CN101036947A - 锂离子电池负极用高比容量钴/锑合金材料的制备方法 - Google Patents

锂离子电池负极用高比容量钴/锑合金材料的制备方法 Download PDF

Info

Publication number
CN101036947A
CN101036947A CN 200710098901 CN200710098901A CN101036947A CN 101036947 A CN101036947 A CN 101036947A CN 200710098901 CN200710098901 CN 200710098901 CN 200710098901 A CN200710098901 A CN 200710098901A CN 101036947 A CN101036947 A CN 101036947A
Authority
CN
China
Prior art keywords
cobalt
alloy
oxide
argon gas
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200710098901
Other languages
English (en)
Other versions
CN100464907C (zh
Inventor
赵海雷
王梦微
郭洪
仇卫华
贾喜娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CNB2007100989019A priority Critical patent/CN100464907C/zh
Publication of CN101036947A publication Critical patent/CN101036947A/zh
Application granted granted Critical
Publication of CN100464907C publication Critical patent/CN100464907C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种高容量Co/Sb合金锂离子电池负极材料的制备方法,属锂离子电池领域。将钴和锑的氧化物按所生成合金复合物中Co、Sb的比例进行计量配比,然后加适当的活性碳或碳黑作为还原剂,所形成的混合物混合均匀后置于流动的氩气、氮气或含5~10vol%H2的氩气、氮气气氛下以2~30℃/min的升温速率达到所需温度750~1000℃,保温1~6小时,然后程序控温冷却或随炉冷却至室温。本发明的优点在于:不仅原料成本低、工艺过程简单、耗时较少、产率高,而且所合成的Co/Sb合金颗粒均匀细小,结晶度高,制备出的相应负极材料比容量高,循环性能稳定。

