TWM425495U - Flexible high thermal conductive copper substrate - Google Patents

Flexible high thermal conductive copper substrate Download PDF

Info

Publication number
TWM425495U
TWM425495U TW100216246U TW100216246U TWM425495U TW M425495 U TWM425495 U TW M425495U TW 100216246 U TW100216246 U TW 100216246U TW 100216246 U TW100216246 U TW 100216246U TW M425495 U TWM425495 U TW M425495U
Authority
TW
Taiwan
Prior art keywords
copper foil
adhesive layer
thermal conductivity
conductive adhesive
layer
Prior art date
Application number
TW100216246U
Other languages
Chinese (zh)
Inventor
Ying Li
Hua Chen
meng-hao Zhang
jian-hui Li
Original Assignee
Asia Electronic Material Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Electronic Material Co filed Critical Asia Electronic Material Co
Publication of TWM425495U publication Critical patent/TWM425495U/en

Links

Description

M425.495 ·# · 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種用於LED、軟性印刷電路板 (Flexible Printed Circuit)的柔性高導熱銅箔基板,特別是一 種具有鬲散熱效率,高尺寸安定性,高可撓曲性及高柔軟 性的柔性高導熱銅箔基板。 【先前技術】 隨著全球環保的意識抬頭,節能省電已成為當今的趨 勢。LED產業是近年來最受矚目的產業之一。發展至今, LED產品已具有節能、省電、高效率、回應時間快、壽命 週期長、及不含汞之具有環保效益等優點。然而通常led 高功率產品的輸入功率只有約20%能被轉換成光,剩下 80%的電能均轉換為熱能。一般而言,LED發光時所產生 的熱能若無法匯出,將會使LED結面溫度過高,進而影響 產品生命週期、發光效率和穩定性。 # 傳統的散熱材料由於需要考慮絕緣特性,用於黏合兩 銅箱層的膠厚度需要做到60至120 um方能達到絕緣要 求’因此產品的總厚度會很大,散熱效果不理想。若採用 摻雜有散熱粉體的TPI (熱塑性聚醯亞胺)的散熱模型,雖 然可以將產品厚度降低也能滿足絕緣特性的要求,但由於 加工TPI(熱塑性聚醯亞胺)時需要高溫操作(操作溫度大於 350 C )’因此加工成本很高,無法有效量產化。 目前全球電子產業的發展趨勢向輕薄短小、高耐熱 性、多功能性、高密度化、高可靠性、且低成本的方向發 111926 3 M425495 展,因此基板的選用就成為很重要的影響因素。而良好的 基板必須具備而熱傳導性、兩尺寸安定性、rfj遮色效果、 高散熱性、高耐熱性、及低熱膨脹系數的材料特性。聚醯 亞胺樹脂的熱穩定性高且具有優異的散熱性、機械強度、 及黏著性,故常運用於多種電子材料,例如用於軟性印刷 電路板。 本創作結合FPC之短小輕薄要求,兼顧LED產業的 散熱要求,滿足使用於日益輕薄短小的電子產業發展的需 要。 第M377823號台灣專利揭露一種複合式雙面銅箔基 板,但仍有需要彌補該專利的散熱效率高和絕緣性能。 【新型内容】 為了彌補以上不足,本創作提供一種柔性高導熱銅箔 基板,該柔性高導熱銅箔基板具有厚度薄,生產成本低, 散熱效率高,絕緣性能好,尺寸安定性好,可屈曲程度高, 及反彈力小的優點。本創作提供一種柔性高導熱銅箔基 板,包括第一銅箔層、絕緣聚合物層、導熱黏著層和第二 銅箔層,其中,該導熱黏著層包括樹脂和分散於該樹脂中 的散熱粉體,該絕緣聚合物層固定夾置於該第一銅箔層和 該導熱黏著層之間,該第二銅箔層則形成於該導熱黏著層 上。 本創作之導熱黏著層除了包括樹脂和散熱粉體外,復 可包括固化劑、奈米填充料等。 由於該導熱黏著層中含有可提升散熱效果之散熱粉 4 111926 二 =?之柔性高導熱銅落基板具有較好的散熱效 -Μ Π ^- 以重垔百分比計,該散熱粉體占該導熱黏 者層固含量的40至9〇%。 於一具體實施例中,本創作之散熱粉體可選 自碳化 夕’化刪ft化銘和氮化銘所組成群組的至少一種。作 為本創作的進步改進,該散熱粉體的平 〇 微米。 本創作之第#第二銅镇層獨立選自電解銅羯和壓 ,銅名中的種。於具體應用,使用該銅箱層可以在柔性 高導熱銅薄基板上形成高散熱 和第二銅箱層厚度各自為12.5至70微米。&而° 本創作所用之絕緣聚合物層的材質較佳為聚醯亞 胺’因此使用_緣聚合物層而形成之柔性高導熱銅薄基 板的抗電擊穿、機械強度、撓錄、尺寸安定性等都有明 顯的提升。作為本創作的進—步改進,該絕緣聚合物層的 厚度為5至8微米。 作為本創作的進一步改進,本創作之導熱黏著層中的 樹月曰可選自環氧樹脂、丙烯酸系樹脂、胺基甲酸酯系樹脂、 %橡膠系_、聚對環二甲苯系樹脂、雙馬來醯亞胺系樹 脂和聚醯亞胺樹脂所組成群組的至少一種。 作為本創作的進一步改進,本創作之導熱黏著層的厚 度為20至25微米。 本創作可透過控制絕緣聚合物層的厚度和導熱黏著 層的厚度’達到控制散熱效果和耐擊穿電壓的目的。 5 111926 M425495 本創作復提供一種柔性高導熱銅箔基板的製作方 法,包括下列步驟: 在第一銅箔層的表面塗佈絕緣聚合物,並於烘乾該絕 緣聚合物形成絕緣聚合物層後,得到一單面銅箔基板; 使用塗佈或轉印法將導熱黏著層形成於該絕緣聚合 物層的表面上,以令該絕緣聚合物層夾置在該導熱黏著層 和第一銅箔層之間,並使該導熱黏著層處於半聚合半硬化 狀態;以及 將該單面銅箔基板的導熱黏著層與第二銅箔層貼 合,並固化該導熱黏著層,以形成柔性高導熱銅箔基板。 本創作的有益效杲是:本創作依次包括第一銅箔層、絕緣 聚合物層、導熱黏著層和第二銅箔層,相比於傳統加工TPI 所要求的高溫操作(大於350°c ),本創作之製造方法在生 產時需要的操作溫度不到180°C,生產方法簡便,生產成 本低且可適用範圍廣。 根據不同客戶的需求,視需要可調整本創作之柔性高 導熱銅羯基板中之導熱黏著層與絕緣聚合物層的厚度。此 外,本案創作人發現具有薄的絕緣聚合物層即可大大提升 產品的絕緣性能,再搭配導熱黏著層,可顯著地達到在薄 尺寸的條件下有高散熱和高耐擊穿電壓的特性。 本創作之柔性高導熱銅箔基板可以柔性銅箔材料作 為基材,故產品的柔性好,且調整導熱黏著層與絕緣聚合 物層的厚度,可使本創作的銅箔基板符合高屈曲滑動次數 及彎折圓角小於0.8 mm的要求,特別適用於電路板有彎 6 111926 M425495 而求的產品。是以,本創作之柔性高導熱銅落基 ,、有局尺寸安定性,亦可符合不同的蓋品需求。土 【實施方式】 土第1圖為本創作之柔性高導熱銅荡基板的結構剖面示 意圖。 本創作的柔性高導熱銅㈣板m銅落層u、 絕緣聚合物層12、導熱黏著層13,和第二銅箱層14,其 鲁中’該導熱黏著層η包括樹脂和分散於該樹脂中的散熱粉 ,,該絕緣聚合物層12固^夹置於該第—銅箱層η和該 ,熱黏著層13之間,且第二銅羯層14係形成於該導熱黏 著層13上,使該導熱黏著層13夾置在該第二銅箱層14 和絕緣聚合物層12之間。 該絕緣聚合物層12的材質以聚醯亞胺為較佳,且形 1於該絕緣聚合物層12表面的導熱黏著層13除了包括樹 月曰和政熱粉體外,還可以包括固化劑、奈米填充料等。 瞻 製作上,係將絕緣聚合物塗佈在第一銅箔層u的表面 上再烘乾絕緣聚合物以形成絕緣聚合物層12,即可得到 一單面銅箔基板。導熱黏著層13可用於將該單面銅箔基板 黏附於該第二銅箔層14上。導熱黏著層13中含有散熱粉 體,由於本創作之散熱粉體能提升散熱效果,因此本創作 之柔性向導熱銅箔基板具有良好的散熱效果。散熱粉體可 選自碳化矽、氮化硼、氧化鋁和氮化鋁所組成群組的至少 一種,且以重量百分比計,該導熱黏著層13中,散熱粉體 占該導熱黏著層13固含量的40至90%。 111926 7 散熱粉體的平均粒徑為 12的材質可為聚醯亞胺,較 5至20微米。絕緣聚合物層M425.495 ·# · V. New description: [New technical field] This is a flexible high thermal conductivity copper foil substrate for LED, Flexible Printed Circuit, especially for heat dissipation Flexible high thermal conductivity copper foil substrate with high efficiency, high dimensional stability, high flexibility and high flexibility. [Prior Art] With the rising awareness of global environmental protection, energy saving has become a trend today. The LED industry is one of the most watched industries in recent years. Up to now, LED products have the advantages of energy saving, power saving, high efficiency, fast response time, long life cycle, and environmental benefits without mercury. However, usually only about 20% of the input power of LED high-power products can be converted into light, and the remaining 80% of the energy is converted into heat. In general, if the thermal energy generated by LED illumination cannot be remitted, the junction temperature of the LED will be too high, which will affect the product life cycle, luminous efficiency and stability. # Conventional heat-dissipating materials need to consider the insulation properties. The thickness of the glue used to bond the two copper box layers needs to be 60 to 120 um to meet the insulation requirements. Therefore, the total thickness of the product will be large, and the heat dissipation effect is not satisfactory. If a heat dissipation model of TPI (thermoplastic polyimide) doped with a heat-dissipating powder is used, although the thickness of the product can be lowered to meet the insulation characteristics, high-temperature operation is required due to processing of TPI (thermoplastic polyimide). (Operation temperature is greater than 350 C) 'Therefore, the processing cost is high and cannot be effectively mass-produced. At present, the development trend of the global electronics industry is to 111926 3 M425495 in the direction of lightness, shortness, high heat resistance, versatility, high density, high reliability, and low cost. Therefore, the selection of substrates has become an important factor. A good substrate must have material properties such as thermal conductivity, two dimensional stability, rfj opacity, high heat dissipation, high heat resistance, and low coefficient of thermal expansion. Polyimine resins are often used in a variety of electronic materials, such as in flexible printed circuit boards, because of their high thermal stability and excellent heat dissipation, mechanical strength, and adhesion. This creation combines the short and light requirements of FPC, taking into account the cooling requirements of the LED industry, and meets the needs of the increasingly light, thin and short electronics industry. Taiwan Patent No. M377823 discloses a composite double-sided copper foil substrate, but there is still a need to make up for the high heat dissipation efficiency and insulation performance of the patent. [New content] In order to make up for the above deficiencies, the present invention provides a flexible high thermal conductivity copper foil substrate having a thin thickness, low production cost, high heat dissipation efficiency, good insulation performance, good dimensional stability, and buckling. High degree and low rebound power. The present invention provides a flexible high thermal conductivity copper foil substrate comprising a first copper foil layer, an insulating polymer layer, a thermally conductive adhesive layer and a second copper foil layer, wherein the thermally conductive adhesive layer comprises a resin and a heat dissipating powder dispersed in the resin The insulating polymer layer is fixedly sandwiched between the first copper foil layer and the thermally conductive adhesive layer, and the second copper foil layer is formed on the thermally conductive adhesive layer. In addition to the resin and the heat-dissipating powder, the heat-conductive adhesive layer of the present invention includes a curing agent, a nano filler, and the like. Since the heat conductive adhesive layer contains the heat dissipating powder which can improve the heat dissipation effect, the flexible high thermal conductivity copper drop substrate has better heat dissipation effect - Μ - ^- The heat dissipation powder accounts for the heat conduction in terms of percentage of weight The adhesive layer has a solid content of 40 to 9%. In one embodiment, the heat dissipating powder of the present invention may be selected from at least one of the group consisting of carbonization and deuterization. As a progressive improvement of the creation, the heat-dissipating powder is flat micron. The #二铜镇层 of this creation is independently selected from the group consisting of electrolytic copper bismuth and pressure, and copper. For specific applications, the copper box layer can be used to form high heat dissipation on the flexible high thermal conductivity copper substrate and the second copper box layer thickness is 12.5 to 70 microns each. &° The material of the insulating polymer layer used in the present invention is preferably polyimine. Therefore, the electrical breakdown, mechanical strength, flexing, and size of the flexible high thermal conductive copper thin substrate formed by using the _ edge polymer layer are used. Stability, etc. have been significantly improved. As a further improvement of the present invention, the insulating polymer layer has a thickness of 5 to 8 μm. As a further improvement of the present invention, the tree scorpion in the heat conductive adhesive layer of the present invention may be selected from the group consisting of epoxy resin, acrylic resin, urethane resin, % rubber system, polyparaxylene resin, At least one of the group consisting of a bismaleimide resin and a polyimide resin. As a further improvement of this creation, the thickness of the thermally conductive adhesive layer of the present invention is 20 to 25 microns. This creation can achieve the purpose of controlling heat dissipation and breakdown voltage by controlling the thickness of the insulating polymer layer and the thickness of the thermally conductive adhesive layer. 5 111926 M425495 The present invention provides a method for manufacturing a flexible high thermal conductivity copper foil substrate, comprising the steps of: coating an insulating polymer on the surface of the first copper foil layer, and drying the insulating polymer to form an insulating polymer layer Obtaining a single-sided copper foil substrate; forming a thermally conductive adhesive layer on the surface of the insulating polymer layer by coating or transfer method, so that the insulating polymer layer is sandwiched between the thermally conductive adhesive layer and the first copper foil Between the layers, the thermally conductive adhesive layer is in a semi-polymerized semi-hardened state; and the thermally conductive adhesive layer of the single-sided copper foil substrate is bonded to the second copper foil layer, and the thermally conductive adhesive layer is cured to form a flexible high thermal conductivity Copper foil substrate. The beneficial effect of this creation is that the creation includes a first copper foil layer, an insulating polymer layer, a thermal conductive adhesive layer and a second copper foil layer in sequence, compared to the high temperature operation required by conventional processing TPI (greater than 350 ° C) The manufacturing method of the present invention requires an operating temperature of less than 180 ° C at the time of production, a simple production method, a low production cost, and a wide applicable range. Depending on the needs of different customers, the thickness of the thermally conductive adhesive layer and the insulating polymer layer in the flexible high thermal conductive copper germanium substrate can be adjusted as needed. In addition, the creator of the case found that having a thin insulating polymer layer can greatly improve the insulation performance of the product, and with the thermal conductive adhesive layer, the characteristics of high heat dissipation and high breakdown voltage under the condition of thin size can be remarkably achieved. The flexible high thermal conductivity copper foil substrate of the present invention can be made of a flexible copper foil material, so that the flexibility of the product is good, and the thickness of the thermal conductive adhesive layer and the insulating polymer layer can be adjusted, so that the copper foil substrate of the present invention can meet the high buckling sliding times. And the requirement that the bending fillet is less than 0.8 mm is especially suitable for products with a circuit board with a bend of 6 111926 M425495. Therefore, the flexible high-thermal copper base of the creation, the stability of the size of the board, can also meet the needs of different cover products. Soil [Embodiment] Figure 1 is a schematic cross-sectional view of a flexible high thermal conductivity copper-plated substrate. The flexible high thermal conductive copper (four) plate m copper falling layer u, the insulating polymer layer 12, the thermally conductive adhesive layer 13, and the second copper box layer 14 of the present invention, wherein the thermally conductive adhesive layer η comprises a resin and is dispersed in the resin In the heat dissipating powder, the insulating polymer layer 12 is sandwiched between the first copper box layer η and the heat bonding layer 13, and the second copper layer 14 is formed on the heat conducting adhesive layer 13. The thermally conductive adhesive layer 13 is sandwiched between the second copper box layer 14 and the insulating polymer layer 12. The material of the insulating polymer layer 12 is preferably polyimide, and the heat conductive adhesive layer 13 having a shape of 1 on the surface of the insulating polymer layer 12 may further include a curing agent in addition to the tree moon and the heat powder. , nano fillers, etc. In the production, an insulating polymer is coated on the surface of the first copper foil layer u and then the insulating polymer is dried to form the insulating polymer layer 12, thereby obtaining a single-sided copper foil substrate. A thermally conductive adhesive layer 13 can be used to adhere the single-sided copper foil substrate to the second copper foil layer 14. The heat conductive adhesive layer 13 contains heat dissipating powder. Since the heat dissipating powder of the present invention can improve the heat dissipating effect, the flexible conductive hot copper foil substrate of the present invention has a good heat dissipating effect. The heat dissipating powder may be selected from at least one of the group consisting of niobium carbide, boron nitride, aluminum oxide, and aluminum nitride, and in the heat conductive adhesive layer 13, the heat dissipating powder occupies the heat conductive adhesive layer 13 40 to 90% of the content. 111926 7 The average particle size of the heat-dissipating powder is 12, which can be polyimine, which is 5 to 20 microns. Insulating polymer layer

各為12.5至70微米。 為了維持本創作之柔十生高導熱銅箱基板的特性以應 用於LED電路板,本創作所狀導齡著層η的厚度為 2 〇至2 5微米,所用之絕緣聚合物層12的厚度為5至8微 選自壓延銅箔(RA銅箔)和電解銅箔(ED銅) 且該第一銅箔層U及該第二銅箔層14的厚度 為了得到本創作之柔性高導熱銅落基板,本創作復提 供種柔[生同導熱銅镇基板的製作方法,包括下列步驟: 將絕緣聚合物塗佈在第—銅關11的表面上,並烘乾 以形成之絕緣聚合物層12 S,得到一單面㈣基板;使用 塗佈或轉印法將導熱黏著層13形成於該絕緣聚合物層12 的表面,以令該絕緣聚合物層12夾置在該導熱黏著層13 和該第-銅落層u之間’並使該導熱黏著層13處於曰半聚 合半硬化狀態(亦即B_stage狀態,此時導熱黏著層分子 與刀子之間化學鍵不多,在高溫高壓下還會軟化);以及將 該單面銅fl基板的導熱黏著層13與第二鋼荡層14貼合, 並固化該導熱黏著層13,以形成柔性高導熱銅fg基板。 實施例1對本創作之柔性高導熱銅箔基板進行熱傳導分 111926 8 M425.495 ., V · 析測試 使用熱導系數儀(Hot Disk)進行熱傳導分析測試, 在傳感器上下兩面覆蓋兩完全固化後蝕刻移除銅箔層的樣 品,並在該兩個樣品外侧面分別以兩鋼板夾置絕緣聚合物 層和傳感器,並由傳感器測量絕緣聚合物層和導熱黏著層 的導熱性能。將對本創作的絕緣聚合物層和導熱黏著層所 作的測試作為實驗組,以同樣的方法測試一般導熱基板的 導熱性能作為比較例,將測得的熱傳導系數結果紀錄於表 • 1中: 表1 絕緣聚合 物層厚度 (um) 導熱黏 著層厚 度(um) 導熱粉體類型 熱傳導 系數K (W/mK) 熱傳導 效率 耐擊穿. 電壓(kv) 實驗組1 5 20 氮化鋁70% 4.2 0.184 3.0 實驗組2 5 20 氮化鋁60% 3.0 0.120 3.0 實驗組3 5 20 氮化硼60% 4.0 0.160 3.0 實驗組4 5 20 氧化鋁70% 1.6 0.064 3.0 實驗組5 5 20 氧化鋁90% 2.5 0.100 3.0 實驗組6 5 25 氧化鋁70% 1.5 0.047 3.0 實驗組7 8 20 氧化鋁70% 1.6 0.063 5.0 實驗組8 8 25 氧化鋁70% 1.5 0.045 5.0 比較例1 無 20 氧化鋁70% 2.0 0.1 0.8 比較例2 無 60 氧化鋁70% 1.8 0.033 2.0 比較例3 無 120 氧化鋁70% 1.7 0.009 3.0 比較例4 20 20 氧化鋁70% 0.2 0.005 6.0 9 111926 M425495 由上表1可知,相對於一般的導熱基板,本創作之柔 性高導熱銅箔基板在設計上能夠透過降低整體產品的厚度 從而達到了高導熱效率的作用,可以透過調整散熱粉體的 類型,達到超高導熱的效果。另由於增加了 一層絕緣聚合 物層,從而達到了高耐擊穿電壓的效果,且不影響導熱效 率。 實施例2 對本創作之柔性高導熱銅箔基板進行滑台測試 和反彈力測試 製備雙面銅箔基板,其中,該導熱黏著層含有占該導 熱黏著層固含量70%的氮化鋁,以用於滑台測試和反彈力 測試。滑台滑動測試:將雙面銅箔基板裁切成10 mmx30 mm的試片,設定滑台測試圓角為0.65 mm,滑動頻率為 60次/分鐘且滑動行程為35 mm。測試屈曲次數超過10萬 次,電阻變化率10%以内,測試結果記錄於表2。 反彈力測試:將雙面銅箔基板裁切成10mmx30mm的 試片,並將本創作雙面銅箔基板的第二銅箔層蝕刻移除 掉,並設定測試圓角為2.35 mm,每組試片測量5次,計 算平均值後紀錄於表2。 10 111926 M425.495 , 4 表2 實驗組9 實驗組10 比較例5 比較例6 銅箔厚度(#m) 12.5 12.5 12.5 12.5 絕緣聚合物層厚度(V jjj) 5 8 13 15 導熱黏著層厚度(/zm) 20 25 -- -- 非導熱黏著層厚度(ym) 12 18 單面#刻後厚度(um ) 37.5 45.5 37.5 45.5 反彈力(g) 5.5 6.4 7.3 8.5 滑動屈曲次數 138000 120000 110000 100000 電阻變化率 4.52% 4.74% 4.92% 5.38% 由表2所示的結果可知,本創作之柔性高導熱銅箔基 板具有極低的反彈力,且可滿足在低屈曲圓角為〇65mm 時的滑動測試次數要求,且電阻變化率亦小於1〇%,其中, 早面餘刻後厚度之量剛方式是將雙面銅箔基板用蝕刻液把 面鋼箔給蝕刻掉;再用螺旋測微儀(Mitutoyo)量測單面 蝕刻後厚度。 此外’實驗組9為本創作較佳的實施方案,實驗組9 衾,鋼V自層㈣高屈曲銅落,其滑動屈曲次數更高 達138_次,電阻變化率僅4 52%。 的号創作:络發現環氧樹脂型的黏著層厚度對反彈力 佳為5微米。 蜂勿層的厚度以…微米為佳,更 11 111926 M425495 實施例3 對本創作之柔性高導熱銅箔基板進行尺寸安定性測 試: 尺寸安定性測試:以本創作之雙面銅箔基板作為實 驗組。將雙面銅箔基板裁切成25mmx28mm的試片,在其 上四角打上4個孔。方法B(Method B)量測將雙面銅箔基 板的第一、第二銅箔層蝕刻移除掉後的TD/MD向尺寸涨 縮變化值,方法C (Method C)量測全蝕刻後(其中全蝕刻 疋指將聚醯亞胺上的銅箔利用化學藥劑將銅箔給蝕刻去除 掉銅箔)以15〇度烘烤3〇min後TD/MD向尺寸漲縮變化 值’每組試片測量3次,計算平均值後紀錄於表3。 表3 實驗組12 實驗組13 實驗組14 銅箔厚度(Vm) 12.5 12.5 12.5 絕緣聚合物層厚度("m) 5 8 15 導熱黏著層厚度(//m) 20 25 15 去銅後總厚度(um) 25 33 30 Method B(%) MD -0.0354 -0.0245 -0.0125 TD -0.0249 -0.0322 -0.0314 Method C(%) MD -0.0584 -0.0526 -0.0412 TD -0.0633 -0.0671 -0.0579 由表3所示的結果可知,本創作之柔性高導熱銅箔基 111926 12Each is 12.5 to 70 microns. In order to maintain the characteristics of the flexible high-thermal copper-clad substrate of the present invention for application to an LED circuit board, the thickness of the layer η of the lead-in layer of the present invention is 2 〇 to 25 μm, and the thickness of the insulating polymer layer 12 used. 5 to 8 micrometers are selected from the group consisting of rolled copper foil (RA copper foil) and electrolytic copper foil (ED copper), and the thickness of the first copper foil layer U and the second copper foil layer 14 is to obtain the flexible high thermal conductivity copper of the present invention. The substrate is provided, and the creation method provides a method for manufacturing a heat-resistant copper-plated substrate, comprising the steps of: coating an insulating polymer on the surface of the first copper-off 11 and drying to form an insulating polymer layer. 12 S, obtaining a single-sided (four) substrate; forming a thermally conductive adhesive layer 13 on the surface of the insulating polymer layer 12 by coating or transfer method so that the insulating polymer layer 12 is sandwiched between the thermally conductive adhesive layer 13 and The first-copper layer u is between 'and the heat-conductive adhesive layer 13 is in a semi-polymerized semi-hardened state (that is, a B_stage state, where there are not many chemical bonds between the thermally conductive adhesive layer molecules and the knife, and the high temperature and high pressure are also Softening); and the thermally conductive adhesive layer 1 of the single-sided copper fl substrate 3 is bonded to the second steel screed 14 and the thermally conductive adhesive layer 13 is cured to form a flexible high thermal conductivity copper fg substrate. Example 1 The heat conduction of the flexible high thermal conductivity copper foil substrate of the present invention is 111926 8 M425.495 . The V · analysis test uses a thermal conductivity tester (Hot Disk) for thermal conduction analysis test, and the two sides of the sensor are covered with two fully cured and etched. A sample of the copper foil layer was removed, and an insulating polymer layer and a sensor were sandwiched between the two steel sheets on the outer sides of the two samples, and the thermal conductivity of the insulating polymer layer and the thermally conductive adhesive layer was measured by a sensor. The test of the insulating polymer layer and the thermal conductive adhesive layer of the present invention was carried out as an experimental group, and the thermal conductivity of the general thermal conductive substrate was tested in the same manner as a comparative example, and the measured results of the heat transfer coefficient were recorded in Table 1 : Table 1 Insulation polymer layer thickness (um) Thermal adhesion layer thickness (um) Thermal powder type heat transfer coefficient K (W/mK) Thermal conduction efficiency breakdown resistance. Voltage (kv) Experimental group 1 5 20 Aluminum nitride 70% 4.2 0.184 3.0 Experimental group 2 5 20 Aluminum nitride 60% 3.0 0.120 3.0 Experimental group 3 5 20 Boron nitride 60% 4.0 0.160 3.0 Experimental group 4 5 20 Alumina 70% 1.6 0.064 3.0 Experimental group 5 5 20 Alumina 90% 2.5 0.100 3.0 Experimental group 6 5 25 Alumina 70% 1.5 0.047 3.0 Experimental group 7 8 20 Alumina 70% 1.6 0.063 5.0 Experimental group 8 8 25 Alumina 70% 1.5 0.045 5.0 Comparative Example 1 No 20 Alumina 70% 2.0 0.1 0.8 Comparative Example 2 No 60 Alumina 70% 1.8 0.033 2.0 Comparative Example 3 No 120 Alumina 70% 1.7 0.009 3.0 Comparative Example 4 20 20 Alumina 70% 0.2 0.005 6.0 9 111926 M425495 As can be seen from the above Table 1, compared to a general heat-conductive substrate, Flexible high thermal conductivity of the creation The copper foil substrate can be designed to achieve high thermal conductivity by reducing the thickness of the overall product, and can achieve ultra-high thermal conductivity by adjusting the type of the heat-dissipating powder. In addition, due to the addition of an insulating polymer layer, the high breakdown voltage is achieved without affecting the thermal conductivity. Example 2 A double-sided copper foil substrate was prepared by performing a sliding table test and a rebound force test on the flexible high thermal conductive copper foil substrate of the present invention, wherein the thermally conductive adhesive layer contains aluminum nitride accounting for 70% of the solid content of the thermal conductive adhesive layer. For slide test and rebound force test. Slide slide test: Cut the double-sided copper foil substrate into 10 mm x 30 mm test pieces, set the slide test fillet to 0.65 mm, slide frequency 60 times/min and slide stroke 35 mm. The test has more than 100,000 buckling times and the resistance change rate is within 10%. The test results are reported in Table 2. Rebound force test: cut the double-sided copper foil substrate into 10mmx30mm test piece, and remove the second copper foil layer of the double-sided copper foil substrate, and set the test fillet to 2.35 mm, each test The sheets were measured 5 times, and the average value was calculated and recorded in Table 2. 10 111926 M425.495 , 4 Table 2 Experimental group 9 Experimental group 10 Comparative example 5 Comparative example 6 Copper foil thickness (#m) 12.5 12.5 12.5 12.5 Insulation polymer layer thickness (V jjj) 5 8 13 15 Thermally conductive adhesive layer thickness ( /zm) 20 25 -- -- Non-thermally conductive adhesive layer thickness (ym) 12 18 Single-sided thickness (um) 37.5 45.5 37.5 45.5 Rebound force (g) 5.5 6.4 7.3 8.5 Sliding buckling times 138000 120000 110000 100000 Resistance change Rate 4.52% 4.74% 4.92% 5.38% According to the results shown in Table 2, the flexible high thermal conductivity copper foil substrate of the present invention has a very low rebound force and can satisfy the number of sliding tests at a low buckling radius of 〇65 mm. The requirement, and the rate of change of the resistance is also less than 1%, wherein the thickness of the early surface is the same as that of the double-sided copper foil substrate by etching the surface steel foil; and then using a micrometer (Mitutoyo) ) Measure the thickness after single-sided etching. In addition, the experimental group 9 is a preferred embodiment of the creation. The experimental group is 9 衾, and the steel V is self-layered (four) with high buckling copper, and the sliding buckling frequency is 138 times higher, and the resistance change rate is only 4 52%. The creation of the number: found that the thickness of the adhesive layer of the epoxy resin type is preferably 5 μm. The thickness of the bee layer is preferably ... micron, and 11 111926 M425495. Example 3 Dimensional stability test of the flexible high thermal conductivity copper foil substrate of the present invention: Dimensional stability test: using the double-sided copper foil substrate of the present invention as an experimental group . The double-sided copper foil substrate was cut into 25 mm x 28 mm test pieces, and four holes were punched into the upper four corners. Method B measures the TD/MD dimension change of the first and second copper foil layers of the double-sided copper foil substrate after etching, and the method C (Method C) measures the total etching (Where the total etching 疋 refers to the copper foil on the polyimide, the copper foil is etched to remove the copper foil by a chemical agent), and the TD/MD is changed in size after baking for 3 〇 min at 15 degrees. The test piece was measured 3 times, and the average value was calculated and recorded in Table 3. Table 3 Experimental group 12 Experimental group 13 Experimental group 14 Copper foil thickness (Vm) 12.5 12.5 12.5 Insulation polymer layer thickness ("m) 5 8 15 Thermally conductive adhesive layer thickness (//m) 20 25 15 Total thickness after copper removal (um) 25 33 30 Method B(%) MD -0.0354 -0.0245 -0.0125 TD -0.0249 -0.0322 -0.0314 Method C(%) MD -0.0584 -0.0526 -0.0412 TD -0.0633 -0.0671 -0.0579 Shown in Table 3 As a result, the flexible high thermal conductivity copper foil base of the present invention 111926 12

Claims (1)

M425495 第100216246號專利申請案 101年ί月A修正替換頁 六、申請專利範圍: 1. 一種柔性高導熱銅箔基板,包括: 第一銅络層; 絕緣聚合物層; 導熱黏著層,其中,該導熱黏著層包括樹脂和分散 於該樹脂中的散熱粉體,且該絕緣聚合物層固定夾置於 該第一銅箔層和該導熱黏著層之間;以及 第二銅箔層,係形成於該導熱黏著層上。 2. 如申請專利範圍第1項所述之柔性高導熱銅箔基板,其 中,以重量百分比計,該導熱黏著層中的散熱粉體占該 導熱黏著層固含量的40至90%。 3. 如申請專利範圍第1或2項所述之柔性高導熱銅箔基 板,其中,該散熱粉體的平均粒徑為5至20微米,且 該散熱粉體是選自碳化矽、氮化硼、氧化鋁和氮化鋁所 組成群組的至少一種。 4. 如申請專利範圍第1項所述之柔性高導熱銅箔基板,其 中,該第一和第二銅箔層為電解銅箔或壓延銅箔。 5. 如申請專利範圍第1項所述之柔性高導熱銅箔基板,其 中,第一和第二銅箔層的厚度各為12.5至70微米,該 絕緣聚合物層的厚度為5至8微米,且該導熱黏著層的 厚度為20至25微米。 6. 如申請專利範圍第1項所述之柔性高導熱銅箔基板,其 中,該絕緣聚合物層的材質為聚醯亞胺。 7. 如申請專利範圍第1項所述之柔性高導熱銅箔基板,其 14· 111926(修正版) M425495 • 第100216246號專利申請案 ιοί年γ月>〇a修正替換頁 中,該導熱黏著層的樹脂為選自環氧樹脂、丙烯酸系樹 脂、胺基曱酸酯系樹脂、矽橡膠系樹脂、聚對環二甲苯 系樹脂、雙馬來醯亞胺系樹脂和聚醯亞胺樹脂所組成群 組的至少一種。 8.如申請專利範圍第1項所述之柔性高導熱銅箔基板,其 中,該導熱黏著層夾置在該第二銅箔層和絕緣聚合物層 之間。 m 15- 111926(修正版) M425495M425495 Patent Application No. 100216246, 101, 1985, 1989, PCT, PCT, PCT, PCT, PCT, PCT, PCT, PCT, PCT The thermally conductive adhesive layer comprises a resin and a heat dissipating powder dispersed in the resin, and the insulating polymer layer is fixedly sandwiched between the first copper foil layer and the thermally conductive adhesive layer; and the second copper foil layer is formed On the thermally conductive adhesive layer. 2. The flexible high thermal conductivity copper foil substrate according to claim 1, wherein the heat dissipating powder in the thermally conductive adhesive layer accounts for 40 to 90% of the solid content of the thermally conductive adhesive layer. 3. The flexible high thermal conductivity copper foil substrate according to claim 1 or 2, wherein the heat dissipating powder has an average particle diameter of 5 to 20 μm, and the heat dissipating powder is selected from the group consisting of niobium carbide and nitriding. At least one of the group consisting of boron, aluminum oxide, and aluminum nitride. 4. The flexible high thermal conductivity copper foil substrate of claim 1, wherein the first and second copper foil layers are electrolytic copper foil or rolled copper foil. 5. The flexible high thermal conductivity copper foil substrate according to claim 1, wherein the first and second copper foil layers each have a thickness of 12.5 to 70 micrometers, and the insulating polymer layer has a thickness of 5 to 8 micrometers. And the thickness of the thermally conductive adhesive layer is 20 to 25 microns. 6. The flexible high thermal conductivity copper foil substrate according to claim 1, wherein the insulating polymer layer is made of polyimide. 7. The flexible high thermal conductivity copper foil substrate according to claim 1 of the patent application, the thermal conductivity of the replacement page, the thermal conductivity of the replacement of the patent application No. 4,111,926 (revised edition) M425495, the patent application No. 100216246 The resin of the adhesive layer is selected from the group consisting of an epoxy resin, an acrylic resin, an amino phthalate resin, a ruthenium rubber resin, a polyparaxylene resin, a bismaleimide resin, and a polyimide resin. At least one of the group consisting of. 8. The flexible high thermal conductivity copper foil substrate of claim 1, wherein the thermally conductive adhesive layer is interposed between the second copper foil layer and the insulating polymer layer. m 15- 111926 (revision) M425495 tl、圖式:Tl, schema: 第1圖 111926Figure 1 111926
TW100216246U 2011-01-07 2011-08-31 Flexible high thermal conductive copper substrate TWM425495U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100022454A CN102595766A (en) 2011-01-07 2011-01-07 Flexible copper-foil high thermal conductivity substrate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TWM425495U true TWM425495U (en) 2012-03-21

Family

ID=46462638

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100216246U TWM425495U (en) 2011-01-07 2011-08-31 Flexible high thermal conductive copper substrate

Country Status (2)

Country Link
CN (1) CN102595766A (en)
TW (1) TWM425495U (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103144377B (en) * 2013-03-15 2015-12-02 松扬电子材料(昆山)有限公司 There is combined type electromagnetic shielding copper clad laminate and the manufacture method thereof of high conduction effect
CN103342976A (en) * 2013-06-26 2013-10-09 苏州天脉导热科技有限公司 Short-term high-temperature resistant acrylic-based composition and method for preparing heat conducting fin by using same
CN103702511B (en) * 2013-12-31 2017-07-07 广东生益科技股份有限公司 A kind of high-thermal conductive metal base plate and preparation method thereof
CN105269884B (en) * 2014-07-22 2017-06-16 昆山雅森电子材料科技有限公司 Combined type high frequency Double-sided copper clad laminate and its manufacture method
CN105992457A (en) * 2015-02-11 2016-10-05 昆山雅森电子材料科技有限公司 Heat conducting copper-foil metal substrate
CN106211543A (en) * 2015-04-30 2016-12-07 昆山雅森电子材料科技有限公司 Two-sided heat-conducting substrate
CN108419362A (en) * 2017-02-09 2018-08-17 昆山雅森电子材料科技有限公司 A kind of FRCC base materials and preparation method thereof with high cooling efficiency
CN107613588B (en) * 2017-08-14 2023-12-05 深圳市维特欣达科技有限公司 Preparation method of quick heating type heating plate and quick heating type heating plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8148647B2 (en) * 2006-08-23 2012-04-03 Mitsubishi Electric Corporation Printed circuit board and method of manufacturing the same
CN201590948U (en) * 2009-12-30 2010-09-22 昆山雅森电子材料科技有限公司 Double-surfaced copper clad laminate

Also Published As

Publication number Publication date
CN102595766A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
TWM425495U (en) Flexible high thermal conductive copper substrate
JP3173569U (en) Thin metal substrate with high thermal conductivity
CN102651961B (en) A kind of Heat-conduction heat-dissipation interface material and manufacture method thereof
CN102029745B (en) High-heat-conductivity metal-base copper foil coated laminated board and making method thereof
JP6043188B2 (en) Interlayer thermal connection member and interlayer thermal connection method
KR20140007894A (en) Resin composition, resin sheet, cured resin sheet, resin sheet laminate, cured resin sheet laminate and method for manufacturing same, semiconductor device, and led device
JP2009066817A (en) Thermally-conductive sheet
WO2019203266A1 (en) Insulation sheet, laminate, and substrate
CN103042762B (en) High thermal conductive metal substrate
TWM420832U (en) Rigid-flex double sided thermal conductivity substrate
JP2015189884A (en) Thermosetting resin composition, resin sheet, prepreg and laminate sheet
CN202285457U (en) Heat dissipation substrate
CN103781329A (en) Graphite aluminum foil heat-conducting material
CN108419362A (en) A kind of FRCC base materials and preparation method thereof with high cooling efficiency
CN103068151B (en) Heat radiating material
CN109177382B (en) Flexible copper-clad plate with high heat conductivity and high heat dissipation performance and preparation method thereof
CN109996423B (en) Composite multilayer graphite sheet structure, manufacturing method, heat dissipation structure and electronic device
TWM447653U (en) Circuit board structure of high heat-conductivity
CN202617509U (en) Aluminum substrate having high heat-conducting performance and high heat-resisting performance
TWM556055U (en) Flexible back adhesive copper foil substrate
KR101882817B1 (en) Pressure sensitive adhesive and Composite sheet with EMI shield and heat radiation comprising the same
CN201937950U (en) Flexible copper foil high-heat-conductivity base plate
CN201910417U (en) Thin metal substrate with high thermal conductivity
CN211307732U (en) Shielding heat dissipation Mylar film
TWM540741U (en) Multi-layer composite heat conduction structure

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model