路由器674或其它有线通讯678而耦合至无线数据网络670。在某些实施例中,无线路由器674或天线672、或二者包含于远程控制器676之内。
远程控制器676经由收发器674及天线672接收数据。从群组控制器622、624、626接收数据。举例而言,群组控制器622经由收发器628及天线630传送数据至经由天线672及收发器674接收数据的远程控制器676。
远程控制器676也经由无线路由器674及天线672传送命令。命令由群组控制器622、624、626接收。举例而言,远程控制器676经由收发器674及天线672传送数据给经由天线630及收发器628接收数据群组控制器622。此外,远程控制器可以传送命令给三相开关640。举例而言,三相开关640可以经由天线650及收发器648而从远程控制器676接收命令。在某些实施例中,远程控制器676可以传送命令给AC功率需量计610,AC功率需量计610经由天线660及收发器658接收命令。
图7A显示根据本发明的实施例而产生电流涟波的波形曲线图实施例。图7A中所示的曲线图的实施例仅用于说明。在不悖离本发明的范围之下,可以使用其它实施例。
在所有群组控制器622、624、626及远程控制器676之间的无线网络可以增进太阳能数组600中每一功率转换器611-619的开启次数的协调。当功率转换器611-619中的功率开关开启时,输出电流开始以线性斜率增加。当功率转换器611-619中的功率开关关闭时,输出电流开始以线性斜率下降。此切换对AC正弦波产生锯齿波成份705。锯齿波705具有等于转换器功率切换频率的基本频率以及基本频率的很多谐波频率。当基本频率及谐波频率增加至AC正弦波时,在AC输出中产生谐波失真。当三个功率转换器并联及它们的功率开关开启次数及关闭次数同步时,锯齿波成份会变为三倍且谐波失真会变成三倍恶化。
图7B显示根据本发明的实施例提供电流给负载三个同步转换器的电流涟波曲线图实施例。图7B中所示的曲线图实施例仅作为说明。在不悖离本发明的范围之下,可以使用其它实施例。
在实施例中,三个功率转换器并联以及它们的功率开关开启次数在一周期时间内或在转换器切换频率一周期内均等地间隔。然后,在任何给定时间,有二个正在累积或降低输出电流的转换器,而第三个转换器正对输出电流作相反的操作。这意指,在任何时间,输出电流中的涟波对于一转换器以相同速率上升或下降,但是,以对于单一转换器所作的时间的三分之一上升或下降。结果,锯齿波710由转换器切换频率的三倍但为单一转换器的链波电流705的振幅的三分之一涟波电流所形成。链波电流的基本频率的谐波的振幅也是它们用于单一转换器的三分之一。
图7C显示根据本发明的实施例提供电流给负载三个协调的交替转换器的电流曲线图实施例。图7C中所示的曲线图实施例仅为说明。在不悖离本发明的范围之下,可以使用其它实施例。
在某些实施例中,这些转换器每一相位交替。在这些实施例中,一个转换器在第二转换器之前开启。此外,第三转换器在第二转换器之后的时间开启。每一转换器开启之间的间隔可以以正开启及关闭转换器的数目为基础。举例而言,间隔可以为负二十度(-20°)至正二十度(+20°)之间的相位移。协调交替会配合最大功率点计算同步操作,以降低传送给AC电力网的AC输出中的涟波。协调交替对来自每一转换器的频率提供破坏性干涉,而非图7B中的锯齿波710所示的建设性干涉。因此,由交替转换器所产生的锯齿波715形式显著地小于图7B中所示的同步转换器的锯齿波形式,在某些实施例中,小于图7A中所示的单一转换器的锯齿链波电流705。
图8显示根据本发明的实施例未经协调及经过协调的交替转换器对输出正弦波的谐波失真效果的曲线图实施例。图8中所示的曲线图的实施例仅用于说明。在不悖离本发明的范围之下,可以使用其它实施例。
图8中所示的图形表示比较未经协调的转换器与经过协调的交替转换器对于AC正弦波的谐波内容的效果。上方的图形显示用于二及三个并联耦合的未经协调的转换器输出电流的半正弦波。上方图形显示添加至正弦波的锯齿波电流涟波的振幅当从一转换器进入二并联的转换器再至三并联的转换器时,振幅逐渐变大。
底部图形显示用于二及三个并联耦合的、经过协调的交替转换器输出电流的半正弦波。将了解只有二及三个并联耦合的、经过协调的交替转换器的说明系仅为举例说明,在不悖离本发明的范围之下,可以使用多于三个的转换器。在经过协调的交替转换器情形中,从一转换器至二并联的转换器再至三并联的转换器,添加至正弦波的锯齿电流链波的频率逐渐变大,振幅逐渐变小。
协调的交替可以延伸至四或更多并联的转换器。对于经过协调的交替,在任何时刻,在N个并联的转换器之一中仅有一转换器功率开关从关闭状态转换至开启状态,或者,从开启状态转换至关闭状态。连续的功率开关致动(开启)而从关闭状态至开启状态的转换是转换器切换频率的周期除以N。
图9显示根据本发明的实施例无变压器、无升压DC至AC功率转换器。图9中所示的转换器的实施例仅用于说明。在不悖离本发明的范围之下,可以使用其它实施例。
在某些实施例中,没有DC电压升压,转换器900仍然能够从DC输入产生AC输出。因此,由于转换器900仅包含切换转换级,所以,转换器900的效率优于传统的DC至AC功率转换器。
在某些此类实施例中,功率开关及限流电感器在转换器220的内部连接在一起。太阳能数组包含多个太阳能面板905。太阳能面板905可以具有与上述参考图1所述的太阳能面板105相同的结构及配置。
转换器900包含正(+)DC功率输入线910及负(-)DC功率输入线912。输入电流感测电阻器914耦合于负DC功率输入线912及接地916之间。噪声过滤电容器918耦合于正DC输入功率线910与负DC功率输入线912之间。正DC输入功率线910又耦合至高侧功率开关920及高侧功率开关922的汲极节点,以致于电容器918的正极接脚也耦合至高侧功率开关920、922的汲极节点。功率开关920的源极耦合至第一飞轮二极管924的阴极及第一限流电感器926的第一接脚。第一飞轮二极管924的阳极耦合至接地916。第一限流电感器926的第二接脚耦合至第一下拉开关928的汲极、输出噪声过滤电容器930的第一接脚、及AC输出「L」线932。功率开关922的源极耦合至第二飞轮二极管934的阴极及第二限流电感器936的第一接脚。第二飞轮二极管934的阳极耦合至接地916。第二限流电感器936的第二接脚耦合至第二下拉开关938的汲极、输出噪声过滤电容器930的第二接脚、及AC输出「N」线940。下拉开关928、938的源极节点彼此耦合以及经由输出电流感测电阻器942而耦合至隔离的电力接地。转换器900包含转换器控制器944,转换器控制器944传送第一控制讯号给控制线945和946上的开关920、传送第二控制讯号给控制线948和950上的开关928、传送第三控制讯号给控制线952和954上的开关938、及传送第四控制讯号给控制线956和958上的开关922。
转换器900在控制器944输出的AC正弦波的正半周期期间操作,首先在线952上施加相对于线954正电压以开启开关938;然后,在线945上,相对于线946,施加在零伏特与正电压之间变化的脉冲宽度调变方波,而以固定地变化的开启时间及固定变化的关闭时间,交替地开启及关闭功率开关920。
功率开关920的固定地改变的开启时间及关闭时间使电感器926、936中的输出电流在功率开关920的一开启—关闭周期以变化量累积或衰减,以致于平均输出电流随着时间跟随正半正弦波的形状。下拉开关938在整个正的半正弦波的时间保持开启以及与下拉开关928的开启同时地关闭。以与正的半正弦波正好相同的方式,产生负的半AC正弦波,但是,开关928由相对于线950施加至线948的正电压开启整个负半正弦波的时间除外。然后,功率开关922接着由控制线958和956上的脉冲宽度调变方波电压交替地开启及关闭,以使输出电流跟随负的半正弦波的形状(输出电流方向相反)。
第一箝位二极管960的阳极耦合至开关928的汲极。第一箝位二极管960的阴极耦合至正的DC功率输入线910。第二箝位二极管962的阳极耦合至开关938的汲极,以及,第二箝位二极管962的阴极耦合至正DC功率输入线910。
横跨输入感测电阻器914的电压代表输入电流及藉由线964而耦合控制器944。输出感测电阻器942的跨压代表输出电流及藉由线966而耦合至控制器944。
图10显示根据本发明的实施例具有转换器组的太阳能数组,转换器组以三相三角配置耦合,用于3相AC发电。图10中所示的太阳能数组的实施例仅用于说明。在不悖离本发明的范围之下,可以使用其它实施例。
在某些实施例中,当转换器组1002、1004、1006以三相三角配置耦合时,由无线数据网络执行增加的协调处理。包含远程控制器(已于上述中参考图6详细说明)群组控制器1022、1024、1026无线数据网络执行适应性功率因素及相位平衡。
适应性功率因素及相位平衡如下述般操作。在用于整体安装(例如太阳能场)AC输出计1010侦测相对于其它相位的正弦波之一相位的过量电压正弦波时序偏移、或侦测一相位上的电压与电流之间的过量的正弦波时序偏移情形中,AC输出计1010经由无线收发器1032及天线1034而于无线网络上传送关于此问题的信息给所有群组控制器1022、1024、1026。群组控制器包含用于接收及传送信息收发器及天线。举例而言,群组控制器1022包含收发器及天线1023;群组控制器1024包含收发器及天线1025;及群组控制器1027。群组控制器1022、1024、1026接着分别经由LAN连接1040、1042及1044发讯给它们各别的转换器1011-1019,以将所有相位的正弦波时间带回至正常的三相时序。
