CN101622054A - 减少发电装置中二氧化碳排放的方法 - Google Patents

减少发电装置中二氧化碳排放的方法 Download PDF

Info

Publication number
CN101622054A
CN101622054A CN200880006105A CN200880006105A CN101622054A CN 101622054 A CN101622054 A CN 101622054A CN 200880006105 A CN200880006105 A CN 200880006105A CN 200880006105 A CN200880006105 A CN 200880006105A CN 101622054 A CN101622054 A CN 101622054A
Authority
CN
China
Prior art keywords
gas
carbon dioxide
pressure
heat recovery
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880006105A
Other languages
English (en)
Other versions
CN101622054B (zh
Inventor
K-J·李
G·普罗托帕帕斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38110448&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN101622054(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN101622054A publication Critical patent/CN101622054A/zh
Application granted granted Critical
Publication of CN101622054B publication Critical patent/CN101622054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/50Building or constructing in particular ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种用于减少发电装置中CO2排放的方法,其中所述发电装置包括至少一个与热回收蒸汽发生器设备偶联的燃气轮机,和CO2捕集设备包括吸收器和再生器,所述方法包括如下步骤:(a)将离开具有一定高压的燃气轮机的热废气加入热回收蒸汽发生器设备中,以产生蒸汽和含二氧化碳的烟气物流;(b)通过在具有高操作压力的吸收器中使含二氧化碳的烟气物流与吸收液体接触而从所述烟气物流中脱除二氧化碳,以获得富含二氧化碳的吸收液体和纯化的烟气物流,其中调节燃气轮机的设置和/或构造使得离开燃气轮机的热废气的压力为吸收器的高操作压力的至少40%。

