CN101357329A - 钒掺杂纳米二氧化钛催化剂的制备方法 - Google Patents
钒掺杂纳米二氧化钛催化剂的制备方法 Download PDFInfo
- Publication number
- CN101357329A CN101357329A CNA2008100416647A CN200810041664A CN101357329A CN 101357329 A CN101357329 A CN 101357329A CN A2008100416647 A CNA2008100416647 A CN A2008100416647A CN 200810041664 A CN200810041664 A CN 200810041664A CN 101357329 A CN101357329 A CN 101357329A
- Authority
- CN
- China
- Prior art keywords
- titanium dioxide
- vanadium
- titanium
- doped nano
- dioxide catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 239000003054 catalyst Substances 0.000 title claims abstract description 15
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 239000010936 titanium Substances 0.000 claims abstract description 20
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 9
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 8
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 claims abstract description 7
- 239000008367 deionised water Substances 0.000 claims abstract description 7
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 7
- 229960000583 acetic acid Drugs 0.000 claims abstract description 5
- 239000012362 glacial acetic acid Substances 0.000 claims abstract description 5
- 230000007062 hydrolysis Effects 0.000 claims abstract description 5
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 5
- 239000002243 precursor Substances 0.000 claims abstract description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 19
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims description 9
- -1 titanium alkoxide Chemical class 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 7
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 4
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 4
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 claims description 4
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 claims description 3
- JMXKSZRRTHPKDL-UHFFFAOYSA-N titanium ethoxide Chemical compound [Ti+4].CC[O-].CC[O-].CC[O-].CC[O-] JMXKSZRRTHPKDL-UHFFFAOYSA-N 0.000 claims description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 3
