CN101622051A - 用于在与co2捕集设备联合的发电装置中产生加压co2物流的方法 - Google Patents

用于在与co2捕集设备联合的发电装置中产生加压co2物流的方法 Download PDF

Info

Publication number
CN101622051A
CN101622051A CN200880006106A CN200880006106A CN101622051A CN 101622051 A CN101622051 A CN 101622051A CN 200880006106 A CN200880006106 A CN 200880006106A CN 200880006106 A CN200880006106 A CN 200880006106A CN 101622051 A CN101622051 A CN 101622051A
Authority
CN
China
Prior art keywords
steam
heat recovery
gas
steam generator
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200880006106A
Other languages
English (en)
Inventor
K-J·李
G·普罗托帕帕斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN101622051A publication Critical patent/CN101622051A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种用于在与CO2捕集设备联合的发电装置中产生加压CO2物流的方法,其中所述发电装置包括至少一个与热回收蒸汽发生器设备(2)偶联的燃气轮机(1),和CO2捕集设备包括吸收器(18)和再生器(21),所述方法包括如下步骤:(a)将离开燃气轮机的热废气加入热回收蒸汽发生器设备中,以产生第一量的蒸汽和包含CO2的烟气物流(17);(b)通过在吸收器(18)中使包含CO2的烟气物流与吸收液体接触而从所述烟气物流中脱除CO2,以获得富含CO2的吸收液体(20)和纯化的烟气物流;(c)在再生器(21)中在高温下使富含CO2的吸收液体与汽提气体接触,以获得再生的吸收液体和富含CO2的气体物流(23);(d)利用CO2压缩机(24)使富含CO2的气体物流加压,以获得加压CO2物流,其中将热回收蒸汽发生器设备中产生的蒸汽的第一部分用于驱动CO2压缩机(13)。