最后,转换器组1002、1004、1006的LAN连接1040、1042及1044、无线数据网络及具有因特网(或其它数据接线)连接的无线路由器,使太阳能面板传感器、功率转换器1011-1019及AC计1010所收集的数据能够传送给远程的控制器,用于分析太阳能数组安装的功能及用于警告***操作者安装时有关的问题及故障。假使转换器组1002、1004、1006中的任何转换器1011-1019故障时,分组控制器1022、1024、1026将该转换器关机,而不影响其它转换器。之后,其余的转换器接管负载。群组控制器1022、1024、1026接着经由无线数据网络、无线路由器及因特网而传送警告给远程控制器以将故障通知***操作者。
增加地及替代地,在转换器组1002、1004、1006中的任何转换器1011-1019具有在临界值之上的内部温度情形中,该转换器进入输出功率限制模式,而组中的其它转换器产生更多的功率以补偿任何损失的功率。基于此条件,群组控制器1022、1024、1026也将警告传送给远程控制器。
在增加的及替代的实施例中,DC至AC转换器包含控制器,配置成执行称为转换器功率开关的可变频率切换之内部效率最佳化方法。不依赖其它先前所述的在转换器之间需要数据链结以协调转换器操作最佳化方法,控制器仍然能够执行可变频率切换。也称为切换频率转换器功率切换频率典型上设定为约20kHz。假使切换频率高于20kHz,由于在每一PWM循环中转移的功率较少,所以,可以使用较小的组件。较小的组件造成较低的产品成本。但是,随着切换频率上升,切换损耗也增加,且功率转换效率下降。或者,随着切换频率下降,切换损耗下降且功率转换效率上升。
在任何又增加的及替代的实施例中,转换器配置成维持连续导通模式(CCM)操作。转换器以二操作模式操作:CCM及不连续导通模式(DCM)。在CCM中,电感器电流绝不会达到O。在DCM中,电感器电流达到0。为了有效率的操作,转换器配置成仅以CCM模式操作。降低正弦波峰值输出功率间隔期间的切换损耗并维持CCM模式的操作转换器中的主控制是切换频率的调整以响应变化的电压及电流。如此,随着输出电压及功率接近正弦讯号中的最大值,切换频率向下调整以使最大功率转移期间的切换损耗最小。然后,随着正弦输出接近低输出电压及功率,切换频率可以增加至更高的频率,以致于流经电感器的电流不会降低至零。
虽然已参考举例说明的实施例来说明本发明,但是,习于此技艺者可以建议不同的改变及修改。本发明涵盖落在后附的申请专利范围之内的这些改变及修改。

Claims (24)

1.一种用于能量产生***中的能量转换数组,该数组包括:
多个转换器,适以接收直流电能量及输出交流电能量,其中,第一转换器的输出与第二转换器的输出交错。
2.如权利要求1所述的数组,其中,该多个转换器适以耦合至太阳能产生***、风能产生***、地热能产生***、及水为基础的能量产生***中的至少之一。
3.一种用于能量产生***中的能量转换数组,该数组包括:
多个智能型转换器,适以接收直流电能量及输出交流电能量,该多个转换器配置成执行功率带最佳化。
4.如权利要求3所述的数组,又包括多个传感器,配置成测量来自多个能量产生装置中的每一能量产生装置的值,该值对应于温度、输出电流及输出电压中的至少之一。
5.如权利要求4所述的数组,又包括耦合至该多个转换器一些的群组控制器,其中,该群组控制器配置成使用自该多个传感器接收到的值,以改变该多个转换器中至少之一的操作。
6.如权利要求5所述的数组,其中,该群组控制器配置成传送数据至远程控制器以及响应自该远程控制器接收到的命令。
7.如权利要求3所述的数组,又包括群组控制器,该群组控制器配置成:
测量该多个转换器的功率输出;
比较该测量的功率与最佳功率带的上限及该最佳功率带的下限中的至少之一;
使至少一额外的转换器赋能以回应该测量的功率超过该上限判定;以及
使至少一转换器禁能以回应该测量的功率低于该下限判定。
8.一种用于能量产生***中的能量转换数组,该数组包括:
多个太阳能功率产生装置;及
多个转换器,该多个转换器中的每一转换器适以接收来自该多个太阳能功率产生装置中之一的直流电能量及输出交流电能量,其中,第一转换器的输出与第二转换器的输出交错。
9.如权利要求8所述的数组,其中,该多个太阳能功率产生装置中的每一太阳能功率产生装置包括太阳能面板、太阳能面板串、及多个并联耦合的太阳能面板串中之一。
10.一种用于太阳能功率***中的能量转换数组,该数组包括:
多个太阳能功率产生装置;及
多个转换器,耦合至该多个功率产生装置,该多个转换器配置成接收未调节的直流电能量及协调交流电能量的输出。
11.如权利要求10所述的数组,又包括耦合至该多个转换器多个控制器。
12.如权利要求11所述的数组,其中,该多个控制器配置成经由局域网络连接而通讯。
13.如权利要求11所述的数组,其中,该多个控制器配置成传送数据给远程控制器。
14.如权利要求10所述的数组,其中,该多个控制器配置成:
测量该多个转换器的功率输出;
比较该测量的功率与最佳功率带的上限及该最佳功率带的下限中至少之一;
使至少一额外的转换器赋能以回应该测量的功率超过该上限判定;以及
使至少一转换器禁能以回应该测量的功率低于该下限判定。
15.如权利要求10所述的数组,其中,该多个转换器配置成执行该交流电能量的功率最佳化。
16.如权利要求10所述的数组,其中,该多个转换器配置成交错该交流电能量的输出。
17.如权利要求10所述的数组,其中,该太阳能功率产生装置是太阳能面板、太阳能面板串、及多个并联耦合的太阳能面板串中之一。
18.一种功率数组电流转换方法,该方法包括:
藉由多个转换器,接收来自多个能量产生装置的电能;
协调该多个转换器的切换以执行藉由该多个转换器直流电能至交流电能的转换。
19.如权利要求18所述的方法,测量对应于输入电流、输入电压、输出电流、输出电压、太阳能面板温度、及太阳能数组温度中至少之一的值。
20.如权利要求19所述的方法,其中,协调又包括根据该测量值以改变该多个转换器的操作。
21.如权利要求18所述的方法,又包括从功率需量计及不同的多个转换器的控制器中至少之一接收数据,其中,该数据包含电压、电流、及用于至少一太阳能面板的温度中至少之一的测量值。
22.如权利要求21所述的方法,其中,协调又包括根据该接收到的数据以改变该多个转换器的操作。
23.如权利要求18所述的方法,又包括传送数据给远程控制器及不同的多个转换器的第二控制器中至少之一,其中,该数据包含电压、电流、及用于至少一太阳能面板的温度中至少之一的测量值。
24.如权利要求18所述的方法,其中,协调包括:
测量该多个转换器的功率输出;
比较该测量的功率与最佳功率带的上限及该最佳功率带的下限中至少之一;
使至少一额外的转换器赋能以回应该测量的功率超过该上限判定;以及
使至少一转换器禁能以回应该测量的功率低于该下限判定。
CN2009801235590A 2008-05-14 2009-05-14 用于智能型转换器数组的***及方法 Pending CN102067429A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12777208P 2008-05-14 2008-05-14
US61/127,772 2008-05-14
PCT/US2009/044033 WO2009140548A2 (en) 2008-05-14 2009-05-14 System and method for an array of intelligent inverters

Publications (1)

Publication Number Publication Date
CN102067429A true CN102067429A (zh) 2011-05-18

Family

ID=41314983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801235590A Pending CN102067429A (zh) 2008-05-14 2009-05-14 用于智能型转换器数组的***及方法

Country Status (7)

Country Link
US (1) US20090283129A1 (zh)
EP (1) EP2291908A4 (zh)
JP (1) JP2011522505A (zh)
KR (1) KR20110014200A (zh)
CN (1) CN102067429A (zh)
TW (1) TW201014146A (zh)
WO (1) WO2009140548A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014000440A1 (zh) * 2012-06-27 2014-01-03 华为技术有限公司 逆变器控制方法、装置和逆变器
CN110677023A (zh) * 2018-07-02 2020-01-10 帕洛阿尔托研究中心公司 用于提高效率及电力电子装置使用期限的协调功率转换器

Families Citing this family (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US7772716B2 (en) 2007-03-27 2010-08-10 Newdoll Enterprises Llc Distributed maximum power point tracking system, structure and process
