WO2024146041A1 - 一种高强度石墨烯导热垫片及其制备方法 - Google Patents

一种高强度石墨烯导热垫片及其制备方法 Download PDF

Info

Publication number
WO2024146041A1
WO2024146041A1 PCT/CN2023/092920 CN2023092920W WO2024146041A1 WO 2024146041 A1 WO2024146041 A1 WO 2024146041A1 CN 2023092920 W CN2023092920 W CN 2023092920W WO 2024146041 A1 WO2024146041 A1 WO 2024146041A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
thermally conductive
strength
adhesive
film
Prior art date
Application number
PCT/CN2023/092920
Other languages
English (en)
French (fr)
Inventor
曹勇
羊尚强
孙爱祥
方晓
王红平
Original Assignee
深圳市鸿富诚新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鸿富诚新材料股份有限公司 filed Critical 深圳市鸿富诚新材料股份有限公司
Publication of WO2024146041A1 publication Critical patent/WO2024146041A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/205Heat-dissipating body thermally connected to heat generating element via thermal paths through printed circuit board [PCB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • thermal interface materials came into being.
  • the low thermal conductivity of traditional thermal interface materials is mainly concentrated in 1 to 10W, which is difficult to meet the high heat conduction requirements.
  • Graphene is a new type of carbon material with a single-layer two-dimensional honeycomb lattice structure formed by the accumulation of carbon atoms. It not only has excellent mechanical, optical, electrical and other properties, but also has good thermal properties.
  • the theoretical thermal conductivity can reach 5300W/(m ⁇ K), which is more than ten times that of common metal materials.
  • the horizontal thermal conductivity of graphene film currently developed with graphene as raw material can reach up to 2000W/(m ⁇ K), with good heat transfer effect, and can be used as a new thermal interface material in the field of chip heat dissipation with high heat flux density.
  • the graphene film has poor adhesion to the resin and is easy to overflow during the pressure process, resulting in less resin in the gaps in the holes, and the punching process on the graphene surface will cause damage to the graphene film, affecting the heat transfer.
  • the graphene heat-conducting layer may include multiple layers of graphene films stacked in sequence, and adjacent graphene films may be bonded by an adhesive;
  • a graphene thermal conductive gasket is obtained, and in any layer of graphene thermal conductive layer, the stacking direction of the graphene film in at least one other layer of graphene thermal conductive layer is perpendicular to it, that is, by arranging the stacking directions of the graphene films in the adjacent graphene thermal conductive layers perpendicularly to each other, a graphene thermal conductive gasket with high strength in both horizontal X and Y directions perpendicular to each other is prepared.
  • the graphene film is a film layer prepared by coating graphene oxide slurry, and the specific preparation method is as follows:
  • graphene oxide has good hydrophilicity and can be well dispersed in water to form a slurry.
  • the graphene oxide slurry is formed into a film by coating.
  • the graphene oxide sheets can be well oriented on the coating plane, and the graphene oxide sheets can have a good bonding effect.
  • the formed graphene oxide film has high bonding force and mechanical strength, and also has good thermal conductivity in the plane direction of the graphene oxide film.
  • the graphene oxide film is graphitized, and the originally disorderly distributed carbon atoms in the graphene oxide are arranged neatly through high temperature.
