CN100334731C - 内含沟道型肖特基整流器的沟道型dmos晶体管 - Google Patents

内含沟道型肖特基整流器的沟道型dmos晶体管 Download PDF

Info

Publication number
CN100334731C
CN100334731C CNB018169554A CN01816955A CN100334731C CN 100334731 C CN100334731 C CN 100334731C CN B018169554 A CNB018169554 A CN B018169554A CN 01816955 A CN01816955 A CN 01816955A CN 100334731 C CN100334731 C CN 100334731C
Authority
CN
China
Prior art keywords
rectifier
layer
integrated circuit
substrate
epitaxial loayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB018169554A
Other languages
English (en)
Other versions
CN1468449A (zh
Inventor
石甫渊
崔炎曼
苏根政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Semiconductor Inc
Original Assignee
General Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Semiconductor Inc filed Critical General Semiconductor Inc
Publication of CN1468449A publication Critical patent/CN1468449A/zh
Application granted granted Critical
Publication of CN100334731C publication Critical patent/CN100334731C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种集成电路,其在一个或多个整流器区内具有多个沟道型肖特基势垒整流器,在一个或多个晶体管区内具有多个沟道型DMOS晶体管。该集成电路包含:(a)第一导电类型的衬底;(b)衬底上的第一导电类型的外延层,其中外延层具有比衬底低的掺杂度;(c)晶体管区的外延层内的第二导电类型的多个体区;(d)晶体管区和整流器区的外延层内的多个沟道;(e)衬贴沟道的第一绝缘层;(f)位于沟道内并覆盖第一绝缘层的多晶硅导体;(g)在与沟道相邻的体区内的多个第一导电类型的源极区;(h)晶体管区的掺杂多晶硅层上的第二绝缘层;以及(i)晶体管区和整流器区上的电极层。

Description

内含沟道型肖特基整流器的沟道型DMOS晶体管
技术领域
本发明涉及一种含有与肖特基势垒整流器并联的功率MOSFET的集成电路,尤其涉及一种单一衬底上的沟道型DMOSFET与沟道型肖特基整流器的集成。
背景技术
肖特基势垒整流器(也称为肖特基势垒二极管)用作DC-DC功率转换器中的同步整流器。名称为“具有MOS沟道的肖特基势垒整流器(Schottky Barrier Rectifier with MOS Trench)”的5,365,102号美国专利中公布了一种改进型肖特基势垒整流器。图1显示了该器件的剖视图。在该图中,整流器10包括:第一导电类型,通常为N型导电型的半导体衬底12,其有第一面12a和第二相对面12b。衬底12包含邻近第一面12a的相对高掺杂的阴极区12c(显示为N+)。第一导电类型的漂移区12d(显示为N)从阴极区12c向第二面12b延伸。因此,阴极区12c的掺杂浓度大于漂移区12d的掺杂浓度。在漂移区12d中形成了由相对侧面14a和14b限定的具有横截面宽度“Wm”的台面14。台面可以是条纹、矩形、圆柱形或其它的类似几何形状。在台面侧面也提供了绝缘区域16a和16b(例如SiO2)。该整流器还包括绝缘区16a与16b上的正极18。正极18与台面14形成了肖特基整流接触。在正极/台面界面上所形成的肖特基势垒的高度不仅取决于所使用的电极金属和半导体(例如:Si、Ge、GaAs与SiC)的类型,而且取决于台面14中的掺杂浓度。在第一面12a的阴极区12c附近有负极20。负极20与负极区12c是电阻性的接触。该沟道MOS肖特基势垒整流器在反向阻断电压方面具有显著的改善。通常,把两个或更多单独的沟道MOS肖特基势垒整流器制造为并联,多个整流器共用正极和负极触点。因此,各个沟道MOS肖特基势垒整流器作为单个的整流器。
遗憾的是,包含美国专利5,365,102中描述的肖特基势垒整流器具有相对高的导通电阻(正向偏压降)。此外,许多肖特基势垒整流器具有相对高的反向偏置泄漏电流。因此,在功率转换应用中经常用功率MOSFET(金属氧化物半导体场效应晶体管)来代替肖特基势垒整流器,这能解决上述问题。
DMOS晶体管(双扩散MOSFET)(即DMOSFET)是使用扩散来形成晶体管区域的一种MOSFET。典型的独立DMOS电路包括制成并联形式的两个或更多个单独的DMOS晶体管单元。各个DMOS晶体管单元共享公共的漏极触点(基底),同时,其源极用金属短接,且栅极用多晶硅短接在一起。因此,虽然DMOS电路由一列较小的晶体管构成,但其表现得像是一个单个的大晶体管。
DMOS晶体管的一个特殊类型是“沟道型DMOS晶体管”,其中,沟道是垂直形成的,在源极和漏极之间延伸的沟道中形成有栅极。排列了薄氧化物层并填充了多晶硅的沟道使电流受到的限制更少,因此具有更低的单位导通电阻(正向偏压降)。在美国专利5,072,266、5,541,425与5,866,931中公开了沟道型DMOS晶体管的实例。
图2a至图2c显示了现有沟道型DMOS结构120的一个实施例,其中一个单元121在水平横截面上是矩形。应该注意,晶体管单元121不需具有用于基本晶体管运行的矩形形状,更多的可以具有任何多边形的形状。然而,为布局起见,规则的矩形形状和规则的六角形形状通常被认为是最便利的。在该实施例中,该结构包括其上生长有微量n-掺杂的外延层104的N+衬底100。在掺杂外延层104内部设置了相反导电性的体区116。覆盖了体区116大部分的n-掺杂外延层140充当源极。在外延层上设置了矩形沟道124,其在该结构的上表面敞开,并限定了该晶体管单元的周边。栅极氧化物层130排在沟道124的底部与侧壁。沟道124填充有多晶硅。漏极与半导体衬底100的背面相连,源极118与源极区140和体区116相连,并且栅极与填充沟道124的多晶硅相连。如图2A所示,沟道124内的多晶硅在结构120的表面上是连续连接的。另外,多晶硅触点129延伸出结构120的表面,以相互连接。应该注意,该晶体管单元可以不具有图示的封闭的单元几何形状,而具有敞开的或条状的几何形状。
如图2A至2C所示,DMOS晶体管的栅极位于垂直朝向的沟道中。该结构经常被称为沟道垂直DMOS。其是“垂直的”,因为漏极触点出现在衬底的背面或底面上,并且从源极到漏极的电流是近似垂直的。这减小了弯曲或曲线的电流路径或寄生场效应结构中的高电阻。该器件也是双扩散的(由前缀“D”表示),因为源极区扩散进了相反导电类型的先扩散的体区一部分上的外延物质中。这种结构使用了沟道侧壁区以通过栅极控制电流,并具有与其相联系的大体上垂直的电流流动。如上所述,这种器件特别适于用作功率开关晶体管,这里需要使通过给定横向硅面积的电流最大。
遗憾的是,含有沟道型DMOS晶体管的功率MOSFET在高频应用中,表现出较低的开关速度,原因在于内建体二极管较长的恢复时间,因此,该功率MOSFET要比理想的差。
如图3A到图3F所示,这些问题己通过把功率MOSFET与肖特基势垒整流器进行并联组合而得到解决。
图3A示意性地显示了现有技术的沟道型DMOS晶体管的一部分。如图3A所示,这种晶体管好象具有内建的二极管Db。当置于电路中时,图3A所示的晶体管可以表示为图3B中由虚线所围绕的部分。在图3B中用D2表示内建体二极管,其中还包含与该晶体管相联系的开关S2。图3B的电路显示了开关S1和二极管D1、电感器L1、电容器C1和负载R1。在如图所示的电路上施加了电压Vin
图3C显示了两个控制信号,在时间T1、T2、T3、T4和T5上,用于驱动开关S1的第一栅极驱动信号GDS1和用于驱动开关S2的第二栅极驱动信号GDS2。如图3B所示,在时间T1,信号GDS1和GDS2使开关S1处于导通状态,开关S2处于关闭状态。因此,如图3B中的箭头所示,电流从Vin流经上面的开关S1,流经电感器L1并流经负载R1,通向地。
转至图3D,在时间T2,信号GDS1和GDS2使两个开关S1和S2处于导通状态。因此,电流(如图3D中的箭头显示)流经电感器L1,流经负载R1并流经内建体二极管D2
然后,如图3E所示,在时间T3,信号GDS1和GDS2使开关S1处于关闭状态,开关S2处于导通状态。因此,电流(由箭头所示)流经电感器L1,流经负载R1,并流经开关S2
在时间T4,信号GDS1和GDS2使开关S1和S2处于关闭状态,产生了如图3D所示的电流流动。具体而言,电流流经电感器L1,流经负载R1并流经内建体二极管D2
随后,在时间T5(一直到T6),信号GDS1和GDS2使开关S1处于导通状态,开关S2处于关闭状态。在该点,电流流动如图3B所示。具体地说,如图3B中的箭头所示,电流流动从Vin开始,流经上面的开关S1,流经电感器L1,流经负载R1,通向地。
应该注意,如果两个开关S1和开关S2同时处于导通状态,则大电流将从Vin开始,流经开关S1和S2,通向地。为了避免这种结果,作为一个例子,在开关S2导通之前的短暂时间内(例如,在T2和T3之间),关闭开关S1。然而,如上所述,在该时间内,电流将流经内建体二极管D2。对于典型的沟道型DMOS晶体管,该电流导致内建体二极管D2上的压降大约为0.65V。然而,如图3F所示,通过增加肖特基二极管Ds,该压降大约为0.3V,减少了功率损耗。
此外,在T4到T5期间内,电流经过内建体二极管D2。然而,在T5,由于体二极管D2的反向恢复时间较长,要在特定的时间里导通上面的开关S1,电流流经体二极管D2,通向地。另一方面,肖特基二极管具有相对短的反向恢复时间。因此,如图3F所示,如果提供了肖特基二极管,则由于反向恢复时间较短,只有非常少的电流流向了地。
因此,这种结构导致***效率较高,特别是对于要求功率消耗较低的高频***,例如便携式***。在美国专利5,915,179“半导体器件及其制造方法(Semiconductor Device and Method of Manufacturing theSame)”和美国专利4,811,065“具有高速体二极管的功率DMOS晶体管(Power DMOS Transistor with High Speed Body Diode)”中可见找到这种***的实例。在美国专利4,811,065中,在半导体结构内部肖特基势垒整流器与垂直DMOS晶体管结合,形成了等同于与N沟道垂直DMOS晶体管并联的肖特基势垒整流器的器件。
遗憾的是,MOS沟道型肖特基势垒整流器像那些在美国专利5,365,102种中所公开的一样,不利于沟道型DMOS晶体管的集成,其原因在于肖特基势垒整流器的MOS沟道填充了金属,潜在地导致了沟道区上金属覆盖的问题。目前,通过使用MCM(多芯片模块)方法来把沟道型DMOS晶体管和MOS沟道型肖特基势垒整流器集成在一个封装内,从而解决了该困难,值得注意的是,这样增加了这种器件的成本。
发明内容
因此,需要把MOS沟道型肖特基势垒整流器与沟道型DMOS晶体管集成在一个衬底上,同时在沟道区不存在金属覆盖问题。本发明提供了一种具有多晶硅氧化物半导体沟道的肖特基势垒整流器,而不是现有技术的MOS(金属氧化物半导体)沟道,并把该肖特基势垒整流器与沟道型DMOS晶体管集成在一个衬底上,从而满足了这种需要。
具体而言,根据本发明的一个实施例,提供了一种集成电路,其在一个或多个整流器区内具有多个沟道型肖特基势垒整流器,并在一个或多个晶体管区内具有多个沟道型DMOS晶体管,所述的集成电路还含有公共电极层,该电极层用作DMOS晶体管的公共源极并用作整流器的阳极。该集成电路包含:(a)第一导电类型的衬底;(b)衬底上的第一导电类型的外延层,其中外延层具有比衬底低的掺杂度;(c)多个第二导电类型的体区,其位于晶体管区中的外延层内;(d)多个沟道,其位于晶体管区和整流器区的外延层内;(e)衬在沟道上的第一绝缘层;(f)多晶硅导体,其位于沟道内并覆盖第一绝缘层;(g)体区内的多个第一导电类型的源极区,其位于与沟道相邻的位置;(h)第二绝缘层,其位于晶体管区中的掺杂多晶硅层上;以及(i)公共电极层,其连续地位于晶体管区和整流器区上。
最好在与体区相对的衬底的表面上提供电极层。
优选的,衬底是n-掺杂衬底,第一绝缘层是二氧化硅层,第二绝缘层是硼磷硅玻璃层。
优选的,沟道型肖特基势垒整流器和沟道型DMOS晶体管由公共氧化物层和该氧化物层上的公共多晶硅层制备。更为优选的,沟道型肖特基势垒整流器和沟道型DMOS晶体管使用公共衬底,衬底上的公共外延层,外延层上的公共氧化物层,以及氧化物层上的公共多晶硅层来制备。
此外,沟道型肖特基势垒整流器的正极和沟道型DMOS晶体管的源极最好共用一个公共电极,且沟道型肖特基势垒整流器的负极和沟道型DMOS晶体管的漏极最好共用一个公共电极。
根据本发明的另一个实施例,提供了一种制造集成电路的方法,该集成电路在一个或多个整流器区内含有多个沟道型肖特基势垒整流器,在一个或多个晶体管区内含有多个沟道型DMOS晶体管,该集成电路还含有公共电极层,该电极层用作DMOS晶体管的公共源极并用作整流器的阳极。该方法包含:(a)提供第一导电类型的衬底;(b)在衬底上形成第一导电类型的外延层,其中外延层具有比衬底低的掺杂度;(c)在晶体管区的外延层内形成一个或多个第二导电类型的体区;(d)在晶体管区和整流器区的外延层内形成多个沟道;(e)形成衬贴沟道的第一绝缘层;(f)在沟道内形成多晶硅导体并覆盖第一绝缘层;(g)在与沟道相邻的体区内形成多个第一导电类型的源极区;(h)在晶体管区的多晶硅导体上形成第二绝缘层;以及(i)连续地在晶体管区和整流器区上形成公共电极层。
此外,最好在与体区相对的衬底的表面上形成电极层。
根据几个优选实施例:(a)形成体区的步骤包括:在外延层上形成图案掩模层的步骤,及向外延层注入与扩散掺杂物质的步骤;(b)形成沟道的步骤包括:在外延层上形成图案掩模层的步骤,及通过掩模层蚀刻沟道的步骤;(c)形成源极区的步骤包括:形成图案掩模层的步骤,及向体区注入与扩散掺杂物的步骤;(d)在晶体管区的多晶硅层上形成第二绝缘层的步骤包含:至少在晶体管区上沉积BPSG层的步骤,在BPSG层上形成图案掩模层的步骤,以及在未被图案掩模层覆盖的区域上蚀刻BPSG层的步骤。
本发明具有优点,其原因在于本发明提供了一种沟道型肖特基势垒整流器与沟道型DMOS晶体管集成在单一衬底上的产品及其用于制造该产品的方法。因此,这种器件非常容易制备,迄今为止费用可能最少。
本领域技术熟练人员通过下文的详细描述、实例和权利要求书的记述,可以更加清楚地理解本发明的其它实施例与优点。
附图说明
图1显示了现有技术的MOS沟道型肖特基势垒整流器的剖视图;
图2A显示了现有沟道型DMOS晶体管的平面图;
图2B显示了图1所示的现有晶体管中的一个单元的放大平面图;
图2C显示了图2A和2B所示的DMOS晶体管沿图2B中的线A-A′的剖视图;
图3A示意性显示了现有技术的沟道型DMOS晶体管的一部分,其表现为好像具有一个内建体二极管Db;
图3B是电路图,其中包括图3A结构的等效电路,显示了在开关S1处于导通状态,开关S2处于关闭状态情况下的电流流动;
图3C显示了两个在时间T1、T2、T3、T4和T5驱动开关S1和S2(如图3B所示)的控制信号;
图3D显示了图3B所示电路在开关S1和S2处于关闭状态时的电流流动;
图3E显示了图3B所示电路在开关S1处于关闭状态,开关S2处于导通状态时的电流流动;
图3F是图3B添加了肖特基势垒二极管之后的电路图;
图4显示了本发明的沟道型DMOS晶体管和沟道型肖特基势垒整流器组合的实施例的剖视图;
图5A到图5J是剖面图,显示了根据本发明实施例的制造沟道型DMOS晶体管和沟道型肖特基势垒整流器组合的方法。
具体实施方式
参考附图,下文将更详细更充分地描述本发明,其中,附图显示了本发明的优选实施例。然而,本发明可以以不同形式来实施,并不被此处所陈述的实施例限制。
图4显示了本发明的一个实施例,显示了组合沟道型DMOS晶体管和沟道型肖特基势垒整流器的结构250。结构250在DMOS晶体管区220内具有DMOS晶体管器件,在整流器区222内具有肖特基势垒整流器器件。在该实施例中,结构250包括:其上形成有微量n-掺杂的外延层202的N+衬底200,其作为DMOS晶体管器件的漏极和整流器器件的负极/漂移区。导电层218作为DMOS晶体管器件的公共漏极触点,并作为整流器器件的公共负极。
在掺杂N外延层202的内部,相反导电性的P体区204作为DMOS晶体管器件的栅极区。还提供了N+区212,作为DMOS晶体管器件的源极。
导电层216作为DMOS晶体管器件的公共源极触点,把源极(即,N+区212)相互短接。导电层216作为整流器器件的正极。
还具有由氧化物层206衬贴并填充了多晶硅210的沟道区。在整流器器件内部,这些沟道区产生了台面结构,这导致了反向阻断电压的增加,另外还有其它效应。应该注意,多晶硅210与整流器器件的导电层216(正极)短接。
被填充的沟道206、210作为沟道型DMOS晶体管器件的栅极。和整流器器件相反,多晶硅210通过BPSG(硼磷硅玻璃)结构214与导电层216(源极触点)绝缘,容许栅极和源极有独立的偏压。
图5A到图5J显示了用于形成图4所示的具有内建沟道型肖特基整流器250的沟道型DMOS晶体管的步骤。
如图5A所示,在普通的N+掺杂衬底200上生长出N-掺杂外延层202。30V沟道型DMOS晶体管器件的外延层的厚度一般是5.5微米。
接下来,使用光阻掩模工艺来形成图案掩模层203。如图5B所示,图案掩模层203定义了由注入和扩散工艺形成的P-体区204。例如,P-体区可以在40到60keV下用5.5×1013/cm3的剂量来注入。P-体区204定义了该器件的DMOS晶体管区220。结构250的整流器区222没有这种P-体区。
然后,通过任何已知恰当的技术方法除去图案掩模层203。于是形成图5C所示的掩模部分205。如图5D所示,掩模部分限定了沟道207的位置。沟道最好通过反应离子蚀刻掩模部分205之间的空间来进行干蚀刻,典型的深度是1.5到2.5微米。
然后,如图5E所示,除去掩模部分205,且在整个结构的表面通过热氧化作用来形成氧化物层206。对于层206,氧化物厚度的范围一般为500到800埃。随后,使用例如CVD等已知技术,用多晶硅210覆盖该表面(填充沟道),从而提供了图5F所示的结构。通常对多晶硅210进行掺杂,以减小其电阻率,典型的为20Ω/m数量级。例如,在用氯化磷进行CVD或注入砷或磷的期间,可以进行掺杂。
然后,蚀刻多晶硅210,例如,如图5G所示,通过反应离子蚀刻(RIE),以优化其在沟道内的厚度,并暴露氧化物层的部分206。
接着,如图5H所示,利用光阻掩模工艺来形成图案掩模层211。图案掩模层211定义了DMOS晶体管区220内的源极区212。通常经过注入和扩散工艺来形成源极区212。例如,常常在80keV下使砷浓度达到8×1015到1.2×1016cm3的范围来注入源极区212。注入后,砷扩散到约0.5微米的深度。
然后,通过本技术领域的任何恰当技术来除去图案掩模层211。随后,例如,通过PECVD在整个结构上形成BPSG(硼磷硅玻璃)层214,其具有图案光阻层215,如图5I所示。
通常通过RIE来除去光阻层215,接着进行现有技术中公知的BPSG回流和后回流蚀刻步骤。最后,如图5J所示,通过金属溅射步骤来为该结构提供金属接触层216。此外,提供如图所示的金属接触层218以完成该器件。
尽管此处具体地显示和描述了多种实施例,但能够理解,上述内容涵盖本发明的各种修改和变化,并不脱离本发明的精神和保护范围,而被包括在所附权利要求的范围内。例如,本发明的方法可以用来形成各种半导体区的导电性与此处描述的相反的结构。

Claims (15)

1.一种集成电路的制造方法,所述的集成电路在一个或多个整流器区内含有多个沟道型肖特基势垒整流器,在一个或多个晶体管区内含有多个沟道型DMOS晶体管,所述的集成电路还含有公共电极层,该电极层用作DMOS晶体管的公共源极并用作整流器的阳极,该方法包含:
提供第一导电类型的衬底;
在上述衬底上形成所述第一导电类型的外延层,所述外延层具有比所述衬底低的掺杂度;
在所述晶体管区的所述外延层内形成第二导电类型的一个或多个体区;
在所述晶体管区和所述整流器区的外延层内形成多个沟道;
形成衬贴所述沟道的第一绝缘层;
在所述沟道内形成多晶硅导体,并覆盖第一绝缘层;
在与所述沟道相邻的所述体区内形成所述第一导电类型的多个源极区;
形成位于所述晶体管区内的所述多晶硅导体之上并与之接触的第二绝缘层;以及
形成连续位于所述晶体管区和所述整流器区之上,并与所述第二绝缘层接触的公共电极层。
2.根据权利要求1所述的方法,其中,形成体区的步骤包括:在外延层上形成图案掩模层,并向外延层内注入和扩散掺杂物质。
3.根据权利要求1所述的方法,其中,形成沟道的步骤包括:在外延层上形成图案掩模层,并通过所述掩模层蚀刻所述沟道。
4.根据权利要求1所述的方法,其中,形成源极区的步骤包括:形成图案掩模层,并向体区内注入和扩散掺杂物质。
5.根据权利要求1所述的方法,其中,在所述晶体管区的多晶硅层上形成第二绝缘层的步骤包含:至少在晶体管区上沉积BPSG层,在所述BPSG层上形成图案掩模层,并在没有被图案掩模层覆盖的区域上蚀刻所述BPSG层。
6.根据权利要求1所述的方法,还包含:在与体区相对的衬底的表面上形成电极层。
7.一种集成电路,该集成电路在一个或多个整流器区内具有多个沟道型肖特基势垒整流器,在一个或多个晶体管区内具有多个沟道型DMOS晶体管,该集成电路还含有公共电极层,该电极层用作DMOS晶体管的公共源极并用作整流器的阳极,所述集成电路包含:
第一导电类型的衬底;
所述衬底上的所述第一导电类型的外延层,所述外延层具有比所述衬底更低的掺杂度;
所述晶体管区的所述外延层内的第二导电类型的多个体区;
所述晶体管区和所述整流器区的外延层内的多个沟道;
衬贴所述沟道的第一绝缘层;
所述沟道内的多晶硅导体,其覆盖第一绝缘层;
与所述沟道相邻的所述体区内的所述第一导电类型的多个源极区;
位于所述晶体管区内的所述多晶硅导体之上并与之接触的第二绝缘层;以及
连续位于所述晶体管区和所述整流器区之上,并与所述第二绝缘层接触的公共电极层。
8.根据权利要求7所述的集成电路,其中,所述衬底是n-掺杂衬底。
9.根据权利要求7所述的集成电路,其中,第一绝缘层是二氧化硅层。
10.根据权利要求7所述的集成电路,其中,第二绝缘层是硼磷硅玻璃层。
11.根据权利要求7所述的集成电路,还包含:与体区相对的衬底表面上的电极层。
12.根据权利要求7所述的集成电路,其中,所述沟道型肖特基势垒整流器和所述沟道型DMOS晶体管是由一个公共氧化物层和所述氧化物层上的公共多晶硅层制备而成的。
13.根据权利要求12所述的集成电路,其中,所述沟道型肖特基势垒整流器和所述沟道型DMOS晶体管是用一个公共衬底、所述衬底上的公共外延层、所述外延层上的公共氧化物层、以及所述氧化物层上的公共多晶硅层制备的。
14.根据权利要求12所述的集成电路,其中,所述沟道型肖特基势垒整流器的正极和所述沟道型DMOS晶体管的源极共用一个公共电极,所述沟道型肖特基势垒整流器的负极和所述沟道型DMOS晶体管的漏极共用一个公共电极。
15.根据权利要求14所述的集成电路,其中,所述导电层在所述沟道型肖特基势垒整流器与所述沟道型DMOS晶体管上连续地延伸。
CNB018169554A 2000-10-06 2001-10-02 内含沟道型肖特基整流器的沟道型dmos晶体管 Expired - Lifetime CN100334731C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/684,931 US6593620B1 (en) 2000-10-06 2000-10-06 Trench DMOS transistor with embedded trench schottky rectifier
US09/684,931 2000-10-06

Publications (2)

Publication Number Publication Date
CN1468449A CN1468449A (zh) 2004-01-14
CN100334731C true CN100334731C (zh) 2007-08-29

Family

ID=24750121

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018169554A Expired - Lifetime CN100334731C (zh) 2000-10-06 2001-10-02 内含沟道型肖特基整流器的沟道型dmos晶体管

Country Status (8)

Country Link
US (2) US6593620B1 (zh)
EP (2) EP2315247B1 (zh)
JP (1) JP2004511910A (zh)
KR (1) KR100846158B1 (zh)
CN (1) CN100334731C (zh)
AU (1) AU2001294951A1 (zh)
TW (1) TW506130B (zh)
WO (1) WO2002031880A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752311B (zh) * 2008-12-17 2012-04-18 上海华虹Nec电子有限公司 功率mos晶体管与肖特基二极管的集成方法及结构
CN106575668A (zh) * 2014-08-22 2017-04-19 丰田自动车株式会社 半导体装置以及半导体装置的制造方法

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972436B2 (en) * 1998-08-28 2005-12-06 Cree, Inc. High voltage, high temperature capacitor and interconnection structures
US6707127B1 (en) * 2000-08-31 2004-03-16 General Semiconductor, Inc. Trench schottky rectifier
US6767843B2 (en) * 2000-10-03 2004-07-27 Cree, Inc. Method of N2O growth of an oxide layer on a silicon carbide layer
US7067176B2 (en) 2000-10-03 2006-06-27 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
US6956238B2 (en) * 2000-10-03 2005-10-18 Cree, Inc. Silicon carbide power metal-oxide semiconductor field effect transistors having a shorting channel and methods of fabricating silicon carbide metal-oxide semiconductor field effect transistors having a shorting channel
US6593620B1 (en) * 2000-10-06 2003-07-15 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
US6982452B2 (en) * 2000-11-28 2006-01-03 Precision Dynamics Corporation Rectifying charge storage element
US7061066B2 (en) * 2001-10-17 2006-06-13 Fairchild Semiconductor Corporation Schottky diode using charge balance structure
US7022378B2 (en) * 2002-08-30 2006-04-04 Cree, Inc. Nitrogen passivation of interface states in SiO2/SiC structures
US7221010B2 (en) * 2002-12-20 2007-05-22 Cree, Inc. Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors
US7074643B2 (en) * 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
US6979863B2 (en) * 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
US7638841B2 (en) 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7754550B2 (en) * 2003-07-10 2010-07-13 International Rectifier Corporation Process for forming thick oxides on Si or SiC for semiconductor devices
US6987305B2 (en) * 2003-08-04 2006-01-17 International Rectifier Corporation Integrated FET and schottky device
CN103199017B (zh) * 2003-12-30 2016-08-03 飞兆半导体公司 形成掩埋导电层方法、材料厚度控制法、形成晶体管方法
JP4176734B2 (ja) * 2004-05-14 2008-11-05 株式会社東芝 トレンチmosfet
JP3673805B1 (ja) * 2004-06-22 2005-07-20 国立大学法人 東京大学 トレーニング装置
US7118970B2 (en) * 2004-06-22 2006-10-10 Cree, Inc. Methods of fabricating silicon carbide devices with hybrid well regions
JP2006012967A (ja) * 2004-06-23 2006-01-12 Toshiba Corp 半導体装置
US20060289931A1 (en) * 2004-09-26 2006-12-28 Samsung Electronics Co., Ltd. Recessed gate structures including blocking members, methods of forming the same, semiconductor devices having the recessed gate structures and methods of forming the semiconductor devices
US7667264B2 (en) * 2004-09-27 2010-02-23 Alpha And Omega Semiconductor Limited Shallow source MOSFET
DE102004059640A1 (de) * 2004-12-10 2006-06-22 Robert Bosch Gmbh Halbleitereinrichtung und Verfahren zu deren Herstellung
FR2880193A1 (fr) * 2004-12-23 2006-06-30 St Microelectronics Sa Diode schottky a barriere verticale
US7671439B2 (en) * 2005-02-11 2010-03-02 Alpha & Omega Semiconductor, Ltd. Junction barrier Schottky (JBS) with floating islands
US7737522B2 (en) * 2005-02-11 2010-06-15 Alpha & Omega Semiconductor, Ltd. Trench junction barrier controlled Schottky device with top and bottom doped regions for enhancing forward current in a vertical direction
US7615801B2 (en) * 2005-05-18 2009-11-10 Cree, Inc. High voltage silicon carbide devices having bi-directional blocking capabilities
US7391057B2 (en) * 2005-05-18 2008-06-24 Cree, Inc. High voltage silicon carbide devices having bi-directional blocking capabilities
US7414268B2 (en) 2005-05-18 2008-08-19 Cree, Inc. High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities
US20060261346A1 (en) * 2005-05-18 2006-11-23 Sei-Hyung Ryu High voltage silicon carbide devices having bi-directional blocking capabilities and methods of fabricating the same
US7528040B2 (en) * 2005-05-24 2009-05-05 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
AT504290A2 (de) 2005-06-10 2008-04-15 Fairchild Semiconductor Feldeffekttransistor mit ladungsgleichgewicht
US7868394B2 (en) * 2005-08-09 2011-01-11 United Microelectronics Corp. Metal-oxide-semiconductor transistor and method of manufacturing the same
US8183113B2 (en) 2005-08-24 2012-05-22 Samsung Electronics Co., Ltd. Methods of forming recessed gate structures including blocking members, and methods of forming semiconductor devices having the recessed gate structures
KR100711520B1 (ko) * 2005-09-12 2007-04-27 삼성전자주식회사 리세스된 게이트 전극용 구조물과 그 형성 방법 및리세스된 게이트 전극을 포함하는 반도체 장치 및 그 제조방법.
US7727904B2 (en) * 2005-09-16 2010-06-01 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility
JP2007299970A (ja) * 2006-05-01 2007-11-15 Toshiba Corp 半導体装置及びその製造方法
US8154073B2 (en) * 2006-07-14 2012-04-10 Denso Corporation Semiconductor device
US8432012B2 (en) 2006-08-01 2013-04-30 Cree, Inc. Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same
US7728402B2 (en) 2006-08-01 2010-06-01 Cree, Inc. Semiconductor devices including schottky diodes with controlled breakdown
US8710510B2 (en) 2006-08-17 2014-04-29 Cree, Inc. High power insulated gate bipolar transistors
US7601596B2 (en) * 2006-11-16 2009-10-13 Infineon Technologies Austria Ag Semiconductor device with trench transistors and method for manufacturing such a device
JP4561747B2 (ja) * 2007-01-11 2010-10-13 富士電機システムズ株式会社 半導体装置
US8835987B2 (en) 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US7564099B2 (en) * 2007-03-12 2009-07-21 International Rectifier Corporation Monolithic MOSFET and Schottky diode device
KR100861213B1 (ko) * 2007-04-17 2008-09-30 동부일렉트로닉스 주식회사 반도체 소자 및 그 제조방법
US8368126B2 (en) * 2007-04-19 2013-02-05 Vishay-Siliconix Trench metal oxide semiconductor with recessed trench material and remote contacts
JP4405529B2 (ja) 2007-05-15 2010-01-27 株式会社東芝 半導体装置
JP5285242B2 (ja) * 2007-07-04 2013-09-11 ローム株式会社 半導体装置
EP2232559B1 (en) 2007-09-26 2019-05-15 STMicroelectronics N.V. Adjustable field effect rectifier
US8633521B2 (en) 2007-09-26 2014-01-21 Stmicroelectronics N.V. Self-bootstrapping field effect diode structures and methods
US8148748B2 (en) 2007-09-26 2012-04-03 Stmicroelectronics N.V. Adjustable field effect rectifier
US7741693B1 (en) * 2007-11-16 2010-06-22 National Semiconductor Corporation Method for integrating trench MOS Schottky barrier devices into integrated circuits and related semiconductor devices
US20090159966A1 (en) * 2007-12-20 2009-06-25 Chih-Jen Huang High voltage semiconductor device, method of fabricating the same, and method of fabricating the same and a low voltage semiconductor device together on a substrate
WO2009134812A1 (en) * 2008-04-28 2009-11-05 Lakota Technologies, Inc. Mosfet with integrated field effect rectifier
US8232558B2 (en) 2008-05-21 2012-07-31 Cree, Inc. Junction barrier Schottky diodes with current surge capability
JP5476746B2 (ja) * 2009-03-05 2014-04-23 日産自動車株式会社 半導体装置
JP5476747B2 (ja) * 2009-03-05 2014-04-23 日産自動車株式会社 半導体装置
US8288220B2 (en) 2009-03-27 2012-10-16 Cree, Inc. Methods of forming semiconductor devices including epitaxial layers and related structures
WO2010127370A2 (en) 2009-05-01 2010-11-04 Lakota Technologies, Inc. Series current limiting device
US8294507B2 (en) 2009-05-08 2012-10-23 Cree, Inc. Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits
US8193848B2 (en) 2009-06-02 2012-06-05 Cree, Inc. Power switching devices having controllable surge current capabilities
US8629509B2 (en) 2009-06-02 2014-01-14 Cree, Inc. High voltage insulated gate bipolar transistors with minority carrier diverter
TWI469221B (zh) * 2009-06-26 2015-01-11 Pfc Device Co 溝渠式蕭基二極體及其製作方法
US8541787B2 (en) 2009-07-15 2013-09-24 Cree, Inc. High breakdown voltage wide band-gap MOS-gated bipolar junction transistors with avalanche capability
US8354690B2 (en) 2009-08-31 2013-01-15 Cree, Inc. Solid-state pinch off thyristor circuits
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US8415671B2 (en) 2010-04-16 2013-04-09 Cree, Inc. Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices
TWI418015B (zh) * 2010-05-13 2013-12-01 Great Power Semiconductor Corp 具有場效整流元件之功率半導體結構及其製造方法
US8319290B2 (en) 2010-06-18 2012-11-27 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
IT1401754B1 (it) 2010-08-30 2013-08-02 St Microelectronics Srl Dispositivo elettronico integrato e relativo metodo di fabbricazione.
IT1401755B1 (it) * 2010-08-30 2013-08-02 St Microelectronics Srl Dispositivo elettronico integrato a conduzione verticale e relativo metodo di fabbricazione.
TWI422041B (zh) * 2010-09-01 2014-01-01 Pfc Device Corp 溝渠隔絕式金氧半p-n接面二極體結構及其製作方法
JP5729331B2 (ja) 2011-04-12 2015-06-03 株式会社デンソー 半導体装置の製造方法及び半導体装置
US8643101B2 (en) 2011-04-20 2014-02-04 United Microelectronics Corp. High voltage metal oxide semiconductor device having a multi-segment isolation structure
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US8581338B2 (en) 2011-05-12 2013-11-12 United Microelectronics Corp. Lateral-diffused metal oxide semiconductor device (LDMOS) and fabrication method thereof
US8501603B2 (en) 2011-06-15 2013-08-06 United Microelectronics Corp. Method for fabricating high voltage transistor
US8592905B2 (en) 2011-06-26 2013-11-26 United Microelectronics Corp. High-voltage semiconductor device
US9984894B2 (en) 2011-08-03 2018-05-29 Cree, Inc. Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions
CN102931215B (zh) * 2011-08-11 2015-02-04 上海华虹宏力半导体制造有限公司 集成有低漏电肖特基二极管的igbt结构及其制备方法
US20130043513A1 (en) 2011-08-19 2013-02-21 United Microelectronics Corporation Shallow trench isolation structure and fabricating method thereof
US8729599B2 (en) 2011-08-22 2014-05-20 United Microelectronics Corp. Semiconductor device
US8921937B2 (en) 2011-08-24 2014-12-30 United Microelectronics Corp. High voltage metal-oxide-semiconductor transistor device and method of fabricating the same
US8680587B2 (en) 2011-09-11 2014-03-25 Cree, Inc. Schottky diode
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
EP2754177A1 (en) 2011-09-11 2014-07-16 Cree, Inc. High current density power module comprising transistors with improved layout
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US8664665B2 (en) 2011-09-11 2014-03-04 Cree, Inc. Schottky diode employing recesses for elements of junction barrier array
US8618582B2 (en) 2011-09-11 2013-12-31 Cree, Inc. Edge termination structure employing recesses for edge termination elements
US8742498B2 (en) 2011-11-03 2014-06-03 United Microelectronics Corp. High voltage semiconductor device and fabricating method thereof
US8482063B2 (en) 2011-11-18 2013-07-09 United Microelectronics Corporation High voltage semiconductor device
US8587058B2 (en) 2012-01-02 2013-11-19 United Microelectronics Corp. Lateral diffused metal-oxide-semiconductor device
US8492835B1 (en) 2012-01-20 2013-07-23 United Microelectronics Corporation High voltage MOSFET device
US9093296B2 (en) 2012-02-09 2015-07-28 United Microelectronics Corp. LDMOS transistor having trench structures extending to a buried layer
TWI523196B (zh) 2012-02-24 2016-02-21 聯華電子股份有限公司 高壓金氧半導體電晶體元件及其佈局圖案
US8890144B2 (en) 2012-03-08 2014-11-18 United Microelectronics Corp. High voltage semiconductor device
US9236471B2 (en) 2012-04-24 2016-01-12 United Microelectronics Corp. Semiconductor structure and method for manufacturing the same
US9159791B2 (en) 2012-06-06 2015-10-13 United Microelectronics Corp. Semiconductor device comprising a conductive region
US8836067B2 (en) 2012-06-18 2014-09-16 United Microelectronics Corp. Transistor device and manufacturing method thereof
US8674441B2 (en) 2012-07-09 2014-03-18 United Microelectronics Corp. High voltage metal-oxide-semiconductor transistor device
US8643104B1 (en) 2012-08-14 2014-02-04 United Microelectronics Corp. Lateral diffusion metal oxide semiconductor transistor structure
US8729631B2 (en) 2012-08-28 2014-05-20 United Microelectronics Corp. MOS transistor
US8829611B2 (en) 2012-09-28 2014-09-09 United Microelectronics Corp. High voltage metal-oxide-semiconductor transistor device
US9196717B2 (en) 2012-09-28 2015-11-24 United Microelectronics Corp. High voltage metal-oxide-semiconductor transistor device
US8704304B1 (en) 2012-10-05 2014-04-22 United Microelectronics Corp. Semiconductor structure
US20140110777A1 (en) 2012-10-18 2014-04-24 United Microelectronics Corp. Trench gate metal oxide semiconductor field effect transistor and fabricating method thereof
US9224857B2 (en) 2012-11-12 2015-12-29 United Microelectronics Corp. Semiconductor structure and method for manufacturing the same
TWI521718B (zh) 2012-12-20 2016-02-11 財團法人工業技術研究院 接面位障蕭特基二極體嵌於金氧半場效電晶體單元陣列之整合元件
US9035425B2 (en) 2013-05-02 2015-05-19 United Microelectronics Corp. Semiconductor integrated circuit
US8896057B1 (en) 2013-05-14 2014-11-25 United Microelectronics Corp. Semiconductor structure and method for manufacturing the same
US8786362B1 (en) 2013-06-04 2014-07-22 United Microelectronics Corporation Schottky diode having current leakage protection structure and current leakage protecting method of the same
US8941175B2 (en) 2013-06-17 2015-01-27 United Microelectronics Corp. Power array with staggered arrangement for improving on-resistance and safe operating area
CN103337523B (zh) * 2013-06-19 2016-03-02 张家港凯思半导体有限公司 一种斜沟槽超势垒整流器件及其制造方法
CN104517961B (zh) * 2013-09-29 2020-06-05 无锡华润上华科技有限公司 整流器及其制造方法
US9136368B2 (en) * 2013-10-03 2015-09-15 Texas Instruments Incorporated Trench gate trench field plate semi-vertical semi-lateral MOSFET
US9123802B2 (en) * 2013-10-03 2015-09-01 Texas Instruments Incorporated Vertical trench MOSFET device in integrated power technologies
US9224854B2 (en) * 2013-10-03 2015-12-29 Texas Instruments Incorporated Trench gate trench field plate vertical MOSFET
US9136375B2 (en) 2013-11-21 2015-09-15 United Microelectronics Corp. Semiconductor structure
US9490360B2 (en) 2014-02-19 2016-11-08 United Microelectronics Corp. Semiconductor device and operating method thereof
CN107275402B (zh) * 2017-03-31 2020-04-21 成都芯源***有限公司 半导体器件及其制造方法
CN107482006B (zh) * 2017-09-28 2019-03-15 英诺赛科(珠海)科技有限公司 具有集成二极管的晶体管器件
CN110676307B (zh) * 2019-10-12 2022-12-20 中国电子科技集团公司第十三研究所 肖特基二极管的制备方法
CN114937693B (zh) * 2022-07-25 2022-10-28 深圳市威兆半导体股份有限公司 一种具有双沟道二极管的沟槽栅SiC MOSFET器件及其制备方法
CN117878119A (zh) * 2024-03-12 2024-04-12 四川遂宁市利普芯微电子有限公司 一种开关半导体结构和功率开关器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031265A (en) * 1997-10-16 2000-02-29 Magepower Semiconductor Corp. Enhancing DMOS device ruggedness by reducing transistor parasitic resistance and by inducing breakdown near gate runners and termination area
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
WO2000051167A2 (en) * 1999-02-26 2000-08-31 Fairchild Semiconductor Corporation Monolithically integrated trench mosfet and schottky diode

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408679A (en) * 1981-09-28 1983-10-11 Peabody Spunstrand, Inc. Sound attenuator
US4811065A (en) 1987-06-11 1989-03-07 Siliconix Incorporated Power DMOS transistor with high speed body diode
US5072266A (en) 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
JP2689606B2 (ja) * 1989-05-24 1997-12-10 富士電機株式会社 絶縁ゲート電界効果型トランジスタの製造方法
US4982260A (en) 1989-10-02 1991-01-01 General Electric Company Power rectifier with trenches
US5910669A (en) 1992-07-24 1999-06-08 Siliconix Incorporated Field effect Trench transistor having lightly doped epitaxial region on the surface portion thereof
US5262668A (en) 1992-08-13 1993-11-16 North Carolina State University At Raleigh Schottky barrier rectifier including schottky barrier regions of differing barrier heights
US5410170A (en) 1993-04-14 1995-04-25 Siliconix Incorporated DMOS power transistors with reduced number of contacts using integrated body-source connections
US5365102A (en) 1993-07-06 1994-11-15 North Carolina State University Schottky barrier rectifier with MOS trench
JP3400846B2 (ja) 1994-01-20 2003-04-28 三菱電機株式会社 トレンチ構造を有する半導体装置およびその製造方法
US5688725A (en) 1994-12-30 1997-11-18 Siliconix Incorporated Method of making a trench mosfet with heavily doped delta layer to provide low on-resistance
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
JP3272242B2 (ja) * 1995-06-09 2002-04-08 三洋電機株式会社 半導体装置
JP3384198B2 (ja) * 1995-07-21 2003-03-10 三菱電機株式会社 絶縁ゲート型半導体装置およびその製造方法
US5612567A (en) 1996-05-13 1997-03-18 North Carolina State University Schottky barrier rectifiers and methods of forming same
US5877528A (en) * 1997-03-03 1999-03-02 Megamos Corporation Structure to provide effective channel-stop in termination areas for trenched power transistors
US6429481B1 (en) * 1997-11-14 2002-08-06 Fairchild Semiconductor Corporation Field effect transistor and method of its manufacture
US6204097B1 (en) * 1999-03-01 2001-03-20 Semiconductor Components Industries, Llc Semiconductor device and method of manufacture
US6593620B1 (en) * 2000-10-06 2003-07-15 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049108A (en) * 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
US6031265A (en) * 1997-10-16 2000-02-29 Magepower Semiconductor Corp. Enhancing DMOS device ruggedness by reducing transistor parasitic resistance and by inducing breakdown near gate runners and termination area
WO2000051167A2 (en) * 1999-02-26 2000-08-31 Fairchild Semiconductor Corporation Monolithically integrated trench mosfet and schottky diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752311B (zh) * 2008-12-17 2012-04-18 上海华虹Nec电子有限公司 功率mos晶体管与肖特基二极管的集成方法及结构
CN106575668A (zh) * 2014-08-22 2017-04-19 丰田自动车株式会社 半导体装置以及半导体装置的制造方法
CN106575668B (zh) * 2014-08-22 2019-09-03 丰田自动车株式会社 半导体装置以及半导体装置的制造方法

Also Published As

Publication number Publication date
WO2002031880A2 (en) 2002-04-18
EP2315247A1 (en) 2011-04-27
EP2315247B1 (en) 2017-08-02
KR20030036896A (ko) 2003-05-09
US20030207538A1 (en) 2003-11-06
AU2001294951A1 (en) 2002-04-22
TW506130B (en) 2002-10-11
CN1468449A (zh) 2004-01-14
US6593620B1 (en) 2003-07-15
JP2004511910A (ja) 2004-04-15
WO2002031880A3 (en) 2002-07-25
KR100846158B1 (ko) 2008-07-14
EP1323191A2 (en) 2003-07-02
US6762098B2 (en) 2004-07-13
EP1323191B1 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
CN100334731C (zh) 内含沟道型肖特基整流器的沟道型dmos晶体管
US5998836A (en) Trench-gated power MOSFET with protective diode
EP0763259B1 (en) Punch-through field effect transistor
US20180122933A1 (en) High voltage semiconductor devices and methods of making the devices
US6359308B1 (en) Cellular trench-gate field-effect transistors
US6198127B1 (en) MOS-gated power device having extended trench and doping zone and process for forming same
US6916712B2 (en) MOS-gated device having a buried gate and process for forming same
US5283201A (en) High density power device fabrication process
US6673681B2 (en) Process for forming MOS-gated power device having segmented trench and extended doping zone
US6600194B2 (en) Field-effect semiconductor devices
TWI804649B (zh) 絕緣閘極半導體器件及用於製造絕緣閘極半導體器件的區域的方法
US20020074585A1 (en) Self-aligned power MOSFET with enhanced base region
US7816741B2 (en) Semiconductor device
US8445958B2 (en) Power semiconductor device with trench bottom polysilicon and fabrication method thereof
JP2000156503A (ja) Mosゲートデバイスおよびその製造プロセス
JPH08181313A (ja) 横型トレンチmisfetおよびその製造方法
JP5687582B2 (ja) 半導体素子およびその製造方法
US6686625B2 (en) Field effect-controllable semiconductor component with two-directional blocking, and a method of producing the semiconductor component
US11004839B1 (en) Trench power MOSFET with integrated-schottky in non-active area
CN101728430B (zh) 高压金氧半导体组件及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20070829

CX01 Expiry of patent term