Description

减少发电装置中二氧化碳排放的方法
技术领域
本发明涉及减少发电装置中二氧化碳(CO2)排放的方法。
背景技术
世界上大部分能量供应通过在发电装置中燃烧燃料、特别是天然气或合成气而提供。通常在一个或多个燃气轮机中燃烧燃料,和将所得气体用于产生蒸汽。随后将蒸汽用于发电。燃料燃烧导致产生CO2。在最近的几十年中,排放至大气的CO2量在全球范围内已经明显增大。按Kyoto协议,必须减少CO2排放,以防止或抵消不希望的气候变化。
燃气轮机烟气的CO2浓度取决于所应用的燃料和燃烧以及热回收过程,和一般相对低,通常为3-15%。因此,减少CO2排放使得希望从废气中分离出CO2,因为压缩和存放全部烟气物流过于昂贵。因为这个原因,所以使用专用的CO2捕集设备以从烟气物流中脱除CO2和从而产生浓缩的CO2物流是有利的。
例如在EP 1,688,173中描述了这样的方法,其中描述了使用具有吸收器和再生器的CO2捕集设备的用于在海上平台上回收二氧化碳和发电的方法。在进入吸收器之前,使用鼓风机对含CO2的废气加压。对该鼓风机的需求增大了方法的总成本和操作复杂性。
目前已经发现当产生加压的含CO2的废气时,可以实现更简化的方法。
发明内容
为此,本发明提供用于减少发电装置中CO2排放的方法,其中所述发电装置包括至少一个与热回收蒸汽发生器设备偶联的燃气轮机,和CO2捕集设备包括吸收器和再生器,所述方法包括如下步骤:
(a)将离开具有一定高压的燃气轮机的热废气加入热回收蒸汽发生器设备中,以产生蒸汽和含二氧化碳的烟气物流;
(b)通过在具有高操作压力的吸收器中使含二氧化碳的烟气物流与吸收液体接触而从所述烟气物流中脱除二氧化碳,以获得富含二氧化碳的吸收液体和纯化的烟气物流,其中调节燃气轮机的设置使得离开燃气轮机的热废气的压力为吸收器的高操作压力的至少40%。
具体实施方式
在所述方法中,使用包括至少一个燃气轮机的发电装置。通常,将燃料和含氧气体加入燃气轮机的燃烧区中。在燃气轮机的燃烧区中,燃料燃烧从而产生热燃烧气。热燃烧气在燃气轮机中膨胀(通常经由排列成行的膨胀器叶片序列),和用于通过发电机发电。在燃气轮机中燃烧的适合燃料包括天然气和合成气。
在步骤(a)中,将离开燃气轮机的热废气引入热回收蒸汽发生器设备中。离开燃气轮机的热废气具有一定的高压。热废气的压力由燃气轮机的设置和/或构造决定。例如,通常燃气轮机包括排列成行的膨胀器叶片序列:通过改变膨胀器叶片行数,可以增大燃气轮机的背压,导致热废气具有高压。在所述方法中,调节燃气轮机的设置和/或构造,使得离开燃气轮机的热废气的压力为CO2捕集设备中的吸收器的操作压力的至少40%。优选地,离开燃气轮机的热废气的压力为吸收器的高操作压力的至少50%,更优选为至少60%,仍然更优选为至少70%。
决定燃气轮机电功输出的因素之一是燃气轮机的入口和出口之间的压力差。不希望被具体的理论所束缚,假定更大的压力差将导致更高的电功输出。更大的压力差通常意味着燃气轮机的入口压力将高和出口压力将尽可能接近环境。在所述方法中,调节燃气轮机的设置和/或构造,使得出口压力有目的地升高,这意味着出口压力高于环境压力。结果是,燃气轮机的电功输出将略微低于出口压力接近环境压力的燃气轮机。已经发现,尽管燃气轮机电功输出略低,但是整个过程仍然是更有利的,因为CO2捕集设备的能量需求明显较低。现在,在进入CO2捕集设备的吸收器之前,烟气需要少量加压或不需要加压。因此,现在可以省却在进入CO2吸收器之前通常用于使烟气物流加压的昂贵的和耗能的设备。
优选地,热废气的温度为350-700℃,更优选400-650℃。热废气的组成可以变化,取决于燃气轮机中燃烧的燃料气体和燃气轮机中的条件。通常,热废气含有10-15%的O2。通常,热废气含有3-6%的CO2
热回收蒸汽发生器设备是提供从热废气中回收热量和将该热量转化成蒸汽的工具的任意设备。例如,热回收蒸汽发生器设备可以包括多根堆叠方式安装的管。将水泵送和循环通过所述管,并可以保持在高温高压下。热废气加热所述管,和用于产生蒸汽。可以设计热回收蒸汽发生器设备,以产生一种、两种或三种类型的蒸汽:高压蒸汽、中压蒸汽和低压蒸汽。