US9196770B2 (en) 2007-03-27 2015-11-24 Newdoll Enterprises Llc Pole-mounted power generation systems, structures and processes
JP5498388B2 (ja) 2007-10-15 2014-05-21 エーエムピーティー, エルエルシー 高効率太陽光電力のためのシステム
US7919953B2 (en) 2007-10-23 2011-04-05 Ampt, Llc Solar power capacitor alternative switch circuitry system for enhanced capacitor life
DE102007054647A1 (de) * 2007-11-15 2009-06-18 Siemens Ag Solarwechselrichter mit mehreren parallel geschalteten Einzelwechselrichtern und mit einer übergeordneten elektronischen Steuereinheit
US8294451B2 (en) * 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
WO2009072076A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Current sensing on a mosfet
EP2232663B2 (en) 2007-12-05 2021-05-26 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US7960950B2 (en) 2008-03-24 2011-06-14 Solaredge Technologies Ltd. Zero current switching
US8037327B2 (en) * 2008-03-31 2011-10-11 Agilent Technologies, Inc. System and method for improving dynamic response in a power supply
US8289183B1 (en) 2008-04-25 2012-10-16 Texas Instruments Incorporated System and method for solar panel array analysis
EP3719949A1 (en) 2008-05-05 2020-10-07 Solaredge Technologies Ltd. Direct current power combiner
US8139382B2 (en) * 2008-05-14 2012-03-20 National Semiconductor Corporation System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
US8279644B2 (en) * 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
US9077206B2 (en) 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
US7962249B1 (en) * 2008-05-14 2011-06-14 National Semiconductor Corporation Method and system for providing central control in an energy generating system
US7969133B2 (en) 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US7991511B2 (en) * 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US10153383B2 (en) * 2008-11-21 2018-12-11 National Semiconductor Corporation Solar string power point optimization
US20100156188A1 (en) * 2008-12-24 2010-06-24 Fishman Oleg S Solar Photovoltaic Power Collection via High Voltage, Direct Current Systems with Conversion and Supply to an Alternating Current Transmission Network
US8212408B2 (en) * 2008-12-24 2012-07-03 Alencon Acquisition Co., Llc. Collection of electric power from renewable energy sources via high voltage, direct current systems with conversion and supply to an alternating current transmission network
FI122046B (fi) * 2009-01-12 2011-07-29 Abb Oy Aurinkovoimala
EP2219276B1 (de) * 2009-02-11 2015-12-02 SMA Solar Technology AG Photovoltaikanlage zur dreiphasigen Einspeisung in ein elektrisches Energieversorgungsnetz
CA2757331A1 (en) 2009-04-01 2010-10-07 Nextronex Inc. A grid tie solar system and a method
WO2010121211A2 (en) 2009-04-17 2010-10-21 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
WO2010120315A1 (en) 2009-04-17 2010-10-21 Ampt, Llc Methods and apparatus for adaptive operation of solar power systems
JP5680059B2 (ja) * 2009-04-17 2015-03-04 ナショナル セミコンダクター コーポレーションNational Semiconductor Corporation 光起電力システムにおける過剰電圧保護システム及び方法
US20100288327A1 (en) * 2009-05-13 2010-11-18 National Semiconductor Corporation System and method for over-Voltage protection of a photovoltaic string with distributed maximum power point tracking
CN102422429B (zh) 2009-05-22 2014-08-06 太阳能安吉科技有限公司 电隔离的散热接线盒
US20100300509A1 (en) * 2009-05-26 2010-12-02 Douglas William Raymond Solar photovoltaic modules with integral wireless telemetry
US8954203B2 (en) * 2009-06-24 2015-02-10 Tigo Energy, Inc. Systems and methods for distributed power factor correction and phase balancing
CN102574166B (zh) 2009-08-14 2015-06-10 纽道尔企业有限责任公司 增强的太阳能面板、流体传送***和用于太阳能***的相关过程
US20160065127A1 (en) 2009-08-14 2016-03-03 Newdoll Enterprises Llc Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
US9200818B2 (en) 2009-08-14 2015-12-01 Newdoll Enterprises Llc Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
US8874277B2 (en) * 2009-09-15 2014-10-28 Denis Kouroussis Smart-grid adaptive power management method and system with power factor optimization and total harmonic distortion reduction
US20110084646A1 (en) * 2009-10-14 2011-04-14 National Semiconductor Corporation Off-grid led street lighting system with multiple panel-storage matching