  • the carbon material will transform from the two-dimensional structure of the carbon network to the three-dimensional ordered structure through "microcrystal" growth.
  • the mechanical properties and strength of the graphene film are effectively improved, and the thermal resistance between the graphene oxide film layers is significantly reduced, and the thermal conductivity in the horizontal and vertical directions is effectively improved.
  • the graphene oxide slurry may be a graphene oxide water slurry, and the solid content of the graphene oxide is 0.1 to 15 wt%.
  • the solid content of graphene oxide in the graphene oxide slurry is limited to the above range, the graphene oxide slurry has better coating performance, is easier to form a film, and the graphene oxide film layer in the film layer has a better orientation, and the film layer has better thermal conductivity.
  • the drying temperature of the graphene oxide coating may be 100-120°C.
  • the graphitization temperature may be 2500-3200° C.
  • the graphitization treatment time may be 4-10 hours.
  • the number of layers of the graphene heat conductive layer may be an even number.
  • the mechanical properties and thermal conductive properties of the graphene thermal conductive layer in two mutually perpendicular directions can be kept consistent, and the performance in the two directions can be kept balanced.
  • the adhesive may be polyurethane adhesive, epoxy resin adhesive, phenolic resin adhesive, acrylic resin adhesive, or one or more combinations of adhesives.
  • the above adhesives all have good bonding effect with the graphene film and at the same time have good thermal conductivity, and have little effect on the thermal conductivity of the graphene thermal conductive gasket.
  • the coating thickness of the adhesive between graphene film layers may be 5 to 80 ⁇ m.
  • the slicing method is one of wire cutting, laser cutting, ultrasonic cutting, and circular knife cutting.
  • the present application includes at least one of the following beneficial technical effects:
  • FIG. 4 is a schematic diagram of the structure of the graphene thermally conductive gasket in Comparative Example 1 of the present application.
  • Stacking graphene blocks Take a graphene film, evenly coat a layer of adhesive on a layer of graphene film, the coating thickness of the adhesive is 10 ⁇ m, then align another layer of graphene film and place it on the first layer of graphene film, repeat this process repeatedly, the total thickness of the stacking is 50 mm, and after the adhesive is cured, a graphene block is obtained, the size of the obtained graphene block is 50*50*50 mm;
  • graphene block slicing the graphene block is sliced along the stacking direction of the graphene film by laser cutting, with a slice thickness of 0.2 mm, to obtain a graphene thermal conductive layer;
  • the stacking direction of the graphene film in the layer is arranged vertically, so that the graphene thermal conductive pad is arranged vertically in the X and Y directions perpendicular to each other.
  • the thermally conductive gasket provided in the technical solution of this application has better mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本申请涉及一种高强度石墨烯导热垫片及其制备方法,涉及热界面材料的领域,高强度石墨烯导热垫片包括至少两层依次堆叠的石墨烯导热层,相邻所述石墨烯导热层通过胶粘剂粘结固定;所述石墨烯导热层包括多层依次堆叠的石墨烯膜,相邻所述石墨烯膜通过胶粘剂粘接;相邻两层所述石墨烯导热层中石墨烯膜的堆叠方向相互垂直且平行于同一平面,且所述石墨烯导热层的叠层方向与任一层所述石墨烯导热层中石墨烯膜的叠层方向均互相垂直。本申请将多层石墨烯膜堆叠制成的石墨烯导热层进行叠层,使相邻层中石墨烯膜的堆叠方向垂直,为石墨烯导热垫片中沿石墨烯堆叠方向和垂直于石墨烯膜堆叠方向这两个方向均提供良好的力学强度。

