WO2023202198A1 - 有机材料、电子元件和电子装置 - Google Patents

有机材料、电子元件和电子装置 Download PDF

Info

Publication number
WO2023202198A1
WO2023202198A1 PCT/CN2023/076636 CN2023076636W WO2023202198A1 WO 2023202198 A1 WO2023202198 A1 WO 2023202198A1 CN 2023076636 W CN2023076636 W CN 2023076636W WO 2023202198 A1 WO2023202198 A1 WO 2023202198A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
organic material
Prior art date
Application number
PCT/CN2023/076636
Other languages
English (en)
French (fr)
Inventor
马天天
呼琳琳
张鹤鸣
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2023202198A1 publication Critical patent/WO2023202198A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/49Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
    • C07C211/50Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application belongs to the technical field of organic materials, and in particular relates to an organic material and electronic components and electronic devices containing the same.
  • organic electroluminescent devices also called organic light-emitting diodes
  • This type of electronic component usually includes a cathode and an anode arranged oppositely, and a functional layer arranged between the cathode and anode.
  • the functional layer is composed of multiple organic or inorganic film layers, and generally includes an energy conversion layer, a hole transport layer located between the energy conversion layer and the anode, and an electron transport layer located between the energy conversion layer and the cathode.
  • an organic electroluminescent device as an example, it generally includes an anode, a hole transport layer, an electroluminescent layer as an energy conversion layer, an electron transport layer and a cathode that are stacked in sequence.
  • anode When a voltage is applied to the cathode and anode, the two electrodes generate an electric field. Under the action of the electric field, the electrons on the cathode side move toward the electroluminescent layer, and the holes on the anode side also move toward the luminescent layer. The electrons and holes combine in the electroluminescent layer. Excitons are formed, and the excitons release energy outwards in the excited state, thereby causing the electroluminescent layer to emit light.
  • Organic charge transport materials are a type of organic semiconductor material that can achieve directional and orderly controllable migration of carriers under the action of an electric field to transport charges when carriers (electrons or holes) are injected.
  • This type of material requires excellent electron donating properties, low ionization potential, high hole mobility, good solubility and amorphous film-forming properties, strong fluorescence properties and photostability.
  • the excellent performance of triarylamine materials among hole transport layer materials is one of the hot spots of research.
  • existing triarylamine hole transport layer materials do not perform well in terms of voltage, luminous efficiency, power and lifetime in the device. . Therefore, it is still necessary to continue to develop new materials to further improve the performance of electronic components.
  • the purpose of this application is to provide an organic material and an electronic component and electronic device containing the same.
  • the organic material can improve the performance of the electronic component and electronic device, such as reducing the driving voltage of the device. Improve device efficiency and lifespan.
  • a first aspect of the present application provides an organic material having a structure represented by Formula 1:
  • n is selected from 1, 2 or 3. When n is greater than or equal to 2, any two R 1s are the same or different, and any two R 2s are the same or different;
  • L is selected from a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms;
  • L 1 , L 2 and L 3 are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group with 3 to 30 carbon atoms. ;
  • Ar 1 and Ar 2 are independently selected from substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted di Benzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted 9,9'-spirobifluorenyl;
  • Ar 3 is selected from substituted or unsubstituted aryl groups with 6-30 carbon atoms;
  • the substituents in L, L 1 , L 2 , L 3 , Ar 1 and Ar 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-10 carbon atoms, carbon Cycloalkyl group with 3-10 carbon atoms, aryl group with 6-20 carbon atoms, heteroaryl group with 5-20 carbon atoms, deuterated aryl group with 6-20 carbon atoms, carbon number A haloaryl group with 6-20 carbon atoms and a triarylsilyl group with 18-24 carbon atoms;
  • the substituents in Ar 3 are the same or different, and are independently selected from deuterium, halogen, cyano group, alkyl group with 1 to 10 carbon atoms, deuterated alkyl group with 1 to 10 carbon atoms, and Cycloalkyl group with 3-10 carbon atoms, aryl group with 6-20 carbon atoms, deuterated aryl group with 6-20 carbon atoms, halogenated aryl group with 6-20 carbon atoms, 18 carbon atoms -24 triarylsilyl;
  • any two adjacent substituents form a ring.
  • a second aspect of the present application provides an electronic component, including an anode and a cathode arranged oppositely, and a functional layer disposed between the anode and the cathode; the functional layer includes the above-mentioned organic material.