US20110090089A1 (en) * 2009-10-15 2011-04-21 Yuhao Luo Method and apparatus for detecting a fault in a solar cell panel and an inverter
WO2011049985A1 (en) 2009-10-19 2011-04-28 Ampt, Llc Novel solar panel string converter topology
JP2011120449A (ja) * 2009-10-29 2011-06-16 Sanyo Electric Co Ltd 発電システム、制御装置および切替回路
US8421400B1 (en) 2009-10-30 2013-04-16 National Semiconductor Corporation Solar-powered battery charger and related system and method
DE202009016164U1 (de) * 2009-11-26 2010-03-04 Carlo Gavazzi Services Ag Steuerungsvorrichtung für Fotovoltaikmodule
FR2953997B1 (fr) 2009-12-11 2012-01-20 Centre Nat Rech Scient Systeme de gestion electronique de cellules photovoltaiques avec seuils adaptes
FR2953996B1 (fr) * 2009-12-11 2012-01-20 Centre Nat Rech Scient Systeme de gestion electronique de cellules photovoltaiques fonction de la meteorologie
TW201123670A (en) * 2009-12-23 2011-07-01 Univ Nat Taiwan Solar electric power generation system and monitoring method of the same
US20110224839A1 (en) * 2010-03-11 2011-09-15 Christopher Thompson Power Point Tracking
US9502904B2 (en) 2010-03-23 2016-11-22 Eaton Corporation Power conversion system and method providing maximum efficiency of power conversion for a photovoltaic system, and photovoltaic system employing a photovoltaic array and an energy storage device
DE102010016138A1 (de) * 2010-03-25 2011-09-29 Refu Elektronik Gmbh Solarwechselrichter für erweiterten Einstrahlungswertebereich und Betriebsverfahren
US8853886B2 (en) 2010-06-09 2014-10-07 Tigo Energy, Inc. System for use of static inverters in variable energy generation environments
US8513833B2 (en) * 2010-06-20 2013-08-20 Hewlett-Packard Development Company, L.P. Circuit limiting an absolute voltage difference between electrical paths of photovoltaic dies
DE102010036816A1 (de) * 2010-08-03 2012-02-09 Newtos Ag Verfahren und Vorrichtung zur Überwachung und Steuerung einer Photovoltaik-Anlage
US20120049635A1 (en) * 2010-08-27 2012-03-01 General Electric Company Solar power generation system and method
JP6029587B2 (ja) * 2010-10-05 2016-11-24 アレンコン・アクイジション・カンパニー・エルエルシー 高電圧エネルギーハーベスティング及び変換再生可能エネルギー公益事業規模電力システム、及び該システムのための視覚監視及び制御システム
GB2485335B (en) * 2010-10-25 2012-10-03 Enecsys Ltd Renewable energy monitoring system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
CN102005953B (zh) * 2010-11-17 2012-08-08 特变电工新疆新能源股份有限公司 一种并网逆变器及其交流输出滤波方法
US9118213B2 (en) 2010-11-24 2015-08-25 Kohler Co. Portal for harvesting energy from distributed electrical power sources
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
US8155899B2 (en) * 2010-12-16 2012-04-10 Gregory Smith Efficiency meter for photovoltaic power generation systems
KR101191214B1 (ko) 2010-12-28 2012-10-15 엘지전자 주식회사 태양광 발전시스템
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US7977818B1 (en) 2011-01-25 2011-07-12 Wahl Eric R Safety device for plug and play solar energy system
TWI447339B (zh) 2011-01-27 2014-08-01 Univ Nat Central 太陽追蹤方法及太陽追蹤系統裝置
CN102624274A (zh) * 2011-01-30 2012-08-01 上海康威特吉能源技术有限公司 一种交错并联并网逆变器及其控制方法
US8686332B2 (en) 2011-03-07 2014-04-01 National Semiconductor Corporation Optically-controlled shunt circuit for maximizing photovoltaic panel efficiency
KR101296812B1 (ko) * 2011-06-08 2013-08-14 한국전기연구원 계통 연계형 모의운전 시스템 및 그 운용방법
US9059604B2 (en) * 2011-06-27 2015-06-16 Sunpower Corporation Methods and apparatus for controlling operation of photovoltaic power plants
US8774974B2 (en) * 2011-07-15 2014-07-08 First Solar, Inc. Real-time photovoltaic power plant control system
CN102255536B (zh) * 2011-07-18 2013-06-05 浙江昱能光伏科技集成有限公司 太阳能光伏三相微逆变器***及提高其转换效率的方法
US8941956B2 (en) * 2011-07-26 2015-01-27 Railpower, Llc Switching ground tether circuit
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US8284574B2 (en) * 2011-10-17 2012-10-09 Solarbridge Technologies, Inc. Method and apparatus for controlling an inverter using pulse mode control
US8982591B2 (en) 2011-10-18 2015-03-17 Tigo Energy, Inc. System and method for exchangeable capacitor modules for high power inverters and converters