- PAJMKGZZBBTTOY-UHFFFAOYSA-N 2-[[2-hydroxy-1-(3-hydroxyoctyl)-2,3,3a,4,9,9a-hexahydro-1h-cyclopenta[g]naphthalen-5-yl]oxy]acetic acid Chemical compound C1=CC=C(OCC(O)=O)C2=C1CC1C(CCC(O)CCCCC)C(O)CC1C2 PAJMKGZZBBTTOY-UHFFFAOYSA-N 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- DCKVFVYPWDKYDN-UHFFFAOYSA-L oxygen(2-);titanium(4+);sulfate Chemical compound [O-2].[Ti+4].[O-]S([O-])(=O)=O DCKVFVYPWDKYDN-UHFFFAOYSA-L 0.000 claims description 2
- 229910000348 titanium sulfate Inorganic materials 0.000 claims description 2
- 230000001699 photocatalysis Effects 0.000 abstract description 17
- 230000003197 catalytic effect Effects 0.000 abstract description 9
- 229910052720 vanadium Inorganic materials 0.000 abstract description 9
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 7
- 239000011941 photocatalyst Substances 0.000 abstract description 5
- 150000003839 salts Chemical class 0.000 abstract 1
- 238000005303 weighing Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 21
- CQPFMGBJSMSXLP-UHFFFAOYSA-M acid orange 7 Chemical compound [Na+].OC1=CC=C2C=CC=CC2=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 CQPFMGBJSMSXLP-UHFFFAOYSA-M 0.000 description 11
- 239000004408 titanium dioxide Substances 0.000 description 11
- 238000002835 absorbance Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004042 decolorization Methods 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000003980 solgel method Methods 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000003760 magnetic stirring Methods 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- AEEAZFQPYUMBPY-UHFFFAOYSA-N [I].[W] Chemical compound [I].[W] AEEAZFQPYUMBPY-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- WMVRXDZNYVJBAH-UHFFFAOYSA-N dioxoiron Chemical compound O=[Fe]=O WMVRXDZNYVJBAH-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000001055 reflectance spectroscopy Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
本发明涉及一种钒掺杂纳米二氧化钛催化剂的制备方法,属于纳米光催化材料领域。步骤为:第一步,将钛的先驱物溶于无水乙醇中,添加冰醋酸抑制其水解,均匀搅拌成A液;第二步,以0.1-1%的V/Ti质量比称取钒酸盐,置于去离子水或硝酸或氨水中使其完全溶解,均匀搅拌组成B液;第三步,B液经恒压漏斗缓慢滴入剧烈搅拌的A液中搅拌形成溶胶;再将所得溶胶转入高压反应釜,并于烘箱中放置发生水热反应;第四步,将所得溶液干燥、研磨,得到粉体产物。本发明得光催化剂的平均晶粒尺寸在10-20nm。通过钒掺杂,可将纳米二氧化钛的禁带宽度降低到可利用可见光范围的程度(400-800nm),可见光催化活性明显提高。
