WO2024131005A1 - 有机化合物、有机电致发光器件和电子装置 - Google Patents

有机化合物、有机电致发光器件和电子装置 Download PDF

Info

Publication number
WO2024131005A1
WO2024131005A1 PCT/CN2023/102527 CN2023102527W WO2024131005A1 WO 2024131005 A1 WO2024131005 A1 WO 2024131005A1 CN 2023102527 W CN2023102527 W CN 2023102527W WO 2024131005 A1 WO2024131005 A1 WO 2024131005A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
same
Prior art date
Application number
PCT/CN2023/102527
Other languages
English (en)
French (fr)
Inventor
马天天
杨雷
冯震
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2024131005A1 publication Critical patent/WO2024131005A1/zh

Links

Definitions

  • the present application relates to the technical field of organic compounds, and in particular to an organic compound and an organic electroluminescent device and an electronic device comprising the organic compound.
  • Such electronic components generally include a cathode and an anode arranged relatively to each other, and a functional layer arranged between the cathode and the anode.
  • the functional layer is composed of multiple layers of organic or inorganic film layers, and generally includes an organic light-emitting layer, a hole transport layer located between the organic light-emitting layer and the anode, and an electron transport layer located between the organic light-emitting layer and the cathode.
  • an organic electroluminescent device as an example, it generally includes an anode, a hole transport layer, an organic light-emitting layer, an electron transport layer and a cathode stacked in sequence.
  • the two electrodes When a voltage is applied to the positive and negative electrodes, the two electrodes generate an electric field. Under the action of the electric field, the electrons on the cathode side move toward the organic light-emitting layer, and the holes on the anode side also move toward the organic light-emitting layer.
  • the electrons and holes combine in the organic light-emitting layer to form excitons, and the excitons are in an excited state and release energy outward, thereby causing the organic light-emitting layer to emit light outward.
  • the purpose of the present application is to provide an organic compound and an organic electroluminescent device and an electronic device containing the organic compound, wherein the organic compound can improve the performance of the organic electroluminescent device and the electronic device, such as reducing the driving voltage of the device and improving the efficiency and life of the device.
  • an organic compound wherein the organic compound has a structure as shown in Formula 1:
  • one of X and Y is O, and the other is
  • L1 and L2 are the same or different and are independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms;
  • Ar 1 , Ar 2 and Ar 3 are the same or different and are independently selected from a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms;
  • the substituents in L 1 , L 2 , Ar 1 , Ar 2 and Ar 3 are the same or different and are independently selected from deuterium, cyano, halogen, alkyl having 1 to 10 carbon atoms, halogenated alkyl having 1 to 10 carbon atoms, deuterated alkyl having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a deuterated aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms, a heteroaryl group having 5 to 20 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms;
  • Each R1 and R2 is the same or different and is independently selected from deuterium, a halogen group, a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a deuterated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a deuterated aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms, a heteroaryl group having 5 to 18 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms;
  • n 1 represents the number of R 1 , n 1 is selected from 0, 1 or 2, and when n 1 is greater than 1, each R 1 is the same or different;
  • n2 represents the number of R2 , n2 is selected from 0, 1, 2, 3 or 4, and when n2 is greater than 1, each R2 is the same or different.
  • an organic electroluminescent device comprising an anode and a cathode arranged opposite to each other, and a functional layer arranged between the anode and the cathode; the functional layer comprises the above-mentioned organic compound.
  • a third aspect of the present application provides an electronic device comprising the organic electroluminescent device described in the second aspect.
  • the core structure of the organic compound of the present application is a group formed by oxazole and benzofuran groups being simultaneously fused to a phenyl group in a specific manner, and the group and the triazine group are connected by a single bond to obtain the organic compound of the present application; such a structure has a high aromatic conjugation effect, brings high electron mobility, and thus has good energy transfer characteristics, more suitable energy level characteristics and high molecular structure stability.
  • the driving voltage and luminous efficiency of the device can be effectively improved, while maintaining good life characteristics.
  • FIG. 1 is a schematic diagram of the structure of an organic electroluminescent device of the present application.
  • FIG. 2 is a schematic diagram of the structure of an electronic device of the present application.
  • the purpose of the present application is to provide an organic compound and an organic electroluminescent device and an electronic device comprising the organic compound, wherein the organic compound can improve the performance of the organic electroluminescent device and the electronic device, such as reducing the driving voltage of the device and improving the efficiency and life of the device.
  • an organic compound wherein the organic compound has a structure as shown in Formula 1:
  • one of X and Y is O, and the other is
  • L1 and L2 are the same or different and are independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms;
  • Ar 1 , Ar 2 and Ar 3 are the same or different and are independently selected from a substituted or unsubstituted aryl group having 6 to 40 carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms;
  • the substituents in L 1 , L 2 , Ar 1 , Ar 2 and Ar 3 are the same or different and are independently selected from deuterium, cyano, halogen, alkyl having 1 to 10 carbon atoms, halogenated alkyl having 1 to 10 carbon atoms, deuterated alkyl having 1 to 10 carbon atoms, aryl having 6 to 20 carbon atoms, deuterated aryl having 6 to 20 carbon atoms, halogenated aryl having 6 to 20 carbon atoms, heteroaryl having 5 to 20 carbon atoms or cycloalkyl having 3 to 10 carbon atoms;
  • Each R1 and R2 is the same or different and is independently selected from deuterium, a halogen group, a cyano group, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, a deuterated alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, a deuterated aryl group having 6 to 20 carbon atoms, a halogenated aryl group having 6 to 20 carbon atoms, a heteroaryl group having 5 to 18 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms;
  • n 1 represents the number of R 1 , n 1 is selected from 0, 1 or 2, and when n 1 is greater than 1, each R 1 is the same or different;
  • n2 represents the number of R2 , n2 is selected from 0, 1, 2, 3 or 4, and when n2 is greater than 1, each R2 is the same or different.
  • each q is independently 0, 1, 2 or 3, and each R" is independently selected from hydrogen, deuterium, fluorine, and chlorine, which means:
  • Formula Q-1 indicates that there are q substituents R" on the benzene ring, and each R" can be the same or different, and the options of each R" do not affect each other;
  • Formula Q-2 indicates that there are q substituents R" on each benzene ring of biphenyl, and the number q of R" substituents on the two benzene rings can be the same or different, and each R" can be the same or different, and the options of each R" do not affect each other.
  • substituted or unsubstituted means that the functional group recorded after the term may or may not have a substituent (hereinafter, for the convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • Rc can be, for example, deuterium, cyano, halogen group, alkyl, haloalkyl, deuterated alkyl, aryl, deuterated aryl, haloaryl, heteroaryl, cycloalkyl, etc.
  • the number of substitutions can be 1 or more.
  • plural means more than 2, for example, 2, 3, 4, 5, 6, etc.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the total number of carbon atoms.
  • L1 is a substituted arylene group having 12 carbon atoms
  • the total number of carbon atoms of the arylene group and the substituents thereon is 12.
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • the aryl group can be a monocyclic aryl group (e.g., phenyl) or a polycyclic aryl group.
  • the aryl group can be a monocyclic aryl group, a condensed ring aryl group, two or more monocyclic aryl groups connected by conjugation of carbon-carbon bonds, monocyclic aryl groups and condensed ring aryl groups connected by conjugation of carbon-carbon bonds, and two or more condensed ring aryl groups connected by conjugation of carbon-carbon bonds.
  • condensed ring aryl groups can include, for example, bicyclic condensed aryl groups (e.g., naphthyl), tricyclic condensed aryl groups (e.g., phenanthrenyl, fluorenyl, anthracenyl), etc.
  • the aryl group does not contain heteroatoms such as B, N, O, S, P, Se, and Si.
  • aryl groups can include, but are not limited to In, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthrenyl, biphenyl, terphenyl, triphenylene, peryl, benzo[9,10]phenanthrenyl, pyrenyl, benzofluoranthenyl,
  • the arylene group refers to a divalent group formed by further losing a hydrogen atom from an aryl group.
  • terphenyl includes
  • the number of carbon atoms of a substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • a substituted aryl group with 18 carbon atoms refers to the total number of carbon atoms of the aryl group and the substituents is 18.
  • the carbon number of the substituted or unsubstituted aryl group may be 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 24, 25, 30, 31, 32, 33, 35, 36, 37, 38, 39 or 40.
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group having 6 to 25 carbon atoms
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group having 6 to 20 carbon atoms
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • the fluorenyl group may be substituted by one or more substituents, wherein any two adjacent substituents may be combined with each other to form a ring structure.
  • the substituted fluorenyl group may be: etc., but not limited thereto.
  • examples of aryl groups as substituents for L 1 , L 2 , Ar 1 , Ar 2 and Ar 3 include, but are not limited to, phenyl, naphthyl and the like.
  • heteroaryl refers to a monovalent aromatic ring or a derivative thereof containing 1, 2, 3, 4, 5 or 6 heteroatoms in the ring, and the heteroatoms may be one or more of B, O, N, P, Si, Se and S.
  • the heteroaryl may be a monocyclic heteroaryl or a polycyclic heteroaryl, in other words, the heteroaryl may be a single aromatic ring system or a plurality of aromatic ring systems conjugated by carbon-carbon bonds, and any aromatic ring system may be an aromatic monocyclic ring or an aromatic condensed ring.
  • the heteroaryl group may include a thienyl group, a furyl group, a pyrrolyl group, an imidazolyl group, a thiazolyl group, an oxazolyl group, an oxadiazolyl group, a triazolyl group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridinyl group, a pyridazinyl group, a pyrazinyl group, a quinolyl group, a quinazolinyl group, a quinoxalinyl group, a phenoxazinyl group, a phthalazinyl group, a pyridopyrimidinyl group, a pyridopyrazinyl group, a pyrazinopyrazinyl group, an isoquinolyl group, an indolyl group, an
  • the number of carbon atoms of the substituted or unsubstituted heteroaryl group can be selected from 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39 or 40.
  • the substituted or unsubstituted heteroaryl group is a substituted or unsubstituted heteroaryl group having 5 to 20 carbon atoms
  • the substituted or unsubstituted heteroaryl group is a substituted or unsubstituted heteroaryl group having 12 to 24 carbon atoms
  • the substituted or unsubstituted heteroaryl group is a substituted or unsubstituted heteroaryl group having 12 to 18 carbon atoms.
  • the substituted heteroaryl group may be a heteroaryl group in which one or more hydrogen atoms are replaced by groups such as deuterium atoms, halogen groups, -CN, aryl groups, heteroaryl groups, trialkylsilyl groups, alkyl groups, cycloalkyl groups, haloalkyl groups, etc.
  • groups such as deuterium atoms, halogen groups, -CN, aryl groups, heteroaryl groups, trialkylsilyl groups, alkyl groups, cycloalkyl groups, haloalkyl groups, etc.
  • the number of carbon atoms in the substituted heteroaryl group refers to the total number of carbon atoms in the heteroaryl group and the substituents on the heteroaryl group.
  • the alkyl group having 1 to 10 carbon atoms may include a straight-chain alkyl group having 1 to 10 carbon atoms and a straight-chain alkyl group having 3 to 10 carbon atoms.
  • the number of carbon atoms in the alkyl group may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • Specific examples of the alkyl group include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, and n-hexyl.
  • the halogen group may be, for example, fluorine, chlorine, bromine, or iodine.
  • trialkylsilyl include, but are not limited to, trimethylsilyl and the like.
  • haloalkyl group examples include, but are not limited to, trifluoromethyl.
  • deuterated alkyl groups include, but are not limited to, trideuterated methyl groups.
  • the carbon number of the cycloalkyl group having 3 to 10 carbon atoms may be, for example, 3, 4, 5, 6, 7, 8 or 10.
  • Specific examples of the cycloalkyl group include, but are not limited to, cyclopentyl, cyclohexyl, and adamantyl.
  • no single bond extending from the ring system is involved in the positioning of the connecting bond. It means that one end of the connecting bond can be connected to any position in the ring system that the bond passes through, and the other end is connected to the rest of the compound molecule.
  • the naphthyl represented by formula (f) is connected to other positions of the molecule through two non-positional connecting bonds that pass through the bicyclic ring, and the meaning represented by it includes any possible connection mode shown in formula (f-1) to formula (f-10).
  • the dibenzofuranyl represented by formula (X') is connected to other positions of the molecule through a non-positional connecting bond extending from the middle of one side of the benzene ring, and its meaning includes any possible connection method shown in formula (X'-1) to formula (X'-4).
  • X is O
  • Y is
  • X is Y is O.
  • the organic compound has a structure shown in Formula A or Formula B:
  • the organic compound has a structure shown in Formula 1-1, Formula 1-2, Formula 1-3 or Formula 1-4:
  • the organic compound has a structure shown in Formula A1, Formula A2, Formula A3, Formula A4, Formula A5, Formula A6, Formula B1, Formula B2, Formula B3, Formula B4, Formula B5 or Formula B6:
  • L1 and L2 are the same or different and are independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, or a substituted or unsubstituted heteroarylene group having 12 to 20 carbon atoms.
  • the substituents in L1 and L2 are the same or different and are independently selected from deuterium, a halogen group, a cyano group, an alkyl group having 1 to 5 carbon atoms or a phenyl group.
  • L1 and L2 are the same or different and are independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 12 carbon atoms, or a substituted or unsubstituted heteroarylene group having 12 to 18 carbon atoms.
  • L1 and L2 are the same or different, and are independently selected from a single bond, a substituted or unsubstituted phenylene, a substituted or unsubstituted naphthylene, a substituted or unsubstituted biphenylene, a substituted or unsubstituted fluorenylene, a substituted or unsubstituted carbazolylene, a substituted or unsubstituted dibenzofuranylene, or a substituted or unsubstituted dibenzothiophenylene.
  • the substituents in L1 and L2 are the same or different and are independently selected from deuterium, a halogen group, a cyano group, a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a tert-butyl group or a phenyl group.
  • substituents in L1 and L2 are the same or different and are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl.
  • L1 and L2 are the same or different, and are independently selected from a single bond, a substituted or unsubstituted group V, and the unsubstituted group V is selected from the group consisting of the following groups:
  • the substituted group V contains one or more substituents, and the substituents are selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl; and when the substituted group V contains multiple substituents, the substituents are the same or different.
  • L1 and L2 are the same or different and are independently selected from a single bond or the following groups:
  • Ar 1 and Ar 2 are the same or different, and are independently selected from a substituted or unsubstituted aryl group having 6 to 25 carbon atoms or a substituted or unsubstituted heteroaryl group having 12 to 24 carbon atoms.
  • the substituents in Ar1 and Ar2 are the same or different and are independently selected from deuterium, a halogen group, a cyano group, an alkyl group having 1 to 5 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, a deuterated alkyl group having 1 to 5 carbon atoms, a pentadeuterated phenyl group or a phenyl group.
  • Ar1 and Ar2 are the same or different, and are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted triphenylene, substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzofuranyl or substituted or unsubstituted dibenzothiophenyl.
  • the substituents in Ar 1 and Ar 2 are the same or different and are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, pentadeuterated phenyl or phenyl.
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted groups W, and the unsubstituted group W is selected from the group consisting of the following groups:
  • the substituted group W has one or more substituents, each of which is independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl or pentadeuterated phenyl, and when the number of substituents on the group W is greater than 1, each substituent is the same or different.
  • Ar 1 and Ar 2 are the same or different and are independently selected from the group consisting of the following groups:
  • Ar 1 and Ar 2 are the same or different and are independently selected from the group consisting of the following groups:
  • Ar 3 is selected from substituted or unsubstituted aryl groups having 6 to 12 carbon atoms.
  • the substituents in Ar 3 are the same or different and are independently selected from deuterium, fluorine, cyano, an alkyl group having 1 to 5 carbon atoms, pentadeuterated phenyl or phenyl.
  • Ar 3 is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl or substituted or unsubstituted biphenyl.
  • the substituents in Ar 3 are the same or different and are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, pentadeuterated phenyl or phenyl.
  • Ar 3 is selected from the group consisting of:
  • each R 1 and R 2 are the same or different, and are independently deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl.
  • n1 and n2 are both 0.
  • the organic compound is selected from the group consisting of compounds:
  • the present application provides an organic electroluminescent device, comprising an anode and a cathode arranged opposite to each other, and a functional layer arranged between the anode and the cathode; the functional layer comprises the organic compound of the present application.
  • the organic electroluminescent device is a red organic electroluminescent device.
  • the organic electroluminescent device is a green organic electroluminescent device.
  • the organic electroluminescent device may include an anode 100 , a first hole transport layer 320 , a second hole transport layer 330 , an organic light emitting layer 340 , an electron transport layer 350 , an electron injection layer 360 and a cathode 200 , which are sequentially stacked.
  • the anode 100 includes the following anode material, which is optionally a material with a large work function that facilitates hole injection into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); combined metals and oxides such as ZnO:Al or SnO 2 :Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT), polypyrrole and polyaniline, but are not limited thereto. It is preferred to include indium tin oxide (ITO) as a transparent electrode of the anode.
  • ITO indium tin oxide
  • the first hole transport layer 320 and the second hole transport layer 330 include one or more hole transport materials, and the hole transport material can be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. Those skilled in the art can refer to the prior art for selection, and this application does not make any special restrictions on this.
  • the first hole transport layer 320 is HT-24
  • the second hole transport layer 330 is HT-23 or HT-25.
  • a hole injection layer 310 may be provided between the anode 100 and the first hole transport layer 320 to enhance the ability to inject holes into the first hole transport layer 320.
  • the hole injection layer 310 may be made of benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, and the present application does not impose any particular restrictions on this.
  • the material of the hole injection layer 310 may be selected from the following compounds or any combination thereof;
  • the hole injection layer 310 is composed of PD and HT-24.
  • the organic light-emitting layer 340 may be composed of a single light-emitting layer material, or may include a main material and a doping material.
  • the organic light-emitting layer 340 is composed of a main material and a doping material, and holes injected into the organic light-emitting layer 340 and electrons injected into the organic light-emitting layer 340 may be recombined in the organic light-emitting layer 340 to form excitons, and the excitons transfer energy to the main material, and the main material transfers energy to the doping material, thereby enabling the doping material to emit light.
  • the main material of the organic light emitting layer 340 can be a metal chelate compound, a bisphenylethylene derivative, an aromatic amine derivative,
  • the present application does not impose any special restrictions on dibenzofuran derivatives or other types of materials.
  • the organic light-emitting layer 340 includes the organic compound of the present application.
  • the organic compound of the present application is used as a host material (electronic host material) of the organic light-emitting layer 340 .
  • the hole-type host material of the organic light-emitting layer 340 is
  • the guest material of the organic light-emitting layer 340 may be a compound having a condensed aromatic ring or a derivative thereof, a compound having a heteroaromatic ring or a derivative thereof, an aromatic amine derivative or other materials, and the present application does not impose any special restrictions thereon.
  • the guest material is also called a doping material or a dopant.
  • green phosphorescent dopants for green organic electroluminescent devices include, but are not limited to,
  • red phosphorescent dopants for red organic electroluminescent devices include, but are not limited to,
  • the host material of the organic light emitting layer 340 is the organic compound of the present application and RH-P, and the guest material is RD.
  • the host material of the organic light emitting layer 340 is the organic compound of the present application and GH-P, and the guest material is GD.
  • the electron transport layer 350 may be a single-layer structure or a multi-layer structure, and may include one or more electron transport materials, which may be selected from but not limited to ET-01, LiQ, benzimidazole derivatives, oxadiazole derivatives, quinoxaline derivatives or other electron transport materials, and the present application does not make any special restrictions.
  • the materials of the electron transport layer 350 include but are not limited to the following compounds:
  • the electron transport layer 350 is composed of ET-1 and LiQ.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multilayer materials such as LiF/Al, Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca.
  • a metal electrode containing magnesium and silver is included as the cathode.
  • an electron injection layer 360 is disposed between the cathode 200 and the electron transport layer 350 , and the electron injection layer 360 may include ytterbium (Yb).
  • a third aspect of the present application provides an electronic device, comprising the electronic component described in the second aspect of the present application.
  • the provided electronic device is an electronic device 400, which includes the above-mentioned organic electroluminescent device.
  • the electronic device 400 may be, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices, such as, but not limited to, a computer screen, a mobile phone screen, a television, an electronic paper, an emergency lighting lamp, an optical module, etc.
  • the compounds whose synthesis methods are not mentioned in this application are all raw materials obtained from commercial channels.
  • the present application does not particularly limit the synthesis method of the organic compound provided, and those skilled in the art can determine a suitable synthesis method based on the organic compound of the present application in combination with the preparation method provided in the preparation example section. Those skilled in the art can obtain all the organic compounds provided in the present application based on these exemplary preparation methods, and all specific preparation methods for preparing the organic compound will not be described in detail here, and those skilled in the art should not be understood as limiting the present application.
  • 3-Bromo-2-chlorodibenzofuran (15.0 g; 53.3 mmol), cuprous iodide (1.0 g; 5.3 mmol), 8-hydroxyquinaldine (1.7 g; 10.7 mmol), tetrabutylammonium hydroxide (41.5 g; 159.8 mmol), dimethyl sulfoxide (150 mL) and deionized water (200 mL) were added to a round-bottom flask protected by nitrogen, heated to 125° C. to 130° C.
  • intermediate a1-c Referring to the synthesis method of intermediate a1-c, the intermediate a1-o is replaced by reactant B in Table 2 below, and benzylamine is replaced by reactant N to synthesize the intermediates shown in Table 2 below:
  • the anode pretreatment is carried out through the following process: the thickness is On the ITO/Ag/ITO substrate, the surface is treated by using ultraviolet ozone and O 2 :N 2 plasma to increase the work function of the anode, and the surface of the ITO substrate is cleaned by using an organic solvent to remove impurities and oil stains on the surface of the ITO substrate.
  • PD:HT-24 was co-evaporated at an evaporation rate ratio of 2%:98% to form a film with a thickness of
  • a hole injection layer (HIL) is then formed by vacuum evaporating HT-24 to form a layer with a thickness of
  • the first hole transport layer is formed by a plurality of holes.
  • Compound HT-23 is vacuum-deposited on the first hole transport layer to form a layer with a thickness of The second hole transport layer is formed by a plurality of holes.
  • compound A1-1: GH-P: GD were co-evaporated at an evaporation rate ratio of 47%: 47%: 6% to form a layer with a thickness of of an organic light-emitting layer (green light-emitting layer).
  • ETL electron transport layer
  • Mg magnesium
  • Ag silver
  • CP-1 is vacuum-evaporated on the cathode to form a layer with a thickness of An organic covering layer is formed to complete the manufacture of a green organic electroluminescent device.
  • An organic electroluminescent device was prepared in the same manner as in Example 1, except that the compounds in Table 7 below (collectively referred to as "Compound X") were used instead of Compound A1-1 in Example 1 when preparing the organic light-emitting layer.
  • An organic electroluminescent device was prepared in the same manner as in Example 1, except that Compound I, Compound II, Compound III and Compound IV were used to replace Compound A1-1 in Example 1 when preparing the organic light-emitting layer.
  • the green organic electroluminescent devices prepared in Examples 1 to 23 and Comparative Examples 1 to 4 were subjected to performance tests. Specifically, the IVL performance of the devices was tested under the condition of 10 mA/cm 2 , and the T95 device life was tested under the condition of 15 mA/cm 2. The test results are shown in Table 7.
  • the organic compound of the present application When the organic compound of the present application is used as an organic light-emitting layer material of a green organic electroluminescent device, it has a relatively low driving voltage and higher efficiency compared to compound I and compound III.
  • the reason for this may be that the direct connection between triazine and the rigid parent core structure in the organic compound of the present application makes the molecular structure have a larger conjugation range.
  • the organic compound of the present application has a higher efficiency when the driving voltage is close.
  • the reason for this may be that the molecular structure has a higher first triplet energy level due to the specific inter-group fusion mode of the core structure.
  • the triazine group is connected to the benzene ring containing the fused oxazole, the performance is optimal.
  • the anode pretreatment is carried out through the following process: the thickness is On the ITO/Ag/ITO substrate, the surface is treated by ultraviolet ozone and O 2 :N 2 plasma to increase the work function of the anode, and the surface of the ITO/Ag/ITO substrate is cleaned by an organic solvent to remove impurities and oil stains on the surface of the substrate.
  • PD:HT-24 was co-evaporated at an evaporation rate ratio of 2%:98% to form a film with a thickness of A hole injection layer (HIL) of 100 mm thick was then formed by vacuum evaporating HT-24 on the hole injection layer.
  • the first hole transport layer is formed by a plurality of holes.
  • Compound HT-25 is vacuum evaporated on the first hole transport layer to form a layer with a thickness of
  • the second hole transport layer is formed by a plurality of holes.
  • RH-P Compound A1-21: RD were co-evaporated at an evaporation rate ratio of 49%: 49%: 2% to form a layer with a thickness of of an organic light-emitting layer (red light-emitting layer).
  • ETL electron transport layer
  • Mg magnesium
  • Ag silver
  • CP-1 is vacuum-evaporated on the cathode to form a layer with a thickness of An organic covering layer is formed, thereby completing the manufacture of a red organic electroluminescent device.
  • An organic electroluminescent device was prepared by the same method as in Example 24, except that the compounds in the following Table 8 (collectively referred to as "Compound Y") were used instead of Compound A1-21 in Example 24 when preparing the organic light-emitting layer.
  • An organic electroluminescent device was prepared by the same method as in Example 24, except that Compound V and Compound VI were used to replace Compound A1-21 in Example 24 respectively when preparing the organic light-emitting layer.
  • the red organic electroluminescent devices prepared in Examples 24 to 31 and Comparative Examples 5 and 6 were subjected to performance tests. Specifically, the IVL performance of the devices was tested under the condition of 10 mA/cm 2 , and the T95 device life was tested under the condition of 15 mA/cm 2. The test results are shown in Table 8.
  • the current efficiency is at least increased by 19.0%, the life is at least increased by 11.1%, and the driving voltage is at least reduced by 0.13V.
  • the device when the organic compound of the present application is used as the main material of the organic light-emitting layer of an organic electroluminescent device, the device can have a significantly lower driving voltage, higher efficiency, and longer T95 life.
  • the reason for this may be that triazine as an electron transport group has a higher aromatic conjugation effect and photoelectric stability than pyrimidine.
  • the device when the organic compound of the present application is used as the main material of the organic light-emitting layer of an organic electroluminescent device, the device can have a higher luminous efficiency while maintaining a lower driving voltage; the reason for this may be that the special fusion mode between the specific groups in the core structure of the organic compound of the present application makes the first triplet energy level of the compound higher, and the LUMO energy level is more matched with the adjacent layer.

Abstract

本申请属于有机电致发光技术领域,涉及一种有机化合物及使用其的有机电致发光器件和电子装置,该有机化合物具有如式1所示的结构,将该有机合物用于有机电致发光器件中,能够显著改善有机电致发光器件的性能。

Description

有机化合物、有机电致发光器件和电子装置
相关申请的交叉引用
本申请要求于2022年12月23日递交的申请号为202211660999.3的中国专利申请以及2023年1月4日递交的申请号为202310005537.6的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机化合物技术领域,尤其涉及一种有机化合物及包含该有机化合物的有机电致发光器件和电子装置。
背景技术
随着电子技术的发展和材料科学的进步,用于实现电致发光的电子元件的应用范围越来越广泛。该类电子元件通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括有机发光层、位于有机发光层与阳极之间的空穴传输层、位于有机发光层与阴极之间的电子传输层。以有机电致发光器件为例,其一般包括依次层叠设置的阳极、空穴传输层、有机发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向有机发光层移动,阳极侧的空穴也向有机发光层移动,电子和空穴在有机发光层结合形成激子,激子处于激发态向外释放能量,进而使得有机发光层对外发光。
现有技术虽然公开了用于有机电致发光器件的有机发光层的主体材料,然而,依然有必要继续研发新型的材料,以进一步提高电子元器件的性能。
发明内容
为解决上述问题,本申请目的在于提供一种有机化合物及包含该有机化合物的有机电致发光器件和电子装置,所述有机化合物可以改善有机电致发光器件和电子装置的性能,例如降低器件的驱动电压,提升器件效率和寿命。
本申请的第一方面,提供一种有机化合物,该有机化合物具有如式1所示的结构:
其中,X和Y中的一个为O,另一个为
L1和L2相同或不同,分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基或者碳原子数为3~30的取代或未取代的亚杂芳基;
Ar1、Ar2和Ar3相同或不同,分别独立地选自碳原子数为6~40的取代或未取代的芳基或者碳原子数为3~40的取代或未取代的杂芳基;
L1、L2、Ar1、Ar2和Ar3中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为 6~20的芳基、碳原子数为6~20的氘代芳基、碳原子数为6~20的卤代芳基、碳原子数为5~20的杂芳基或者碳原子数为3~10的环烷基;
各R1和R2相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基、碳原子数为6~20的卤代芳基、碳原子数为5~18的杂芳基或碳原子数为3~10的环烷基;
n1表示R1的个数,n1选自0、1或2,且当n1大于1时,各R1相同或不同;
n2表示R2的个数,n2选自0、1、2、3或4,且当n2大于1时,各R2相同或不同。
本申请的第二方面,提供一种有机电致发光器件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的有机化合物。
本申请的第三方面,提供了一种电子装置,包括第二方面所述的有机电致发光器件。
本申请有机化合物中的核心结构是噁唑和苯并呋喃基团通过特定方式同时稠合于苯基上形成的基团,该基团和三嗪基团通过单键连接得到本申请的有机化合物;此类结构具有高的芳香共轭效应,带来高的电子迁移率,进而具有良好的能量传输特性、更合适的能级特性以及高的分子结构稳定性。将该类化合物应用于有机电致发光器件中的有机发光层时,可有效改善器件的驱动电压及发光效率,同时保持良好的寿命特性。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。
图1是本申请一种的有机电致发光器件的结构示意图。
图2是本申请一种的电子装置的结构示意图。
附图标记
100、阳极             200、阴极           300、功能层        310、空穴注入层
320、第一空穴传输层   330、第二空穴传输层 340、有机发光层 350、电子传输层
360、电子注入层       400、电子装置
具体实施方式
针对现有技术存在的上述问题,本申请的目的在于提供一种有机化合物及包含该有机化合物的有机电致发光器件和电子装置,所述有机化合物可以改善有机电致发光器件和电子装置的性能,例如降低器件的驱动电压,提升器件效率和寿命。
本申请的第一方面,提供一种有机化合物,该有机化合物具有如式1所示的结构:
其中,X和Y中的一个为O,另一个为
L1和L2相同或不同,分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基或者碳原子数为3~30的取代或未取代的亚杂芳基;
Ar1、Ar2和Ar3相同或不同,分别独立地选自碳原子数为6~40的取代或未取代的芳基或者碳原子数为3~40的取代或未取代的杂芳基;
L1、L2、Ar1、Ar2和Ar3中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基、碳原子数为6~20的卤代芳基、碳原子数为5~20的杂芳基或者碳原子数为3~10的环烷基;
各R1和R2相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基、碳原子数为6~20的卤代芳基、碳原子数为5~18的杂芳基或碳原子数为3~10的环烷基;
n1表示R1的个数,n1选自0、1或2,且当n1大于1时,各R1相同或不同;
n2表示R2的个数,n2选自0、1、2、3或4,且当n2大于1时,各R2相同或不同。
本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……各自独立地为”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。举例来讲,“取代或未取代的芳基”是指具有取代基Rc的芳基或者没有取代的芳基。其中上述的取代基即Rc例如可以为氘、氰基、卤素基团、烷基、卤代烷基、氘代烷基、芳基、氘代芳基、卤代芳基、杂芳基、环烷基等。取代的个数可以是1个或多个。
本申请中,“多个”是指2个以上,例如2个、3个、4个、5个、6个,等。
本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L1为碳原子数为12的取代的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。
本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。芳基的实例可以包括但不限 于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、三亚苯基、苝基、苯并[9,10]菲基、芘基、苯并荧蒽基、基、螺二芴基等。本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
本申请中,三联苯基包括
本申请中,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
本申请中,取代或未取代的芳基的碳原子数可以为6、10、12、13、14、15、16、17、18、20、24、25、30、31、32、33、35、36、37、38、39或40。在一些实施方案中,取代或未取代的芳基是碳原子数为6~30的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~25的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~20的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~12的取代或未取代的芳基。
本申请中,芴基可以被1个或多个取代基取代,其中,任意两个相邻的取代基可以彼此结合而形成环结构。在上述芴基被取代的情况下,取代的芴基可以为: 等,但并不限定于此。
本申请中,作为L1、L2、Ar1、Ar2和Ar3的取代基的芳基例如但不限于,苯基、萘基等等。
在本申请中,杂芳基是指环中包含1、2、3、4、5或6个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的一种或多种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、***基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。
本申请中,取代或未取代的杂芳基的碳原子数可以选自3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、20、21、22、23、24、25、26、27、28、29、30、31、32、33、35、36、37、38、39或40。在一些实施方案中,取代或未取代的杂芳基是碳原子数为5~20的取代或未取代的杂芳基,另一些实施方式中,取代或未取代的杂芳基是碳原子数为12~24的取代或未取代的杂芳基,另一些实施方式中,取代或未取代的杂芳基是碳原子数为12~18的取代或未取代的杂芳基。
本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、卤代烷基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
本申请中,碳原子数为1~10的烷基可以包括碳原子数1至10的直链烷基和碳原子数3至10 的支链烷基。烷基的碳原子数例如可以为1、2、3、4、5、6、7、8、9、10个,烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基等。
本申请中,卤素基团例如可以为氟、氯、溴、碘。
本申请中,三烷基硅基的具体实例包括但不限于,三甲基硅基等。
本申请中,卤代烷基的具体实例包括但不限于,三氟甲基。
本申请中,氘代烷基的具体实例包括但不限于,三氘代甲基。
本申请中,碳原子数为3~10的环烷基的碳原子数例如可以为3、4、5、6、7、8或10。环烷基的具体实例包括但不限于,环戊基、环己基、金刚烷基。
本申请中,不定位连接键涉及的从环体系中伸出的单键其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式。
在本申请一些实施方式中,X为O,Y为
在本申请另一些实施方式中,X为Y为O。
在本申请一些实施方式中,所述有机化合物具有式A或式B所示的结构:
在本申请一些实施方式中,所述有机化合物具有式1-1、式1-2、式1-3或式1-4所示的结构:
在本申请一些实施方式中,所述有机化合物具有式A1、式A2、式A3、式A4、式A5、式A6、式B1、式B2、式B3、式B4、式B5或式B6所示的结构:
在本申请一些实施方式中,L1和L2相同或不同,分别独立地选自单键、碳原子数为6~20的取代或未取代的亚芳基或者碳原子数为12~20的取代或未取代的亚杂芳基。
可选地,L1和L2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基或苯基。
进一步可选地,L1和L2相同或不同,分别独立地选自单键、碳原子数为6~12的取代或未取代的亚芳基或者碳原子数为12~18的取代或未取代的亚杂芳基。
在本申请一些实施方式中,L1和L2相同或不同,分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并呋喃基或者取代或未取代的亚二苯并噻吩基。
可选地,L1和L2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
进一步可选地,L1和L2中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
在本申请一些实施方式中,L1和L2相同或不同,分别独立地选自单键、取代或未取代的基团V,未取代的基团V选自以下基团组成的组:
其中,表示化学键;取代的基团V含有一个或多个取代基,所述取代基选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基;且当所述取代的基团V含有多个取代基时,所述取代基相同或者不相同。
具体地,L1和L2相同或不同,分别独立地选自单键或以下基团组成的组:
在本申请一些实施方式中,Ar1和Ar2相同或不同,分别独立地选自碳原子数为6~25的取代或未取代的芳基或者碳原子数为12~24的取代或未取代的杂芳基。
可选地,Ar1和Ar2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基、碳原子数为1~5的氘代烷基、五氘代苯基或苯基。
在本申请另一些实施方式中,Ar1和Ar2相同或不同,分别独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的三亚苯基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基或者取代或未取代的二苯并噻吩基。
可选地,Ar1和Ar2中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、五氘代苯基或苯基。
在本申请一些实施方式中,Ar1和Ar2相同或不同,分别独立地选自取代或未取代的基团W,未取代的基团W选自如下基团组成的组:
其中,表示化学键;取代的基团W中具有一个或两个以上取代基,取代基各自独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基或五氘代苯基,且当基团W上的取代基个数大于1时,各取代基相同或不同。
可选地,Ar1和Ar2相同或不同,分别独立地选自以下基团组成的组:
具体地,Ar1和Ar2相同或不同,分别独立地选自如下基团组成的组:

在本申请一些实施方式中,Ar3选自碳原子数为6~12的取代或未取代的芳基。
可选地,Ar3中的取代基相同或不同,分别独立地选自氘、氟、氰基、碳原子数为1~5的烷基、五氘代苯基或苯基。
在本申请一些实施方式中,Ar3选自取代或未取代的苯基、取代或未取代的萘基或者取代或未取代的联苯基。
可选地,Ar3中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、五氘代苯基或苯基。
具体地,Ar3选自如下基团组成的组:
在本申请一些实施方式中,相同或不同,分别独立地选自如下基团组成的组:

具体地,相同或不同,分别独立地选自如下基团组成的组:

在本申请一些实施方式中,式1中选自以下基团组成的组:

具体地,式1中选自以下基团组成的组:

在本申请一些实施方式中,各R1和R2相同或不同,分别独立地为氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
在本申请一些实施方式中,n1和n2均为0。
在本申请一些实施方式中,所述有机化合物选自化合物组成的组:









本申请的第二方面,本申请提供一种有机电致发光器件,包括相对设置的阳极和阴极,以及设于阳极和阴极之间的功能层;所述功能层包含本申请的有机化合物。
在本申请一些实施方式中,有机电致发光器件为红色有机电致发光器件。
在本申请另一些实施方式中,有机电致发光器件为绿色有机电致发光器件。
如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、第一空穴传输层320、第二空穴传输层330、有机发光层340、电子传输层350、电子注入层360和阴极200。
可选地,阳极100包括以下阳极材料,其可选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO∶Al或SnO2∶Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,第一空穴传输层320和第二空穴传输层330包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物。本领域技术人员可参照现有技术选择,本申请对此不做特殊的限定。在本申请一些实施方式中,第一空穴传输层320为HT-24,第二空穴传输层330为HT-23或HT-25。

可选地,在阳极100和第一空穴传输层320之间还可以设置有空穴注入层310,以增强向第一空穴传输层320注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。所述空穴注入层310的材料例如可以选自如下化合物或者其任意组合;
在本申请一些实施方式中,空穴注入层310由PD和HT-24组成。
可选地,有机发光层340可以由单一发光层材料组成,也可以包括主体材料和掺杂材料。可选地,有机发光层340由主体材料和掺杂材料组成,注入有机发光层340的空穴和注入有机发光层340的电子可以在有机发光层340复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给掺杂材料,进而使得掺杂材料能够发光。
有机发光层340的主体材料可以为金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、 二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。
在本申请一种实施方式中,有机发光层340包含本申请有机化合物。
可选地,本申请有机化合物用作有机发光层340的主体材料(电子型主体材料)。
在本申请一些实施方式中,有机发光层340的空穴型主体材料为
有机发光层340的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。客体材料又称为掺杂材料或掺杂剂。
用于绿色有机电致发光器件的绿光磷光掺杂剂的具体实例包括但不限于,
用于红色有机电致发光器件的红光磷光掺杂剂的具体实例包括但不限于,

在一种更具体的实施方式中,有机发光层340的主体材料为本申请有机化合物和RH-P,客体材料为RD。
在另一种更具体的实施方式中,有机发光层340的主体材料为本申请有机化合物和GH-P,客体材料为GD。
电子传输层350可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自但不限于,ET-01、LiQ、苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对比不作特殊限定。所述电子传输层350的材料包含但不限于以下化合物:
在本申请一些具体实施方式中,电子传输层350由ET-1和LiQ组成。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO2/Al、LiF/Ca、LiF/Al和BaF2/Ca。可选地,包括包含镁和银的金属电极作为阴极。
在本申请一些实施方式中,在阴极200和电子传输层350之间设置有电子注入层360,电子注入层360可以包括镱(Yb)。
本申请第三方面提供一种电子装置,包括本申请第二方面所述的电子元件。
按照一种实施方式,如图2所示,所提供的电子装置为电子装置400,其包括上述有机电致发光器件。电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
下面结合合成实施例来具体说明本申请的有机化合物的合成方法,但是本申请并不因此而受到任何限制。
本申请中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
本申请对提供的有机化合物的合成方法没有特别限定,本领域技术人员可以根据本申请的有机化合物结合制备例部分提供的制备方法确定合适的合成方法。本领域技术人员可以根据这些示例性的制备方法得到本申请提供的所有有机化合物,在此不再详述制备该有机化合物的所有具体制备方法,本领域技术人员不应理解为对本申请的限制。
合成实施例
所属领域的专业人员应该认识到,本申请所描述的化学反应可以用来合适地制备许多本申请的有机化合物,且用于制备本申请的化合物的其它方法都被认为是在本申请的范围之内。例如,根据本申请那些非例证的化合物的合成可以成功地被所属领域的技术人员通过修饰方法完成,如适当的保护干扰基团,通过利用其他已知的试剂除了本申请所描述的,或将反应条件做一些常规的修改。本申请中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
中间体a1-o的合成:
将3-溴-2-氯二苯并呋喃(15.0g;53.3mmol),碘化亚铜(1.0g;5.3mmol),8-羟基喹哪啶(1.7g;10.7mmol),四丁基氢氧化铵(41.5g;159.8mmol),二甲基亚砜(150mL)和去离子水(200mL)加入氮气保护的圆底烧瓶中,搅拌条件下升温至125℃~130℃,反应36小时;降至室温,向反应液中加入二氯甲烷(500mL)和去离子水(500mL),分液,有机相水洗后使用无水硫酸镁干燥,减压除去溶剂;所得粗品使用二氯甲烷/正庚烷体系进行硅胶柱色谱提纯,得到白色固体中间体a1-o(8.4g;收率:72%)。
参照中间体a1-o的合成方法,以下表1中的反应物A替代3-溴-2-氯二苯并呋喃,合成下表1所示的中间体:
表1

中间体a1-c的合成:
将中间体a1-o(8.1g;37.2mmol),苯甲胺(8.0g;74.3mmol),2,2,6,6-四甲基哌啶氧化物(11.6g;74.3mmol),过硫酸铵(17.0g;74.3mmol)和乙腈(70mL)加入氮气保护的圆底烧瓶中,搅拌条件下,于50℃~55℃反应72小时;降至室温,向反应液中加入二氯甲烷(150mL)和去离子水(200mL),分液,有机相水洗后使用无水硫酸镁干燥,减压除去溶剂;所得粗品使用二氯甲烷/正庚烷作为溶剂进行硅胶柱色谱提纯,得到白色固体中间体a1-c(5.0g;收率:42%)。
参照中间体a1-c的合成方法,以下表2中的反应物B替代中间体a1-o,反应物N替代苯甲胺,合成下表2所示的中间体:
表2

中间体a1-b的合成:
将中间体a1-c(4.9g;15.3mmol),联硼酸频哪醇酯(5.8g;23.0mmol),三(二亚苄基丙酮)二钯(0.1g;0.2mmol),2-二环己基磷-2’,4’,6’-三异丙基联苯(0.1g;0.3mmol),醋酸钾(2.3g;23.0mmol)和1,4-二氧六环(50mL)加入氮气保护的圆底烧瓶中,搅拌条件下于100℃~105℃反应24小时;降至室温,向反应液中加入二氯甲烷(100mL)和去离子水(150mL),分液,有机相水洗后使用无水硫酸镁干燥,减压除去溶剂;所得粗品使用二氯甲烷/正庚烷作为溶剂进行硅胶柱色谱提纯,得到白色固体中间体a1-b(4.7g;收率:75%)。
参照中间体a1-b的合成方法,以下表3中的反应物C替代中间体a1-c,合成下表3所示的中间体:
表3

化合物A1-1的合成:
将中间体a1-b(4.5g;10.9mmol),2-氯-4,6-二苯基-1,3,5-三嗪(3.1g;11.5mmol),四(三苯基膦)钯(0.3g;0.2mmol),碳酸钾(3.0g;21.9mmol),四丁基溴化铵(0.7g;2.2mmol),甲苯(40mL),乙醇(10mL)和去离子水(10mL)加入含有氮气保护的圆底烧瓶中,升温至75℃~80℃,搅拌反应16小时;将反应液降至室温,加入去离子水(80mL),分液,有机相水洗后使用无水硫酸镁干燥,减压除去溶剂;所得粗品使用甲苯/正庚烷溶剂体系进行硅胶柱色谱提纯,而后使用甲苯/正庚烷溶剂体系进行重结晶提纯,得到白色固体化合物A1-1(3.8g;收率:67%)。
参照化合物A1-1的合成方法,以表4中的反应物D替代中间体a1-b,反应物E替代2-氯-4,6-二苯基-1,3,5-三嗪,合成下表4所示的化合物:
表4




部分化合物质谱数据如下表5所示。
表5

部分化合物的核磁数据如下表6所示。
表6
有机电致发光器件的制备
实施例1:绿色有机电致发光器件的制备
先通过以下过程进行阳极预处理:在厚度依次为的ITO/Ag/ITO基板上,利用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极的功函数,采用有机溶剂清洗ITO基板表面,以清除ITO基板表面的杂质及油污。
在实验基板(阳极)上,将PD:HT-24以2%:98%的蒸镀速率比例进行共同蒸镀,形成厚度为的空穴注入层(HIL),然后在空穴注入层上真空蒸镀HT-24形成厚度为的第一空穴传输层。
在第一空穴传输层上真空蒸镀化合物HT-23,形成厚度为的第二空穴传输层。
在第二空穴传输层上,将化合物A1-1:GH-P:GD以47%:47%:6%的蒸镀速率比例进行共同蒸镀,形成厚度为的有机发光层(绿色发光层)。
在有机发光层上,将化合物ET-1和LiQ以1:1的重量比进行混合并蒸镀形成厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。
此外,在上述阴极上真空蒸镀CP-1,形成厚度为的有机覆盖层,从而完成绿色有机电致发光器件的制造。
实施例2~23
除了在制作有机发光层时,以下表7中的化合物(统称为“化合物X”)代替实施例1中的化合物A1-1之外,利用与实施例1相同的方法制备有机电致发光器件。
比较例1~4
除了在制作有机发光层时,分别以化合物Ⅰ、化合物Ⅱ、化合物Ⅲ和化合物Ⅳ代替实施例1中的化合物A1-1之外,利用与实施例1相同的方法制备有机电致发光器件。
其中,在制备各实施例及比较例时,所用的主要化合物结构如下:

对实施例1~23和比较例1~4制备所得的绿色有机电致发光器件进行性能测试,具体在10mA/cm2的条件下测试了器件的IVL性能,T95器件寿命在15mA/cm2的条件下进行测试,测试结果见表7。
表7

参考上表7可知,相比于比较例1~4,将本申请化合物用做绿色有机电致发光器件的主体材料时,器件的电流效率至少提高了12.8%,T95寿命至少提高了14.7%。
本申请有机化合物用作绿色有机电致发光器件的有机发光层材料时,相比化合物I和化合物III,具有相对较低的驱动电压和更高的效率,究其原因,可能在于本申请的有机化合物中三嗪和刚性母核结构间的直接连接方式使分子结构具有更大共轭范围。而相比化合物II和化合物IV本申请有机化合物在驱动电压接近的情况下,具有较高的效率,究其原因,可能在于由于核心结构特定的基团间稠合方式带来的分子结构较高的第一三重态能级。特别地,当三嗪类基团连接在含有稠合噁唑的苯环上时,性能最优。
实施例24:红色有机电致发光器件的制备
先通过以下过程进行阳极预处理:在厚度依次为的ITO/Ag/ITO基板上,利用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极的功函数,采用有机溶剂清洗ITO/Ag/ITO基板表面,以清除基板表面的杂质及油污。
在实验基板(阳极)上,将PD:HT-24以2%:98%的蒸镀速率比例进行共同蒸镀,形成厚度为的空穴注入层(HIL),然后在空穴注入层上真空蒸镀HT-24,形成厚度为的第一空穴传输层。
在第一空穴传输层上真空蒸镀化合物HT-25,形成厚度为的第二空穴传输层。
在第二空穴传输层上,将RH-P:化合物A1-21:RD以49%:49%:2%的蒸镀速率比例进行共同蒸镀,形成厚度为的有机发光层(红色发光层)。
在有机发光层上,将化合物ET-1和LiQ以1:1的重量比进行混合并蒸镀形成厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。
此外,在上述阴极上真空蒸镀CP-1,形成厚度为的有机覆盖层,从而完成红色有机电致发光器件的制造。
实施例25~31
除了在制作有机发光层时,以下表8中的化合物(统称为“化合物Y”)代替实施例24中的化合物A1-21之外,利用与实施例24相同的方法制备有机电致发光器件。
比较例5~6
除了在制作有机发光层时,分别以化合物Ⅴ和化合物Ⅵ代替实施例24中的化合物A1-21之外,利用与实施例24相同的方法制备有机电致发光器件。
其中,在制备各实施例及比较例时,所用的主要化合物结构如下:
对实施例24~31和比较例5和6制备所得的红色有机电致发光器件进行性能测试,具体在10mA/cm2的条件下测试器件的IVL性能,T95器件寿命在15mA/cm2的条件下进行测试,测试结果见表8。
表8

本申请有机化合物用作红色有机电致发光器件的有机发光层材料时,与比较例5和6相比,电流效率至少提高了19.0%,寿命至少提高了11.1%,驱动电压至少降低了0.13V。
相比较化合物V,本申请有机化合物用于有机电致发光器件的有机发光层主体材料时,可使器件具有明显较低的驱动电压,较高的效率,较长的T95寿命,究其原因,可能在于作为电子传输基团的三嗪相比嘧啶具有更高的芳香共轭效应和光电稳定性。
相比化合物VI,本申请有机化合物用于有机电致发光器件的有机发光层主体材料时,可使器件在保持较低的驱动电压情况下还兼具更高的发光效率;究其原因,可能在于,本申请有机化合物核心结构特定的基团间的特殊稠合方式,使化合物的第一三重态能级较高,同时LUMO能级与相邻层更为匹配。

Claims (13)

  1. 一种有机化合物,其特征在于,该有机化合物具有如式1所示的结构:
    其中,X和Y中的一个为O,另一个为
    L1和L2相同或不同,分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基或者碳原子数为3~30的取代或未取代的亚杂芳基;
    Ar1、Ar2和Ar3相同或不同,分别独立地选自碳原子数为6~40的取代或未取代的芳基或者碳原子数为3~40的取代或未取代的杂芳基;
    L1、L2、Ar1、Ar2和Ar3中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基、碳原子数为6~20的卤代芳基、碳原子数为5~20的杂芳基或者碳原子数为3~10的环烷基;
    各R1和R2相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基、碳原子数为6~20的卤代芳基、碳原子数为5~20的杂芳基或碳原子数为3~10的环烷基;
    n1表示R1的个数,n1选自0、1或2,且当n1大于1时,各R1相同或不同;
    n2表示R2的个数,n2选自0、1、2、3或4,且当n2大于1时,各R2相同或不同。
  2. 根据权利要求1所述的有机化合物,其特征在于,所述有机化合物具有式1-1、式1-2、式1-3或式1-4所示的结构:
  3. 根据权利要求1所述的有机化合物,其特征在于,L1和L2相同或不同,分别独立地选自单键、碳原子数为6~20的取代或未取代的亚芳基或者碳原子数为12~20的取代或未取代的亚杂芳基;
    可选地,L1和L2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基或苯基。
  4. 根据权利要求1所述的有机化合物,其特征在于,L1和L2相同或不同,分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并呋喃基或者取代或未取代的亚二苯并噻吩基;
    可选地,L1和L2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
  5. 根据权利要求1所述的有机化合物,其特征在于,Ar1和Ar2相同或不同,分别独立地选自碳原子数为6~25的取代或未取代的芳基或者碳原子数为12~24的取代或未取代的杂芳基;
    可选地,Ar1和Ar2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基、碳原子数为1~5的氘代烷基、五氘代苯基或苯基。
  6. 根据权利要求1所述的有机化合物,其特征在于,Ar1和Ar2相同或不同,分别独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的三亚苯基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基或者取代或未取代的二苯并噻吩基;
    可选地,Ar1和Ar2中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、五氘代苯基或苯基。
  7. 根据权利要求1所述的有机化合物,其特征在于,Ar3选自碳原子数为6~12的取代或未取代的芳基;
    可选地,Ar3中的取代基相同或不同,分别独立地选自氘、氟、氰基、碳原子数为1~5的烷基、五氘代苯基或苯基。
  8. 根据权利要求1所述的有机化合物,其特征在于,Ar3选自取代或未取代的苯基、取代或未取代的萘基或者取代或未取代的联苯基;
    可选地,Ar3中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、五氘代苯基或苯基。
  9. 根据权利要求1所述的有机化合物,其特征在于,相同或不同,分别独立地选自以下基团组成的组:

  10. 根据权利要求1所述的有机化合物,其特征在于,式1中选自以下基团组成的组:

  11. 根据权利要求1所述的有机化合物,其特征在于,所述有机化合物选自如下化合物组成的组:










  12. 有机电致发光器件,其特征在于,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;
    所述功能层包含权利要求1~11任意一项所述的有机化合物;
    可选地,所述功能层包含有机发光层;所述有机发光层包含所述有机化合物;
    可选地,所述有机电致发光器件为绿色有机电致发光器件或者红色有机电致发光器件。
  13. 电子装置,其特征在于,包括权利要求12所述的有机电致发光器件。
PCT/CN2023/102527 2022-12-23 2023-06-26 有机化合物、有机电致发光器件和电子装置 WO2024131005A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211660999.3 2022-12-23
CN202310005537.6 2023-01-04

Publications (1)

Publication Number Publication Date
WO2024131005A1 true WO2024131005A1 (zh) 2024-06-27

Family

ID=

Similar Documents

Publication Publication Date Title
WO2022206055A1 (zh) 有机电致发光材料、电子元件及电子装置
WO2022206493A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
WO2021082504A1 (zh) 含氮化合物、电子元件和电子装置
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
WO2022170831A1 (zh) 有机电致发光材料、电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN113735861A (zh) 有机化合物及使用其的电子元件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
CN113764604B (zh) 一种组合物及包含其的电子元件和电子装置
WO2022028334A1 (zh) 含氮化合物以及包含其的电子元件和电子装置
CN114335399A (zh) 有机电致发光器件及包括其的电子装置
CN113421980A (zh) 有机电致发光器件及包含其的电子装置
WO2024131005A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2024041183A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2024098735A1 (zh) 有机化合物、有机电致发光器件及电子装置
CN115521214B (zh) 有机化合物及包含其的电子元件和电子装置
WO2023185039A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2023241137A1 (zh) 含氮化合物及有机电致发光器件和电子装置