Description

锂离子电池负极用高比容量钴/锑合金材料的制备方法
技术领域
本发明属锂离子电池技术领域,特别提供了一种用于锂离子电池负极用钴/锑合金材料的制备方法。
背景技术
移动通信、手提电脑和数码摄像是当今全球电子信息产业中发展最快的三个行业,随着这些行业的迅速发展,作为这三个主导产品最主要配件之一的锂离子电池,毫无疑问也成为极具前途的一个朝阳产业。与传统Ni/Cd、Ni/MH电池相比,锂离子电池具有能量密度高、工作电压高、负载特性好、充电速度快、安全无污染等优点,是目前发展最快、市场前景最为光明的一种二次电池。
目前商业化的锂离子电池中大多采用锂过渡金属氧化物/石墨体系,但是受该体系电极本身的理论储锂容量限制(如石墨,372mAh/g,855mAh/cm3),单纯通过改进电池制备工艺来提高电池性能已经难以取得突破性进展,为满足高容量锂离子电池的需求,研究开发高比容量锂离子电池电极材料是非常迫切和必要的。
在对负极材料的研究中,人们发现某些合金化合物可能成为锂离子电池负极材料的研究新思路。如Si、Ge、Sn、Pb、Al、Ga、Sb等都具有较高的储锂容量,因此,合金材料成为新型锂离子电池负极材料的候选对象。但是合金材料有一个很大的缺点,在充放电过程中会伴随有非常大的体积变化,这种巨大的体积变化易导致材料粉化,使某些颗粒相互之间失去接触,甚至从电极基体上脱落,最终导致电极容量降低,寿命缩短。为了提高和改善合金负极材料的寿命,缓和锂脱嵌过程中的体积变化是关键所在。其中一个可行的解决办法就是在能与锂高度化合的金属中引入相对活性较差甚至是惰性的组分,充当缓冲“基体”(matrix)以缓冲充放电过程中电极的体积变化,从而维持材料的结构稳定性。
Sb的理论储锂容量为660mAh/g,接近于碳负极材料的两倍。但是单纯的Sb负极在脱嵌锂过程中将伴随较大的体积变化,从而影响电极的循环稳定性。研究表明金属Co引入到其它金属中可以提高合金的延展性(J.R.Dahn,S.Trussler,T.D.Hatchard,A.Bonakdarpour,Chem.Mater.,2002,14:3519-3524)。将Co与Sb合金化可以提高合金的抗机械应变能力,因而Co/Sb是一类很好的合金负极候选材料,具有广阔的开发应用潜力。
文献(J.Xie,X.B.Zhao,G.S.Cao,Y.D.Zhong,M.J.Zhao.Journal of ElectroanalyticalChemistry,2003,542:1-6)报道,采用悬浮熔融法将纯的Co和Sb按一定计量比混合密封在坩埚中抽真空,之后在氩气气氛保护下热处理至金属混合物完全熔化,自然冷却至室温后取出合金块体600℃下退火一星期,研磨成1~4μm的粉体即可制得CoSb3合金材料,首次可逆容量420mAh/g,第10次循环时降为243mAh/g,此种方法耗时长,工艺过程复杂,成本高。文献(J.Xie,G.S.Cao,Y.D.Zhong,X.B.Zhao.Journal ofElectroanalytical Chemistry,2004,568:323-327)记载的机械球磨法制备CoSb3合金负极,首次可逆容量550mAh/g,第10次循环时为350mAh/g,此方法虽然制备过程简单易行,但是在机械球磨过程中极易引入磨料介质,给产物带来杂质。以上两种方法所制得的Co/Sb合金负极材料的容量衰减都较快,性能还有待进一步提高。文献(J.Xie,X.B.Zhao,G.S.Cao,Y.D.Zhong,M.J.Zhao,J.P.Tu.Electrochimica Acta,2005,50:1903-1907)中采用液相化学还原法,将还原剂NaBH4与CoCl2·6H2O以及SbCl3混合,反应得到CoSb2沉淀,然后经过反复过滤洗涤真空烘干得到纳米粉体产物。该方法合成的CoSb2颗粒尺寸为20nm以下,均一性很好,但是产物比表面积大,易产生团聚和表面氧化,导致首次不可逆容量增加(达到约600mAh/g),且原料成本较高,工艺过程复杂,产率较低。另外,同样还是采用液相化学还原法,文献(J.Xie,X.B.Zhao,G.S.Cao,M.J.Zhao,S.F.Su.Journal of Power Sources,2005,140:350-354)制得了循环性能较好的CoSb3合金负极材料,首次不可逆容量仅为257mAh/g,首次可逆容量521mAh/g,第10次循环时保持在460mAh/g,说明Co/Sb材料确实可以成为一类很好的合金负极候选材料,但是这种方法仍然避免不了原料成本高,工艺过程复杂,产率较低的缺点。因此,研究开发一种生产成本低、工艺简单、产率高、便于规模化生产的Co/Sb合金的合成方法对于促进Co/Sb合金在锂离子电池中的实际应用具有十分重要的意义。
发明内容
本发明的目的在于提供一种锂离子电池Co/Sb合金负极材料的制备方法。实现了生产成本低,工艺简单,产率高;合成的Co/Sb合金粉体的颗粒均匀细小,结晶度良好,比容量高,循环性能稳定。
本发明采用碳热还原法合成Co/Sb合金负极材料,利用碳粉作为还原剂还原钴和锑的氧化物,制备不同Co/Sb比例的合金负极材料。具体制备工艺如下:
将微米级、亚微米级或纳米级钴、锑的氧化物和活性碳或碳黑粉体进行称量配比,钴氧化物、锑氧化物的加入量按照Co/Sb原子比例3∶1~1∶3计算,活性碳或碳黑的加入量按照化学方程式(1)或(2)计算,其加入量为理论计算量的95%~105%;
以Co3O4为Co源时:
xCo3O4+ySb2O3+(4x+3y)C=Co3xSb2y+(4x+3y)CO其中:3x∶2y=3∶1~1∶3       (1)
以CoO为Co源时:
xCoO+ySb2O3+(x+3y)C=CoxSb2y+(x+3y)CO     其中:x∶2y=3∶1~1∶3        (2)
采用机械干混或湿混的方法将其混合均匀。将混合物置于流动的氮气、氩气或含5~10vol%H2的氩气或氮气气氛中,以2~30℃/min的升温速率达到所需温度750~1000℃,保温1~6小时。然后程序控温冷却或将加热炉断电,自然随炉冷却至室温。控制起始原料中氧化钴和Sb2O3的比例,可以有效控制所得Co/Sb合金产物中元素的比例。
根据热力学计算,Co和Sb的氧化物在相对较低的温度下(350-420℃)可以被C还原为金属,又由于Sb的熔点较低(631℃),在反应温度下,还原出的Sb将以液相存在,液相的Sb将很容易与还原出来的Co合金化生成Co/Sb合金或金属间化合物。同时,在碳热还原的过程中,有氧化碳的气体产生,连续不断的气体溢出过程可以防止合金颗粒之间的团聚,同时还可能在合金颗粒内部产生气孔,从而可以制备颗粒细小均匀、含有内微孔的Co/Sb合金粉体。本发明采用碳热还原技术,利用碳粉作为还原剂还原Co和Sb的氧化物,因此,只需将原料均匀混合,在保护气氛下烧结,保温1~6小时后冷却即可得到最终产物Co/Sb合金复合材料。
本发明的优点在于:原料成本低、工艺过程简单、耗时较少、产率高。所合成的Co/Sb合金结晶度高,成微米级颗粒,因此比表面积不会过大,不易产生严重的团聚和表面氧化,从而减少负极材料的首次不可逆容量;合成的合金颗粒含有一定量的内微孔,微孔可以缓冲在脱嵌锂过程中合金的体积膨胀和收缩,从而提高合金颗粒的结构稳定性,改善合金电极的循环稳定性。
附图说明
图1为本发明碳热还原合成的Co/Sb合金粉末的XRD图,Co、Sb的原子比例为1∶1,合成温度为1000℃。
图2为本发明碳热还原合成的Co/Sb合金粉末的XRD图,Co、Sb的原子比例为1∶3,合成温度为850℃。
图3为本发明碳热还原合成的Co/Sb合金负极的比容量-循环次数曲线,Co、Sb的原子比例为1∶3,合成温度为850℃。
具体实施方式
实施例1:
以Co3O4(≥98.5%)、Sb2O3(≥99.0%)和活性碳(>99.0%)为初始原料,按摩尔比2∶9∶35(相当于Co、Sb的原子比例为1∶3)进行配料,将混合物球磨混合均匀后,置于流动的氩气气氛下以2℃/min的升温速率升高到850℃,保温2小时,然后断电,自然冷却至室温。所得试样的XRD物相分析结果表明,合成产物为CoSb3和少量的Sb,无其他氧化物杂质相的存在。
将合成的材料加10wt%的导电剂乙炔黑,10wt%的粘结剂PVDF制成浆料,均匀涂于铜箔上,烘干后卡成圆形极片,与金属锂组成实验电池进行恒电流充放电实验,充放电电流为100mA/g,充放电电压范围控制在0.1-1.5V之间。制备的CoSb3负极材料的首次不可逆容量为240mAh/g,可逆容量为549.8mAh/g。
实施例2:
以CoO(≥98.5%)、Sb2O3(≥99.0%)和活性碳(>99.0%)为初始原料,按摩尔比2∶1∶5(相当于Co、Sb的原子比例为1∶1)进行配料,将混合物球磨混合均匀后,置于流动的氩气气氛下以5℃/min的升温速率升高到1000℃,保温1小时,然后断电,自然冷却至室温。所得试样的XRD物相分析结果表明,合成产物为CoSb。将合成的材料加10wt%的导电剂乙炔黑,10wt%的粘结剂PVDF制成浆料,均匀涂于铜箔上,烘干后卡成圆形极片,与金属锂组成实验电池进行恒电流充放电实验,充放电电流为100mA/g,充放电电压范围控制在0.1-1.5V之间。制备的CoSb负极材料的首次不可逆容量为150mAh/g,可逆容量为450mAh/g。