Description
技术领域
本发明涉及一种纳米光催化材料技术领域的制备方法,具体是一种钒掺杂纳米二氧化钛催化剂的制备方法。
背景技术
光催化氧化作为一种潜在和理想的环境治理技术,近年来在国内外被广泛研究。在半导体纳米光催化剂的研究中,TiO2因具有良好的禁带宽度、氧化能力强、催化活性高、无毒,生物、化学、光化学稳定性好等优点,一直处于光催化研究中的核心地位。但TiO2带隙能较宽,只能用紫外光激发,而太阳光中的紫外光约占3%,难以有效利用太阳光;另一问题是半导体光生电子/空穴对的复合几率较高。解决上述问题的主要途径是对TiO2催化剂进行改性,即改变粒子结构与表面性质,从而扩大光响应范围,抑制载流子复合以提高量子效率,提高光催化材料的稳定性和光催化活性。金属离子的掺杂是一种有效的改性技术。TiO2中掺入某些金属(离子)改性后,金属的参与引入了杂质能级,并在可见光激发下可能会有所响应,驱动光催化反应进行。其次,适量的掺杂有利于光生电子和空穴有效地分离,抑制了复合,从而使载流子寿命延长,提高了光量子效率和光催化活性。第三,金属离子的掺杂能够减小颗粒尺寸,增大比表面积,增加锐钛矿的稳定性等。因此,制备具有较大比表面积、锐钛矿型结构、掺入金属离子的纳米粉体是提高TiO2光催化活性的有效途径之一。
溶胶-凝胶法是TiO2掺杂的常用方法,在溶胶-凝胶法中杂质离子能够均匀地分散在反应体系中,这样包含金属杂质离子和二氧化钛的固溶体容易形成,或者金属离子容易掺入TiO2的晶格中。而通过水热法制备的材料有完善的晶体结构、较小的晶粒尺寸和好的热稳定性。鉴于溶胶-凝胶法和水热法各自的优点,本发明将溶胶-凝胶法和水热法结合,溶胶凝胶后再进行水热处理,达到晶化的目的。并通过X射线衍射(XRD)、紫外可见漫反射谱(UV-Vis DRS)对制备的样品进行表征。通过对染料酸性橙II的液相光催化降解验证钒掺杂样品的可见光催化活性的提高。
经对现有技术的文献检索发现,管晶等在《应用化工》(2006年第二期117-119页)上发表的“掺钒二氧化钛的可见光催化性能研究”,该文中提出以溶胶-凝胶法制备可见光响应型掺钒TiO2光催化剂的方法,但其是以荧光灯(模拟太阳光)为光源进行的TiO2的催化活性评价,且煅烧温度过高在700℃左右。
发明内容
本发明针对现有技术的不足,提供一种钒掺杂纳米二氧化钛催化剂的制备方法,本发明采用后水热处理技术,可显著降低煅烧温度。另外,采用光源为500W的碘钨灯照射进行光催化试验(用滤波片滤去波长小于450nm的光),反应完全在可见光下进行,排除了紫外光的影响。本发明制备出的复合光催化剂的平均晶粒尺寸在10-20nm,粉体基本呈分散状态,钒元素的掺杂抑制了纳米TiO2晶型的转变;经测试材料在500℃煅烧时,仍为纯锐态矿型结构。
本发明通过以下技术方案实现的,本发明包括以下步骤:
第一步,将钛的先驱物溶于无水乙醇中,添加冰醋酸抑制其水解,均匀搅拌成A液;
第二步,以0.1%-1%的V/Ti质量比称取钒酸盐,置于去离子水或硝酸或氨水中使其完全溶解,均匀搅拌组成B液;
第三步,B液经恒压漏斗缓慢滴入剧烈搅拌的A液中搅拌形成溶胶;再将所得溶胶转入高压反应釜,并于烘箱中放置发生水热反应;
第四步,将所得溶液干燥、研磨,得到粉体产物。
所述钛的先驱物包括钛醇盐和钛的无机盐,钛醇盐类包括钛酸四丁酯、钛酸乙酯等中的一种;钛的无机盐为氯化钛、硫酸钛等中的一种。
所述钒酸盐为偏钒酸铵、偏钒酸钠、偏钒酸钾等中的一种。
所述硝酸为浓硝酸,其pH在1.5-2.0之间。
所述偏钒酸铵等微溶或难溶于水的物质,可用氨水、80℃-100℃的热水溶解。
所述于烘箱中放置,其放置时间为8h-12h。
所述水热反应,其温度为120℃-180℃,所制的钒掺杂纳米二氧化钛呈锐钛矿型,经250℃-300℃煅烧后呈规则锐钛矿型晶体结构。
所述研磨,也可以在煅烧3h后研磨。
本发明中,所制备材料的光催化性能测试采用下述方法:
目标降解物:20mg/l酸性橙II溶液;
样品的可见光催化活性测试:采用光源为500W的碘钨灯照射进行光催化试验(用滤波片滤去波长小于450nm的光),灯到石英试管中心的距离为10cm。碘钨灯用石英夹套中的循环水进行冷却,反应体系用15W风扇进行降温,体系温度基本上保持在40℃左右。
在避光条件下搅拌1h确保反应物在样品表面的吸附达到平衡。然后开灯光照5h,每隔1h用针筒取样,每次所取溶液的量约为5ml,离心机(12,000转/分)离心5-8分钟去上层清液置于比色皿中,测其吸光度求得染料脱色率。每个光降解实验重复3次,取平均值,误差不超过5%。采用紫外—可见光分光光度计在最大吸收波长下(484nm)测定样品的吸光值(A)。在0-50mg/L的浓度范围内酸性橙II水溶液的吸光度A与浓度之间符合朗伯-比尔定律,所以可用下面公式计算染料的降解率。
