AT501513B1 - Mehrlagige leiterplatte mit leitenden testflächen sowie verfahren zum bestimmen eines versatzes einer innenlage - Google Patents

Mehrlagige leiterplatte mit leitenden testflächen sowie verfahren zum bestimmen eines versatzes einer innenlage Download PDF

Info

Publication number
AT501513B1
AT501513B1 AT0034405A AT3442005A AT501513B1 AT 501513 B1 AT501513 B1 AT 501513B1 AT 0034405 A AT0034405 A AT 0034405A AT 3442005 A AT3442005 A AT 3442005A AT 501513 B1 AT501513 B1 AT 501513B1
Authority
AT
Austria
Prior art keywords
inner layer
offset
circuit board
segments
conductive
Prior art date
Application number
AT0034405A
Other languages
English (en)
Other versions
AT501513A1 (de
Original Assignee
Austria Tech & System Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT0034405A priority Critical patent/AT501513B1/de
Application filed by Austria Tech & System Tech filed Critical Austria Tech & System Tech
Priority to JP2007557273A priority patent/JP4979597B2/ja
Priority to PCT/AT2006/000078 priority patent/WO2006091990A1/de
Priority to CA002600257A priority patent/CA2600257A1/en
Priority to KR1020077022218A priority patent/KR101234145B1/ko
Priority to CN2006800067344A priority patent/CN101133689B/zh
Priority to DE112006000497.2T priority patent/DE112006000497B4/de
Priority to US11/883,949 priority patent/US20080190651A1/en
Publication of AT501513A1 publication Critical patent/AT501513A1/de
Application granted granted Critical
Publication of AT501513B1 publication Critical patent/AT501513B1/de
Priority to US13/291,674 priority patent/US20120125666A1/en
Priority to US14/047,219 priority patent/US20140034368A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0268Marks, test patterns or identification means for electrical inspection or testing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4638Aligning and fixing the circuit boards before lamination; Detecting or measuring the misalignment after lamination; Aligning external circuit patterns or via connections relative to internal circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/166Alignment or registration; Control of registration
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