Claims (5)

1、一种锂离子电池负极用高比容量钴/锑合金材料的制备方法,其特征在于,制备步骤如下:
a、将钴氧化物、Sb2O3和碳粉进行称量配比,将粉体混合均匀,置于流动的氮气、氩气或含5~10vol%H2的氩气或氮气气氛中,以2~30℃/min的升温速率达到所需温度750~1000℃,保温1~6小时;其中,钴的氧化物和Sb2O3的加入量按照Co/Sb原子比例3∶1~1∶3计算;
b、将加热炉程序控温冷却或自然随炉冷却至室温。
2、按权利要求1所述的方法,其特征在于,所述的钴的氧化物为Co3O4或CoO。
3、按权利要求1所述的方法,其特征在于,以Co3O4为Co源时,碳粉的加入量按照化学方程式xCo3O4+ySb2O3+(4x+3y)C=Co3xSb2y+(4x+3y)CO计算;以CoO为Co源时,碳粉的加入量按照化学方程式xCoO+ySb2O3+(x+3y)C=CoxSb2y+(x+3y)CO计算,其中,x∶2y=3∶1~1∶3。
4、按权利要求1或3所述的方法,其特征在于,所述的碳粉为活性碳或碳黑,其加入量为理论计算量的95%~105%;
5、按权利要求1所述的方法,其特征在于,所述粉体的混合为湿混或干混。
CNB2007100989019A 2007-04-29 2007-04-29 锂离子电池负极用高比容量钴/锑合金材料的制备方法 Expired - Fee Related CN100464907C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100989019A CN100464907C (zh) 2007-04-29 2007-04-29 锂离子电池负极用高比容量钴/锑合金材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100989019A CN100464907C (zh) 2007-04-29 2007-04-29 锂离子电池负极用高比容量钴/锑合金材料的制备方法