式中,C0为染料酸性橙II预吸附后的初始浓度;C为每次所取酸性橙II时的反应浓度;A0为在484nm波长下酸性橙II预吸附后初始浓度下的吸光值;A为484nm波长下每次所取酸性橙II反应浓度下的吸光值。
本发明采用溶胶凝胶—水热合成技术制备钒掺杂纳米二氧化钛材料,提高其可见光催化活性的方法,该方法将钒元素掺入到纳米二氧化钛晶格中,并有部分负载在其表面,所得光催化剂的平均晶粒尺寸在10-20nm。通过钒掺杂,可将纳米二氧化钛的禁带宽度降低到可利用可见光范围的程度(400-800nm),可见光催化活性明显提高。
附图说明
图1为钒掺杂二氧化钛的紫外可见吸收光谱示意图。
图2为钒掺杂二氧化钛300℃煅烧的XRD示意图谱。
具体实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
为了证实可见光下高催化活性的钒掺杂二氧化铁对光的吸收性能,紫外-可见吸收光谱(UV-vis)被测量。测量仪器为VARIAN Cary 500 UV-visspectrophotometer。如图1所示,该紫外可见吸收光谱测量仪器为VARIAN Cary500UV-vis spectrophotometer。在整个可见波长360-700nm内,钒掺杂二氧化钛吸光度高于纯的纳米二氧化钛,其光谱吸收边带从纯纳米二氧化钛的385nm左右扩展至550nm左右。吸收边带发生了明显红移,即说明掺杂的二氧化钛纳米微粒的光谱响应范围向可见光区拓展。
如图2所示,该煅烧的XRD图谱测量仪器为D/max2200VPC多晶X射线衍射仪。同时对图2部分钒掺杂二氧化钛的XRD图谱分析可知,在300℃下煅烧只有锐钛矿晶相形成,根据Scherrer公式可以估算其粒径约为10~14nm。
实施例一:
室温下将10ml钛酸四丁酯加入10ml无水乙醇中,添加冰醋酸抑制其水解,搅拌均匀成溶液A,将其置于分液漏斗中。
按0.1%(钒钛质量比)掺杂比例称取偏钒酸铵,添加适量去离子水,浓硝酸溶解(pH为1.5-2),称溶液B。
将溶液B于磁力搅拌下慢慢滴加到溶液A中,得到均匀透明的溶胶,然后将其取出,放入内衬为聚四氟乙烯的高压釜中,于120℃加热8h,得到掺杂的二氧化钛粉末,取出,离心分离后用蒸馏水洗涤、干燥,在300℃煅烧,研磨即得到所需的纳米粒子。所得产物通过上述光催化活性测试方法,测得其对酸性橙II的脱色率为80%,具有很强的可见光催化活性。
实施例二:
室温下将10ml钛酸乙酯加入10ml无水乙醇中,添加冰醋酸抑制其水解,搅拌均匀成溶液A,将其置于分液漏斗中。
按0.1%(钒钛质量比)掺杂比例称取偏钒酸钠,添加适量去离子水使其完全溶解形成溶液B。
将溶液B于磁力搅拌下慢慢滴加到溶液A中,得到均匀透明的溶胶,然后将其取出,放入内衬为聚四氟乙烯的高压釜中,于150℃加热8h,得到掺杂的二氧化钛粉末,取出,离心分离后用蒸馏水洗涤、干燥,在250℃煅烧,研磨即得到所需的纳米粒子。所得产物经光催化活性实验测试,酸性橙II的脱色率为85%。
实施例三:
室温下将10ml钛酸四丁酯加入10ml无水乙醇中搅拌均匀,简称溶液A,将其置于分液漏斗中。
按0.2%(钒钛质量比)掺杂比例称取偏钒酸铵,添加适量去离子水和浓氨水至偏钒酸铵完全溶解,称溶液B。
将溶液B于磁力搅拌下慢慢滴加到溶液A中,得到均匀透明的溶胶,然后将其取出,放入内衬为聚四氟乙烯的高压釜中,于150℃加热12h,得到掺杂的二氧化钛粉末,取出,离心分离后用蒸馏水洗涤、干燥,在250℃煅烧,研磨即得到所需的纳米粒子。所得产物经光催化活性实验测试,酸性橙II的脱色率为80%。
实施例四:
室温下将10ml四氯化钛加入15ml无水乙醇中,在冰水浴环境中搅拌均匀,简称溶液A,将其置于分液漏斗中。
按0.5%(钒钛质量比)掺杂比例分别称取偏钒酸铵,添加适量去离子水和浓氨水至偏钒酸铵完全溶解,称溶液B。
将溶液B于磁力搅拌下慢慢滴加到溶液A中,得到均匀透明的溶胶,然后将其取出,放入内衬为聚四氟乙烯的高压釜中,于180℃加热12h,得到掺杂的二氧化钛粉末,取出,离心分离后用蒸馏水洗涤、干燥后精细研磨,即得到所需的纳米粒子。因所得产物未经煅烧,其在光催化过程中表现了较强的吸附性能,光催化活性测试酸性橙II的脱色率达到95%以上。
Claims (10)
1、一种钒掺杂纳米二氧化钛催化剂的制备方法,其特征在于包括如下步骤:
第一步,将钛的先驱物溶于无水乙醇中,添加冰醋酸抑制其水解,均匀搅拌成A液;
第二步,以0.1%-1%的V/Ti质量比称取钒酸盐,置于去离子水或硝酸或氨水中使其完全溶解,均匀搅拌组成B液;
第三步,B液经恒压漏斗缓慢滴入剧烈搅拌的A液中搅拌形成溶胶;再将所得溶胶转入高压反应釜,并于烘箱中放置发生水热反应;
第四步,将所得溶液干燥、研磨,得到粉体产物。