优选地,设计蒸汽发生器以产生至少一定量的高压蒸汽,因为高压蒸汽可用于发电。适合地,高压蒸汽的压力为90-150bara,优选为90-125bara,更优选为100-115bara。适合地,也产生低压蒸汽,低压蒸汽压力优选为2-10bara,更优选至8bara,仍然更优选4-6bara。该低压蒸汽用于使含CO2的吸收液体再生。
在优选实施方案中,在热回收蒸汽发生设备中燃烧一定量的燃料,以产生附加蒸汽。该实施方案提供通过调节加入热回收蒸汽发生器设备的燃料量而控制热回收蒸汽发生器设备中产生的蒸汽的量和类型的可能性。优选地,使用低压蒸汽管路以将加热蒸汽从热回收蒸汽发生器输送至CO2捕集设备。适合地,以闭合回路排列低压蒸汽管路,以使产生的用于发电的蒸汽与过程换热器中使用的蒸汽隔离。
热回收蒸汽发生器设备排出含CO2的烟气。烟气的组成除了其它的以外取决于燃气轮机中使用的燃料类型。适合地,烟气包含0.25-30%(v/v)的CO2,优选1-20%(v/v)。烟气通常还含有氧,优选为0.25-20%(v/v),更优选5-15%(v/v),仍然更优选1-10%(v/v)。
在步骤(b)中,通过在高压下使烟气与吸收液体接触而脱除CO2,适合地在吸收器中进行。适合地,吸收在相对低温下和在高操作压力下发生。高压表示CO2吸收器的操作压力高于环境压力。优选地,吸收器的操作压力为50-200mbarg,更优选70-150mbarg。因为烟气已经具有高压,所以烟气压力和吸收器操作压力之间的压力差相对小。因此,在进入吸收器之前,烟气不需要被加压或需要被加压至较低的程度。考虑到大量烟气待加压,使用更小的鼓风机或完全取消鼓风机将导致对整个过程的相当可观的成本节省。因为烟气的温度通常相对高,所以优选在进入吸收器之前使烟气冷却。
吸收液体可以是能够从烟气物流中脱除CO2的任意吸收液体,所述烟气物流包含氧和具有相对低浓度的CO2。该吸收液体可包括化学和物理溶剂或这些的组合。
适合的物理溶剂包括聚乙二醇的二甲基醚化合物。
适合的化学溶剂包括氨和胺化合物。
在一个实施方案中,吸收液体包含选自单乙醇胺(MEA)、二乙醇胺(DEA)、二甘醇胺(DGA)、甲基二乙醇胺(MDEA)和三乙醇胺(TEA)的一种或多种胺。MEA是特别优选的胺,因为它能够吸收相对高百分数的CO2(体积CO2/体积MEA)。因此,包含MEA的吸收液体适合于从具有低浓度CO2、通常是3-10体积%CO2的烟气中脱除CO2
在另一个实施方案中,吸收液体包含选自甲基二乙醇胺(MDEA)、三乙醇胺(TEA)、N,N′-二(羟基烷基)哌嗪、N,N,N′,N′-四(羟基烷基)-1,6-己二胺和叔烷基胺磺酸化合物的一种或多种胺。
优选地,N,N′-二(羟基烷基)哌嗪是N,N′-二-(2-羟基乙基)哌嗪和/或N,N′-二-(3-羟基丙基)哌嗪。
优选地,四(羟基烷基)-1,6-己二胺是N,N,N′,N′-四(2-羟基乙基)-1,6-己二胺和/或N,N,N′,N′-四(2-羟基丙基)-1,6-己二胺。
优选地,叔烷基胺磺酸化合物选自4-(2-羟基乙基)-1-哌嗪乙烷磺酸、4-(2-羟基乙基)-1-哌嗪丙烷磺酸、4-(2-羟基乙基)哌嗪-1-(2-羟基丙烷磺酸)和1,4-哌嗪二(磺酸)。
在又一个实施方案中,吸收液体包含N-乙基二乙醇胺(EDEA)。
在特别优选的实施方案中,吸收液体包含氨。
在烟气物流包含可测量量的氧、适合地为1-20%(v/v)的氧的情况下,优选将缓蚀剂加入吸收液体。适合的缓蚀剂为例如US 6,036,888中描述的。
在大多数情况下,希望拥有连续的过程,包括吸收液体的再生。因此,优选所述方法还包括步骤(c):通过在再生器中在高温下使富含二氧化碳的吸收液体与汽提气体接触而使富含二氧化碳的吸收液体再生,以获得再生的吸收液体和富含二氧化碳的气体物流。应理解,用于再生的条件尤其取决于吸收液体的类型和吸收步骤中使用的条件。适合地,再生在与吸收不同的温度和/或不同的压力下发生。
在吸收液体包含胺的情况下,优选再生温度为100-200℃。在吸收液体包含含水胺的情况下,再生优选在1-5bara的压力下发生。
在吸收液体包含氨的情况下,适合地,吸收步骤在低于环境温度的温度下进行,优选为0-10℃,更优选为2-8℃。再生步骤适合地在比吸收步骤中使用的更高的温度下进行。当使用含氨的吸收液体时,离开再生器的富含CO2的气体物流具有高压。适合地,富含CO2的气体物流的压力为5-8bara,优选6-8bara。在其中富含CO2的气体物流需要在高压下的应用中,例如当将它用于注入地下地层中时,有利之处是富含CO2的气体物流已经在高压下。通常,需要一系列的压缩机,以将富含CO2的气体物流加压至所需高压。已经在高压下的富含CO2的气体物流更容易进行进一步加压。