US9680301B2 (en) 2011-10-27 2017-06-13 Sunpower Corporation Master-slave architecture for controlling operation of photovoltaic power plants
KR101272059B1 (ko) * 2011-10-31 2013-06-07 강문수 광역 멀티 스트링 태양광 발전 시스템을 위한 트랜스포머 결합형 병렬 인버터
GB2497275A (en) 2011-11-25 2013-06-12 Enecsys Ltd Modular adjustable power factor renewable energy inverter system
FR2983363B1 (fr) * 2011-11-28 2014-07-25 Schneider Electric Ind Sas Procede et systeme de gestion dynamique d'un reseau de distribution d'electricite
JP6003048B2 (ja) * 2011-11-29 2016-10-05 ソニー株式会社 発電装置
US20130155738A1 (en) * 2011-12-19 2013-06-20 General Electric Company System and method for controlling reactive power in a power conversion system
KR101141074B1 (ko) * 2012-02-02 2012-05-03 주식회사 케이디파워 멀티인버터 태양광 발전시스템
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
EP2815283A4 (en) * 2012-02-15 2015-08-26 Gear Llc E ELECTRICAL COMBINATION BOX WITH ENHANCED FUNCTIONALITY
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
JP5856294B2 (ja) * 2012-05-29 2016-02-09 ユーケーシー エレクトロニクス(ホンコン)カンパニー., リミテッド 太陽光発電監視方法及びその方法に用いられる太陽光発電監視システム
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9502902B2 (en) 2012-06-26 2016-11-22 Solarcity Corporation System, method and apparatus for generating layout of devices in solar installations
US9608438B2 (en) 2012-07-17 2017-03-28 Electronics And Telecommunications Research Institute Inverter system for photovoltaic power generation
KR101395514B1 (ko) * 2012-11-26 2014-05-14 서울대학교산학협력단 독립적 mppt가 가능한 단상 계통 연계형 인버터 장치 및 그 제어 방법
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
US9397497B2 (en) 2013-03-15 2016-07-19 Ampt, Llc High efficiency interleaved solar power supply system
US9882507B2 (en) 2013-04-16 2018-01-30 Solarcity Corporation Power factor adjustment in multi-phase power system
CZ2013311A3 (cs) * 2013-04-25 2014-06-04 Unites Systems A.S. Systém pro hospodaření s elektrickou energií vyrobenou fotovoltaickými články
US9742188B2 (en) * 2013-06-26 2017-08-22 Energy Development Llc System and method for installing solar panels based on number of panels and output of panels
TWI505598B (zh) * 2013-08-23 2015-10-21 Ablerex Electronics Co Letd 太陽能電池模組遮蔽補償裝置
JP6163558B2 (ja) * 2013-08-27 2017-07-12 東芝三菱電機産業システム株式会社 太陽光発電システム
US9742303B2 (en) * 2013-09-26 2017-08-22 Vestas Wind Systems A/S Power conversion system with re-configurable power flow
KR102205161B1 (ko) * 2014-01-15 2021-01-19 엘지전자 주식회사 전력변환장치 및 태양광 모듈
CN103825479A (zh) * 2014-02-20 2014-05-28 华为技术有限公司 一种功率变换器
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN104167761B (zh) * 2014-08-15 2017-04-19 江苏兆伏新能源有限公司 一种光伏逆变器发电***及控制方法
TWI514714B (zh) * 2014-12-09 2015-12-21 Univ Nat Cheng Kung 分散式太陽能發電系統與其控制方法
CN104538987B (zh) * 2014-12-31 2017-01-11 阳光电源股份有限公司 一种光伏逆变器交流侧并联的控制方法及***
CN104821773A (zh) * 2015-05-05 2015-08-05 无锡联动太阳能科技有限公司 新型的太阳能发电***
TWI566514B (zh) * 2015-05-11 2017-01-11 茂勝開發股份有限公司 太陽能發電模組之直流電功率的監測系統及方法
US9887581B2 (en) * 2015-05-15 2018-02-06 Solarcity Corporation Connectivity in an energy generation network
TWI573385B (zh) * 2015-12-18 2017-03-01 國立勤益科技大學 太陽光電模組陣列之最佳化線上即時故障檢測器及其故障檢測方法
US10566798B2 (en) 2016-03-31 2020-02-18 Texas Instruments Incorporated Solar panel disconnect and reactivation system
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US10483759B2 (en) 2016-04-07 2019-11-19 Alencon Acquisition Co., Llc Integrated multi-mode large-scale electric power support system for an electrical grid
JP6681476B2 (ja) * 2016-10-05 2020-04-15 株式会社日立製作所 電力変換装置および電力変換装置の制御方法
US10488879B2 (en) 2017-03-09 2019-11-26 Ecole Polytechnique Federale De Lausanne (Epfl) Device and method for performing maximum power point tracking for photovoltaic devices in presence of hysteresis
US10554149B2 (en) * 2017-11-20 2020-02-04 Solaredge Technologies Ltd. Providing positional awareness information and increasing power quality of parallel connected inverters
TWI658687B (zh) 2018-03-14 2019-05-01 財團法人工業技術研究院 直流至交流轉能器及其控制方法
US10516271B2 (en) * 2018-06-29 2019-12-24 LT Lighting (Taiwan) Corp. Single-phase energy utilization tracking inverter
CN112368900A (zh) * 2018-07-25 2021-02-12 韦斯特尔电子工业和贸易有限责任公司 逆变器***及用于操作逆变器***的方法