2、根据权利要求1所述的钒掺杂纳米二氧化钛催化剂的制备方法,其特征是:所述钛的先驱物为钛醇盐和钛的无机盐中的一种。
3、根据权利要求2所述的钒掺杂纳米二氧化钛催化剂的制备方法,其特征是:钛醇盐类包括钛酸四丁酯、钛酸乙酯中的一种。
4、根据权利要求2所述的钒掺杂纳米二氧化钛催化剂的制备方法,其特征是:钛的无机盐为氯化钛、硫酸钛中的一种。
5、根据权利要求1所述的钒掺杂纳米二氧化钛催化剂的制备方法,其特征是:所述钒酸盐为偏钒酸铵、偏钒酸钠、偏钒酸钾中的一种。
6、根据权利要求1所述的钒掺杂纳米二氧化钛催化剂的制备方法,其特征是:所述硝酸为浓硝酸,其pH在1.5-2.0之间。
7、根据权利要求1所述的钒掺杂纳米二氧化钛催化剂的制备方法,其特征是:所述偏钒酸铵用氨水、80℃-100℃的热水溶解。
8、根据权利要求1所述的钒掺杂纳米二氧化钛催化剂的制备方法,其特征是:所述于烘箱中放置,其放置时间为8h-12h。
9、根据权利要求1所述的钒掺杂纳米二氧化钛催化剂的制备方法,其特征是:所述水热反应,其温度为120℃-180℃,所制的钒掺杂纳米二氧化钛呈锐钛矿型,经250℃-300℃煅烧后呈规则锐钛矿型晶体结构。
10、根据权利要求1所述的钒掺杂纳米二氧化钛催化剂的制备方法,其特征是:所述研磨或者在煅烧3h后进行。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100416647A CN101357329A (zh) | 2008-08-14 | 2008-08-14 | 钒掺杂纳米二氧化钛催化剂的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008100416647A CN101357329A (zh) | 2008-08-14 | 2008-08-14 | 钒掺杂纳米二氧化钛催化剂的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101357329A true CN101357329A (zh) | 2009-02-04 |
Family
ID=40330013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008100416647A Pending CN101357329A (zh) | 2008-08-14 | 2008-08-14 | 钒掺杂纳米二氧化钛催化剂的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101357329A (zh) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101972662A (zh) * | 2010-10-27 | 2011-02-16 | 华北电力大学(保定) | 一种氮和钒共掺杂的改性二氧化钛催化剂的制备和使用方法 |
CN102294256A (zh) * | 2011-06-01 | 2011-12-28 | 甘肃省科学院自然能源研究所 | 钒-氮共掺杂TiO2光催化剂的制备方法 |
CN102592836A (zh) * | 2012-02-07 | 2012-07-18 | 聊城大学 | 一种铁掺杂二氧化钛粉体的制备工艺 |
CN102745739A (zh) * | 2011-04-21 | 2012-10-24 | 苏州科技学院 | 一种氧化物纳米晶晶体的制备方法 |
CN102992397A (zh) * | 2012-12-13 | 2013-03-27 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种稀土元素掺杂二氧化钛纳米材料的制备方法 |
CN103157459A (zh) * | 2013-04-01 | 2013-06-19 | 桂林理工大学 | 可见光响应的钒酸盐光催化剂LiMVO4及其制备方法 |
CN103920487A (zh) * | 2014-04-10 | 2014-07-16 | 福建师范大学 | 钒掺杂锑酸镓可见光光催化剂的制备方法及其应用 |
CN104749324A (zh) * | 2015-03-26 | 2015-07-01 | 曲阜师范大学 | 掺杂无机钒盐和钯盐调控形貌的纳米二氧化钛及其制备方法与应用 |
CN105498747A (zh) * | 2015-12-02 | 2016-04-20 | 铜仁学院 | 一种过渡金属表面沉积二氧化钛的合成方法 |
CN106378172A (zh) * | 2016-08-31 | 2017-02-08 | 杭州风铃草环保科技有限公司 | 一种钒氮共掺杂二氧化钛分散液的制备方法及其应用 |
CN106395890A (zh) * | 2016-03-30 | 2017-02-15 | 广东工业大学 | 钒掺杂二氧化钛超薄中空结构微球及其一步水热合成方法和应用 |