任选地,所述方法还包括步骤(d):在热回收蒸汽发生设备中燃烧一定量的燃料,以产生附加蒸汽。优选地,通过使用附加量的蒸汽,至少部分满足了再生步骤的热量需求。燃烧的燃料量优选使得附加量的蒸汽足以提供用于使吸收液体再生所需热量的至少80%,更优选至少90%,仍然更优选至少95%和最优选100%。
进行步骤(d)的优选方式是监控由热回收蒸汽发生器设备产生的电,和根据电量调节加入热回收蒸汽发生器设备中的燃料量。如前面所解释的,在热回收蒸汽发生器设备中,优选在蒸汽涡轮中产生高压蒸汽,将所述高压蒸汽例如经由与蒸汽涡轮偶联的发电机转化成电。当CO2捕集设备运转时,由于用于加热CO2捕集设备的再生器所需的从热回收蒸汽发生器设备中抽出的蒸汽量,使得与蒸汽涡轮偶联的发电机的电功输出将下降。通过监控热回收发生器设备的与蒸汽涡轮偶联的发电机的输出,可以调节热回收蒸汽发生器设备中燃烧的燃料量。在输出下降的情况下,可以增大燃烧的燃料量。优选地,在不明显降低与蒸汽涡轮偶联的发电机的电功输出的条件下,预先确定为了能够满足CO2捕集设备的再生器的热量需求而燃烧的燃料量。将CO2捕集设备未运转时与蒸汽涡轮偶联的发电机的电功输出作为基准,和随后确定为了实现相同输出而燃烧的燃料量。
在热回收蒸汽发生器设备中燃烧的适合燃料包括天然气和合成气。
步骤(d)中一定量燃料的燃烧需要存在氧。可以将该氧供应至热回收蒸汽发生器设备,但优选热废气含有氧,和该氧的至少一部分用于步骤(d)的燃料燃烧中。作为使用来自热废气的氧的结果,离开热回收蒸汽发生器设备的烟气中氧量将更低。这有利于CO2吸收过程,特别是当使用胺吸收液体时。氧可以导致胺降解,和可以导致吸收液体中降解产物的形成。因此,烟气的氧含量更低将导致更少的胺降解和更少的降解产物的形成。
优选地,使用二氧化碳压缩机使富含二氧化碳的气体物流加压,以产生加压的二氧化碳物流。需要驱动二氧化碳压缩机。当热回收蒸汽发生器设备中产生的部分蒸汽用于驱动二氧化碳压缩机时,实现了良好的热联合。
优选地,加压CO2物流的压力为40-300bara,更优选50-300bara。可以将具有这些优选范围内压力的CO2物流用于多种目的,特别是用于强化油、煤层甲烷的采收、或用于地下地层中的隔离。特别是对于其中将加压CO2物流注入地下地层中的目的,需要高压。在优选实施方案中,将加压CO2物流用于强化油采收。通过将CO2注入油储层中,可以增大油采收率。通常,将加压CO2物流注入油储层中,其中它与存在的一些油混合。CO2和油的混合物将置换出通过传统注入不能置换出的油。
下面将参考附图1仅以举例方式描述本发明。
在图1中,显示了包括燃气轮机(1)、热回收蒸汽发生器设备(2)和CO2捕集设备(3)的发电装置。在燃气轮机中,将含氧气体经管线4供应至压缩机5。将燃料经管线6供应至燃烧器7,和在压缩的含氧气体存在下燃烧。将所得燃烧气在膨胀器8中膨胀,和用于在发电机9中发电。将含CO2和氧的剩余废气经管线10导向热回收蒸汽发生器设备2。在热回收蒸汽发生器设备中,在加热区11中用热废气加热水以产生蒸汽。将蒸汽经管线12导入蒸汽涡轮13中,以在发电机14中产生附加电功。任选地,将一定量的燃料经管线15导入热回收蒸汽发生器设备和利用来自废气的氧燃烧,以产生附加蒸汽。将含CO2和氧并具有增大的压力的热烟气经管线16导入胺吸收器17。优选地,将热烟气首先在冷却器(未显示)中冷却。在胺吸收器17中,CO2从烟气中转移至胺吸收器内含有的胺液体中。将贫含二氧化碳的纯化的烟气经管线18从胺吸收器中导出。将富含CO2的胺液体经管线19从胺吸收器导入再生器20。在再生器中,使富含CO2的胺液体减压,和在高温下与汽提气体接触,从而将CO2从胺液体中转移至汽提气体中,以获得再生的胺液体和富含CO2的气体物流。将富含CO2的气体物流经管线21从再生器中导出。优选地,使用CO2压缩机(未显示)使富含CO2的气体物流加压,和在其它位置使用加压CO2物流。将再生的胺液体经管线22从再生器导入胺吸收器。利用经管线23从蒸汽涡轮13导入再生器的低压蒸汽供应为提供再生器高温所需的热量。