KR102196879B1 (ko) * 2019-03-20 2020-12-30 최철용 복수의 전력제어기기가 포함된 전력제어시스템 및 방법
US10975847B1 (en) * 2019-11-08 2021-04-13 General Electric Company System and method for farm-level control of transient power boost during frequency events
US11264917B2 (en) 2019-12-12 2022-03-01 Kohler Co. Interleaved inverter
KR102573144B1 (ko) * 2021-03-15 2023-09-01 전북대학교산학협력단 다층 신경망 고장 진단 모델을 이용한 태양광 인버터 구동 방법 및 시스템
TWI782456B (zh) * 2021-03-23 2022-11-01 榮欣國際貿易有限公司 太陽能管理系統
CN113328637B (zh) * 2021-06-01 2022-05-06 浙江大学 基于工业互联网的群组协同控制的分布式大电流电源***
TWI814206B (zh) * 2022-01-12 2023-09-01 台達電子工業股份有限公司 三相功率轉換器之輸出電流的箝位控制方法
TWI827067B (zh) * 2022-05-25 2023-12-21 四季洋圃生物機電股份有限公司 太陽能效能提升系統

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1489765A (en) * 1922-11-28 1924-04-08 Jones Parley Pencil
US3740636A (en) * 1971-11-05 1973-06-19 Us Navy Charge regulator and monitor for spacecraft solar cell/battery system control
US4129788A (en) * 1977-04-26 1978-12-12 Dracon Industries High efficiency DC to DC converter
US4280097A (en) * 1980-07-14 1981-07-21 The United States Of America As Represented By The Secretary Of The Navy Isolated DC voltage monitoring system
JPS6154820A (ja) * 1984-08-23 1986-03-19 シャープ株式会社 光発電システムの直交変換装置
US4688538A (en) * 1984-12-31 1987-08-25 Combustion Electromagnetics, Inc. Rapid pulsed multiple pulse ignition and high efficiency power inverter with controlled output characteristics
IE56527B1 (en) * 1985-01-15 1991-08-28 John V Byrne Power supply systems for reluctance motors
US5107151A (en) * 1989-08-22 1992-04-21 Unique Mobility, Inc. Switching circuit employing electronic devices in series with an inductor to avoid commutation breakdown and extending the current range of switching circuits by using igbt devices in place of mosfets
US5600247A (en) * 1992-07-08 1997-02-04 Benchmarq Microelectronics Dynamically balanced fully differential circuit for use with a battery monitoring circuit
US6369576B1 (en) * 1992-07-08 2002-04-09 Texas Instruments Incorporated Battery pack with monitoring function for use in a battery charging system
US5284719A (en) * 1992-07-08 1994-02-08 Benchmarq Microelectronics, Inc. Method and apparatus for monitoring battery capacity
US5307006A (en) * 1992-09-09 1994-04-26 The United States Of America As Represented By The United States Department Of Energy Optical voltage reference
US5408404A (en) * 1993-03-25 1995-04-18 Rockwell International Corp. High frequency interleaved DC-to-AC power converter apparatus
US5412308A (en) * 1994-01-06 1995-05-02 Hewlett-Packard Corporation Dual voltage power supply
US5669987A (en) * 1994-04-13 1997-09-23 Canon Kabushiki Kaisha Abnormality detection method, abnormality detection apparatus, and solar cell power generating system using the same
US5659465A (en) * 1994-09-23 1997-08-19 Aeroviroment, Inc. Peak electrical power conversion system
US5604430A (en) * 1994-10-11 1997-02-18 Trw Inc. Solar array maximum power tracker with arcjet load
US5528125A (en) * 1995-04-05 1996-06-18 Texas Instruments Incorporated Buck-boost switch mode power supply with burst topology
US6184656B1 (en) * 1995-06-28 2001-02-06 Aevt, Inc. Radio frequency energy management system
US5751120A (en) * 1995-08-18 1998-05-12 Siemens Stromberg-Carlson DC operated electronic ballast for fluorescent light
JP3382434B2 (ja) * 1995-09-22 2003-03-04 キヤノン株式会社 電池電源の電圧制御装置および電圧制御方法
US5747967A (en) * 1996-02-22 1998-05-05 Midwest Research Institute Apparatus and method for maximizing power delivered by a photovoltaic array
US5666040A (en) * 1996-08-27 1997-09-09 Bourbeau; Frank Networked battery monitor and control system and charging method
JP2000059986A (ja) * 1998-04-08 2000-02-25 Canon Inc 太陽電池モジュ―ルの故障検出方法および装置ならびに太陽電池モジュ―ル
JP3545203B2 (ja) * 1998-05-22 2004-07-21 三洋電機株式会社 インバータの運転方法及び電源システム
JP2000228529A (ja) * 1998-11-30 2000-08-15 Canon Inc 過電圧防止素子を有する太陽電池モジュール及びこれを用いた太陽光発電システム
US6198178B1 (en) * 1999-12-21 2001-03-06 International Power Systems, Inc. Step wave power converter
JP3809316B2 (ja) * 1999-01-28 2006-08-16 キヤノン株式会社 太陽光発電装置