CN106830076A (zh) * | 2016-12-23 | 2017-06-13 | 句容亿格纳米材料厂 | 一种玻璃用纳米热反射复合功能材料的制备方法 |
CN107935519A (zh) * | 2017-12-19 | 2018-04-20 | 哈尔滨工业大学 | 一种免蒸养可降解甲醛的硅藻板及其制备方法 |
CN108043389A (zh) * | 2017-12-19 | 2018-05-18 | 哈尔滨工业大学 | 一种过渡金属离子掺杂改性TiO2可见光催化活性的方法 |
CN108579723A (zh) * | 2018-03-10 | 2018-09-28 | 安徽大学 | 钒掺杂纳米二氧化钛光催化剂及其制备方法 |
CN108622901A (zh) * | 2018-04-28 | 2018-10-09 | 哈尔滨工程大学 | 一种形貌可控氧硅钛钠石纳米材料的制备方法 |
CN109317216A (zh) * | 2018-11-19 | 2019-02-12 | 西南化工研究设计院有限公司 | 一种溶剂热酸修饰的VHTi催化剂及制备方法与应用 |
CN110624560A (zh) * | 2019-09-17 | 2019-12-31 | 吉林师范大学 | 一种用于光-芬顿联合催化的FeVO4/TiO2多孔催化剂膜层材料及其制备方法 |
CN111054442A (zh) * | 2019-12-19 | 2020-04-24 | 东北师范大学 | 一种快速去除水中酚类有机污染物的二氧化钛基纳米复合光催化剂的制备方法 |
CN111905713A (zh) * | 2020-09-09 | 2020-11-10 | 叁素(浙江)新材料科技有限责任公司 | 一种钒掺杂TiO2/还原石墨烯复合纳米光催化剂的制备方法 |
CN112275038A (zh) * | 2020-10-15 | 2021-01-29 | 天津大学合肥创新发展研究院 | 有吸附病毒杀伤的V/TiO2纳米光催化剂过滤网的制备方法 |
CN113544094A (zh) * | 2019-03-04 | 2021-10-22 | 信越化学工业株式会社 | 氧化钛微粒、其分散液和所述分散液的制造方法 |
CN114180621A (zh) * | 2021-12-13 | 2022-03-15 | 川北医学院附属医院 | 一种原子分散的钒掺杂二氧化钛及其制备方法和用途 |
CN115261912A (zh) * | 2022-07-25 | 2022-11-01 | 浙江海卓氢科技有限公司 | 电催化剂载体及其制备方法 |
CN116251587A (zh) * | 2023-03-06 | 2023-06-13 | 中国科学院东北地理与农业生态研究所 | 一种纳米Pt-TiO2复合光催化剂制备方法 |
CN117658207A (zh) * | 2023-11-09 | 2024-03-08 | 广州市浩立生物科技有限公司 | 一种纳米二氧化钛粉末的制备方法及其应用 |
-
2008
- 2008-08-14 CN CNA2008100416647A patent/CN101357329A/zh active Pending
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101972662A (zh) * | 2010-10-27 | 2011-02-16 | 华北电力大学(保定) | 一种氮和钒共掺杂的改性二氧化钛催化剂的制备和使用方法 |
CN101972662B (zh) * | 2010-10-27 | 2012-07-04 | 华北电力大学(保定) | 一种氮和钒共掺杂的改性二氧化钛催化剂的制备和使用方法 |
CN102745739A (zh) * | 2011-04-21 | 2012-10-24 | 苏州科技学院 | 一种氧化物纳米晶晶体的制备方法 |
CN102294256A (zh) * | 2011-06-01 | 2011-12-28 | 甘肃省科学院自然能源研究所 | 钒-氮共掺杂TiO2光催化剂的制备方法 |
CN102592836A (zh) * | 2012-02-07 | 2012-07-18 | 聊城大学 | 一种铁掺杂二氧化钛粉体的制备工艺 |
CN102992397A (zh) * | 2012-12-13 | 2013-03-27 | 上海纳米技术及应用国家工程研究中心有限公司 | 一种稀土元素掺杂二氧化钛纳米材料的制备方法 |
CN103157459A (zh) * | 2013-04-01 | 2013-06-19 | 桂林理工大学 | 可见光响应的钒酸盐光催化剂LiMVO4及其制备方法 |
CN103920487A (zh) * | 2014-04-10 | 2014-07-16 | 福建师范大学 | 钒掺杂锑酸镓可见光光催化剂的制备方法及其应用 |