2 AT 501 513 B1
Die Erfindung betrifft eine mehrlagige Leiterplatte mit leitenden Testflächen an zumindest einer Innenlage zum Bestimmen eines möglichen Innenlagen-Versatzes bzw. Versatzes einer Innen-lagen-Strukturierung, wobei die leitenden Testflächen aus reihenförmig angeordneten Ringstrukturen bestehen, die innere nichtleitende Flächen definieren, die unterschiedliche Größen 5 aufweisen, und mit durchkontaktierten Bohrlöchern im Bereich der Testflächen, wobei diese Bohrlöcher im Fall, dass kein oder ein vernachlässigbarer Versatz vorliegt, im Bereich der inneren, nichtleitenden Flächen vorliegen, bei einem nicht vernachlässigbaren Versatz jedoch zumindest ein Bohrloch im Bereich einer der leitenden Ringstrukturen vorliegt und so mit der Ringstruktur eine leitende Verbindung aufweist. 10
Weiters bezieht sich die Erfindung auf ein Verfahren zum Bestimmen eines möglichen Versatzes einer Innenlage bzw. Innenlagen-Strukturierung in einer mehrlagigen Leiterplatte mit Hilfe von leitenden Testflächen und durchkontaktierten Bohrlöchern, wobei zumindest eine Innenlage der Leiterplatte mit Testflächen in Form von reihenförmig angeordneten Ringstrukturen verse-15 hen ist, die je eine nichtleitende innere Fläche definieren, wobei die inneren Flächen der Ringstrukturen einer Reihe unterschiedliche Größen aufweisen, und wobei im Bereich der Testflächen angebrachte durchkontaktierte Bohrlöcher im Fall, dass kein oder ein vernachlässigbarer Versatz vorliegt, im Bereich der inneren Flächen vorliegen, im Fall eines Versatzes jedoch zumindest einzeln im Bereich einer leitenden Ringstruktur vorliegen und mit dieser eine leitende 20 Verbindung hersteilen, wodurch bei Anlegen einer Spannung zwischen den Bohrlöchern und den Ringstrukturen je nach Versatz ein Kurzschluss bei bestimmten Paaren von Bohrlöchern und Ringstrukturen festgestellt wird, woraus auf den Versatz der Innenlage bzw. Innenlagen-Strukturierung geschlossen wird. 25 Es ist bekannt, dass sich bei der Herstellung von mehrlagigen Leiterplatten immer wieder Registrierungsfehler einzelner Lagen der Leiterplatten und/oder von Strukturierungen auf solchen Lagen ergeben, wobei diese Registrierungsfehler, auch Innenlagen-Versatz genannt, umso kritischer sind, je höher die Dichte der auf den Leiterplatten anzubringenden Komponenten ist, und je schmäler die Leiterbahnen der Strukturierungen auf den Lagen der Leiterplatten sind. 30 Diese Registrierungsfehler sind auf verschiedene Einflüsse während der Herstellung der Leiterplatten zurückzuführen, wobei eine Hauptursache Materialdehnungen und Materialschrumpfungen während des Herstellungsprozesses sind. Andere Ursachen können in einem Verziehen der Innenlagen beim Pressen von Multilayer-Stapeln, aber auch in so genannten Image-Transferfehlern liegen, die bei der Durchführung der Fotoätztechniken auftreten können. Vor allem 35 können auch Filmveränderungen während des Herstellungsprozesses zu einem Innenlagen-Versatz oder zu einem Versatz von Strukturierungen auf Innenlagen führen.
In der US 6 297 458 B ist eine Technik vorgeschlagen worden, um mit speziell strukturierten Testflächen in einer zerstörungsfreien Messmethode Leiterplatten auf einen Versatz von Innen-40 lagen zu untersuchen. Dabei werden auf verschiedenen Innenlagen der mehrlagigen Leiterplatten ringförmige Testflächen angebracht, welche eine unterschiedliche radiale Breite aufweisen, so dass die im Inneren der Kreisringe vorliegenden Kreisflächen, die nichtleitend sind, verschiedene Größen bzw. Durchmesser haben. Die ringförmigen Testflächen sind dabei auf einer Innenlage getrennt voneinander angeordnet, wogegen sie auf einer anderen Innenlage durch 45 leitende Materialstreifen miteinander verbunden sind. Im Bereich dieser Ringstrukturen werden sodann Bohrlöcher angebracht, die verkupfert, also durchkontaktiert werden. In diese Bohrlöcher werden beim Test, zur Bestimmung der Registrierungsfehler oder des Versatzes, mit Hilfe eines Nadeltesters parallel zueinander Testnadeln eingeführt, und mit Hilfe einer weiteren Nadel wird ein Kontakt zu den miteinander leitend verbundenen Ringen hergestellt. Je nach Verso satz kommen dabei keine, eine oder mehrere Nadeln in Kontakt mit den ringförmigen Testflächen, so dass sich ein Kurzschluss ergibt, und je nachdem, bei wie vielen Nadeln ein derartiger Kurzschluss festgestellt wird, ist die Größe, d.h. der Betrag des Versatzes, in einer durch die Reihenrichtung der ringförmigen Testflächen vorgegebenen Richtung bestimmbar. Von Nachteil ist bei dieser bekannten Technik, dass ein Versatz von Innenlagen oder Innenlagenstrukturen 55 mit einer Reihe von Testflächen nur in einer Richtung bestimmt werden kann; sofern ein Versatz 3 AT 501 513 B1 auch in einer anderen Richtung bestimmt werden soll, muss auch in dieser Richtung eine Reihe von ringförmigen Testflächen auf jeder der beiden betrachteten Innenlagen der Leiterplatte vorgesehen werden. 5 Aus der US 4 432 037 A ist es bekannt, streifenförmige Testflächen in x- und y-Richtung anzubringen und mehrere versetzte Testbohrungen pro Testfläche vorzunehmen, um einen Versatz von Innenlagen zu ermitteln. Diese Technik ist relativ aufwendig und dabei doch ziemlich ungenau. io In der US 4 898 636 A ist eine Methode zur Ausrichtung von Leiterplattenelementen in einem Laminat (Multilayer-Board) beschrieben, wobei kleine Magnetscheiben vorgesehen werden, die in Bohrlöcher eingesetzt und in Anschluss daran zur Detektion der Position verwendet werden.