Description

用于在与CO2捕集设备联合的发电装置中产生加压CO2物流的方法
技术领域
本发明涉及用于在与二氧化碳(CO2)捕集设备联合的发电装置中产生加压CO2物流的方法。
背景技术
世界上大部分能量供应通过在发电装置中燃烧燃料、特别是天然气或合成气而提供。通常在一个或多个燃气轮机中燃烧燃料,和将所得气体用于产生蒸汽。随后将蒸汽用于发电。燃料燃烧导致产生需要被处理的CO2。在最近的几十年中,排放至大气的CO2量在全球范围内已经明显增大。按Kyoto协议,必须减少CO2排放,以防止或抵消不希望的气候变化。因此,必须脱除和处置产生的CO2。燃气轮机烟气的CO2浓度取决于所应用的燃料和燃烧以及热回收过程,和一般相对低,通常为3-15%。因此,减少CO2排放使得希望从废气中分离出CO2,因为压缩和储存全部烟气过于昂贵。因为这个原因,有利的是使用专用的CO2捕集设备以从烟气中脱除CO2和产生浓缩的加压CO2物流,可以在其它位置使用所述浓缩的加压CO2物流。
例如,在US 6,883,327中描述了用于产生加压CO2物流的方法。在US 6,883,327中,使用了具有吸收器和再生器的CO2捕集设备。在压缩机中压缩离开CO2再生器的富含CO2的物流。使用背压式汽轮机作为电源驱动该压缩机。
现在已经发现可以使用蒸汽-驱动CO2压缩机产生加压CO2物流,因此不再使用附加设备发电来驱动CO2压缩机。
发明内容
为此,本发明提供用于在与CO2捕集设备联合的发电装置中产生加压CO2物流的方法,其中所述发电装置包括至少一个与热回收蒸汽发生器设备偶联的燃气轮机,和CO2捕集设备包括吸收器和再生器,所述方法包括如下步骤:
(a)将离开燃气轮机的热废气加入热回收蒸汽发生器设备中,以产生第一量的蒸汽和包含CO2的烟气物流;
(b)通过在吸收器中使包含CO2的烟气物流与吸收液体接触而从所述烟气物流中脱除CO2,以获得富含CO2的吸收液体和纯化的烟气物流;
(c)在再生器中在高温下使富含CO2的吸收液体与汽提气体接触,以获得再生的吸收液体和富含CO2的气体物流;
(d)利用CO2压缩机使富含CO2的气体物流加压,以获得加压CO2物流,其中将热回收蒸汽发生器设备中产生的蒸汽的第一部分用于驱动CO2压缩机。
在所述方法中,利用来自热回收蒸汽发生器设备的高压蒸汽驱动CO2压缩机。因此,无需单独的设备发电来驱动CO2压缩机。
在所述方法中,使用包括至少一个燃气轮机的发电装置。通常,将燃料和含氧气体加入燃气轮机的燃烧区中。在燃气轮机的燃烧区中,燃料燃烧从而产生热燃烧气。热燃烧气在燃气轮机中膨胀(通常经由排列成行的膨胀器叶片序列),和用于通过发电机发电。在燃气轮机中燃烧的适合燃料包括天然气和合成气。
在步骤(a)中,将离开燃气轮机的热废气引入热回收蒸汽发生器设备中,其中将热废气中含有的热量用于产生第一量的蒸汽。
热回收蒸汽发生器设备是提供从热废气中回收热量和将该热量转化成蒸汽的工具的任意设备。例如,热回收蒸汽发生器设备可以包括多根堆叠方式安装的管。将水泵送和循环通过所述管,并可以保持在高温高压下。热废气加热所述管,和用于产生蒸汽。
适合地,可以设计热回收蒸汽发生器设备,以产生一种、两种或三种类型的蒸汽:高压蒸汽、中压蒸汽和低压蒸汽。优选地,设计蒸汽发生器以产生至少一定量的高压蒸汽,因为高压蒸汽可用于发电。适合地,高压蒸汽的压力为90-150bara,优选为90-125bara,更优选为100-115bara。适合地,也产生低压蒸汽,低压蒸汽优选压力为2-10bara,更优选至8bara,仍然更优选4-6bara。该低压蒸汽用于使含CO2的吸收液体再生。
热回收蒸汽发生器设备排出含CO2的烟气。烟气的组成尤其取决于燃气轮机中使用的燃料类型。适合地,烟气包含0.25-30%(v/v)的CO2,优选1-20%(v/v)。烟气通常也含有氧,优选为0.25-20%(v/v),更优选5-15%(v/v),仍然更优选1-10%(v/v)。