Claims (10)

1.一种用于减少发电装置中CO2排放的方法,其中所述发电装置包括至少一个与热回收蒸汽发生器设备偶联的燃气轮机,和CO2捕集设备包括吸收器和再生器,所述方法包括如下步骤:
(a)将离开具有一定高压的燃气轮机的热废气加入热回收蒸汽发生器设备中,以产生蒸汽和含二氧化碳的烟气物流;
(b)通过在具有高操作压力的吸收器中使含二氧化碳的烟气物流与吸收液体接触而从所述烟气物流中脱除二氧化碳,以获得富含二氧化碳的吸收液体和纯化的烟气物流,其中调节燃气轮机的设置和/或构造使得离开燃气轮机的热废气的压力为吸收器的高操作压力的至少40%。
2.权利要求1的方法,其中离开燃气轮机的热废气的压力为吸收器的高操作压力的至少50%,优选至少60%,更优选至少70%。
3.权利要求1或2的方法,其中吸收器的高操作压力为50-200mbarg,优选70-150mbarg。
4.权利要求1-3任一项的方法,还包括如下步骤:
(c)通过在再生器中在高温下使富含二氧化碳的吸收液体与汽提气体接触而使富含二氧化碳的吸收液体再生,以获得再生的吸收液体和富含二氧化碳的气体物流。
5.权利要求1-4任一项的方法,所述方法还包括如下步骤:
(d)利用二氧化碳压缩机使富含二氧化碳的气体物流加压,其中优选将热回收蒸汽发生器设备中产生的蒸汽的第一部分用于驱动二氧化碳压缩机。
6.前述权利要求任一项的方法,其中在热回收蒸汽发生器设备中燃烧一定量的燃料,以产生附加量的蒸汽,其中优选热回收蒸汽发生器设备中燃烧的燃料量使得附加量的蒸汽足以提供使吸收液体再生所需热量的至少80%。
7.前述权利要求任一项的方法,其中热回收蒸汽发生器设备中产生的至少部分蒸汽是高压蒸汽,优选压力为90-125bara,更优选为100-115bara。
8.权利要求5-7任一项的方法,其中将加压的富含二氧化碳的气体物流用于强化油采收。
9.前述权利要求任一项的方法,其中吸收液体包含胺,优选为选自单乙醇胺(MEA)、二乙醇胺(DEA)、二甘醇胺(DGA)、甲基二乙醇胺(MDEA)、三乙醇胺(TEA)、N-乙基二乙醇胺(EDEA)、N,N′-二(羟基烷基)哌嗪、N,N,N′,N′-四(羟基烷基)-1,6-己二胺和叔烷基胺磺酸化合物的一种或多种胺。
10.权利要求1-8任一项的方法,其中吸收液体包含物理溶剂或氨。
CN2008800061050A 2007-01-25 2008-01-23 减少发电装置中二氧化碳排放的方法 Active CN101622054B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07101148 2007-01-25
EP07101148.0 2007-01-25
PCT/EP2008/050735 WO2008090168A1 (en) 2007-01-25 2008-01-23 Process for reducing carbon dioxide emission in a power plant

Publications (2)

Publication Number Publication Date
CN101622054A true CN101622054A (zh) 2010-01-06
CN101622054B CN101622054B (zh) 2012-12-05

Family

ID=38110448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800061050A Active CN101622054B (zh) 2007-01-25 2008-01-23 减少发电装置中二氧化碳排放的方法

Country Status (8)

Country Link
US (1) US20100162703A1 (zh)
EP (1) EP2107930B1 (zh)
JP (1) JP5574710B2 (zh)
CN (1) CN101622054B (zh)
AT (1) ATE553832T1 (zh)
AU (1) AU2008208882B2 (zh)
CA (1) CA2676088C (zh)
WO (1) WO2008090168A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766948A (zh) * 2010-03-11 2010-07-07 南京信息工程大学 用于膜接触器捕集co2气体的复合溶液
CN102454481A (zh) * 2010-10-22 2012-05-16 通用电气公司 包括二氧化碳收集***的联合循环动力装置
CN103534444A (zh) * 2011-03-31 2014-01-22 阿尔斯通技术有限公司 用于控制co2捕获用废热的***和方法
CN104641079A (zh) * 2012-03-29 2015-05-20 阿尔斯通技术有限公司 用于操作联合循环发电设备的方法和使用该方法的联合循环发电设备