Aus der Internetseite www.perfectest.com ist andererseits eine Technik zur Bestimmung von 15 Registrierungsfehlern bei Innenlagen von Leiterplatten geoffenbart, bei der in x-Richtung und in y-Richtung paarweise längliche, in ihrer Dicke abgestuft zu- bzw. abnehmende leitende Flächen vorgesehen werden. Im Idealfall liegen die danach hergestellten durchkontaktierten Bohrlöcher im Raum zwischen diesen Leiterflächen (Masseflächen), ohne mit einer dieser Masseflächen einen Kontakt herzustellen; bei einem Versatz einer Innenlage relativ zur anderen kommen 20 jedoch einzelne oder alle Bohrlöcher derart relativ zu diesen Masseflächen zu liegen, dass sie mit diesen einen Kontakt hersteilen. Es liegen hier Testflächen-Gruppen in zwei Richtungen angeordnet vor, um einen Versatz in diesen zwei Richtungen detektieren sowie auch, aufgrund der Abstufungen der Masseflächen, der Größe nach feststellen zu können. Der Betrag des Versatzes ergibt sich dabei auch hier daraus, dass festgestellt wird, welche Nadel der Reihe 25 von Nadeln im Nadeltester noch einen Kurzschluss mit Masse detektiert und welche Nadel als nächste dann nicht mehr. Aber auch hier ist mit verhältnismäßig großem Aufwand eine nur eher beschränkte Kontrolle von Registrierungsfehlern möglich.
Es ist nun Ziel der Erfindung, eine mehrlagige Leiterplatte bzw. ein Verfahren zum Bestimmen 30 eines Versatzes bei Innenlagen von solchen Leiterplatten vorzusehen, wobei es auf der Basis von speziellen Strukturen der Testflächen möglich sein soll, einen Versatz nicht nur dem Betrag nach, sondern auch nach beliebigen Richtungen, je nach Zielvorstellung, auf einfache Weise bestimmen zu können. Die Testflächen-Strukturen hiefür sollen dabei insbesondere vergleichsweise einfach und auch platzsparend sein. 35
Zur Lösung dieser Aufgabe sieht die Erfindung eine mehrlagige Leiterplatte sowie ein Verfahren zum Bestimmen eines möglichen Versatzes einer Innenlage bzw. Innenlagen-Strukturierung in einer mehrlagigen Leiterplatte gemäß den unabhängigen Ansprüchen vor. Vorteilhafte Ausführungsformen und Weiterbildungen sind Gegenstand der abhängigen Ansprüche. 40
Gemäß der Erfindung werden die Testflächen-Ringstrukturen segmentiert, so dass sich jeweils mehrere in Umfangsrichtung voneinander durch nichtleitende Trennbereiche getrennte Segmente ergeben. Es sei hier erwähnt, dass die Ringstrukturen nicht notwendigerweise exakt kreisförmig sein müssen, sondern je nach Anwendungsfall auch mehr oder weniger oval oder 45 aber relativ eckig, in der Art eines Unrunds, vorliegen können. In der Regel wird jedoch eine gleichartige Versatzbestimmung in allen Winkelrichtungen, die möglich und gewünscht sind, angestrebt werden, und hiefür ist es dann von Vorteil, wenn jeweils gleich große Segmente vorliegen, und wenn die Segmente jeweils Kreis-Segmente sind, d.h. Segmente von Kreisringen als Einzel-Testflächen. Je nach Anzahl der Segmente kann dann beim Versatz der Innen-50 lagen vergleichsweise fein oder aber nur gröber unterschieden werden, und als besonders guter Kompromiss, bei dem auch der Versatz in ausreichendem Ausmaß der Richtung nach bestimmt werden kann, hat sich eine Ausbildung erwiesen, bei der für jede Ringstruktur vier Segmente vorgesehen werden. Für eine Vereinfachung der Auswertung der Messergebnisse ist es hier weiters günstig, wenn bei jeder Ringstruktur die die Segmente voneinander trennenden, 55 nichtleitenden Trennbereiche gleich breit sind, so dass die Abstände der Segmente voneinan- 4 AT 501 513 B1 der jeweils gleich groß sind. Insbesondere ist es hier vorteilhaft, wenn die Trennbereiche zwischen den Segmenten aller Ringstrukturen einer Reihe alle die gleiche Breite aufweisen. Für die Bestimmung von Registrierungsfehlern von Innenlagen ist gemäß einer einfachen, 5 besonders bevorzugten Ausführungsform vorgesehen, dass sich durchkontaktierte Bohrlöcher von einer Leiterplatten-Lage her, an der sie mit Kontaktflächen versehen sind, zu einer mit Testflächen-Ringstrukturen versehenen Innenlage erstrecken. Anstatt dessen oder aber bevorzugt zusätzlich ist es auch günstig, wenn sich durchkontaktierte Bohrlöcher von einer mit Testflächen-Ringstrukturen versehenen Innenlage zu einer anderen Leiterplatten-Lage erstrecken, io die eine gemeinsame, zusammenhängende leitende Fläche als Kontaktfläche für die Bohrlöcher aufweist. Auf diese Weise kann jener Versatz oder aber jener Teilbeitrag zum Gesamtversatz - separat - bestimmt werden, der allein durch den Versatz des Fotoprozesses bei der Strukturierung gegenüber dem Bohrprozess gegeben ist. 15 Mit der erfindungsgemäßen Technik kann nicht nur der Betrag des Versatzes durch die spezielle Testflächen-Struktur beliebig fein aufgelöst werden, es wird wie erwähnt auch eine Bestimmung des Versatzes der Richtung nach auf einfache Weise ermöglicht, wobei diese Richtungsbestimmung je nach Anzahl der Ringsegmente ebenfalls eine praktisch beliebig kleine Winkeleinteilung zulässt. Wie erwähnt werden bevorzugt jeweils vier Segmente vorgesehen, da damit, 20 wie praktische Versuche gezeigt haben, in der Regel das Auslangen gefunden werden kann, jedoch ist es auch denkbar, beispielsweise sechs oder aber acht Ringsegmente pro Testflä-chen-Ringstruktur vorzusehen, um eine noch feinere Winkeleinteilung zu ermöglichen. Andererseits können aber auch beispielsweise bloß drei Ringsegmente durchaus ausreichen, um die Ausrichtung eines Versatzes einer Innenlage bzw. einer Strukturierung mit genügender Genau-25 igkeit bestimmen zu können.