在步骤(b)中,通过在吸收器中使烟气与吸收液体接触而脱除CO2。吸收液体可以是能够从烟气物流中脱除CO2的任意吸收液体。特别地,能够从包含氧和另外含有相对低浓度的CO2的烟气物流中脱除CO2的吸收液体是适合的。该吸收液体可包括化学和物理溶剂或这些的组合。
另外,在烟气物流包含可测量量的氧、适合地为1-20%(v/v)的氧的情况下,优选将缓蚀剂加入吸收液体。适合的缓蚀剂为例如US6,036,888中描述的。
适合的物理溶剂包括聚乙二醇的二甲基醚化合物。
适合的化学溶剂包括氨和胺化合物。
在一个实施方案中,吸收液体包含选自单乙醇胺(MEA)、二乙醇胺(DEA)、二甘醇胺(DGA)、甲基二乙醇胺(MDEA)和三乙醇胺(TEA)的一种或多种胺。MEA是特别优选的胺,因为它能够吸收相对高百分数的CO2(体积CO2/体积MEA)。因此,包含MEA的吸收液体适合于从具有低浓度CO2、通常是3-10体积%CO2的烟气中脱除CO2
在另一个实施方案中,吸收液体包含选自甲基二乙醇胺(MDEA)、三乙醇胺(TEA)、N,N′-二(羟基烷基)哌嗪、N,N,N′,N′-四(羟基烷基)-1,6-己二胺和叔烷基胺磺酸化合物的一种或多种胺。
优选地,N,N′-二(羟基烷基)哌嗪是N,N′-二-(2-羟基乙基)哌嗪和/或N,N′-二-(3-羟基丙基)哌嗪。
优选地,四(羟基烷基)-1,6-己二胺是N,N,N′,N′-四(2-羟基乙基)-1,6-己二胺和/或N,N,N′,N′-四(2-羟基丙基)-1,6-己二胺。
优选地,叔烷基胺磺酸化合物选自4-(2-羟基乙基)-1-哌嗪乙烷磺酸、4-(2-羟基乙基)-1-哌嗪丙烷磺酸、4-(2-羟基乙基)哌嗪-1-(2-羟基丙烷磺酸)和1,4-哌嗪二(磺酸)。
在又一个实施方案中,吸收液体包含N-乙基二乙醇胺(EDEA)。
在特别优选的实施方案中,吸收液体包含氨。
已经发现,特别是在使用包含胺的吸收液体的情况下,当在相对低温下和在高压下发生吸收时实现CO2的更好吸收。因为烟气的压力通常是低的,所以优选在进入吸收器之前使烟气加压。因为烟气的温度通常是相对高的,所以优选在进入吸收器之前使烟气冷却。
在步骤(c)中,通过在再生器中在高温下使富含CO2的吸收液体与汽提气体接触而使富含CO2的吸收液体再生,以获得再生的吸收液体和富含CO2的气体物流。应理解,用于再生的条件尤其取决于吸收液体的类型和吸收步骤中使用的条件。在吸收液体包含胺的情况下,优选再生温度为100-200℃。在吸收液体包含含水胺的情况下,再生优选在1-5bara的压力下发生。
在吸收液体包含氨的情况下,适合地,吸收步骤在低于环境温度的温度下进行,优选为0-10℃,更优选为2-8℃。再生步骤适合地在比吸收步骤中使用的更高的温度下进行。当使用含氨的吸收液体时,离开再生器的富含CO2的气体物流具有高压。适合地,富含CO2的气体物流的压力为5-8bara,优选为6-8bara。在其中富含CO2的气体物流需要在高压下的应用中,例如当它用于注入地下地层中时,有利之处是富含CO2的气体物流已经在高压下。通常,需要一系列的压缩机将富含CO2的气体物流加压至所需高压。已经在高压下的富含CO2的气体物流更容易进行进一步加压。
在步骤(d)中,利用CO2压缩机使富含CO2的气体物流加压,以获得加压CO2物流。将热回收蒸汽发生器设备中产生的蒸汽的第一部分用于驱动CO2压缩机。在优选实施方案中,将热回收蒸汽发生器设备中产生的蒸汽的第一部分导入例如经由轴与CO2压缩机偶联的膨胀器。膨胀器因此驱动CO2压缩机,而不需要首先产生电来驱动CO2压缩机。在特别优选的实施方案中,膨胀器的排出物包括低压蒸汽,将所述低压蒸汽用于提供再生器所需要的至少一部分热量。因此,根据CO2捕集设备的热量/电功需求比,再生步骤的高压蒸汽热量需求的压力至少部分通过在热回收蒸汽发生器设备中燃烧一定量的燃料以产生第二量的蒸汽来满足。优选地,加压CO2物流的压力为40-300bara,更优选50-300bara。可以将具有这些优选范围内压力的CO2物流用于多种目的,特别是用于强化油、煤层甲烷的采收、或用于地下地层中的隔离。特别是对于其中将加压CO2物流注入地下地层中的目的,需要高压。在优选实施方案中,将加压CO2物流用于强化油采收。通过将CO2注入油储层中,可以增大油采收率。通常,将加压CO2物流注入油储层中,其中它与存在的一些油混合。CO2和油的混合物将置换出通过传统注入不能置换出的油。
在特别优选的实施方案中,所述方法还包括附加步骤(e):在热回收蒸汽发生器设备中燃烧一定量的燃料,以产生第二量的蒸汽,其中燃料的量使得第二量的蒸汽足以提供使吸收液体再生所需热量的至少80%。优选第二量的蒸汽足以提供使吸收液体再生所需热量的至少90%。优选地,使用低压蒸汽管路,以将加热蒸汽从热回收蒸汽发生器输送至CO2捕集设备。适合地,以闭合回路排列该低压蒸汽管路,以使产生的用于发电的蒸汽与过程换热器中使用的蒸汽隔离。在热回收蒸汽发生器设备中燃烧一定量的燃料的优点是发电装置的总电功输出将独立于CO2捕集设备是否运转。可以例如通过监控由热回收蒸汽发生器设备产生的电和根据发电量调节加入热回收蒸汽发生器设备中的燃料量,从而确定提供再生热量需求所需要的燃料量。如前面所解释的,在热回收蒸汽发生器设备中,优选在蒸汽涡轮中产生高压蒸汽,所述高压蒸汽例如经由与蒸汽涡轮偶联的发电机转化成电。当CO2捕集设备运转时,由于用于加热CO2捕集设备的再生器所需的从热回收蒸汽发生器设备中抽出的蒸汽量,使得与蒸汽涡轮偶联的发电机的电功输出将下降。通过监控热回收发电机设备的与蒸汽涡轮偶联的发电机的输出,可以调节热回收蒸汽发生器设备中燃烧的燃料量。在输出下降的情况下,可以增大燃烧的燃料量。优选地,在不明显降低与蒸汽涡轮偶联的发电机的电功输出的条件下,预先确定为了能够满足CO2捕集设备的再生器的热量需求而燃烧的燃料量。将CO2捕集设备不运转时与蒸汽涡轮偶联的发电机的电功输出作为基准,和随后确定为了实现相同输出而燃烧的燃料量。
在热回收蒸汽发生器设备中燃烧的适合燃料包括天然气和合成气。
热回收蒸汽发生器设备中一定量燃料的燃烧需要存在氧。可以将该氧供应至热回收蒸汽发生器设备,但优选热废气含有氧,和该氧的至少一部分用于热回收蒸汽发生器设备中的燃料燃烧中。作为使用来自热废气的氧的结果,离开热回收蒸汽发生器设备的烟气中氧量将更低。这有利于CO2吸收过程,特别是当使用胺吸收液体时。氧可以导致胺降解,和可以导致吸收液体中降解产物的形成。因此,烟气的氧含量更低将导致更少的胺降解。
下面将参考附图1仅以举例方式描述本发明。
在图1中,显示了包括燃气轮机(1)、热回收蒸汽发生器设备(2)和CO2捕集设备(3)的发电装置。在燃气轮机中,将含氧气体经管线4供应至压缩机5。将燃料经管线6供应至燃烧器7,和在压缩的含氧气体存在下燃烧。将所得燃烧气在第一膨胀器8中膨胀,和用于在发电机9中发电。将含CO2和氧的剩余废气经管线10导向热回收蒸汽发生器设备2。在热回收蒸汽发生器设备中,在加热区11中用热废气加热水以产生蒸汽。将蒸汽的第一部分经管线12导入第二膨胀器13。将蒸汽的第二部分经管线14导入与发电机16偶联的蒸汽涡轮15,以产生附加电功。任选地,将一定量的燃料导入(未显示)热回收蒸汽发生器设备和利用来自废气的氧燃烧,以产生附加蒸汽。将含CO2和氧的热烟气经管线17导入胺吸收器18。优选地,在进入胺吸收器之前,使热烟气首先在冷却器(未显示)中冷却,和使用鼓风机(未显示)使冷却的烟气加压。在胺吸收器18中,CO2在高压下从烟气中转移至胺吸收器内含有的胺液体中。将贫含CO2的纯化的烟气经管线19从胺吸收器中导出。将富含CO2的胺液体经管线20从胺吸收器导入再生器21。在再生器中,使富含CO2的胺液体减压,和在高温下与汽提气体接触,从而将CO2从胺液体中转移至汽提气体中,以获得再生的胺液体和富含CO2的气体物流。将再生的胺液体经管线22从再生器导入胺吸收器18。将富含CO2的气体物流线经管线23从再生器导入CO2压缩机24。将来自膨胀器13的高压蒸汽经轴25导入CO2压缩机24,和用于驱动CO2压缩机。将低压蒸汽经管线26从膨胀器13导入再生器,和提供用于加热再生器所需的热量的至少一部分。利用来自第二蒸汽涡轮的低压蒸汽满足再生器的剩余部分的热量需求,所述低压蒸汽经管线27导入再生器。

Claims (10)

1.一种用于在与CO2捕集设备联合的发电装置中产生加压CO2物流的方法,其中所述发电装置包括至少一个与热回收蒸汽发生器设备偶联的燃气轮机,和CO2捕集设备包括吸收器和再生器,所述方法包括如下步骤:
(a)将离开燃气轮机的热废气加入热回收蒸汽发生器设备中,以产生第一量的蒸汽和包含CO2的烟气物流;
(b)通过在吸收器中使包含CO2的烟气物流与吸收液体接触而从所述烟气物流中脱除CO2,以获得富含CO2的吸收液体和纯化的烟气物流;
(c)在再生器中在高温下使富含CO2的吸收液体与汽提气体接触,以获得再生的吸收液体和富含CO2的气体物流;
(d)利用CO2压缩机使富含CO2的气体物流加压,以获得加压CO2物流,其中将热回收蒸汽发生器设备中产生的蒸汽的第一部分用于驱动CO2压缩机。
2.权利要求1的方法,其中将热回收蒸汽发生器设备中产生的部分蒸汽导入与CO2压缩机偶联的膨胀器。
3.权利要求1或2的方法,其中通过以下过程发电:将热回收蒸汽发生器设备中产生的蒸汽的另一部分导入蒸汽涡轮,所述蒸汽涡轮与发电机偶联,和由所述发电机发电。
4.权利要求2或3的方法,其中膨胀器排出低压蒸汽,将所述低压蒸汽用于提供使吸收液体再生所需热量的至少一部分。
5.前述权利要求任一项的方法,还包括如下步骤:
(e)在热回收蒸汽发生器设备中燃烧一定量的燃料,以产生第二量的蒸汽,其中燃料的量使得第二量的蒸汽足以提供使吸收液体再生所需热量的至少80%。
6.前述权利要求任一项的方法,其中高压蒸汽的压力为90-125bara、更优选为100-115bara和/或低压蒸汽的压力为3-8bara、更优选4-6bara。
7.前述权利要求任一项的方法,其中加压的富含CO2的气体物流的压力为40-300bara,更优选50-300bara。
8.前述权利要求任一项的方法,其中吸收液体包含胺,优选为选自单乙醇胺(MEA)、二乙醇胺(DEA)、二甘醇胺(DGA)、甲基二乙醇胺(MDEA)、三乙醇胺(TEA)、N-乙基二乙醇胺(EDEA)、N,N′-二(羟基烷基)哌嗪、N,N,N′,N′-四(羟基烷基)-1,6-己二胺和叔烷基胺磺酸化合物的一种或多种胺。
9.权利要求1-8任一项的方法,其中吸收液体包含物理溶剂,优选为聚乙二醇的二甲基醚。
10.权利要求1-7任一项的方法,其中吸收液体包含氨。
CN200880006106A 2007-01-25 2008-01-23 用于在与co2捕集设备联合的发电装置中产生加压co2物流的方法 Pending CN101622051A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07101145 2007-01-25
EP07101145.6 2007-01-25

Publications (1)

Publication Number Publication Date
CN101622051A true CN101622051A (zh) 2010-01-06

Family

ID=38169630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880006106A Pending CN101622051A (zh) 2007-01-25 2008-01-23 用于在与co2捕集设备联合的发电装置中产生加压co2物流的方法

Country Status (7)

Country Link
US (1) US8613794B2 (zh)
EP (1) EP2125164A1 (zh)
JP (1) JP2010516606A (zh)
CN (1) CN101622051A (zh)
AU (1) AU2008208881B2 (zh)
CA (1) CA2676078A1 (zh)
WO (1) WO2008090167A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766948A (zh) * 2010-03-11 2010-07-07 南京信息工程大学 用于膜接触器捕集co2气体的复合溶液
CN102454481A (zh) * 2010-10-22 2012-05-16 通用电气公司 包括二氧化碳收集***的联合循环动力装置
CN104389680A (zh) * 2014-11-12 2015-03-04 山东大学 基于sofc/gt和膜分离技术的低碳排放功冷联供***
WO2021150125A1 (en) * 2020-01-23 2021-07-29 Evoltec As System and method for the capture of 002 and nitrogen in a gas stream

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107930B1 (en) * 2007-01-25 2012-04-18 Shell Internationale Research Maatschappij B.V. Process for reducing carbon dioxide emission in a power plant
EP2078828A1 (en) * 2008-01-11 2009-07-15 ALSTOM Technology Ltd Power plant with CO2 capture and compression
EP2078827A1 (en) * 2008-01-11 2009-07-15 ALSTOM Technology Ltd Power plant with CO2 capture and compression
CA2646171A1 (en) 2008-12-10 2010-06-10 Her Majesty The Queen In Right Of Canada, As Represented By The Minist Of Natural Resources Canada High pressure direct contact oxy-fired steam generator
DE102009026970A1 (de) * 2009-06-16 2010-12-23 Tge Marine Gas Engineering Gmbh Verfahren zur Reduzierung des Ausstoßes von Kohlendioxid nebst Vorrichtung
EP2305364A1 (en) * 2009-09-29 2011-04-06 Alstom Technology Ltd Power plant for CO2 capture
US8171718B2 (en) * 2009-10-05 2012-05-08 General Electric Company Methods and systems involving carbon sequestration and engines
EP2333256B1 (en) 2009-12-08 2013-10-16 Alstom Technology Ltd Power plant with CO2 capture and method to operate such power plant
KR101146557B1 (ko) * 2010-04-08 2012-05-25 한국과학기술연구원 이산화탄소 회수장치
CN101822932B (zh) * 2010-06-12 2013-01-02 中国石油集团工程设计有限责任公司 一种脱除天然气中二氧化碳的复配型脱碳溶剂
US8328911B2 (en) 2010-06-21 2012-12-11 The University Of Kentucky Research Foundation Method for removing CO2 from coal-fired power plant flue gas using ammonia as the scrubbing solution, with a chemical additive for reducing NH3 losses, coupled with a membrane for concentrating the CO2 stream to the gas stripper
BR112013002035A2 (pt) * 2010-07-28 2016-05-31 Sargas As turbo-reator com captura de carbono
CN103228890A (zh) * 2010-10-05 2013-07-31 阿尔斯通技术有限公司 带有co2捕集的联合循环动力设备和操作其的方法
WO2012104202A1 (en) * 2011-02-01 2012-08-09 Alstom Technology Ltd Combined cycle power plant with co2 capture plant
US20140020388A1 (en) * 2012-07-19 2014-01-23 Miguel Angel Gonzalez Salazar System for improved carbon dioxide capture and method thereof
CN106000009B (zh) * 2016-07-20 2018-06-19 辽宁工业大学 一种双塔式meda处理填埋气***
CN106194299B (zh) * 2016-07-25 2018-07-10 河北工程大学 一种碳捕集与超临界co2布雷顿循环耦合的发电***
JP7356344B2 (ja) * 2019-12-27 2023-10-04 三菱重工業株式会社 ボイラープラント、及び二酸化炭素除去方法
US11161076B1 (en) 2020-08-26 2021-11-02 Next Carbon Solutions, Llc Devices, systems, facilities, and processes of liquid natural gas processing for power generation
US11560984B2 (en) 2021-03-24 2023-01-24 Next Carbon Solutions, Llc Processes, apparatuses, and systems for capturing pigging and blowdown emissions in natural gas pipelines
US11865494B2 (en) 2021-11-22 2024-01-09 Next Carbon Solutions, Llc Devices, systems, facilities and processes for bio fermentation based facilities
US11484825B1 (en) 2021-12-20 2022-11-01 Next Carbon Solutions, Llc Devices, systems, facilities and processes for carbon capture optimization in industrial facilities
WO2023177668A1 (en) * 2022-03-15 2023-09-21 Next Carbon Solutions, Llc Devices, systems, facilities and processes for co2 capture/sequestration and direct air capture
US11959637B2 (en) 2022-04-06 2024-04-16 Next Carbon Solutions, Llc Devices, systems, facilities and processes for CO2 post combustion capture incorporated at a data center

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB899611A (en) * 1959-04-15 1962-06-27 Gas Council Process for separating gases
FR1603140A (zh) * 1968-07-10 1971-03-22
US4528811A (en) 1983-06-03 1985-07-16 General Electric Co. Closed-cycle gas turbine chemical processor
NO180520C (no) * 1994-02-15 1997-05-07 Kvaerner Asa Fremgangsmåte til fjerning av karbondioksid fra forbrenningsgasser
US5623822A (en) * 1995-05-23 1997-04-29 Montenay International Corp. Method of operating a waste-to-energy plant having a waste boiler and gas turbine cycle
US6036888A (en) * 1997-08-22 2000-03-14 Betzdearborn Inc. Corrosion inhibitor for alkanolamine units
NO990812L (no) * 1999-02-19 2000-08-21 Norsk Hydro As Metode for Õ fjerne og gjenvinne CO2 fra eksosgass
WO2004005818A2 (en) * 2002-07-03 2004-01-15 Fluor Corporation Improved split flow process and apparatus
JP4274846B2 (ja) * 2003-04-30 2009-06-10 三菱重工業株式会社 二酸化炭素の回収方法及びそのシステム
FR2855985B1 (fr) 2003-06-10 2005-07-22 Inst Francais Du Petrole Procede de traitement de fumees avec recuperation d'energie
US7866638B2 (en) * 2005-02-14 2011-01-11 Neumann Systems Group, Inc. Gas liquid contactor and effluent cleaning system and method
US8062408B2 (en) * 2006-05-08 2011-11-22 The Board Of Trustees Of The University Of Illinois Integrated vacuum absorption steam cycle gas separation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766948A (zh) * 2010-03-11 2010-07-07 南京信息工程大学 用于膜接触器捕集co2气体的复合溶液
CN101766948B (zh) * 2010-03-11 2011-12-14 南京信息工程大学 用于膜接触器捕集co2气体的复合溶液
CN102454481A (zh) * 2010-10-22 2012-05-16 通用电气公司 包括二氧化碳收集***的联合循环动力装置
CN102454481B (zh) * 2010-10-22 2015-11-25 通用电气公司 包括二氧化碳收集***的联合循环动力装置
CN104389680A (zh) * 2014-11-12 2015-03-04 山东大学 基于sofc/gt和膜分离技术的低碳排放功冷联供***
CN104389680B (zh) * 2014-11-12 2016-01-20 山东大学 基于sofc/gt混合发电***和膜分离的低碳排放功冷联供***
WO2021150125A1 (en) * 2020-01-23 2021-07-29 Evoltec As System and method for the capture of 002 and nitrogen in a gas stream

Also Published As

Publication number Publication date
CA2676078A1 (en) 2008-07-31
JP2010516606A (ja) 2010-05-20
US20100139484A1 (en) 2010-06-10
AU2008208881A1 (en) 2008-07-31
EP2125164A1 (en) 2009-12-02
US8613794B2 (en) 2013-12-24
AU2008208881B2 (en) 2011-06-09
WO2008090167A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
CN101622051A (zh) 用于在与co2捕集设备联合的发电装置中产生加压co2物流的方法
CN101622054B (zh) 减少发电装置中二氧化碳排放的方法
JP5559067B2 (ja) ガスからの二酸化炭素の除去方法
CN101230798B (zh) 具有二氧化碳分离的发电***和方法
CN101610828B (zh) 具有压缩的顶部物流以提供热能的吸收剂再生
CA2464559C (en) Method and system for recovering carbon dioxide
TWI564475B (zh) 低排放之三循環動力產生系統和方法
US7739864B2 (en) Systems and methods for power generation with carbon dioxide isolation
CN101583411A (zh) 具有闪蒸的贫液和热整合的吸收剂再生
AU2012201455B2 (en) Carbon dioxide recovery system and method
KR101586105B1 (ko) 이산화탄소를 제거하는 화력 발전소
JP5738045B2 (ja) 二酸化炭素の回収システム及び方法
WO2008090166A1 (en) Process for enabling constant power output in a power plant integrated with a carbon dioxide capture unit
GB2571353A (en) Method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100106