US6285572B1 (en) 1999-04-20 2001-09-04 Sanyo Electric Co., Ltd. Method of operating a power supply system having parallel-connected inverters, and power converting system
JP2000341959A (ja) 1999-05-31 2000-12-08 Kawasaki Steel Corp 発電システム
JP2001268800A (ja) * 2000-03-16 2001-09-28 Kawasaki Steel Corp 太陽光発電制御方法及び装置
US20050257827A1 (en) * 2000-04-27 2005-11-24 Russell Gaudiana Rotational photovoltaic cells, systems and methods
AU2001278923A1 (en) * 2000-07-13 2002-01-30 Nxegen System and method for monitoring and controlling energy usage
US6628011B2 (en) * 2000-07-28 2003-09-30 International Power System, Inc. DC to DC converter and power management system
US6281485B1 (en) * 2000-09-27 2001-08-28 The Aerospace Corporation Maximum power tracking solar power system
JP2002112459A (ja) * 2000-09-29 2002-04-12 Canon Inc 太陽電池モジュールおよび発電装置
KR100901217B1 (ko) * 2000-12-04 2009-06-05 엔이씨 도낀 가부시끼가이샤 대칭형 dc/dc 컨버터
JP3923737B2 (ja) * 2001-02-22 2007-06-06 ヤンマー株式会社 分散電源用発電機の制御方法
JP3394996B2 (ja) * 2001-03-09 2003-04-07 独立行政法人産業技術総合研究所 最大電力動作点追尾方法及びその装置
JP2002324566A (ja) * 2001-04-25 2002-11-08 Sanyo Electric Co Ltd 分散発電システムとそれを利用可能な保守システムおよび保守方法
JP3525910B2 (ja) * 2001-05-08 2004-05-10 国産電機株式会社 インバータ発電装置及びインバータ発電装置と外部交流電源との並列運転方法
AU2002348084A1 (en) * 2001-10-25 2003-05-06 Sandia Corporation Alternating current photovoltaic building block
JP2003333862A (ja) * 2002-05-15 2003-11-21 Toshiba Corp 電力変換装置
JP4267274B2 (ja) * 2002-08-28 2009-05-27 富士通マイクロエレクトロニクス株式会社 電源変動抑制装置、半導体装置及び電源変動抑制方法
US6966184B2 (en) * 2002-11-25 2005-11-22 Canon Kabushiki Kaisha Photovoltaic power generating apparatus, method of producing same and photovoltaic power generating system
US20040123545A1 (en) * 2002-12-31 2004-07-01 Phillips John D. Laminate shingle having a thick butt edge
US7046527B2 (en) * 2003-05-09 2006-05-16 Distributed Power, Inc. Power converter with ripple current cancellation using skewed switching techniques
US7269036B2 (en) * 2003-05-12 2007-09-11 Siemens Vdo Automotive Corporation Method and apparatus for adjusting wakeup time in electrical power converter systems and transformer isolation
US6984967B2 (en) * 2003-10-29 2006-01-10 Allegro Microsystems, Inc. Multi-mode switching regulator
JP4491622B2 (ja) * 2003-11-10 2010-06-30 学校法人東京電機大学 太陽光発電装置
JP2005151662A (ja) * 2003-11-13 2005-06-09 Sharp Corp インバータ装置および分散電源システム
US20070164612A1 (en) * 2004-01-09 2007-07-19 Koninkijke Phillips Electronics N.V. Decentralized power generation system
JP4133924B2 (ja) * 2004-05-14 2008-08-13 Necトーキン株式会社 電源装置
US7564149B2 (en) * 2004-07-21 2009-07-21 Kasemsan Siri Sequentially-controlled solar array power system with maximum power tracking
US20060034103A1 (en) * 2004-08-14 2006-02-16 Rick West Utility grid-interactive power converter with ripple current cancellation using skewed switching techniques
WO2006047715A2 (en) * 2004-10-27 2006-05-04 Nextek Power Systems, Inc. Portable hybrid applications for ac/dc load sharing
US7863829B2 (en) * 2004-12-30 2011-01-04 Solarone Solutions, Inc. LED lighting system
US8204709B2 (en) * 2005-01-18 2012-06-19 Solar Sentry Corporation System and method for monitoring photovoltaic power generation systems
US7193872B2 (en) * 2005-01-28 2007-03-20 Kasemsan Siri Solar array inverter with maximum power tracking
US7466112B2 (en) * 2005-02-08 2008-12-16 Linear Technology Corporation Variable frequency current-mode control for switched step up-step down regulators
FR2885237B1 (fr) * 2005-05-02 2007-06-29 Agence Spatiale Europeenne Dispositif de commande d'un convertisseur de tension continue a commutation et son utilisation pour maximiser la puissance delivree par un generateur photovoltaique
US7477080B1 (en) * 2005-08-22 2009-01-13 Otto Fest Current loop powered isolator and method
CA2646226C (en) * 2006-03-22 2011-05-24 Hidetoshi Kitanaka Bidirectional buck boost dc-dc converter, railway coach drive control system, and railway feeder system
KR101205279B1 (ko) * 2006-03-23 2012-11-27 엔페이즈 에너지, 인코포레이티드 직류를 교류로 변환하는 방법 및 장치
JP4589888B2 (ja) * 2006-03-23 2010-12-01 株式会社ケーヒン 電池電圧測定回路、およびバッテリecu
IL176619A0 (en) * 2006-06-29 2006-10-31 Zalman Schwartzman A photovoltaic array for concentrated solar energy generator