Mit Hilfe einer derartigen Messtechnik wie beschrieben können auf einfache Weise nicht nur mehrlagige Leiterplatten hinsichtlich Innenlagen(struktur)-Registrierungsfehler geprüft werden, es kann vielmehr begleitend während der Herstellung von derartigen Leiterplatten eine solche 30 Versatzbestimmung vorgenommen werden, um in Entsprechung hierzu korrigierend auf die Herstellung der Leiterplatten eingreifen zu können, so dass hierdurch der Ausschuss von Leiterplatten mit zu großen Registrierungsfehlern reduziert werden kann.
Die Erfindung wird nachfolgend anhand von bevorzugten Ausführungsbeispielen, auf die sie 35 jedoch nicht beschränkt sein soll, und unter Bezugnahme auf die Zeichnung noch weiter erläutert. In der Zeichnung zeigen im Einzelnen: Fig. 1 einen schematischen Querschnitt durch einen Teil einer mehrlagigen Leiterplatte, im Bereich von Testflächen-Ringstrukturen, wobei zwei Innenlagen übereinander veranschaulicht sind; Fig. 2 eine schematische Draufsicht auf eine Reihe von jeweils segmentierten Testflächen-Ringstrukturen; Fig. 3 in einer schematischen 40 Draufsicht die Ausrichtung derartiger segmentierter Ringstrukturen zu durchkontaktierten Bohrlöchern und Anschlussflächen der Testflächen-Segmente auf Außenlagen; Fig. 4 in gegenüber Fig. 2 vergrößerter Darstellung eine Testflächen-Ringstruktur mit vier Kreissegmenten sowie einem schematisch eingezeichneten Bohrloch, mit Veranschaulichung der verschiedenen geometrischen Größen, die für die Versatzbestimmung von Bedeutung sind; und Fig. 5 in einer 45 schematischen Querschnittsdarstellung ähnlich Fig. 1 einen Teil einer mehrlagigen Leiterplatte, wobei hier die untere Innenlage mit einer zusammenhängenden, gemeinsamen Massefläche und die obere Innenlage mit Testflächen-Ringstrukturen mit Ringsegmenten versehen ist.
In Fig. 1 ist ein Ausschnitt aus einer mehrlagigen Leiterplatte 1 schematisch in einem Quer-50 schnitt veranschaulicht. Dabei ist an einer gemäß der Darstellung in Fig. 1 untereren Innenlage 2 ein Muster 3 von leitenden Testflächen angebracht, wobei hiefür übliche Fotoätztechniken, wie sie im Zuge der Strukturierung der leitenden Schichten von Leiterplatten bzw. Leiterplattenlagen üblich sind, eingesetzt werden können. Ein Beispiel für ein solches Muster 3 wird nachfolgend anhand der Fig. 2 noch näher erläutert werden. Von einer gemäß Fig. 1 oberen Innen-55 läge 4 erstrecken sich Bohrungen 5, beispielsweise durch eine in der Zeichnung nicht näher 5 AT 501 513 B1 bezeichnete Kunstharzschicht hindurch, zur unteren Innenlage 2 hin. Diese Bohrungen, nachstehend Bohrlöcher 5 genannt, sind an ihrer Innenwand mit leitendem Material, insbesondere Kupfer, beschichtet, und an der Oberseite, an der Unterseite der oberen Innenlage 4, sind - beispielsweise ebenfalls durch einen herkömmlichen Fotoätztechnik-Prozess - Kontaktflächen 6 zur Kontaktierung der Bohrlöcher 5 angebracht. Diese Kontaktflächen 6 oder Masseflächen, werden einschlägig auch als „Lands“ bezeichnet. Die Verkupferung der Bohrlöcher 5 ist in Fig. 1 mit 5A bezeichnet, und die so erhaltenen Bohrlöcher 5 werden üblicherweise als „durchkontaktierte Bohrlöcher“ bezeichnet.
Bei der Ausführungsform gemäß Fig. 1 werden die Bohrlöcher 5 von der oberen Innenlage 4 zur unteren Innenlage 2 hin gesetzt, und nach dem Bohrprozess und nach dem Verkupfern der Bohrlöcher 5 wird an der oberen Innenlage 4 das Muster der Kontaktflächen 6 im Zuge des erwähnten Fotoprozesses angebracht, d.h. strukturiert.
Wie aus Fig. 1 ersichtlich ist, treffen die Bohrlöcher 5 auf leitende Testflächen 7 des Musters 3 auf der unteren Innenlage 2 auf, was auf einen Versatz oder einen Registrierungsfehler zwischen den beiden Innenlagen 2, 4 zurückzuführen ist. Im Idealfall würden die Bohrungen auf nichtleitende Flächen des Musters 3 auftreffen, wie dies nachstehend anhand der Fig. 2 und 4 im Einzelnen dargelegt wird.
Gemäß Fig. 2 besteht das Testflächen-Muster 3 aus einer Reihe von Testflächen-Ringstruk-turen 7.1, 7.2,...7.i, wobei bevorzugt Kreisringstrukturen wie in Fig. 2 dargestellt vorgesehen werden. Diese Ringstrukturen 7.i, mit i=1, 2,...n (im gezeigten Beispiel ist n=4), weisen jeweils beispielhaft vier Kreisringsegmente a, b, c und d auf. Die Ringstrukturen 7.1 definieren, d.h. umschließen, jeweils eine innere kreisförmige nichtleitende Fläche 8.1, 8.2,...8.i...8.n. Die Radien R.i, mit i=1, 2,...n, dieser nichtleitenden kreisförmigen inneren Flächen 8.i werden in Reihenrichtung innerhalb eines solchen Reihen-Musters 3 von Testflächen zunehmend größer, wie aus Fig. 2 ersichtlich ist. Für das dargestellte Beispiel, mit n=4, kann somit konkret angeschrieben werden: R.4 > R.3 > R.2 > R.1. Die Radiusdifferenz AR = R.2 - R.1 usw. kann dabei, je nach den Herstellungstoleranzen, beliebig fein gewählt werden, und eine solche Testflächen-Reihe 3 deckt somit einen Messbereich mit frei wählbarer Abstufung zur Bestimmung des Betrages eines Versatzes zwischen den betroffenen Innenlagen, z.B. den Innenlagen 2 und 4 gemäß Fig. 1, ab.
Die Strukturierung der Ringstrukturen 7.1 mit den Ringsegmenten a, b, c und d, die elektrisch voneinander durch nichtleitende Trennbereiche 9 voneinander getrennt sind, ermöglicht es darüber hinausgehend, die Richtung des Versatzes oder Verzuges, d.h. des Registrierungsfehlers, zu bestimmen. Je nach Anzahl der Ringsegmente a, b, c, d,... ergibt sich eine mehr oder weniger feine Auflösung, mit der die Richtungsabweichung in der Ausrichtung der Innenlagen relativ zueinander bestimmt werden kann.