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981162B (zh) 2008-03-28 2014-07-02 埃克森美孚上游研究公司 低排放发电和烃采收***及方法
MY156350A (en) 2008-03-28 2016-02-15 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods
US8728423B2 (en) * 2008-04-07 2014-05-20 Mitsubishi Heavy Industries, Ltd. Method and apparatus for flue gas treatment
EP3489491B1 (en) 2008-10-14 2020-09-23 Exxonmobil Upstream Research Company Method and system for controlling the products of combustion
DE102008052612A1 (de) * 2008-10-21 2010-04-22 Uhde Gmbh Waschlösung zur Gaswäsche mit Aminen in wässrige Ammoniaklösung sowie Verwendung
US20100154639A1 (en) * 2008-12-24 2010-06-24 General Electric Company Liquid carbon dioxide absorbent and methods of using the same
US8030509B2 (en) * 2008-12-24 2011-10-04 General Electric Company Carbon dioxide absorbent and method of using the same
EP2246532A1 (en) * 2008-12-24 2010-11-03 Alstom Technology Ltd Power plant with CO2 capture
US20100154431A1 (en) * 2008-12-24 2010-06-24 General Electric Company Liquid carbon dioxide absorbent and methods of using the same
US9440182B2 (en) 2008-12-24 2016-09-13 General Electric Company Liquid carbon dioxide absorbents, methods of using the same, and related systems
DE102009017228A1 (de) * 2009-04-09 2010-10-14 Linde-Kca-Dresden Gmbh Verfahren und Vorrichtung zur Behandlung von Rauchgasen
BRPI1012000A8 (pt) 2009-06-05 2018-02-06 Exxonmobil Upstream Res Co sistemas combustor e queimador de combustão, e, método para a combustão de um combustível em um sistema de combustão
JP5920727B2 (ja) 2009-11-12 2016-05-18 エクソンモービル アップストリーム リサーチ カンパニー 低排出発電並びに炭化水素回収システム及び方法
EP2395205A1 (en) * 2010-06-10 2011-12-14 Alstom Technology Ltd Power Plant with CO2 Capture and Compression
WO2011155886A1 (en) * 2010-06-11 2011-12-15 Klas Jonshagen A system for supplying energy to a co2 separation unit at a power plant
MX341981B (es) 2010-07-02 2016-09-08 Exxonmobil Upstream Res Company * Combustion estequiometrica con recirculacion de gas de escape y enfriador de contacto directo.
CN102971508B (zh) 2010-07-02 2016-06-01 埃克森美孚上游研究公司 Co2分离***和分离co2的方法
WO2012003079A1 (en) 2010-07-02 2012-01-05 Exxonmobil Upstream Research Company Stoichiometric combustion of enriched air with exhaust gas recirculation
US9903271B2 (en) 2010-07-02 2018-02-27 Exxonmobil Upstream Research Company Low emission triple-cycle power generation and CO2 separation systems and methods
MY156099A (en) 2010-07-02 2016-01-15 Exxonmobil Upstream Res Co Systems and methods for controlling combustion of a fuel
US9399950B2 (en) 2010-08-06 2016-07-26 Exxonmobil Upstream Research Company Systems and methods for exhaust gas extraction
CA2805089C (en) 2010-08-06 2018-04-03 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
CN103228890A (zh) * 2010-10-05 2013-07-31 阿尔斯通技术有限公司 带有co2捕集的联合循环动力设备和操作其的方法
AT510618B1 (de) * 2010-11-04 2013-02-15 Siemens Vai Metals Tech Gmbh Verfahren zur entfernung von co2 aus abgasen
JP5760097B2 (ja) * 2011-01-20 2015-08-05 サウジ アラビアン オイル カンパニー Co2の車両内回収及び貯蔵のための廃熱を利用した可逆的な固体吸着方法及びシステム
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
US20130036748A1 (en) * 2011-08-08 2013-02-14 Michael J. Lewis System and method for producing carbon dioxide for use in hydrocarbon recovery
IN2014CN03511A (zh) * 2011-11-15 2015-10-09 Shell Int Research
US9810050B2 (en) 2011-12-20 2017-11-07 Exxonmobil Upstream Research Company Enhanced coal-bed methane production
EP2644852A1 (en) 2012-03-29 2013-10-02 Alstom Technology Ltd Method for operating a combined cycle power plant and combined cycle power plant for using such method
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
CN102836635A (zh) * 2012-08-17 2012-12-26 东南大学 一种改性二氧化碳钙基吸收剂的制备方法
US20140109575A1 (en) * 2012-10-22 2014-04-24 Fluor Technologies Corporation Method for reducing flue gas carbon dioxide emissions
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10100741B2 (en) 2012-11-02 2018-10-16 General Electric Company System and method for diffusion combustion with oxidant-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
RU2637609C2 (ru) 2013-02-28 2017-12-05 Эксонмобил Апстрим Рисерч Компани Система и способ для камеры сгорания турбины
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
JP6143895B2 (ja) 2013-03-08 2017-06-07 エクソンモービル アップストリーム リサーチ カンパニー 発電及びメタンハイドレートからのメタン回収
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
US20180216532A1 (en) * 2017-01-31 2018-08-02 General Electric Company System and method for treating exhaust gas
EP4098348A4 (en) * 2020-01-28 2024-02-28 Tosoh Corporation COMPOSITION FOR CARBON DIOXIDE CAPTURE AND METHOD FOR CAPTURE OF CARBON DIOXIDE
FR3112966B1 (fr) * 2020-07-29 2022-11-11 Ifp Energies Now Procédé et système de prétraitement d’effluent gazeux pour le captage de CO2en post combustion
JP2022049466A (ja) * 2020-09-16 2022-03-29 株式会社東芝 発電方法および発電システム