CN104749324A (zh) * | 2015-03-26 | 2015-07-01 | 曲阜师范大学 | 掺杂无机钒盐和钯盐调控形貌的纳米二氧化钛及其制备方法与应用 |
CN104749324B (zh) * | 2015-03-26 | 2016-07-27 | 曲阜师范大学 | 掺杂无机钒盐和钯盐调控形貌的纳米二氧化钛及其制备方法与应用 |
CN105498747A (zh) * | 2015-12-02 | 2016-04-20 | 铜仁学院 | 一种过渡金属表面沉积二氧化钛的合成方法 |
CN106395890A (zh) * | 2016-03-30 | 2017-02-15 | 广东工业大学 | 钒掺杂二氧化钛超薄中空结构微球及其一步水热合成方法和应用 |
CN106378172A (zh) * | 2016-08-31 | 2017-02-08 | 杭州风铃草环保科技有限公司 | 一种钒氮共掺杂二氧化钛分散液的制备方法及其应用 |
CN106830076A (zh) * | 2016-12-23 | 2017-06-13 | 句容亿格纳米材料厂 | 一种玻璃用纳米热反射复合功能材料的制备方法 |
CN106830076B (zh) * | 2016-12-23 | 2018-10-30 | 句容亿格纳米材料厂 | 一种玻璃用纳米热反射复合功能材料的制备方法 |
CN107935519A (zh) * | 2017-12-19 | 2018-04-20 | 哈尔滨工业大学 | 一种免蒸养可降解甲醛的硅藻板及其制备方法 |
CN108043389A (zh) * | 2017-12-19 | 2018-05-18 | 哈尔滨工业大学 | 一种过渡金属离子掺杂改性TiO2可见光催化活性的方法 |
CN108579723A (zh) * | 2018-03-10 | 2018-09-28 | 安徽大学 | 钒掺杂纳米二氧化钛光催化剂及其制备方法 |
CN108579723B (zh) * | 2018-03-10 | 2020-08-25 | 安徽大学 | 钒掺杂纳米二氧化钛光催化剂及其制备方法 |
CN108622901A (zh) * | 2018-04-28 | 2018-10-09 | 哈尔滨工程大学 | 一种形貌可控氧硅钛钠石纳米材料的制备方法 |
CN109317216B (zh) * | 2018-11-19 | 2020-05-22 | 西南化工研究设计院有限公司 | 一种溶剂热酸修饰的VHTi催化剂及制备方法与应用 |
CN109317216A (zh) * | 2018-11-19 | 2019-02-12 | 西南化工研究设计院有限公司 | 一种溶剂热酸修饰的VHTi催化剂及制备方法与应用 |
CN113544094A (zh) * | 2019-03-04 | 2021-10-22 | 信越化学工业株式会社 | 氧化钛微粒、其分散液和所述分散液的制造方法 |
CN113544094B (zh) * | 2019-03-04 | 2023-08-29 | 信越化学工业株式会社 | 氧化钛微粒、其分散液和所述分散液的制造方法 |
CN110624560A (zh) * | 2019-09-17 | 2019-12-31 | 吉林师范大学 | 一种用于光-芬顿联合催化的FeVO4/TiO2多孔催化剂膜层材料及其制备方法 |
CN111054442A (zh) * | 2019-12-19 | 2020-04-24 | 东北师范大学 | 一种快速去除水中酚类有机污染物的二氧化钛基纳米复合光催化剂的制备方法 |
CN111054442B (zh) * | 2019-12-19 | 2022-06-07 | 东北师范大学 | 一种快速去除水中酚类有机污染物的二氧化钛基纳米复合光催化剂的制备方法 |
CN111905713A (zh) * | 2020-09-09 | 2020-11-10 | 叁素(浙江)新材料科技有限责任公司 | 一种钒掺杂TiO2/还原石墨烯复合纳米光催化剂的制备方法 |
CN112275038A (zh) * | 2020-10-15 | 2021-01-29 | 天津大学合肥创新发展研究院 | 有吸附病毒杀伤的V/TiO2纳米光催化剂过滤网的制备方法 |
CN114180621A (zh) * | 2021-12-13 | 2022-03-15 | 川北医学院附属医院 | 一种原子分散的钒掺杂二氧化钛及其制备方法和用途 |
CN114180621B (zh) * | 2021-12-13 | 2024-04-26 | 川北医学院附属医院 | 一种原子分散的钒掺杂二氧化钛及其制备方法和用途 |
CN115261912A (zh) * | 2022-07-25 | 2022-11-01 | 浙江海卓氢科技有限公司 | 电催化剂载体及其制备方法 |
CN116251587A (zh) * | 2023-03-06 | 2023-06-13 | 中国科学院东北地理与农业生态研究所 | 一种纳米Pt-TiO2复合光催化剂制备方法 |
CN117658207A (zh) * | 2023-11-09 | 2024-03-08 | 广州市浩立生物科技有限公司 | 一种纳米二氧化钛粉末的制备方法及其应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101357329A (zh) | 钒掺杂纳米二氧化钛催化剂的制备方法 | |
Zhang et al. | Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation | |
CN101385968B (zh) | 光催化活性碳掺杂二氧化钛纳米材料的制备方法 | |
Luo et al. | Gold nanoparticles embedded in Ta 2 O 5/Ta 3 N 5 as active visible-light plasmonic photocatalysts for solar hydrogen evolution | |
Xu et al. | Photocatalytic degradation of organic dyes under solar light irradiation combined with Er3+: YAlO3/Fe-and Co-doped TiO2 coated composites | |
CN104549389A (zh) | 一种异质结纳米片光催化剂及其制备方法和应用 | |
Lv et al. | Synthesis and characterisation of Gd3+-doped mesoporous TiO2 materials | |
CN104511293A (zh) | 一种氯氧化铋-钛酸铁铋复合光催化剂及其制备方法 | |
Tang et al. | Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts | |
CN107349943A (zh) | 锡酸铋/银‑氯化银等离子体纳米复合光催化材料的制备方法 | |
Mavengere et al. | UV–visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites | |
CN106807400B (zh) | 一种复合铁酸铋光催化剂及其制备方法和应用 | |
CN106582760A (zh) | 一种金属元素掺杂的cnb光催化剂及其制备方法 | |
CN104707635B (zh) | 一种高活性磷掺杂钒酸铋光催化剂及其制备方法与应用 | |
Wei et al. | Bi and Al co-doped anatase titania for photosensitized degradation of Rhodamine B under visible-light irradiation | |
CN103721699A (zh) | 一种NaInO2光催化剂及其制备方法 | |
Sun et al. | A polyacrylamide gel route to photocatalytically active BiVO4 particles with monoclinic scheelite structure | |
Radha et al. | Structural, luminescence emission and photocatalytic properties of pure and Dy3+ doped anatase TiO2 nanorods | |
CN105170144A (zh) | 锆、银共掺杂的纳米二氧化钛可见光光催化剂 | |
Chang et al. | SiO2@ TiO2: Eu3+ and its derivatives: Design, synthesis, and properties | |
CN102101057B (zh) | 可见光响应高活性(RE,N)/TiO2纳米光催化剂的制备方法 | |
CN103506104B (zh) | 玻璃片载体上碳掺杂TiO2可见光响应催化膜及其制备方法 | |
CN106890656A (zh) | 一种磷掺杂二氧化钛溶胶及其制备方法 | |
CN105214637B (zh) | 一种钛酸硅酸铯光催化剂及其制备方法和应用 | |
CN104785282A (zh) | 新型三价钛与非金属元素氮共掺杂二氧化钛纳米光催化剂的制备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20090204 |