Die speziell strukurierten Testflächen oder Masseflächen 7.i des Musters 3 werden einschlägig auch als „Fiducial“ bezeichnet, und im Prinzip ist wie eingangs erwähnt eine derartige zerstörungsfreie Messmethode zur Bestimmung von Registrierungsfehlem zwischen Innenlagen oder Innenlagenstrukturen mit Hilfe von solchen Fiducials bekannt. Bei der vorliegenden Technik ist jedoch eine ganz spezielle Strukturierung dieser Fiducials oder Testflächen 7.i vorgesehen, um einen Versatz zwischen Innenlagen sowohl dem Betrag nach als auch der Richtung nach bestimmen zu können. Mit der vorliegenden Technik wird demgemäß die Bestimmung des Gesamtversatzes zwischen Innenlagen und darüber hinaus auch die separate Bestimmung einzelner Einflüsse auf den Gesamtversatz ermöglicht (vgl. auch die nachfolgende Beschreibung der Fig. 5).
Bevor nun unter Bezugnahme auf Fig. 4 näher das Prinzip der Versatzbestimmung anhand der vorgesehen Geometrien eingegangen wird, soll noch anhand der Fig. 3 in einer schematischen Draufsicht das Layout einer Testflächen-Reihe 3 erläutert werden, wobei in Fig. 3 der Einfach- 6 AT 501 513 B1 heit halber leitende Flächen schematisch mit vollen Linien gezeigt sind, obwohl sie an verschiedenen Lagen der mehrlagigen Leiterplatte 1 vorgesehen sind.
Im Einzelnen sind die an einer Innenlage, z.B. der Innenlage 2 gemäß Fig. 1, angebrachten 5 Testflächen-Ringstrukturen 7.i, mit den in Fig. 3 nicht näher bezeichneten Kreisringsegmenten a, b, c und d gemäß Fig. 2, in Fig. 3 zu erkennen, und innerhalb davon ist bei den einzelnen Ringstrukturen eine durchkontaktierte Bohrung 5 ersichtlich, der eine ringförmige Kontaktfläche 6 an einer anderen Innenlage (Innenlage 4 in Fig. 1) zugeordnet ist. Den einzelnen Ringsegmenten a, b, c und d der Ringstruktur 7.i sind zur Herstellung eines elektrischen Anschlusses io auf einer Außenlage Kontaktflächen 10.a, 10.b, 10.c und 10.d zugeordnet, wobei in vergleichbarer Weise durchkontaktierte Bohrlöcher 5' zur elektrischen Verbindung mit den jeweiligen Kreisringsegmenten a, b, c und d vorgesehen sind. Eine solche Anordnung ist für jede Ringstruktur der Reihe oder des reihenförmigen Musters 3 vorhanden, wobei die Innendurchmesser der Ringstrukturen, d.h. die Radien R.i der nichtleitenden inneren Flächen 8.i (s. Fig. 2) oder allge-15 mein die Größe der inneren nichtleitenden Flächen 8.i, in Reihenrichtung stufenweise zunimmt. Es sei hier erwähnt, dass die Ringstrukturen 7.i im Prinzip auch von einer exakten Kreisringform abweichende Formen haben können, wie etwa ovale Formen oder aber auch quadratische Formen, mit abgerundeten Ecken usw., wobei jedoch eine exakte Kreisringform im Hinblick auf die Gleichheit der in allen erfassbaren Messrichtungen gegebenen Voraussetzungen für die 20 Versatzbestimmung bevorzugt wird.
Im Idealfall, wenn kein oder praktisch kein Versatz zwischen den Innenlagen bzw. Innenlagenstrukturen gegeben ist, treffen alle durchkontaktierten Bohrlöcher 5 innerhalb der inneren nicht-leitenden Flächen 8.i der Testflächen-Ringstrukturen 7.i auf. Berührt nun ein Bohrloch 5 auf-25 grund eines Innenlagen- oder aber Bohrversatzes ein Ringsegment a, b, c, d, gegebenenfalls auch zwei benachbarte Ringsegmente gleichzeitig, so ergibt sich beim Anlegen einer Spannung ein Kurzschluss zwischen dem durchkontaktierten Bohrloch 5, genauer der Kontaktfläche 6 an der oberen Innenlage 4 gemäß Fig. 1, und dem entsprechenden Ringsegment a, b, c oder d der jeweiligen Ringstruktur 7.i. Aufgrund der zunehmenden Größe oder Radien R.i der inneren 30 nichtleitenden Flächen 8.i kann dann durch die Auswertung, bei welcher Ringstruktur 7.i (noch) ein Kurzschluss wie beschrieben aufgetreten ist, der Betrag, also die Größe des Versatzes, bestimmt werden. Da die Ringsegmente a, b, c, d elektrisch voneinander getrennt sind, kann durch Bestimmung des jeweiligen Ringsegments, mit dem ein Kurzschluss vorliegt, auch die Richtung des Versatzes bestimmt werden. Dies soll nachfolgend anhand der Fig. 4 nun näher 35 erläutert werden.
In Fig. 4 ist schematisch in einer Draufsicht eine Testflächen-Ringstruktur 7.i gezeigt, die kreisringförmig strukturiert ist und vier Kreisringsegmente a, b, c und d aufweist. Wie erwähnt sind diese Kreisringsegmente a, b, c, d durch jeweils gleich breite, nichtleitende Trennbereiche 9 40 voneinander getrennt, wobei die Breite dieser Trennbereiche 9 in Fig. 4 mit A.i bezeichnet ist. Die nichtleitende innere kreisförmige Fläche 8.i hat einen Radius R.i, und die einzelnen Ringsegmente a, b, c und d haben im gezeigten Beispiel eine gleiche radiale Breite D. Diese Breite D kann aber durchaus variieren, etwa wenn bei einem von einer Testflächen-Ringstruktur zur nächsten steigenden Radius R.i der äußere Radius der Kreissegmente gleich bleibt, so dass 45 dann die Breite D bzw. besser D.i sukzessive kleiner wird (D.i = R.außen - R.i).
In Fig. 4 sind weiters mit zwei Kreisringen zwei von einer anderen Innenlage her zu jener Innen-50 läge, die die Ringstruktur 7.i enthält, gesetzte durchkontaktierte Bohrlöcher 5, 5a veranschaulicht, wobei das Bohrloch 5 im gezeigten Beispiel gleichzeitig auf die beiden Ringsegmente b und c auftrifft und somit zu diesen beiden Ringsegmenten b, c einen Kurzschluss herstellt; das Bohrloch 5a trifft dagegen das Ringsegment c und berührt gerade noch das Ringsegment b. Der Durchmesser jedes Bohrlochs 5 bzw. 5a ist mit R bezeichnet. Die Distanz zwischen dem 55 Mittelpunkt der kreisförmigen nichtleitenden inneren Fläche 8.i und der Mitte der Ringsegmente, 7 AT 501 513 B1 z.B. c oder d, ist in Fig. 4 mit L bzw. genauer mit L.i angegeben.