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955358A (en) * 1974-08-08 1976-05-11 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator with improved fluid level control therefor
US4434613A (en) * 1981-09-02 1984-03-06 General Electric Company Closed cycle gas turbine for gaseous production
US4528811A (en) * 1983-06-03 1985-07-16 General Electric Co. Closed-cycle gas turbine chemical processor
US4896496A (en) * 1988-07-25 1990-01-30 Stone & Webster Engineering Corp. Single pressure steam bottoming cycle for gas turbines combined cycle
US5240476A (en) * 1988-11-03 1993-08-31 Air Products And Chemicals, Inc. Process for sulfur removal and recovery from a power generation plant using physical solvent
US4942734A (en) * 1989-03-20 1990-07-24 Kryos Energy Inc. Cogeneration of electricity and liquid carbon dioxide by combustion of methane-rich gas
NO180520C (no) * 1994-02-15 1997-05-07 Kvaerner Asa Fremgangsmåte til fjerning av karbondioksid fra forbrenningsgasser
JP3486220B2 (ja) * 1994-03-08 2004-01-13 バブコック日立株式会社 燃焼排ガス浄化方法および装置
US5513488A (en) * 1994-12-19 1996-05-07 Foster Wheeler Development Corporation Power process utilizing humidified combusted air to gas turbine
JP3739437B2 (ja) * 1995-06-23 2006-01-25 バブコック日立株式会社 二酸化炭素の吸収液と該吸収液を用いる被処理ガス中の二酸化炭素吸収方法
JP3364103B2 (ja) * 1997-01-27 2003-01-08 三菱重工業株式会社 脱炭酸設備の吸収液の制御方法
JPH10314537A (ja) * 1997-05-16 1998-12-02 Babcock Hitachi Kk 被処理ガス中のガス成分処理方法
US6256976B1 (en) * 1997-06-27 2001-07-10 Hitachi, Ltd. Exhaust gas recirculation type combined plant
JP2987127B2 (ja) * 1997-07-24 1999-12-06 株式会社荏原製作所 廃棄物を燃料とする複合発電システム
US6036888A (en) * 1997-08-22 2000-03-14 Betzdearborn Inc. Corrosion inhibitor for alkanolamine units
JPH11218005A (ja) * 1998-01-30 1999-08-10 Ebara Corp 廃棄物を燃料とする複合発電システム
JP2000120447A (ja) * 1998-10-12 2000-04-25 Toshiba Corp 火力発電プラント
NO990812L (no) * 1999-02-19 2000-08-21 Norsk Hydro As Metode for Õ fjerne og gjenvinne CO2 fra eksosgass
JP2000337108A (ja) * 1999-05-27 2000-12-05 Mitsubishi Heavy Ind Ltd 二酸化炭素回収型複合発電システム
US6592829B2 (en) * 1999-06-10 2003-07-15 Praxair Technology, Inc. Carbon dioxide recovery plant
DE10016079A1 (de) * 2000-03-31 2001-10-04 Alstom Power Nv Verfahren zum Entfernen von Kohlendioxid aus dem Abgas einer Gasturbinenanlage sowie Vorrichtung zur Durchführung des Verfahrens
JP3973412B2 (ja) * 2001-11-29 2007-09-12 大阪瓦斯株式会社 ガスタービンによる排熱回収システム
JP3814206B2 (ja) * 2002-01-31 2006-08-23 三菱重工業株式会社 二酸化炭素回収プロセスの排熱利用方法
NO20023050L (no) * 2002-06-21 2003-12-22 Fleischer & Co Fremgangsmåte samt anlegg for utf degree relse av fremgangsmåten
WO2004005818A2 (en) * 2002-07-03 2004-01-15 Fluor Corporation Improved split flow process and apparatus
DE10325111A1 (de) * 2003-06-02 2005-01-05 Alstom Technology Ltd Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassende Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
FR2855984B1 (fr) * 2003-06-10 2005-07-22 Inst Francais Du Petrole Procede de traitement de fumees
JP2005054622A (ja) * 2003-08-01 2005-03-03 Kawasaki Heavy Ind Ltd 開放サイクルガスタービン装置
JP4065824B2 (ja) * 2003-09-29 2008-03-26 株式会社日立製作所 ガスタービン装置、及びその抽気運転方法
CA2540583A1 (en) * 2003-09-30 2005-04-07 Bhp Billiton Innovation Pty Ltd Power generation
NO20044456L (no) * 2004-10-20 2005-03-03 Norsk Hydro As Fremgangsmate for fjerning og gjenvinning av C02 fra eksosgass
JP4875303B2 (ja) * 2005-02-07 2012-02-15 三菱重工業株式会社 二酸化炭素回収システム、これを用いた発電システムおよびこれら方法
NO332159B1 (no) * 2006-01-13 2012-07-09 Nebb Technology As Fremgangsmate og anlegg for energieffektiv oppfanging og utskillelse av CO2 fra en gassfase
US7850763B2 (en) * 2007-01-23 2010-12-14 Air Products And Chemicals, Inc. Purification of carbon dioxide
JP2010516606A (ja) * 2007-01-25 2010-05-20 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ C02捕獲ユニットと合体した発電所での加圧c02流の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766948A (zh) * 2010-03-11 2010-07-07 南京信息工程大学 用于膜接触器捕集co2气体的复合溶液
CN101766948B (zh) * 2010-03-11 2011-12-14 南京信息工程大学 用于膜接触器捕集co2气体的复合溶液
CN102454481A (zh) * 2010-10-22 2012-05-16 通用电气公司 包括二氧化碳收集***的联合循环动力装置
CN102454481B (zh) * 2010-10-22 2015-11-25 通用电气公司 包括二氧化碳收集***的联合循环动力装置
CN103534444A (zh) * 2011-03-31 2014-01-22 阿尔斯通技术有限公司 用于控制co2捕获用废热的***和方法
CN104641079A (zh) * 2012-03-29 2015-05-20 阿尔斯通技术有限公司 用于操作联合循环发电设备的方法和使用该方法的联合循环发电设备