Description

一种高强度石墨烯导热垫片及其制备方法
相关申请的交叉引用
本申请要求于2023年1月4日提交中国国家知识产权局的申请号为202310007425.4、名称为“一种高强度石墨烯导热垫片及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及热界面材料的领域,尤其是涉及一种高强度石墨烯导热垫片及其制备方法。
背景技术
随着5G时代的来临,电子芯片工作频率不断升高,电子产品逐步向轻量化、高集成化方向发展,导致设备的发热量大幅度上升。多余的热量不及时传导出去就会极大影响电子元器件的工作状态,严重时甚至会造成失效,寿命降低。为了解决这个问题,热界面材料应运而生,然而传统的热界面材料导热系数低主要集中在1~10W,难以满足高热量传导需求。
石墨烯是一种由碳原子堆积而成的单层二维蜂窝状晶格结构的新型碳材料,它不仅具有优异的力学、光学、电学等性能,还具有较好的热学性能,理论热导率可以达到5300W/(m·K),是常见金属材料的十几倍。目前以石墨烯为原材料开发的石墨烯膜水平导热系数最高可达2000W/(m·K),具有良好的热量传递效果,可以应用于大热流密度的芯片散热领域的新型热界面材料。
然而石墨烯膜厚度方向导热系数比较差,通常小于10W/(m·K),难以满足纵向热量的传递。目前市场上主要采用石墨烯膜堆叠的方式制备石墨烯块体,然后沿着堆叠方向进行切片,制备出厚度方向高导热石墨烯垫片。然而,因为石墨烯膜内部往往是多层结构,内聚强度差,制备的石墨烯导热垫片在强度存在各向异性,在垂直石墨烯膜堆叠方向上强度较好,在石墨烯膜堆叠方向的强度很差,严重影响了石墨烯导热垫片的使用。相关技术中会利用打孔设备在石墨烯膜内部形成通孔,然后注入高分子树脂,然而石墨烯膜与树脂粘附性差,在受压过程中容易溢出,导致孔内间隙存在的树脂较少,并且对石墨烯表面进行打孔工艺会造成石墨烯膜破坏,影响热量的传递。
发明内容
针对上述技术问题,本申请提供一种高强度石墨烯导热垫片及其制备方法,旨在提升石墨烯导热垫片导热性能的同时使其具有较高的力学强度。
根据本申请的一种示例性实施方式,本申请提供一种高强度石墨烯导热垫片,采用如下的技术方案:
一种高强度石墨烯导热垫片,可以包括至少两层依次堆叠的石墨烯导热层,相邻所述石墨烯导热层可以通过胶粘剂粘结固定;
所述石墨烯导热层可以包括多层依次堆叠的石墨烯膜,相邻所述石墨烯膜可以通过胶粘剂粘接;
相邻两层所述石墨烯导热层中石墨烯膜的堆叠方向可以相互垂直且平行于同一平面,且所述石墨烯导热层的叠层方向与任一层所述石墨烯导热层中石墨烯膜的叠层方向均互相垂直。
通过采用上述技术方案,石墨烯膜在其层内方向上具有良好的热传导效果,采用多层石墨烯膜堆叠制成石墨烯导热层,层间通过胶粘剂粘接,使石墨烯导热层在石墨烯膜层内水平方向上的高导热性能得到充分利用。通过将至少两层石墨烯导热层粘接堆叠,相邻两层石墨烯导热层的粘接面为垂直于石墨烯膜的任意一层,并且堆叠时使相邻两层石墨烯导热层中的石墨烯膜的叠层方向相互垂直,通过此方式叠层得到石墨烯导热垫片,在任意一层石墨烯导热层中石墨烯膜叠层方向上均有另外至少一层石墨烯导热层中石墨烯膜的叠层方向与其垂直,即通过将相邻石墨烯导热层中石墨烯膜的叠层方向进行相互垂直排布,制备出在水平X和Y两个相互垂直的方向上均具有较高强度的石墨烯导热垫片。
由多层石墨烯膜堆叠得到的石墨烯导热层,其在垂直于石墨烯膜平面方向上由于有粘接剂的支撑效果,具有较高的强度;但是在石墨烯膜叠层方向上一方面由于石墨烯膜内聚强度差导致其强度较低,另一方面在此方向上在受到挤压时容易使石墨烯膜层间的粘接剂溢出而影响其力学性能。在进行石墨烯导热层的叠层时,通过将石墨烯导热层的叠层方向和石墨烯膜的叠层方向垂直设置,进而使制得的石墨烯导热垫片在石墨烯膜的堆叠方向以及另外两个垂直于石墨烯膜的方向上均具有较好的强度。
可选地,所述石墨烯膜为氧化石墨烯浆料经涂布制成的膜层,具体制备方法如下:
S1、取氧化石墨烯浆料涂布制得氧化石墨烯涂膜,将氧化石墨烯涂膜干燥得到氧化石墨烯薄膜;
S2、将氧化石墨烯薄膜进行是石墨化处理制得石墨烯膜。
通过采用上述技术方案,氧化石墨烯具有很好亲水性,在水中可以很好地分散形成浆料,通过涂布方式使氧化石墨烯浆料成膜,在涂布过程中氧化石墨烯片层可以在涂布平面上很好地取向,并且氧化石墨烯片层之间可以具有很好的结合效果,形成的氧化石墨烯膜具有较高的结合力和力学强度的同时,在氧化石墨烯膜平面方向还具有很好的导热性能。
氧化石墨烯薄膜经过石墨化处理,通过高温使氧化石墨烯中原本分布杂乱无章的碳原子整齐排列,并且碳材料会经“微晶”增长由碳网的二维结构向三维有序结构转变,石墨烯膜的力学性能和强度得到有效提升,并且氧化石墨烯膜层间的热阻明显降低,在水平和垂直方向的导热性能均得到有效的提升。
可选地,步骤S1中,氧化石墨烯浆料可以为氧化石墨烯水浆料,氧化石墨烯的固含量为0.1~15wt%。
通过采用上述技术方案,氧化石墨烯浆料中氧化石墨烯的固含量限定在上述范围内,氧化石墨烯浆料具有更好的涂布性能,更易成膜,并且膜层中氧化石墨烯膜层具有更好的取向,膜层具有更好的导热性能。
可选地,氧化石墨烯涂膜的干燥温度可以为80~150℃。
进一步优选地,氧化石墨烯涂膜的干燥温度可以为100~120℃。
可选地,步骤S2中,石墨化的温度可以为2500~3200℃,石墨化处理时间可以为4~10h。
进一步优选地,石墨化的温度可以为2800~3000℃。
通过采用上述技术方案,氧化石墨烯涂膜通过加热干燥去除其中的水分形成具有一定强度的膜层然后在高温环境下进行石墨化,石墨化的过程中,石墨化温度过低会影响到石墨化的程度,导致石墨烯膜内部石墨化不充分影响膜层的导热性能;而石墨化的温度过高时,会导致形成的石墨烯膜的脆性变大,膜层的力学性能。
可选地,所述石墨烯导热层的层数可以为偶数层。
通过采用上述技术方案,将石墨烯导热层的层数设置为偶数,可以使石墨烯导热层在两个相互垂直的方向上的力学性能和导热性能保持一致,两个方向上的性能保持均衡。
可选地,所述石墨烯膜的厚度可以为50~600μm。
通过采用上述技术方案,石墨烯膜的厚度过薄时不利于操作,堆叠过程中石墨烯膜易破碎,并且石墨烯膜本身厚度过薄后将其堆叠到指定的厚度时需要较多的胶粘剂,也会使石墨烯导热垫片中胶粘剂用量过多,影响导热垫片的导热性能;石墨烯膜的厚度过厚是不利于涂布成型,并且涂布后石墨烯膜层内石墨烯片层的取向较差。
可选地,所述胶粘剂可以为聚氨酯胶粘剂、环氧树脂胶粘剂、酚醛树脂胶粘剂、丙烯酸树脂胶粘剂、胶粘剂中的一种或多种组合。
通过采用上述技术方案,以上胶粘剂均与石墨烯膜具有良好的粘接效果,同时具有较好的导热性能,对石墨烯导热垫片的导热性能的影响较小。
可选地,所述石墨烯膜层间胶粘剂的涂覆厚度可以为5~80μm。
进一步优选地,所述石墨烯膜层间胶粘剂的涂覆厚度可以为10~30μm。
通过采用上述技术方案,胶粘剂主要起到粘接固定石墨烯膜,胶粘剂的涂覆厚度过薄会影响到粘合效果,并且在石墨烯导热垫片受到挤压时难以起到较好的支撑效果,影响石墨烯导热垫片的力学强度;胶粘剂的涂覆厚度过厚时石墨烯导热垫片中胶粘剂的占比过多,会使得石墨烯导热垫片在石墨烯膜层间方向上的热传导效果下降,进而影响到石墨烯导热垫片的导热性能。
可选地,所述石墨烯导热层的厚度可以为0.1~3.5㎜。
通过采用上述技术方案,石墨烯导热层的厚度限定在上述范围内,多层石墨烯叠层制得的 石墨烯导热垫片具有更好的导热性能和力学强度。
根据本申请的一种示例性实施方式,本申请提供一种高强度石墨烯导热垫片的制备方法,采用如下的技术方案:
一种高强度石墨烯导热垫片的制备方法,包括以下步骤:
S1、堆叠石墨烯块体:取石墨烯膜,在一层石墨烯膜上涂覆胶粘剂,将另一层石墨烯叠层放置于上一层石墨烯膜上,以此往复,重复叠层至指定高度,胶粘剂固化后制得石墨烯块体;
S2、石墨烯块体切片:将石墨烯块体沿石墨烯膜的堆叠方向进行切片得到石墨烯导热层;
S3、石墨烯片层叠层:在切片得到的石墨烯导热层的切割面和/或平行于切割面的一侧涂覆胶粘剂,然后与另一层石墨烯导热层进行叠层,相邻两层石墨烯导热层相互粘合的面为切割面或与切割面平行的一侧,相邻两层石墨烯层中石墨烯膜的堆叠方向垂直;
S4、固化:石墨烯导热层按指定层数叠合后将胶粘剂固化,制得高强度石墨烯导热垫片。
可选地,步骤S2中,切片方式为线切割、激光切割、超声波切割、圆刀切割中的一种。
通过采用上述技术方案,将石墨烯膜通过多层叠合的形式制成石墨烯导热块体后再进行纵向切片,得到的石墨烯导热层的厚度方向即为石墨烯膜的层内平面方向,因此在石墨烯导热层的厚度方向上具有很高的导热性能。在后续进行石墨烯导热层叠层制备石墨烯导热垫片的过程中,多层石墨烯导热层沿其厚度方向依次进行叠层粘接固定,并且使相邻两层石墨烯导热层中石墨烯膜的堆叠方向相互垂直,通过此设置,制得的石墨烯导热垫片在垂直于自身厚度方向的平面内,X和Y两个相互垂直的方向上均具有较高的强度,即在任意一层石墨烯导热层中石墨烯膜的堆叠方向上均具有良好的力学性能,使得石墨烯导热垫片的力学性能得到进一步的提升。
综上所述,本申请包括以下至少一种有益技术效果:
1.本申请技术方案中,将至少两层由多层石墨烯叠层制得的石墨烯导热层进行叠层制备出石墨烯导热垫片,石墨烯导热垫片中相邻两层导热层中石墨烯膜的堆叠方向相互垂直,通过此设置,可以使制得的石墨烯导热垫片在水平方向上X和Y两个相互垂直方向均具有良好的力学性能,明显改善了石墨烯导热垫片在石墨烯膜堆叠方向上力学性能较差的缺点。
2.本申请技术方案中,石墨烯膜由氧化石墨烯浆料经过涂布、干燥和石墨化处理制得,通过此方法制得的石墨烯膜,其层内方向上氧化石墨烯片层的取向性更好,具有更高的导热性能,并且石墨烯膜的内结强度更高,具有更好的力学性能。
附图说明
图1是本申请实施例1中石墨烯导热垫片的结构示意图。
图2是本申请实施例2中石墨烯导热垫片的结构示意图。
图3是本申请实施例4中石墨烯导热垫片的结构示意图。
图4是本申请对比例1中石墨烯导热垫片的结构示意图。
图5是本申请对比例2中石墨烯导热垫片的结构示意图。
附图标记说明:1、石墨烯膜;2、石墨烯导热层。
具体实施方式
以下结合附图和具体实施例对本申请作进一步详细说明。需要说明的是,以下实施例中未注明具体者,均按照常规条件或制造商建议的条件进行;以下实施例中所用原料除特殊说明外均可来源于普通市售。
实施例1
本式示例提供一种高强度石墨烯导热垫片,参照图1,石墨烯导热垫片包括两层石墨烯导热层2,石墨烯导热层2由多层石墨烯膜1依次堆叠制成,相邻石墨烯膜1层间涂覆有胶粘剂,胶粘剂为有机硅胶树脂胶粘剂,型号为KH-505。石墨烯导热层2沿自身厚度方向(即图中Z方向)堆叠,并且石墨烯导热层2的叠层方向与石墨烯膜1的叠层方向垂直。高强度石墨烯导热垫片通过以下方法制得:
S1、制备石墨烯膜:取固含量为15wt%的氧化石墨烯水浆料,采用精密涂布机进行涂布得到氧化石墨烯涂膜,涂布厚度为100μm,将氧化石墨烯涂膜在100℃下干燥除水,得到氧化石墨烯薄膜,将氧化石墨烯薄膜在2500℃下石墨化处理4h,得到石墨烯膜;
S2、堆叠石墨烯块体:取石墨烯膜,在一层石墨烯膜上均匀涂覆一层胶粘剂,胶粘剂的涂覆厚度为10μm,然将另一层石墨烯膜叠层对齐放置在第一层石墨烯膜上,以此往复,不断重复叠层,叠层总厚度为50㎜,胶粘剂固化后得到石墨烯块体,得到的石墨烯块体的尺寸为50*50*50㎜;
S3、石墨烯块体切片:将石墨烯块体采用激光切割的方式沿石墨烯膜的堆叠方向进行切片,切片厚度为0.2㎜,得到石墨烯导热层;
S4、取两层石墨烯导热层,在切割面上均匀喷涂一层胶粘剂,胶粘剂厚度为10μm,然后将两层石墨烯导热层涂覆了胶粘剂的一侧对齐堆叠,使两层石墨烯导热层中石墨烯膜的叠层方向相互垂直,然后胶粘剂固化后得到石墨烯导热垫片。
实施例2
参照图2,一种高强度石墨烯导热垫片,与实施例1的区别在于,石墨烯导热层2为4层,其余均与实施例1保持一致。
实施例3
本实施例与实施例1的区别在于,石墨烯导热层的层数为4层,单层石墨烯导热层2的厚度为0.1㎜,其余均与实施例1保持一致。
实施例4
参照图3,本实施例与实施例3的区别在于,石墨烯导热层2为3层,其余均与实施例1保持一致。
对比例1
参照图4,本对比例与实施例1的区别在于,石墨烯导热垫片为单层石墨烯导热层2,单层石墨烯导热层2的厚度为0.4㎜,其余均与实施例1保持一致。
对比例2
参照图5,本对比例与实施例1的区别在于,两层石墨烯导热层2中石墨烯膜1的堆叠方向保持一致,其余均与实施例1保持一致。
性能检测
将上述实施例和对比例中制得的石墨烯导热垫片进行导热性能和力学性能检测,检测项目如下;
导热性能:测试石墨烯导热垫片在厚度方向(图中Z方向)的热阻;
力学性能:测试石墨烯导热垫片在水平方向(图中X和Y方向)上的拉伸强度。
实施例1~3及对比例1、2性能检测结果见下表1。
表1:实施例1~3及对比例1、2性能检测结果
通过表1中的数据可以看出,通过将多层石墨烯导热层叠层并将相邻两层石墨烯导热
层中石墨烯膜的堆叠方向垂直排布,使制得的石墨烯导热垫片在相互垂直的X和Y两个
方向上均具有较高的强度,并且不会影响到石墨烯导热垫片的导热性能。相较于单层的石
墨烯导热层制成的石墨烯导热垫片或者多层石墨烯膜沿同一方向排列的石墨烯导热垫片,
本申请技术方案中提供的导热垫片的力学性能更好。
实施例5
本实施例与实施例1的区别在于,氧化石墨烯浆料中氧化石墨烯的固含量为5wt%,其余均与实施例5保持一致。
实施例6
本实施例与实施例5的区别在于,氧化石墨烯浆料中氧化石墨烯的固含量为20wt%,其余均与实施例5保持一致。
实施例7
本实施例与实施例5的区别在于,石墨烯膜在制备过程中不经过石墨化处理,其余均与实施例5保持一致。
实施例8
本实施例与实施例5的区别在于,石墨烯膜的厚度为600μm,其余均与实施例5保持一致。
实施例9
本实施例与实施例5的区别在于,石墨烯膜的厚度为800μm,其余均与实施例5保持一致。
实施例10
本实施例与实施例5的区别在于,石墨烯导热层的切片厚度为3.5㎜,其余均与实施例5保持一致。
实施例11
本实施例与实施例5的区别在于,石墨烯导热层的切片厚度为5㎜,其余均与实施例5保持一致。
实施例5~11性能检测结果见下表2。
表2:实施例5~11性能检测结果
通过表2中的数据可以看出,通过调整石墨烯导热垫片制备过程中石墨烯膜的厚度、石墨 烯导热层的厚度等参数,可以进一步提升石墨烯导热垫片的力学性能和导热性能。并且通过表中的数据可以看出,当石墨烯导热层以及石墨烯膜的厚度等参数在本申请优选的范围内时,制得的石墨烯导热垫片具有更有的力学性能和导热性能,而超出限定的范围后石墨烯导热垫片的力学性能和/或导热性能都有一定程度的下降。
以上均为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。
工业实用性
本申请涉及一种高强度石墨烯导热垫片及其制备方法,涉及热界面材料的领域,高强度石墨烯导热垫片包括至少两层依次堆叠的石墨烯导热层,相邻所述石墨烯导热层通过胶粘剂粘结固定;所述石墨烯导热层包括多层依次堆叠的石墨烯膜,相邻所述石墨烯膜通过胶粘剂粘接;相邻两层所述石墨烯导热层中石墨烯膜的堆叠方向相互垂直且平行于同一平面,且所述石墨烯导热层的叠层方向与任一层所述石墨烯导热层中石墨烯膜的叠层方向均互相垂直。本申请将多层石墨烯膜堆叠制成的石墨烯导热层进行叠层,使相邻层中石墨烯膜的堆叠方向垂直,为石墨烯导热垫片中沿石墨烯堆叠方向和垂直于石墨烯膜堆叠方向这两个方向均提供良好的力学强度。
此外,可以理解的是,本申请的高强度石墨烯导热垫片及其制备方法是可以重现的,并且可以应用在多种工业应用中。例如,本申请的高强度石墨烯导热垫片可以应用于热界面材料的领域。

Claims (12)

  1. 一种高强度石墨烯导热垫片,其中,包括至少两层依次堆叠的石墨烯导热层(2),相邻所述石墨烯导热层(2)通过胶粘剂粘结固定;
    所述石墨烯导热层(2)包括多层依次堆叠的石墨烯膜(1),相邻所述石墨烯膜(1)通过胶粘剂粘接;
    相邻两层所述石墨烯导热层(2)中石墨烯膜(1)的堆叠方向相互垂直且平行于同一平面,且所述石墨烯导热层(2)的叠层方向与任一层所述石墨烯导热层(2)中石墨烯膜(1)的叠层方向均互相垂直。
  2. 根据权利要求1所述的一种高强度石墨烯导热垫片,其中,所述石墨烯膜(1)为氧化石墨烯浆料经涂布制成的膜层,具体制备方法如下:
    S1、取氧化石墨烯浆料涂布制得氧化石墨烯涂膜,将氧化石墨烯涂膜干燥得到氧化石墨烯薄膜;
    S2、将氧化石墨烯薄膜进行是石墨化处理制得石墨烯膜(1)。
  3. 根据权利要求2所述的一种高强度石墨烯导热垫片,其中,步骤S1中,氧化石墨烯浆料为氧化石墨烯水浆料,氧化石墨烯的固含量为0.1~15wt%。
  4. 根据权利要求2或3所述的一种高强度石墨烯导热垫片,其中,步骤S2中,石墨化的温度为2500~3200℃,石墨化处理时间为4~10h。
  5. 根据权利要求2至4中的任一项所述的一种高强度石墨烯导热垫片,其中,步骤S1中,所述氧化石墨烯涂膜的干燥温度为80~150℃。
  6. 根据权利要求1至5中的任一项所述的一种高强度石墨烯导热垫片,其中,所述石墨烯膜(1)的厚度为50~600μm。
  7. 根据权利要求1至6中的任一项所述的一种高强度石墨烯导热垫片,其中,所述胶粘剂为聚氨酯胶粘剂、环氧树脂胶粘剂、酚醛树脂胶粘剂、丙烯酸树脂胶粘剂、胶粘剂中的一种或多种组合。
  8. 根据权利要求1至7中的任一项所述的一种高强度石墨烯导热垫片,其中,所述石墨烯导热层(2)的层数为偶数层。
  9. 根据权利要求1至8中的任一项所述的一种高强度石墨烯导热垫片,其中,所述石墨烯导热层(2)的厚度为0.1~3.5㎜。
  10. 根据权利要求1至9中的任一项所述的一种高强度石墨烯导热垫片,其中,所述石墨烯膜(1)之间的胶粘剂的涂覆厚度为5~80μm。
  11. 一种根据权利要求1至10中的任一项所述的一种高强度石墨烯导热垫片的制备方 法,其特征在于,包括以下步骤:
    S1、堆叠石墨烯块体:取石墨烯膜(1),在一层石墨烯膜(1)上涂覆胶粘剂,将另一层石墨烯叠层放置于上一层石墨烯膜(1)上,以此往复,重复叠层至指定高度,胶粘剂固化后制得石墨烯块体;
    S2、石墨烯块体切片:将石墨烯块体沿石墨烯膜(1)的堆叠方向进行切片得到石墨烯导热层(2);
    S3、石墨烯片层叠层:在切片得到的石墨烯导热层(2)的切割面和/或平行于切割面的一侧涂覆胶粘剂,然后与另一层石墨烯导热层(2)进行叠层,相邻两层石墨烯导热层(2)相互粘合的面为切割面或与切割面平行的一侧,相邻两层石墨烯层中石墨烯膜的堆叠方向垂直;
    S4、固化:石墨烯导热层(2)按指定层数叠合后将胶粘剂固化,制得高强度石墨烯导热垫片。
  12. 根据权利要求11所述的一种高强度石墨烯导热垫片的制备方法,其中,步骤S2中,切片方式为线切割、激光切割、超声波切割、圆刀切割中的一种。
PCT/CN2023/092920 2023-01-04 2023-05-09 一种高强度石墨烯导热垫片及其制备方法 WO2024146041A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310007425.4 2023-01-04
CN202310007425.4A CN116039172A (zh) 2023-01-04 2023-01-04 一种高强度石墨烯导热垫片及其制备方法

Publications (1)

Publication Number Publication Date
WO2024146041A1 true WO2024146041A1 (zh) 2024-07-11

Family

ID=86123259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092920 WO2024146041A1 (zh) 2023-01-04 2023-05-09 一种高强度石墨烯导热垫片及其制备方法

Country Status (2)

Country Link
CN (1) CN116039172A (zh)
WO (1) WO2024146041A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039172A (zh) * 2023-01-04 2023-05-02 深圳市鸿富诚新材料股份有限公司 一种高强度石墨烯导热垫片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138547A (ja) * 2003-11-10 2005-06-02 Shikibo Ltd 多軸強化繊維積層体
US20160381832A1 (en) * 2015-06-29 2016-12-29 Erin Hurbi Differently oriented layered thermal conduit
CN108504016A (zh) * 2016-06-14 2018-09-07 络派模切(北京)有限公司 一种导热垫片及其制备方法
CN112218823A (zh) * 2018-06-07 2021-01-12 斯马特高科技有限公司 层合的基于石墨烯的导热膜和用于制造该膜的方法
CN116039172A (zh) * 2023-01-04 2023-05-02 深圳市鸿富诚新材料股份有限公司 一种高强度石墨烯导热垫片及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138547A (ja) * 2003-11-10 2005-06-02 Shikibo Ltd 多軸強化繊維積層体
US20160381832A1 (en) * 2015-06-29 2016-12-29 Erin Hurbi Differently oriented layered thermal conduit
CN108504016A (zh) * 2016-06-14 2018-09-07 络派模切(北京)有限公司 一种导热垫片及其制备方法
CN112218823A (zh) * 2018-06-07 2021-01-12 斯马特高科技有限公司 层合的基于石墨烯的导热膜和用于制造该膜的方法
CN116039172A (zh) * 2023-01-04 2023-05-02 深圳市鸿富诚新材料股份有限公司 一种高强度石墨烯导热垫片及其制备方法

Also Published As

Publication number Publication date
CN116039172A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2024146041A1 (zh) 一种高强度石墨烯导热垫片及其制备方法
CN103722807A (zh) 一种高导热高耐压的铝基覆铜板及其制备方法
CN106332521A (zh) 用于双面粘合石墨片的制造方法
CN111699090B (zh) 导热性片
KR20150111469A (ko) 전자기파 차폐시트, 및 이의 제조방법
CN110744875A (zh) 一种高导热复合石墨散热片及其制备方法
JP2009066817A (ja) 熱伝導性シート
CN113829684A (zh) 一种石墨烯导热垫片及其制备方法
TWM425495U (en) Flexible high thermal conductive copper substrate
US10568544B2 (en) 2-dimensional thermal conductive materials and their use
CN112208173A (zh) 一种热界面材料及其制备方法
CN114213986A (zh) 一种导热绝缘石墨烯垫片及其制备方法
KR101900528B1 (ko) 전자기파 차폐시트, 및 이의 제조방법
CN110117484B (zh) 一种具有方向性的导热硅凝胶复合片材的制备方法
CN110718516A (zh) 散热膜及其制备方法、芯片组件和电子设备
CN115092921A (zh) 一种石墨烯导热垫片及其制备方法
CN201937950U (zh) 柔性铜箔高导热基板
CN113939149A (zh) 一种便携式终端用散热膜片以及散热粘合膜
Wang et al. Highly thermally conductive and light weight copper/graphene film laminated composites for cooling applications
JP7358459B2 (ja) 熱伝導シート及びその製造方法
CN115092920A (zh) 石墨烯导热垫片及其制备方法
CN105860868A (zh) 用于散热贴膜的制备工艺
KR20230090886A (ko) 저유전 방열 복합시트 및 그 제조 방법
TWM556055U (zh) 軟性背膠銅箔基板
CN207811642U (zh) 一种单面自粘性的导热绝缘垫片及其组件、散热装置