Wie erwähnt, liegen im Idealfall, wenn kein Versatz zwischen den Innenlagen, z.B. 2 und 4 in Fig. 1, vorhanden ist, die Bohrlöcher 5 im Wesentlichen genau in der Mitte der inneren kreisför-5 migen nichtleitenden Flächen 81 Sind die Innenlagen 2, 4 jedoch zueinander versetzt, dann treffen die Bohrlöcher 5 nicht in die Mitte dieser Flächen 8.i bzw. allgemein der Ringstrukturen 7.i, sondern sind zu den leitenden Testflächen, d.h. zu den Ringsegmenten a, b, c und d der Ringstrukturen 7.i hin verschoben. Wenn also der Versatz V größer als (R.i - R) ist, so trifft das Bohrloch 5 zumindest ein Ringsegment a, b, c, d. Zufolge der Verkupferung der Bohrlöcher 5 io kann somit zwischen dem jeweiligen Bohrloch 5 und dem jeweiligen Ringsegment a, b, c, d der Kurzschluss erfasst werden, wobei auf den Betrag des Versatzes V beispielsweise gemäß der nachfolgenden Tabelle 1 geschlossen werden kann.
Tabelle 1:
Eine Bohrung 5 trifft Ringsegmente Betrag des Versatzes des 1. Fiducials 7.1 V > R.1 - R R.1 > R des 2. Fiducials 7.2 V > R.2 - R R.2 > R.1 des 3. Fiducials 7.3 V > R.3 - R R.3 > R.2 des 4. Fiducials 7.4 V > R.4 - R R.4 > R.3 des i. Fiducials 7.i V > R.i - R R.i > R.i-1
Der Betrag des Versatzes V ergibt sich somit aus jenem Kurzschluss, der bei jenem Fiducial (bei jener Ringstruktur) mit dem größten Radius auftritt. 30 Aus dem Kurzschluss eines durchkontaktierten Bohrlochs 5 mit einem speziellen Kreisringsegment a, b, c und/oder d kann weiters die Winkelausrichtung des Versatzes V bestimmt werden, wobei sich bei dem dargestellten Ausführungsbeispiel mit vier Kreisringsegmenten a, b, c und d pro Ringstruktur bzw. Fiducial 7.i die Winkelausrichtung des Versatzes V etwa gemäß der nachfolgenden Tabelle 2 bestimmen lässt: 35
Tabelle 2:
Ein Bohrloch trifft Ringsegment Winkel des Versatzes V d+a 360° - α < V < α a α < V < 90° - α a+b 90° - α < V < 90° + α b 90° + α < V < 180° - α b+c 180° - α < V < 180° + α c 180° + α < V < 270° - α c+d 270° - α < V < 270° + α d 270° + α < V < 360° - α
Dabei gilt für den Winkel α 55 5 8 AT 501 513 B1 (R-f) tana =———,mit io Reale beispielhafte Werte sind: R = 90 pm A = 65 pm D = 200 pm 15 R.1 = 225 pm (9 mil) R.2 = 250 pm (10 mil) R.3 = 275 pm (11 mil) R.4 = 300 pm (12 mil)
Daraus ergibt sich α mit etwa 10°. 20
Der Winkel α entsprechend der vorstehenden Bezeichnung entspricht einem maximalen jeweiligen Winkel und definiert die Auflösung, mit der die Richtungsabweichung des Innenlagenversatzes bestimmt werden. Für die gegebenen Werte und einer Fiducialstruktur mit vier Ringsegmenten a, b, c, d beträgt die Auflösung des Winkelbereiches ca. 20° (=2x10°), wenn die Boh-25 rung 5 zwei Ringsegmente, z.B. b und c, trifft, und ca. 70° (=90°-2x10°), wenn die Bohrung 5 nur ein Ringsegment, z.B. c, trifft. Beträgt die Anzahl der Ringsegmente acht, so sind die beiden Winkelauflösungen für die vorstehenden Beispiels-Werte etwa gleich groß und betragen ca. 20°. Da sich bei sich ändernden Radien R.i und Breiten D.i auch die Längen L.i ändern, ergibt sich genaugenommen auch ein sich ändernder Winkel a.i. Bei konstantem A ändert sich die 30 Winkelauflösung a.i innerhalb der Fiducialreihe. Um die Winkelauflösung a.i konstant zu halten, muss innerhalb einer Fiducialreihe der Wert A (—► A.i) geändert werden. Eine Variante zur beschriebenen Struktur besteht somit darin, mit größer werdendem Radius R.i den Wert A.i kleiner zu machen. Auch die Breite D der Ringsegmente könnte aus Designgründen innerhalb einer Fiducialreihe variieren (D.1, D.2, ..., D.i). Damit würde sich die vorstehende Tabelle 2 35 entsprechend ändern.
Die Anzahl der Kreisringsegmente für jede Ringstruktur 7.i kann abhängig von den hergestellten Leiterplatten, von den Prozessparametern und den verwendeten Bohrlochdurchmessern, beliebig gewählt werden. Je größer die Anzahl der Ringsegmente ist, desto feiner wird wie vorste-40 hend angeführt die Winkelauflösung, und die Berechnung gemäß der vorstehenden Tabelle 2 ist dann entsprechend zu ändern. Andererseits bestimmt die Größe der Radien R.i sowie die Anzahl der Ringstrukturen 7.i den Messbereich für den Bereich des Innenlagenversatzes V. Die Anzahl der Ringstrukturen pro Reihe kann im Prinzip beliebig groß gewählt werden, sie wird jedoch aufgrund des hiefür erforderlichen Platzbedarfs sowie des in der Praxis tatsächlich rele-45 vanten Messbereichs auf einige relativ wenige Ringstrukturen beschränkt werden.
Der Abstand A (bzw. A.i) zwischen den Kreisringsegmenten a, b, c, d kann je nach Fall für alle Ringstrukturen 7.i gleich groß gewählt werden, oder aber er wird auf die Größe der jeweiligen Ringstruktur 7.i abgestimmt, z.B. zunehmend mit der Größe der Ringstruktur größer gewählt, so Ähnliches gilt auch für die radiale Breite D der Ringsegmente a, b, c, d. Vielfach ist es aber zu bevorzugen, alle radialen Breiten D und Abstände A innerhalb einer jeweiligen Ringstruktur gleich groß zu wählen.
In Fig. 5 ist in einer ähnlichen Querschnittsdarstellung wie in Fig. 1 ein Ausschnitt einer mehrla-55 gigen Leiterplatte 1 gezeigt, bei der wiederum von einer gemäß der Darstellung oberen Innen-