Publications (2)

Publication Number Publication Date
CN101036947A true CN101036947A (zh) 2007-09-19
CN100464907C CN100464907C (zh) 2009-03-04

Family

ID=38888242

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100989019A Expired - Fee Related CN100464907C (zh) 2007-04-29 2007-04-29 锂离子电池负极用高比容量钴/锑合金材料的制备方法

Country Status (1)

Country Link
CN (1) CN100464907C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328094A (zh) * 2021-05-20 2021-08-31 中国矿业大学 一种锂电负极材料锑钴碳纳米纤维的制备方法
CN115832328A (zh) * 2023-02-08 2023-03-21 南方科技大学 一种多孔碳电极及其制备方法、液流电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3617447B2 (ja) * 1999-12-01 2005-02-02 松下電器産業株式会社 リチウム二次電池
KR100674015B1 (ko) * 2001-02-12 2007-01-24 주식회사 엘지화학 수명특성이 우수한 리튬 2 차 전지의 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 2차 전지
JP4097127B2 (ja) * 2002-05-24 2008-06-11 株式会社三徳 リチウムイオン二次電池用負極材料、その製造法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US7498100B2 (en) * 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328094A (zh) * 2021-05-20 2021-08-31 中国矿业大学 一种锂电负极材料锑钴碳纳米纤维的制备方法
CN115832328A (zh) * 2023-02-08 2023-03-21 南方科技大学 一种多孔碳电极及其制备方法、液流电池

Also Published As

Publication number Publication date
CN100464907C (zh) 2009-03-04

Similar Documents

Publication Publication Date Title
CN101533907B (zh) 一种锂离子电池硅基负极复合材料的制备方法
CN112018349B (zh) 一种CoTe2/MXene复合材料及其制备方法
CN109524650A (zh) 一种锂离子电池氧化亚硅复合负极材料及制法
CN100544081C (zh) 一种纳米钛酸锂及其与二氧化钛的复合物的制备方法
CN100426563C (zh) 一种高容量锡锑硅合金锂离子电池负极材料的制备方法
CN1301560C (zh) 一种锂离子电池负极用锡锑合金材料的制备方法
CN106784743A (zh) 一种低膨胀率多孔硅/石墨复合电极材料及其制备方法
CN102263245A (zh) 球形多孔锂离子电池复合负极材料的制备方法
CN101188288A (zh) 一种锂离子电池锡钴碳复合负极材料的制备方法
Lin et al. Recent development of Sn–Fe-based materials as a substitute for Sn–Co–C anodes in Li-ion batteries: a review
CN103606700A (zh) 一种充放电性能良好的锂离子电池
CN101174689A (zh) 一种锂离子电池锡铜钴三元合金负极材料的制备方法
CN102800849B (zh) 过渡金属锡化物/石墨烯复合材料及其制备方法和应用
CN114597375A (zh) 锂离子电池的硅基负极复合材料、制备方法及锂离子电池
CN104868113B (zh) 一种金属氧化物锂离子电池负极材料的制备方法
CN102386408B (zh) 一种锂离子电池硼酸锰锂正极材料的制备方法
CN102517481B (zh) 一种高容量锗钴合金锂离子电池负极材料及制备方法
CN113422032A (zh) 一种钠离子电池负极材料NiSe2@C微球的制备方法及应用
CN100464907C (zh) 锂离子电池负极用高比容量钴/锑合金材料的制备方法
CN113046597A (zh) 一种锂离子电池多元合金负极材料及其制备方法
CN100383269C (zh) 一种高容量锡-钴合金锂离子电池负极材料的制备方法
CN101699641B (zh) 一种高容量锂离子电池用复合负极材料及其制备方法
CN104157855B (zh) 锂离子电池多级结构硅碳复合负极材料的制备方法
CN113690425B (zh) 一种高容量的硅基复合锂电负极材料及其制备方法
CN101265571A (zh) 一种锂离子电池负极用硅基复合材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090304

Termination date: 20110429