KR100809443B1 (ko) * 2006-07-26 2008-03-07 창원대학교 산학협력단 태양광 발전 시스템용 단상 전력변환기의 제어장치
US8751053B2 (en) * 2006-10-19 2014-06-10 Tigo Energy, Inc. Method and system to provide a distributed local energy production system with high-voltage DC bus
US9088178B2 (en) * 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8013472B2 (en) * 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8473250B2 (en) * 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8319483B2 (en) * 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
JP5498388B2 (ja) * 2007-10-15 2014-05-21 エーエムピーティー, エルエルシー 高効率太陽光電力のためのシステム
US8294451B2 (en) * 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
FR2927733B1 (fr) * 2008-02-19 2011-05-06 Photowatt Internat Installation de modules photovoltaiques telecommandes
US7925552B2 (en) * 2008-03-13 2011-04-12 Solarcity Corporation Renewable energy system monitor
US9077206B2 (en) * 2008-05-14 2015-07-07 National Semiconductor Corporation Method and system for activating and deactivating an energy generating system
US7991511B2 (en) * 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8279644B2 (en) * 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
US8139382B2 (en) * 2008-05-14 2012-03-20 National Semiconductor Corporation System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
US7969133B2 (en) * 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US7646116B2 (en) * 2008-05-22 2010-01-12 Petra Solar Inc. Method and system for balancing power distribution in DC to DC power conversion
WO2010002960A1 (en) * 2008-07-01 2010-01-07 Satcon Technology Corporation Photovoltaic dc/dc micro-converter
US10153383B2 (en) * 2008-11-21 2018-12-11 National Semiconductor Corporation Solar string power point optimization
WO2010121211A2 (en) * 2009-04-17 2010-10-21 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
JP5680059B2 (ja) * 2009-04-17 2015-03-04 ナショナル セミコンダクター コーポレーションNational Semiconductor Corporation 光起電力システムにおける過剰電圧保護システム及び方法
US20100288327A1 (en) * 2009-05-13 2010-11-18 National Semiconductor Corporation System and method for over-Voltage protection of a photovoltaic string with distributed maximum power point tracking

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014000440A1 (zh) * 2012-06-27 2014-01-03 华为技术有限公司 逆变器控制方法、装置和逆变器
CN110677023A (zh) * 2018-07-02 2020-01-10 帕洛阿尔托研究中心公司 用于提高效率及电力电子装置使用期限的协调功率转换器
CN110677023B (zh) * 2018-07-02 2022-08-12 帕洛阿尔托研究中心公司 用于提高效率及电力电子装置使用期限的协调功率转换器

Also Published As

Publication number Publication date
US20090283129A1 (en) 2009-11-19
WO2009140548A3 (en) 2010-02-25
EP2291908A2 (en) 2011-03-09
KR20110014200A (ko) 2011-02-10
EP2291908A4 (en) 2015-05-20
JP2011522505A (ja) 2011-07-28
WO2009140548A2 (en) 2009-11-19
TW201014146A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
CN102067429A (zh) 用于智能型转换器数组的***及方法
CN104135219B (zh) 包括发电装置的集群的电站的构造
Kouro et al. Grid-connected photovoltaic systems: An overview of recent research and emerging PV converter technology
CN101953060B (zh) 利用直流电源的分布式电能收集***
Bacha et al. Photovoltaics in microgrids: An overview of grid integration and energy management aspects
CN106953525B (zh) 阻抗型多模块串联式光伏直流升压变换器
CN103238259B (zh) 高压能源采集和转换可回收能源实用规模的电力***及用于该***的可视监控和控制***
CN102594178B (zh) 串联连接的逆变器
CN103607032B (zh) 可再生能源发电、输变电和电网接入一体化***
CN103782471B (zh) 用于太阳能光伏能量收集和转换的***及方法
CN105140952A (zh) 利用在直流电源的分布式电能收集***
CN106788216A (zh) 一种光伏逆变***以及光伏逆变方法
CN104919600A (zh) 具有集成后板的逆变器的太阳能模块
CN204578458U (zh) 一种汇流箱电路结构及光伏发电***
CN104578171B (zh) 一种直流光伏发电模块的控制方法
WO2010136968A1 (en) Apparatus and method for managing and conditioning photovoltaic power harvesting systems
CN102655380A (zh) 一种分散式最大功率追踪的光伏***及其控制方法
CN209217732U (zh) 交直流混合微电网储能***
CN101847876A (zh) 一种三相光伏并网逆变***
Manojkumar et al. Power electronics interface for hybrid renewable energy system—A survey
CN104333036B (zh) 一种多源协调控制***
Petrone et al. Distributed maximum power point tracking: challenges and commercial solutions
CN104796029A (zh) 应用于光伏太阳能的微型逆变器
KR20210121588A (ko) 태양광 발전 시스템의 성능 향상을 위한 차동 전력변환기
CN208015589U (zh) 电力能源利用***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110518