Claims (14)

  1. 9 AT 501 513 B1 läge 4 zu einer unteren Innenlage 2 hin Bohrlöcher 5 gesetzt sind. Anders als in Fig. 1 gezeigt werden gemäß Fig. 5 jedoch nach dem Bohr- und Verkupferungsprozess die Ringstrukturen 7.i einer Fiducial-Reihe 3 auf der oberen Innenlage 4 strukturiert. Bevorzugt werden zusätzlich zu den Bohrungen 5 für die Fiducial-Reihe 3 auf der unteren Innenlage 2 gemäß Fig. 1, um so den 5 Gesamtversatz zwischen den Lagen 2 und 4 zu messen, die Bohrungen 5 gemäß Fig. 5 gesetzt, die auf der unteren Innenlage 2 auf einer gemeinsamen, zusammenhängenden leitenden Fläche (Massefläche) als Kontaktfläche 11 enden. Die Fotostrukturierung der oberen Innenlage 4, zur Bildung der oberen Reihe oder des oberen Musters 3 gemäß Fig. 5, erfolgt nach dem Bohren der Bohrlöcher 5 und ihrem Verkupfern. Je nachdem wie nun der Fotoprozess an der io oberen Innenlage 4 gegenüber den Bohrungen 5 versetzt ist, werden wiederum bestimmte Ringsegmente der einzelnen Ringstrukturen 7.i, ähnlich wie zuvor erläutert, nun jedoch an der oberen Innenlage 4, mit der Massefläche 11 auf der unteren Innenlage 2 kurzgeschlossen. Daraus kann analog wie zuvor beschrieben der Versatz der Strukturierung der oberen Innenlage 4, also der Versatz des Fotoprozesses, relativ zu den Bohrungen (Bohrlöcher 5) dem Betrag 15 und der Richtung nach bestimmt werden. Auf diese Weise kann somit insbesondere jener Beitrag zum Gesamtversatz gesondert bestimmt werden, der durch den Versatz des Fotoprozesses gegenüber dem Bohrprozess gegeben ist. Um entsprechend der vorstehend beschriebenen Messtechnik den jeweiligen Innenlagenver-20 satz an der Außenlage der Leiterplatte 1 messen zu können, werden die elektrischen Anschlüsse, wie vorstehend bereits anhand der Fig. 3 erläutert, für die einzelnen innenliegenden leitenden Flächen, z.B. die Ringsegmente a, b, c, d, und für die durchkontaktierten Bohrlöcher 5 bzw. deren Kontaktflächen 6 auf die Außenlage der Leiterplatte 1 geführt. Wie weiters an sich bekannt, werden sodann mit einem Nadeltester in einem Parallelverfahren an der Leiterplatten-25 Oberfläche die eventuell auftretenden Kurzschlüsse erfasst und in einem Rechner ausgewertet, um so automatisch Betrag und Richtung des jeweiligen Innenlagenversatzes V zu bestimmen. Patentansprüche: 30 1. Mehrlagige Leiterplatte mit leitenden Testflächen an zumindest einer Innenlage zum Bestimmen eines möglichen Innenlagen-Versatzes bzw. Versatzes einer Innenlagen-Strukturierung, wobei die leitenden Testflächen aus reihenförmig angeordneten Ringstrukturen bestehen, die innere nichtleitende Flächen definieren, die unterschiedliche Größen 35 aufweisen, und mit durchkontaktierten Bohrlöchern im Bereich der Testflächen, wobei die se Bohrlöcher im Fall, dass kein oder ein vernachlässigbarer Versatz vorliegt, im Bereich der inneren, nichtleitenden Flächen vorliegen, bei einem nicht vemachlässigbaren Versatz jedoch zumindest ein Bohrloch im Bereich einer der leitenden Ringstrukturen vorliegt und so mit der Ringstruktur eine leitende Verbindung aufweist, dadurch gekennzeichnet, dass 40 die Testflächen-Ringstrukturen (7.i) in Umfangsrichtung unter Bildung von Segmenten (a, b, c, d) unterteilt sind, wobei die Segmente (a, b, c, d) in Umfangsrichtung durch nichtleitende Trennbereiche (9) voneinander getrennt sind.
  2. 2. Leiterplatte nach Anspruch 1, dadurch gekennzeichnet, dass jede Ringstruktur (7.i) gleich 45 große Segmente (a, b, c, d) aufweist.
  3. 3. Leiterplatte nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Segmente (a, b, c, d) jeder Ringstruktur Kreis-Segmente sind. so 4. Leiterplatte nach Anspruch 3, dadurch gekennzeichnet, dass die Kreis-Segmente (a, b, c, d) aller Ringstrukturen (7.i) einer Reihe (3) alle die gleiche radiale Breite (D) aufweisen.
  4. 5. Leiterplatte nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass für jede Ringstruktur (7.i) vier Segmente (a, b, c, d) vorgesehen sind. 55 1 0 AT 501 513 B1
  5. 6. Leiterplatte nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass für jede Ringstruktur (7.i) die Trennbereiche (9) gleich breit sind.
  6. 7. Leiterplatte nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Trenn- 5 bereiche (9) zwischen den Segmenten (a, b, c, d) aller Ringstrukturen (7.i) einer Reihe (3) alle die gleiche Breite (A) aufweisen.
  7. 8. Leiterplatte nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sich durchkontaktierte Bohrlöcher (5) von einer Leiterplatten-Lage (4) her, an der sie mit Kontaktflä- io chen (6) versehen sind, zu einer mit Testflächen-Ringstrukturen (7.i) versehenen Innenlage (2) erstrecken.
  8. 9. Leiterplatte nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich durchkontaktierte Bohrlöcher (5) von einer mit Testflächen-Ringstrukturen (7.i) versehenen In- 15 nenlage (4) zu einer anderen Leiterplatten-Lage (2) erstrecken, die eine gemeinsame, zu sammenhängende leitende Fläche als Kontaktfläche (11) für die Bohrlöcher (5) aufweist.
  9. 10. Verfahren zum Bestimmen eines möglichen Versatzes einer Innenlage bzw. Innenlagen-Strukturierung in einer mehrlagigen Leiterplatte mit Hilfe von leitenden Testflächen und 20 durchkontaktierten Bohrlöchern, wobei zumindest eine Innenlage der Leiterplatte mit Test flächen in Form von reihenförmig angeordneten Ringstrukturen versehen ist, die je eine nichtleitende innere Fläche definieren, wobei die inneren Flächen der Ringstrukturen einer Reihe unterschiedliche Größen aufweisen, und wobei im Bereich der Testflächen angebrachte durchkontaktierte Bohrlöcher im Fall, dass kein oder ein vernachlässigbarer Ver- 25 satz vorliegt, im Bereich der inneren Flächen vorliegen, im Fall eines Versatzes jedoch zu mindest einzeln im Bereich einer leitenden Ringstruktur vorliegen und mit dieser eine leitende Verbindung herstellen, wodurch bei Anlegen einer Spannung zwischen den Bohrlöchern und den Ringstrukturen je nach Versatz ein Kurzschluss bei bestimmten Paaren von Bohrlöchern und Ringstrukturen festgestellt wird, woraus auf den Versatz der Innenlage 30 bzw. Innenlagen-Strukturierung geschlossen wird, dadurch gekennzeichnet, dass die Test flächen-Ringstrukturen in segmentierter Form vorgesehen werden, wobei die jeweiligen Testflächen-Segmente einer Ringstruktur durch nichtleitende Bereiche voneinander getrennt vorliegen, wodurch je nachdem, welches Segment mit einem Bohrloch eine leitende Verbindung hat, außer der Größe des Versatzes auch die Winkelausrichtung des Versat- 35 zes bestimmbar ist.
  10. 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Testflächen einer Reihe durch Gruppen von Kreisring-Segmenten gebildet werden.
  11. 12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass für jede Ringstruktur vier Segmente vorgesehen werden.
  12. 13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die durchkontaktierten Bohrlöcher von einer anderen Leiterplatten-Lage her zu der mit den Testflä- 45 chen-Segmenten versehenen Innenlage gesetzt werden.
  13. 14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass auf der Leiterplatten-Lage, von der aus die durchkontaktierten Bohrlöcher gesetzt werden, zugleich mit der Strukturierung dieser Lage Testflächen-Segmente angebracht werden, wogegen so auf der Innenlage, zu der hin die Bohrungen gesetzt werden, eine gemeinsame, zusammenhängende leitende Fläche angebracht wird.
  14. 15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Testflächen-Segmente erst nach dem Anbringen der Bohrlöcher in einem fotolitografischen Prozess angebracht 55 werden.
AT0034405A 2005-03-01 2005-03-01 Mehrlagige leiterplatte mit leitenden testflächen sowie verfahren zum bestimmen eines versatzes einer innenlage AT501513B1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AT0034405A AT501513B1 (de) 2005-03-01 2005-03-01 Mehrlagige leiterplatte mit leitenden testflächen sowie verfahren zum bestimmen eines versatzes einer innenlage
PCT/AT2006/000078 WO2006091990A1 (de) 2005-03-01 2006-02-23 Mehrlagige leiterplatte mit leitenden testflächen sowie verfahren zum bestimmen eines versatzes einer innenlage
CA002600257A CA2600257A1 (en) 2005-03-01 2006-02-23 Multi-layered printed circuit board comprising conductive test surfaces, and method for determining a misalignment of an inner layer
KR1020077022218A KR101234145B1 (ko) 2005-03-01 2006-02-23 도전성 테스트 표면을 포함하는 다층 인쇄 회로 보드 및내부층의 오정렬을 결정하는 방법
JP2007557273A JP4979597B2 (ja) 2005-03-01 2006-02-23 導電性の試験領域を有する多層プリント回路基板及び中間層のミスアライメントを測定する方法
CN2006800067344A CN101133689B (zh) 2005-03-01 2006-02-23 具有导电测试面的多层印刷电路板和确定内层错位的方法
DE112006000497.2T DE112006000497B4 (de) 2005-03-01 2006-02-23 Mehrlagige Leiterplatte mit leitenden Testflächen sowie Verfahren zum Bestimmen eines Versatzes einer Innenlage
US11/883,949 US20080190651A1 (en) 2005-03-01 2006-02-23 Multi-Layered Printed Circuit Board Comprising Conductive Test Surfaces, and Method for Determining a Misalignment of an Inner Layer
US13/291,674 US20120125666A1 (en) 2005-03-01 2011-11-08 Multi-layered printed circuit board with conductive test areas as well as method for determining a misalignment of an inner layer
US14/047,219 US20140034368A1 (en) 2005-03-01 2013-10-07 Multi-layered printed circuit board with conductive test areas as well as method for determining a misalignment of an inner layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0034405A AT501513B1 (de) 2005-03-01 2005-03-01 Mehrlagige leiterplatte mit leitenden testflächen sowie verfahren zum bestimmen eines versatzes einer innenlage