Also Published As

Publication number Publication date
AU2008208882B2 (en) 2011-04-14
JP2010516941A (ja) 2010-05-20
WO2008090168A1 (en) 2008-07-31
ATE553832T1 (de) 2012-05-15
CA2676088A1 (en) 2008-07-31
AU2008208882A1 (en) 2008-07-31
EP2107930B1 (en) 2012-04-18
CN101622054B (zh) 2012-12-05
JP5574710B2 (ja) 2014-08-20
US20100162703A1 (en) 2010-07-01
CA2676088C (en) 2015-05-26
EP2107930A1 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
CN101622054B (zh) 减少发电装置中二氧化碳排放的方法
CN101622051A (zh) 用于在与co2捕集设备联合的发电装置中产生加压co2物流的方法
CN101187338B (zh) 具有二氧化碳隔离的发电***和方法
CN101230798B (zh) 具有二氧化碳分离的发电***和方法
AU2008297653B2 (en) Improved method for regeneration of absorbent
AU2007322451B2 (en) Absorbent regeneration with flashed lean solution and heat integration
CN101610828B (zh) 具有压缩的顶部物流以提供热能的吸收剂再生
US9242204B2 (en) Carbon dioxide recovery system and method
CN101970081A (zh) 从气体中除去二氧化碳的方法
JP2004323339A (ja) 二酸化炭素の回収方法及びそのシステム
MX2012014223A (es) Sistema y metodos de generacion de potencia de triple ciclo de baja emision.
KR101586105B1 (ko) 이산화탄소를 제거하는 화력 발전소
Guo et al. A new heat supply strategy for CO2 capture process based on the heat recovery from turbine exhaust steam in a coal-fired power plant
JP2004168553A (ja) 合成ガスの製造方法
WO2008090166A1 (en) Process for enabling constant power output in a power plant integrated with a carbon dioxide capture unit
GB2571355A (en) Method
GB2571353A (en) Method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant