AT516902A1 - Resonanzwandler mit einem Transformator mit Mittelpunktanzapfung - Google Patents

Resonanzwandler mit einem Transformator mit Mittelpunktanzapfung Download PDF

Info

Publication number
AT516902A1
AT516902A1 ATA50187/2015A AT501872015A AT516902A1 AT 516902 A1 AT516902 A1 AT 516902A1 AT 501872015 A AT501872015 A AT 501872015A AT 516902 A1 AT516902 A1 AT 516902A1
Authority
AT
Austria
Prior art keywords
voltage
output
circuit
transformer
resonant converter
Prior art date
Application number
ATA50187/2015A
Other languages
English (en)
Inventor
Christian Magerl
Franz Peter Dipl Ing Musil
Robert Dipl Ing Eberl (Fh)
Friedrich Steinmaurer
Original Assignee
Fronius Int Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fronius Int Gmbh filed Critical Fronius Int Gmbh
Priority to ATA50187/2015A priority Critical patent/AT516902A1/de
Priority to DE112016001109.1T priority patent/DE112016001109B4/de
Priority to US15/556,925 priority patent/US10199941B2/en
Priority to PCT/EP2016/054326 priority patent/WO2016142218A1/de
Priority to CN201680014505.0A priority patent/CN107431437B/zh
Priority to JP2017547503A priority patent/JP6807855B2/ja
Publication of AT516902A1 publication Critical patent/AT516902A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/26Storage discharge welding
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/26Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes without control electrode or semiconductor devices without control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/20AC or DC potentiometric measuring arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Um bei einem Resonanzwandler die Ausgangsspannung im Leerlauf des Resonanzwandlers mit einer einfachen Zusatzbeschaltung auf einen gewünschten Wert einstellen zu können, ist vorgesehen, dass parallel zu den elektrischen Schaltelementen (S1, S2) der Sekundärseite des Resonanzwandlers (1) jeweils zumindest ein Kondensator (C1, C2) geschaltet ist.

Description

Resonanzwandler mit einem Transformator mit Mittelpunktanzapfung
Die gegenständliche Erfindung betrifft einen Resonanzwandler mit einem Transformator mit Mittelpunktanzapfung und einem Resonanzkreis, wobei der Mittelpunkt der Sekundärseite des Transformators über eine erste Ausgangsleitung mit einem ersten Ausgangspol verbunden ist und die beiden äußeren Anschlüsse der Sekundärseite des Transformators über jeweils ein elektrisches Schaltelement verbunden sind und über eine zweite Ausgangsleitung mit einem zweiten Ausgangspol verbunden sind.
In Stromrichtern, wie z.B. einem Resonanzwandler 1, kommen oftmals Transformatoren mit Mittelpunktanzapfung auf der Sekundärseite zum Einsatz. Ein Beispiel dafür ist ein Stromrichter 1 in Form eines bekannten Resonanzwandlers 1 wie in Fig.1 dargestellt, bei dem durch die Drossel LR, die Kapazität CR und die Primärseite des Transformators T ein Schwingkreis gebildet wird. Der Resonanzwandler 1 wird durch ein Pulsmuster am Eingang UE zum Schwingen angeregt. Das Pulsmuster kann z.B. durch eine bekannte Schalteranordnung und einer PWM-Steuerung (in Fig. 1 nicht dargestellt) realisiert werden. Diese Schwingung wird überden Transformator T übertragen und auf der Sekundärseite gleichgerichtet.
Gewisse Resonanzwandler 1, wie z.B. Serien-Parallel-Resonanzwandler, haben außerdem die Eigenschaft, dass sich die Ausgangsspannung UA im Leerlauf (also ohne angeschlossene Last) aufgrund des mit CP gebildeten Schwingkreises derart erhöht, dass eine Regelung des Resonanzwandlers 1 mit einer ausgangsseitigen Zusatzbeschaltung 7 (Fig.3) vorteilhaft ist. Das ist insbesondere in Schweißstromquellen der Fall, wo auch im Leerlauf die Erhaltung einer gewissen Ausgangsspannung UA erwünscht ist. Dazu wird der Resonanzwandler 1 im Leerlauf gepulst betrieben. An den Eingang UE des Resonanzwandlers werden hierzu für eine bestimmte Zeitspanne Spannungspulse angelegt. Die durch den Resonanzwandler 1 erzeugte Schwingung, lädt den Kondensator C3 auf der Sekundärseite über die Diode D3 auf. In derzeit, in der keine Spannungspulse angelegt werden, entlädt sich der Kondensator C3 über den Widerstand R1. Es stellt sich am Ausgang des Resonanzwandlers 1 daher eine mittlere Ausgangsspannung UA ein, die über Einstellung der Spannungspulse am Eingang auf einen gewünschten Pegel gehalten werden kann. Im Normalbetrieb des Resonanzwandlers 1 hat diese Zusatzbeschaltung 7 keinen Einfluss. Trotzdem muss der Kondensator C3 auf die maximale Ausgangsspannung UA und eine maximale Pulsfrequenz ausgelegt sein und ist daher entsprechend groß zu dimensionieren, was entsprechenden Platz auf dem Schaltungsträger 3 erfordert.
Die Schaltelemente auf der Sekundärseite des Resonanzwandlers 1 sind üblicherweise auf einem Schaltungsträger 3, wie z.B. einer Schaltungsplatine (wie in Fig.2), oder ähnlichem, angeordnet. Die Schaltungselemente können aber auch über Kupferbügel (insbesondere bei sehr hohen Strömen oder Spannungen) verbunden sein. Um die stromführende Plus-Ausgangsleitung 2 des Resonanzwandlers 1 nicht über den Schaltungsträger 3 führen zu müssen, was einen großen Kupferquerschnitt auf dem Schaltungsträger 3 notwendig machen würde, wird die Plus-Ausgangsleitung 2 in der Regel als separate Leitung nach außen geführt und nicht über einen Schaltungsträger 3, auf dem eine Spannungsmessung 4 zur Messung der Ausgangsspannung Ua (Fig.2) oder die Zusatzbeschaltung 7 (Fig.3) implementiert ist. Das macht es aber notwendig, die Plus-Ausgangsleitung 2 über eine zusätzliche Verbindungsleitung 5 mit dem Schaltungsträger 3 zu verbinden. Dazu wird an der Schaltungsplatine 3 eine Buchse 6 angeordnet, an der die Verbindungsleitung 5 angeschlossen wird. Die zusätzliche Verbindungsleitung 5 sowie die Notwendigkeit einer Buchse 6 am Schaltungsträger 3 erhöhen aber natürlich ebenfalls den Aufwand der elektrischen Baugruppe. Dasselbe gilt analog auch bei der Verwendung von Kupferbügeln, da auch dabei nach dem Stand der Technik eine Verbindungsleitung 5 zur Verbindung der Plus-Ausgangsleitung 2 mit der Zusatzbeschaltung 7erforderlich ist.
Abgesehen davon kann es Vorkommen, dass sich die Verbindungsleitung 5 mit der Zeit löst, oder dass bei der Montage gänzlich vergessen wird, die Verbindungsleitung 5 mit dem Schaltungsträger 3, oder mit der Plus-Ausgangsleitung, zu verbinden. Beides kann zum Ausfall des Resonanzwandlers 1 führen. Insbesondere kann es bei Wegfall der Verbindungsleitung 5 zu einer Überspannung an den Dioden D1, D2 kommen, die diese auch zerstören kann. Es ist daher wünschenswert, auf diese zusätzliche Verbindungsleitung 5, die eine Fehlerquelle darstellt, zu verzichten.
Es ist daher eine Aufgabe der gegenständlichen Erfindung sicherzustellen, dass die Ausgangsspannung im Leerlauf des Resonanzwandlers unter Vermeidung der oben genannten schaltungstechnischen Probleme mit einer einfachen Zusatzbeschaltung auf einen gewünschten Wert eingestellt werden kann.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass parallel zu den elektrischen Schaltelementen jeweils ein Kondensator geschaltet ist. Die Kondensatoren müssen dabei im Normalbetrieb (also mit angeschlossener Last) nur mehr jeweils eine halbe Periode Strom führen und können daher wesentlich kleiner dimensioniert werden, als in der Schaltung nach dem Stand der Technik (Fig.3). Damit kann auch ein eventueller Schaltungsträger kleiner ausgeführt werden. Insbesondere kann damit aber auch auf die bisher notwendige Verbindungsleitung zwischen erstem Ausgangspol und dem Schaltungsträger verzichtet werden. Für eine schnellere Entladung der Kondensatoren kann vorteilhafterweise parallel zu den elektrischen Schaltelementen jeweils zumindest ein Entladewiderstand geschaltet sein.
Die Ausgangsspannung des Resonanzwandlers kann besonders vorteilhaft gemessen werden, wenn zwischen die beiden äußeren Anschlüssen zumindest zwei in Serie geschaltete Widerstände geschaltet sind, um zwischen den beiden Widerständen einen Messpunkt auszubilden, und eine Spannungsmesseinheit vorgesehen ist, die die mit der Ausgangsspannung, die zwischen ersten und zweiten Ausgangspol anliegt, korrespondierende Spannung zwischen Messpunkt und zweitem Ausgangspol misst. Damit kann die Ausgangsspannung gemessen werden, ohne eine Verbindungsleitung zwischen ersten Ausgangspol und Spannungsmesseinheit zu benötigen wie im Stand der Technik (Fig.2). Die Messung der Ausgangsspannung ermöglicht es weiters, auch im Leerlauf die Leerlaufspannung zu regeln.
Wenn zwischen Messpunkt und dem zweiten Ausgangspol zumindest ein weiterer Widerstand geschaltet ist, kann aufgrund des entstehenden Spannungsteilers der eingangsseitige Spannungsbereich der Spannungsmesseinheit verringert werden. Die Spannungsmesseinheit kann damit vorteilhafterweise auf eine geringere Messspannung ausgelegt werden.
Die gegenständliche Erfindung wird nachfolgend unter Bezugnahme auf die Figuren 1 bis 7 näher erläutert, die beispielhaft, schematisch und nicht einschränkend vorteilhafte Ausgestaltungen der Erfindung zeigen. Dabei zeigt
Fig. 1 einen typischen Resonanzwandler nach dem Stand der Technik,
Fig.2 die im Stand der Technik übliche Spannungsmessung an der Sekundärseite eines Transformators mit Mittelpunktanzapfung,
Fig.3 die im Stand der Technik übliche Zusatzbeschaltung zur Regelung der Ausgangsspannung eines Serien-Parallel-Resonanzwandler im Leerlauf,
Fig.4 eine Schaltungsanordnung mit einem Transformator mit Mittelpunktanzapfung und Spannungsmessung der Ausgangsspannung,
Fig.5 einen Serien-Parallel-Resonanzwandler mit erfindungsgemäßer Sekundärbeschaltung zur Einstellung der Leerlaufspannung,
Fig.6 die sich im Serien-Parallel-Resonanzwandler ergebenden Spannungsverläufe im Leerlauffall und
Fig.7 einen Serien-Parallel-Resonanzwandler mit erfindungsgemäßer Messanordnung zur Spannungsmessung und Sekundärbeschaltung zur Regelung der Ausgangsspannung im Leerlauf.
Fig.4 zeigt eine Schaltungsanordnung 8 mit einem Transformator T mit sekundärseitiger Mittelpunktanzapfung. Auf der Sekundärseite des Transformators T mit Mittelpunktanzapfung sind zumindest drei Anschlüsse vorhanden. Ein Anschluss für den Mittelpunkt M und zwei Anschlüsse an den Enden der sekundärseitigen Wicklung, wobei diese Anschlüsse als Äußere Anschlüsse bezeichnet werden.
Im Allgemeinen wird aber festgehalten, dass unter einem Transformator mit Mittelpunktanzapfung im Sinne der Erfindung auch die Verwendung von zwei oder mehr Transformatoren, bei denen die sekundärseitigen Wicklungen in Reihe geschaltet sind, verstanden wird (wie in Fig.5 dargestellt). Eine elektrische Verbindung zwischen zwei in Reihe geschalteten sekundärseitigen Wicklungen entspricht dann dem Mittelpunkt M, an dem die erste Ausgangsleitung 10 angeschlossen werden kann.
Der sekundärseitige Mittelpunkt M ist über eine erste Ausgangsleitung 10, hier eine Plus-Ausgangsleitung, als erster Ausgangspol 12, hier der Pluspol, nach außen geführt. Die erste Ausgangsleitung 10 wird hierbei allerdings nicht übereinen Schaltungsträger3, wie beispielsweise eine Schaltungsplatine, geführt, sondern direkt als Leitung nach außen geführt. Die beiden äußeren, bzw. nicht seriell verschalteten, sekundärseitigen Anschlüsse A1, A2 der Sekundärseite des Transformators T sind jeweils in bekannter Weise auf einen ersten Anschluss eines Schaltelements S1, S2 geführt. Die jeweils zweiten Anschlüsse der Schaltelemente S1, S2 sind miteinander verbunden und bilden den zweiten Ausgangspol 13, hier den Minuspol, des Gleichrichters, der mit einer zweiten Ausgangsleitung 11, hier einer Minus-Ausgangsleitung, nach außen geführt ist.
Falls als elektrische Schaltelemente S1, S2 passive Schaltelemente in Form von Dioden verwendet werden, erhält man einen bekannten Mittelpunktgleichrichter. Werden als elektrische Schaltelemente S1, S2 aktive Schaltelemente, beispielsweise Halbleiterschalter, z.B. MOSFETs, verwendet, erhält man einen bekannten Synchrongleichrichter. Da die Funktionen eines Mittelpunktgleichrichters und eines Synchrongleichrichters hinlänglich bekannt sind, und für die gegenständliche Erfindung unerheblich sind, wird hier nicht näher darauf eingegangen.
Die Schaltelemente S1, S2, sind in herkömmlicher Weise auf einem Schaltungsträger 3 angeordnet. Selbstverständlich kann der Schaltungsträger 3 auch geteilt ausgeführt sein. Insbesondere im Falle von aktiven Schaltelementen S1, S2 wird der Leistungsteil mit den aktiven Schaltelementen S1, S2 oft auf einem separaten Schaltungsträger 3 angeordnet. Zusätzlich ist auf dem Schaltungsträger 3 zur Spannungsmessung eine elektrische Messanordnung 14 zur Messung der Ausgangsspannung UA angeordnet. Die Schaltungselemente der Sekundärseite können aber auch durch Kupferbügel miteinander verbunden sein. Auch eine sekundärseitige Schaltungsanordnung als Kombination mit Schaltungsträger 3 und Kupferbügel ist denkbar. Beispielsweise könnte die Messanordnung 14 zur Messung der Ausgangsspannung UA auf einem Schaltungsträger 3 angeordnet sein und die restlichen Schaltungselemente mittels Kupferbügel verbunden sein.
Diese Messanordnung 14 zur Messung der Ausgangsspannung UA besteht im Wesentlichen aus zwei Widerständen R3, R4, die in Serie zwischen die beiden äußeren Anschlüsse A1, A2 der Sekundärseite des Transformators T geschaltet sind. Dadurch wird zwischen den beiden Widerständen R3, R4 ein Messpunkt P erzeugt, an dem sich gegenüber dem zweiten Ausgangspol 13 eine Spannung UP einstellt, die mit der am Mittelpunkt M anliegenden Ausgangsspannung Ua korrespondiert. Diese Spannung Up am Messpunkt P kann mit einer beliebigen Spannungsmesseinheit V gemessen und als analoger oder digitaler Messwert MW zur Verfügung gestellt werden. Beispielsweise kann die Spannungsmesseinheit V als Verstärkerschaltung mit einem Operationsverstärker ausgeführt sein, wobei der Ausgang der Verstärkerschaltung in einem Analog-Digital-Wandler digitalisiert wird und als digitaler Messwert MW nach außen geführt ist.
Sind die beiden Widerstände R3, R4 gleich, dann entspricht die Spannung UP am Messpunkt P der Ausgangsspannung UA am Mittelpunkt M, also im gezeigten Ausführungsbeispiel der Spannung am ersten Ausgangspol 12. Sind die Widerstände R3, R4 nicht gleich, dann stellt sich am Messpunkt P eine dem Verhältnis der Widerstände R3, R4 entsprechende Spannung ein. In beiden Fällen kann damit am Messpunkt P die Ausgangsspannung UA gemessen werden, indem die Spannung UP des Messpunkt P gegenüber dem zweiten Ausgangspol 13 gemessen wird, wie in Fig.4 angedeutet.
Die Spannung UP am Messpunkt P kann direkt gemessen werden, aber auch die Messung über einen Spannungsteiler ist denkbar. Dies erlaubt die Verwendung einer Spannungsmesseinheit V mit einem reduzierten Eingangsbereich, wodurch schaltungstechnische Vereinfachungen erreichbar sind. Dazu kann zwischen Messpunkt P und zweitem Ausgangspol 13 durch einen zusätzlichen Widerstand R2 ein Spanungsteiler erzeugt werden, wie in Fig.4 angedeutet. Dabei bewirkt der Widerstand R2 im Zusammenhang mit den Widerständen R3 und R4 am Messpunkt P eine entsprechende Verringerung der Spannung UP, die aber dennoch zur Ausgangsspannung UA proportional ist. Sollte die Spannungsmesseinheit V eine noch geringere Eingangsspannung erfordern, kann in bekannterWeise der Widerstand R2 in einem passenden Verhältnis auf zwei Widerstände aufgeteilt werden, um eine Anpassung auf den Eingangsspannungsbereich der Spannungsmesseinheit V zu erreichen.
Mit dieser Messanordnung 14 für die Spannungsmessung der Ausgangsspannung UA ist es folglich nicht mehr notwendig, die erste Ausgangsleitung 10 über den Schaltungsträger 3 zu führen oder die erste Ausgangsleitung 10, wie im Stand der Technik, mit dem Schaltungsträger 3, oder mit der Spannungsmesseinheit V, über eine zusätzliche Verbindungsleitung 5 zu verbinden.
Fig.5 zeigt einen Serien-Parallel-Resonanzwandler 1 mit einem primärseitigen Serienschwingkreis aus Drossel LR, Schwingkondensator CR und der Primärseite des Transformators T, einem sekundärseitigen Parallelschwingkreis aus Schwingkondensator Cp und der Sekundärseite des Transformators T und einem Mittelpunktgleichrichter (also mit Dioden D1, D2 als elektrische Schaltelemente S1, S2) auf der Sekundärseite. Die Primärseite ist hierbei nicht vollständig dargestellt, insbesondere fehlt die an sich bekannte elektrische Schaltung zur Erzeugung der dargestellten Eingangsspannung UE. Selbstverständlich könnte der primärseitige Schwingkreis bekanntermaßen aber auch als Parallelschwingkreis ausgeführt sein, bei dem der Schwingkondensator CR beispielsweise parallel zur Primärseite des Transformators T geschaltet ist. Ebenso könnte der Schwingkreis bekannter Weise auch auf der Sekundärseite anders oder gar nicht ausgebildet sein. Gleichfalls könnten natürlich auch die Dioden D1, D2 umgekehrt gepolt sein oder durch andere elektrische Schaltelemente S1, S2 ersetzt sein.
Um im Leerlauf die Ausgangsspannung UA auf einen gewünschten Wert zu halten, ist eine erfindungsgemäße Sekundärbeschaltung 15 vorgesehen, bei der parallel zu den elektrischen Schaltelementen S1, S2, hier Dioden D1, D2, jeweils zumindest ein Kondensator C1, C2 geschaltet ist. Damit ist auch für die Sekundärbeschaltung 15 zur Einstellung der Leerlaufspannung keine separate Verbindung zwischen erster Ausgangsleitung 10 und Schaltungsträger 3 notwendig.
Im Leerlauf soll am Resonanzwandler 1 eine gewünschte Ausgangsspannung UA aufrechterhalten werden. Dazu werden an der Primärseite des Transformtors T für eine bestimmte Zeitspanne t-ι Spannungsimpulse UE angelegt, die den Resonanzkreis auf der Primärseite anregen. Die Anregung führt zu einer Schwingung an der Sekundärseite des Transformators. Im Leerlauf schwingen auch die an den Kondensatoren C1, C2 anliegenden Spannungen um das Niveau der Ausgangsspannung UA. Die Kondensatoren C1, C2 werden dadurch während der Anregung auf der Primärseite in der Zeitspanne t-ι geladen, was auch zu einer Erhöhung der Leerlaufspannung am Ausgang UA führt. Danach wird die primärseitige Anregung für eine zweite Zeitspanne t2 unterbrochen. In dieser Phase entladen sich die Kondensatoren C1, C2. Dazu können auch Entladewiderstände R5, R6, vorgesehen sein, wie in Fig.5 angedeutet. Ohne Entladewiderstände R5, R6 entladen sich die Kondensatoren C1, C2 gemäß ihren Selbstentladeeigenschaften. Falls die Sekundärbeschaltung 15 gemeinsam mit der Messanordnung 14 zur Messung der Ausgangsspannung UA implementiert ist (wie in Fig.7), dann dienen die Widerstände R2, R3, R4 der Messanordnung 14 gleichzeitig als Entladewiderstände. Während der Entladung der Kondensatoren C1, C2 sinkt die Leerlaufspannung UA am Ausgang. Es ergibt sich somit am Ausgang im Leerlauf eine mittlere Ausgangsspannung UA. Die Ausgangsspannung UA kann damit durch Einstellen der Spannungsimpul- se UE, der Pulsfrequenz und der Zeitspannen t-ι, t2 auf einen gewünschten Wert gehalten werden. Im Normalbetrieb (mit einer angeschlossenen elektrischen Last am Ausgang) hat diese Sekundärbeschaltung 15 keinen Einfluss. Die sich beispielsweise bei einem Serien-Parallel-Resonanzwandler ergebenden Spannungsverläufe im Leerlauf sind in Fig. 6 schematisch dargestellt.
Die beiden Kondensatoren C1, C2 der Sekundärbeschaltung 15 können dabei kleiner dimensioniert werden, als der Kondensator C3 in der bisher üblichen Schaltung nach dem Stand der Technik (Fig.3). Damit kann auch Platz auf dem Schaltungsträger 3 eingespart werden. Abgesehen davon kann damit auch die thermische Belastung des Schaltungsträgers 3 reduziert werden, was ebenfalls dazu führt, dass der Schaltungsträger 3 verkleinert werden kann.
Die kleineren Kapazitätswerte C1, C2 bewirken aber auch, dass die Ausgangsspannung UA im Leerlauf schneller absinkt, was insbesondere für die Anwendung in Schweißstromquellen von Vorteil ist, weil damit die erlaubte Maximalspannung nach Schweißende schneller erreicht wird.
Die Messanordnung 14 zur Spannungsmessung und die Sekundärbeschaltung 15 zur Regelung der Ausgangsspannung UA im Leerlauf lassen sich natürlich auch kombinieren, wie in Fig.7 anhand eines Resonanzwandlers 1 mit Mittelpunktgleichrichter dargestellt. Eine solche Kombination ist ganz besonders vorteilhaft, da dann auch die Ausgangsspannung UA im Leerlauf (Leerlaufspannung) durch Messen der zur Ausgangsspannung UA korrespondierenden Spannung UP am Messpunkt P auf einen gewünschten Wert geregelt werden kann, bzw. ein gewünschter Wert der Leerlaufspannung sichergestellt werden kann.

Claims (4)

  1. Patentansprüche
    1. Resonanzwandler mit einem Transformator (T) mit Mittelpunktanzapfung und einem Resonanzkreis, wobei der Mittelpunkt (M) der Sekundärseite des Transformators (T) über eine erste Ausgangsleitung (10) mit einem ersten Ausgangspol (12) verbunden ist und die beiden äußeren Anschlüsse (A1, A2) der Sekundärseite des Transformators (T) über jeweils ein elektrisches Schaltelement (S1, S2) verbunden sind und über eine zweite Ausgangsleitung (11) mit einem zweiten Ausgangspol (13) verbunden sind, dadurch gekennzeichnet, dass parallel zu den elektrischen Schaltelementen (S1, S2) jeweils zumindest ein Kondensator (C1, C2) geschaltet ist.
  2. 2. Resonanzwandler nach Anspruch 1, dadurch gekennzeichnet, dass parallel zu den elektrischen Schaltelementen (S1, S2) jeweils zumindest ein Entladewiderstand (R5, R6) geschaltet ist.
  3. 3. Resonanzwandler nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwischen die beiden äußeren Anschlüssen (A1, A2) zumindest zwei in Serie geschaltete Widerstände (R3, R4) geschaltet sind, um zwischen den beiden Widerständen (R3, R4) einen Messpunkt (P) auszubilden, und eine Spannungsmesseinheit (V) vorgesehen ist, die die mit der Ausgangsspannung (Ua), die zwischen ersten Ausgangspol (12) und zweiten Ausgangspol (13) anliegt, korrespondierende Spannung (UP) zwischen Messpunkt (P) und zweitem Ausgangspol (13) misst.
  4. 4. Resonanzwandler nach Anspruch 3, dadurch gekennzeichnet, dass zwischen Messpunkt (P) und dem zweiten Ausgangspol (13) zumindest ein weiterer Widerstand (R2) geschaltet ist.
ATA50187/2015A 2015-03-09 2015-03-09 Resonanzwandler mit einem Transformator mit Mittelpunktanzapfung AT516902A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ATA50187/2015A AT516902A1 (de) 2015-03-09 2015-03-09 Resonanzwandler mit einem Transformator mit Mittelpunktanzapfung
DE112016001109.1T DE112016001109B4 (de) 2015-03-09 2016-03-01 Resonanzwandler mit einem transformator mit mittelpunktanzapfung
US15/556,925 US10199941B2 (en) 2015-03-09 2016-03-01 Resonant converter having a transformer with central point tap
PCT/EP2016/054326 WO2016142218A1 (de) 2015-03-09 2016-03-01 Resonanzwandler mit einem transformator mit mittelpunktanzapfung
CN201680014505.0A CN107431437B (zh) 2015-03-09 2016-03-01 具有带有中心抽头的变压器的谐振变换器
JP2017547503A JP6807855B2 (ja) 2015-03-09 2016-03-01 センタータップ付きの変圧器を有する共振形コンバータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50187/2015A AT516902A1 (de) 2015-03-09 2015-03-09 Resonanzwandler mit einem Transformator mit Mittelpunktanzapfung

Publications (1)

Publication Number Publication Date
AT516902A1 true AT516902A1 (de) 2016-09-15

Family

ID=55446806

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA50187/2015A AT516902A1 (de) 2015-03-09 2015-03-09 Resonanzwandler mit einem Transformator mit Mittelpunktanzapfung

Country Status (6)

Country Link
US (1) US10199941B2 (de)
JP (1) JP6807855B2 (de)
CN (1) CN107431437B (de)
AT (1) AT516902A1 (de)
DE (1) DE112016001109B4 (de)
WO (1) WO2016142218A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3482862A1 (de) * 2017-11-08 2019-05-15 FRONIUS INTERNATIONAL GmbH Verfahren zur berührungslosen zündung eines lichtbogens und schweissstromquelle zur durchführung eines zündverfahrens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164016A (en) * 1978-11-13 1979-08-07 Esb Incorporated Current sensing system
JPH06311743A (ja) * 1993-04-23 1994-11-04 Sanken Electric Co Ltd Dc−dcコンバータ
US6288919B1 (en) * 1999-12-16 2001-09-11 Chippower.Com, Inc. Single stage AC/DC converter high frequency AC distribution systems
DE102011076573A1 (de) * 2011-05-27 2012-11-29 Robert Bosch Gmbh Snubberschaltung für Gleichspannungswandler

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL299363A (de) 1962-10-17
DE2849170B1 (de) 1978-11-13 1980-02-28 Beluk Gmbh Schaltungsanordnung zur Messung des Leistungsfaktors cos upsilon
US4860184A (en) * 1987-09-23 1989-08-22 Virginia Tech Intellectual Properties, Inc. Half-bridge zero-voltage switched multi-resonant converters
JP2751962B2 (ja) * 1992-10-01 1998-05-18 ネミック・ラムダ株式会社 スイッチング電源装置
US5406051A (en) * 1993-04-29 1995-04-11 Electric Power Research Institute Welding machine with a high frequency converter
JPH1141939A (ja) 1997-07-23 1999-02-12 Daihen Corp 直流電源装置
JPH1198837A (ja) * 1997-09-24 1999-04-09 Sansha Electric Mfg Co Ltd 直流電源装置
CN100541993C (zh) * 2006-05-16 2009-09-16 中国科学院电工研究所 超导储能用双向三电平软开关dc/dc
JP2008154390A (ja) * 2006-12-19 2008-07-03 Sony Corp スイッチング電源回路
CN100521492C (zh) * 2007-06-13 2009-07-29 艾默生网络能源有限公司 一种谐振变换器
CN201219239Y (zh) * 2008-06-18 2009-04-08 合肥同智科技发展有限公司 一种小功率输入大功率输出起动电源
US8804377B2 (en) * 2009-12-28 2014-08-12 Stmicroelectronics S.R.L. Charge-mode control device for a resonant converter
IT1397088B1 (it) * 2009-12-28 2012-12-28 St Microelectronics Srl Circuito integrato per un oscillatore atto a pilotare un dispositivo di controllo di un convertitore risonante a commutazione.
US8879279B2 (en) 2011-05-13 2014-11-04 Texas Instruments Incorporated Systems and methods for constant current control in an LLC resonant power regulator
JP5746560B2 (ja) * 2011-05-25 2015-07-08 新電元工業株式会社 スイッチング電源装置
US8774235B2 (en) * 2011-06-23 2014-07-08 Raytheon Company System and method for suppressing parasitics in an optical device
US9030850B2 (en) * 2011-07-07 2015-05-12 Fuji Electric Co., Ltd. Resonant switching regulator with adaptive dead time
CN202178707U (zh) * 2011-08-02 2012-03-28 联合汽车电子有限公司 全桥隔离直流变换器
GB2508775B (en) * 2011-10-21 2018-09-19 Murata Manufacturing Co Switching power supply device
US8969764B2 (en) 2011-11-09 2015-03-03 Lincoln Global, Inc. Apparatus and method for short circuit welding with AC waveform
JP5959998B2 (ja) 2012-08-31 2016-08-02 新電元工業株式会社 補助電源回路及びスイッチング電源装置
CN202940733U (zh) * 2012-11-09 2013-05-15 联合汽车电子有限公司 直流隔离降压变换器及其母线电压检测电路
JP6402474B2 (ja) * 2013-07-17 2018-10-10 富士電機株式会社 スイッチング電源の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164016A (en) * 1978-11-13 1979-08-07 Esb Incorporated Current sensing system
JPH06311743A (ja) * 1993-04-23 1994-11-04 Sanken Electric Co Ltd Dc−dcコンバータ
US6288919B1 (en) * 1999-12-16 2001-09-11 Chippower.Com, Inc. Single stage AC/DC converter high frequency AC distribution systems
DE102011076573A1 (de) * 2011-05-27 2012-11-29 Robert Bosch Gmbh Snubberschaltung für Gleichspannungswandler

Also Published As

Publication number Publication date
DE112016001109B4 (de) 2022-06-30
US10199941B2 (en) 2019-02-05
JP6807855B2 (ja) 2021-01-06
WO2016142218A1 (de) 2016-09-15
CN107431437B (zh) 2020-07-07
CN107431437A (zh) 2017-12-01
DE112016001109A5 (de) 2017-11-30
JP2018508175A (ja) 2018-03-22
US20180034371A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
DE10214190A1 (de) Stromversorgung mit mehreren parallel geschalteten Schaltnetzteilen
WO1988008638A1 (en) Combined secondary circuit regulator
DE102011090037A1 (de) Hochspannungswechselrichtervorrichtung und elektrischer Leckdetektor für diese
EP0380033A2 (de) Schaltungsanordnung für ein freischwingendes Sperrwandler-Schaltnetzteil
EP2945257B1 (de) Symmetrieren von elektrischen Spannungen an elektrischen Kondensatoren in einer Reihenschaltung
EP3269031B1 (de) Schaltungsanordnung mit transformator mit mittelpunktanzapfung und messung der ausgangsspannung
DE10126925A1 (de) Schaltungsanordnung mit einer Regelschaltung
EP0162374A1 (de) Schaltungsanordnung für Umrichter
DE10117301A1 (de) Stromversorgungsschaltungsanordung mit einem DC/DC- Konverter
DE112016001109B4 (de) Resonanzwandler mit einem transformator mit mittelpunktanzapfung
EP0531780B1 (de) Schaltungsanordnung für ein freischwingendes Sperrwandler-Schaltnetzteil
DE19837639A1 (de) Schaltungsanordnung und Verfahren eines Überlastschutzes in einem Wandler
WO2002023704A1 (de) Schaltungsanordnung zur energieversorgung für eine ansteuerschaltung eines leistungshalbleiterschalters und verfahren zur bereitstellung der ansteuerenergie für einen leistungshalbleiterschalter
DE3535020A1 (de) Wechselstrom-gleichstromwandler
EP0327682A1 (de) Schaltverstärker zur digitalen Leistungsverstärkung
EP0978933A2 (de) Gleichspannungswandler
EP3089340B1 (de) Schaltnetzteil zur versorgung eines umrichters
DE102012204108A1 (de) Leistungselektronische Anordnung mit Symmetrierung eines Spannungsknotens im Zwischenkreis
DE19848728B4 (de) Stromrichtergerät für eine Gleichstrommaschine
EP3435529B1 (de) Entstörvorrichtung für einen gleichstromkreis
DE4108234A1 (de) Verfahren zum betreiben eines schaltreglers sowie schaltregler
EP3800773A1 (de) Sperrwandler mit bestimmung der primärspannung im sekundärkreis
DE102022111529A1 (de) Stromversorgungsanordnung, Plasmaerzeugungseinrichtung und Verfahren zur Steuerung mehrerer Plasmaprozesse
DE3336559C2 (de)
DE102014107429A1 (de) Schaltungsvorrichtung und Verfahren zum Betreiben der Schaltungsvorrichtung