Publications (2)

Publication Number Publication Date
AT501513A1 AT501513A1 (de) 2006-09-15
AT501513B1 true AT501513B1 (de) 2007-06-15

Family

ID=36090933

Family Applications (1)

Application Number Title Priority Date Filing Date
AT0034405A AT501513B1 (de) 2005-03-01 2005-03-01 Mehrlagige leiterplatte mit leitenden testflächen sowie verfahren zum bestimmen eines versatzes einer innenlage

Country Status (8)

Country Link
US (3) US20080190651A1 (de)
JP (1) JP4979597B2 (de)
KR (1) KR101234145B1 (de)
CN (1) CN101133689B (de)
AT (1) AT501513B1 (de)
CA (1) CA2600257A1 (de)
DE (1) DE112006000497B4 (de)
WO (1) WO2006091990A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120267B2 (ja) * 2007-02-08 2013-01-16 住友ベークライト株式会社 積層体、積層体を含む回路基板、半導体パッケージおよび積層体の製造方法
JP4912917B2 (ja) * 2007-02-22 2012-04-11 京セラ株式会社 回路基板、携帯電子機器及び回路基板の製造方法
CN102111961B (zh) * 2010-12-20 2012-11-14 胜宏电子(惠阳)有限公司 一种检测线路板内外层制程能力的方法
CN102072716B (zh) * 2010-12-21 2012-05-23 胜宏科技(惠州)有限公司 一种多层线路板层间和钻孔偏移检测方法
US20120212252A1 (en) * 2011-02-17 2012-08-23 Aronson Scott H Printed Circuit Board Registration Testing
US10687956B2 (en) 2014-06-17 2020-06-23 Titan Spine, Inc. Corpectomy implants with roughened bioactive lateral surfaces
TWI726940B (zh) 2015-11-20 2021-05-11 美商泰坦脊柱股份有限公司 積層製造整形外科植入物之方法
CA3005742A1 (en) 2015-11-20 2017-05-26 Titan Spine, Llc Processes for additively manufacturing orthopedic implants
WO2017192100A1 (en) * 2016-05-06 2017-11-09 National University Of Singapore A corrector structure and a method for correcting aberration of an annular focused charged-particle beam
US10893605B2 (en) 2019-05-28 2021-01-12 Seagate Technology Llc Textured test pads for printed circuit board testing
CN113513975B (zh) * 2020-04-10 2023-07-07 深南电路股份有限公司 印刷电路板及孔圆柱度测试方法
CN112198417A (zh) * 2020-09-30 2021-01-08 生益电子股份有限公司 一种过孔制作能力测试板及测试方法
KR20220169545A (ko) 2021-06-21 2022-12-28 삼성전자주식회사 인쇄 회로 기판 및 메모리 모듈
US11854915B2 (en) 2021-07-09 2023-12-26 Changxin Memory Technologies, Inc. Electrical test structure, semiconductor structure and electrical test method
CN115602663A (zh) * 2021-07-09 2023-01-13 长鑫存储技术有限公司(Cn) 电学测试结构、半导体结构及电学测试方法
CN114980528A (zh) * 2022-06-28 2022-08-30 生益电子股份有限公司 一种背钻对准度检测方法
CN117320329A (zh) * 2023-09-26 2023-12-29 江门全合精密电子有限公司 一种多层pcb板内层偏位的测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432037A (en) * 1980-12-02 1984-02-14 Siemens Aktiengesellschaft Multi-layer printed circuit board and method for determining the actual position of internally located terminal areas
US4898636A (en) * 1989-05-04 1990-02-06 Rigling Walter S Multilayer printed wiring registration method and apparatus
US6297458B1 (en) * 1999-04-14 2001-10-02 Dell Usa, L.P. Printed circuit board and method for evaluating the inner layer hole registration process capability of the printed circuit board manufacturing process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6453499A (en) * 1986-12-15 1989-03-01 Nec Corp Multilayer printed wiring board and inspection of same
US4918380A (en) * 1988-07-07 1990-04-17 Paur Tom R System for measuring misregistration
JP2890442B2 (ja) * 1989-02-27 1999-05-17 日本電気株式会社 半導体装置のコンタクトホールの目ずれ検査方法
JPH02246194A (ja) * 1989-03-17 1990-10-01 Fujitsu Ltd 多層プリント配線板
GB2311618A (en) * 1996-03-27 1997-10-01 Motorola Ltd Determining layer registration in multi-layer circuit boards
JPH1154940A (ja) 1997-08-05 1999-02-26 Fujitsu Ltd 多層配線基板のスルーホールの位置ずれ検査方法
JPH11145628A (ja) * 1997-11-05 1999-05-28 Toshiba Corp 印刷配線基板
US6103978A (en) * 1997-12-18 2000-08-15 Lucent Technologies Inc. Printed wiring board having inner test-layer for improved test probing
US6774640B2 (en) * 2002-08-20 2004-08-10 St Assembly Test Services Pte Ltd. Test coupon pattern design to control multilayer saw singulated plastic ball grid array substrate mis-registration
US7619434B1 (en) * 2004-12-01 2009-11-17 Cardiac Pacemakers, Inc. System for multiple layer printed circuit board misregistration testing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432037A (en) * 1980-12-02 1984-02-14 Siemens Aktiengesellschaft Multi-layer printed circuit board and method for determining the actual position of internally located terminal areas
US4898636A (en) * 1989-05-04 1990-02-06 Rigling Walter S Multilayer printed wiring registration method and apparatus
US6297458B1 (en) * 1999-04-14 2001-10-02 Dell Usa, L.P. Printed circuit board and method for evaluating the inner layer hole registration process capability of the printed circuit board manufacturing process

Also Published As

Publication number Publication date
KR20070112826A (ko) 2007-11-27
AT501513A1 (de) 2006-09-15
DE112006000497B4 (de) 2015-07-16
US20140034368A1 (en) 2014-02-06
CN101133689A (zh) 2008-02-27
KR101234145B1 (ko) 2013-02-18
US20080190651A1 (en) 2008-08-14
JP4979597B2 (ja) 2012-07-18
CA2600257A1 (en) 2006-09-08
JP2008532295A (ja) 2008-08-14
US20120125666A1 (en) 2012-05-24
CN101133689B (zh) 2010-04-21
DE112006000497A5 (de) 2008-01-17
WO2006091990A1 (de) 2006-09-08

Similar Documents

Publication Publication Date Title
AT501513B1 (de) Mehrlagige leiterplatte mit leitenden testflächen sowie verfahren zum bestimmen eines versatzes einer innenlage
DE3342564C2 (de)
EP2238420B1 (de) Dehnungsmessstreifen-rosette zur eigenspannungsmessung
DE102015206000A1 (de) Kontakt-Abstandstransformer, elektrische Prüfeinrichtung sowie Verfahren zur Herstellung eines Kontakt-Abstandstransformers
EP1804557A1 (de) Elektronik-Sicherheits-Modul
DE3050497C2 (de)
DE69107763T2 (de) Mehrschichtige leiterplatte und verfahren zum aufbau in einer vorherbestimmten reihenfolge.
EP1804559A2 (de) Elektronik-Sicherheits-Modul
DE3031103C2 (de) Verfahren zur Prüfung des Lageversatzes bei Mehrlagenleiterplatten
DE19718637A1 (de) Vorrichtung und Verfahren zum Prüfen von Leiterplatten
DE102008018241B4 (de) Geschichtete Struktur
DE2812976B1 (de) Verfahren zur Feststellung des Versatzes zwischen Leiterbahnen und Kontaktloechern bei einer Leiterplatte sowie eine Leiterplatte zur Verwendung in diesem Verfahren
DE19534313C2 (de) Verfahren zur Erfassung von Position und Versatz von Lagen an Mehrlagenleiterplatten
EP2659749B1 (de) Leiterplatte, verfahren zum herstellen einer leiterplatte und prüfvorrichtung zum prüfen einer leiterplatte
DE102020113134A1 (de) Bearbeitungsstation und Verfahren zur Bearbeitung von Werkstücken
EP3769593A1 (de) Testcoupon und verfahren zur überprüfung einer leiterplatte
DE3518919C2 (de)
DE102020111040B3 (de) Werkzeugspannvorrichtung
DE102011054105A1 (de) Verbindungsleiterplatte
EP1804560A2 (de) Elektronik-Sicherheits-Modul
DE4335879B4 (de) Anordnung zur Qualitätskontrolle und -überwachung von durchkontaktierten Mehrlagen-Leiterplatten
DE102015005690A1 (de) Leiterbahnstruktur mit mindestens zwei übereinanderliegenden Leiterbahnen sowie ein Verfahren zur Herstellung einer derartigen Leiterbahnstruktur
DE2835353A1 (de) Verfahren zur feststellung des versatzes zwischen kontaktloechern und leiterbahnen bei einer leiterplatte sowie eine leiterplatte zur verwendung in diesem verfahren
EP0058835B1 (de) Halbleitervorrichtung und Verfahren zu ihrer Herstellung
DE202015001622U1 (de) Elektrische Kontaktvorrichtung

Legal Events

Date Code Title Description
MM01 Lapse because of not paying annual fees

Effective date: 20180301