  • a third aspect of the present application provides an electronic device, including the electronic component described in the second aspect.
  • the structure of the compound of the present application contains a triarylamine group and an aryl group, both of which are combined through the same methylene group on the cycloalkyl group, and the aromatic group in the triarylamine group is selected from several specific groups. These specific groups create a steric conjugation effect between the groups of the compound molecules. Through the spatial conjugation effect, the molecule has a suitable HOMO energy level and higher hole mobility, which is suitable for use in the hole auxiliary layer of organic electroluminescent devices; at the same time, the molecular structure has good amorphous stacking properties. It can reduce the crystallinity of the material and extend the device life; in particular, when the aromatic group in the triarylamine selects a specific group, the electron tolerance of the material can be effectively improved, thereby further improving the life of the organic electroluminescent device.
  • Figure 1 is a schematic structural diagram of an organic electroluminescent device of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device according to the present application.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments. be communicated to those skilled in the art.
  • the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided to provide a thorough understanding of embodiments of the present application.
  • the present application provides an organic material having a structure shown in Formula 1:
  • n is selected from 1, 2 or 3. When n is greater than or equal to 2, any two R 1s are the same or different, and any two R 2s are the same or different;
  • L is selected from a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 30 carbon atoms;
  • L 1 , L 2 and L 3 are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group with 3 to 30 carbon atoms. ;
  • Ar 1 and Ar 2 are independently selected from substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted di Benzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted 9,9'-spirobifluorenyl;
  • Ar 3 is selected from substituted or unsubstituted aryl groups with 6-30 carbon atoms;
  • the substituents in L, L 1 , L 2 , L 3 , Ar 1 and Ar 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-10 carbon atoms, carbon Cycloalkyl group with 3-10 carbon atoms, aryl group with 6-20 carbon atoms, heteroaryl group with 5-20 carbon atoms, deuterated aryl group with 6-20 carbon atoms, carbon number A haloaryl group with 6-20 carbon atoms and a triarylsilyl group with 18-24 carbon atoms;
  • the substituents in Ar 3 are the same or different, and are independently selected from deuterium, halogen, cyano group, alkyl group with 1 to 10 carbon atoms, deuterated alkyl group with 1 to 10 carbon atoms, and Cycloalkyl group with 3-10 carbon atoms, aryl group with 6-20 carbon atoms, deuterated aryl group with 6-20 carbon atoms, halogenated aryl group with 6-20 carbon atoms, 18 carbon atoms -24 triarylsilyl;
  • any two adjacent substituents form a ring.
  • the terms “optionally” and “optionally” mean that the subsequently described event or circumstance may occur but need not occur, and the description includes occasions where the event or circumstance does or does not occur.
  • “optionally, two adjacent substituents form a ring;” means that the two substituents can form a ring but do not have to form a ring, including: the situation where two adjacent substituents form a ring and the two phases. The adjacent substituents do not form a ring.
  • any two adjacent substituents form a ring can include two substituents on the same atom, and can also include two adjacent atoms each having one substituent. group; where, when there are two substituents on the same atom, the two substituents can form a saturated or unsaturated ring with the atom they are jointly connected to; when two adjacent atoms have one substituent each, These two substituents can be fused to form a ring. For example, when Ar 1 has 2 or two or more substituents.
  • a saturated or unsaturated cyclic group is formed, such as: benzene ring, naphthalene ring, phenanthrene ring, anthracene ring, fluorene ring, ring Pentane, cyclohexane, adamantane, etc.
  • the fluorenyl group can be substituted by 1 or 2 substituents, wherein, in the case where the above fluorenyl group is substituted, it can be: etc., but are not limited to this.
  • each...independently is and “...respectively and independently are” and “...are each independently selected from” are interchangeable, and should be understood in a broad sense. They can either be It means that in different groups, the specific options expressed by the same symbols do not affect each other. It can also mean that in the same group, the specific options expressed by the same symbols do not affect each other.
  • each q is independently 0, 1, 2 or 3
  • each R is independently selected from hydrogen, deuterium, fluorine, and chlorine.
  • Formula Q-1 represents that there are q substituents R" on the benzene ring.
  • each R can be the same or different, and the options of each R” do not affect each other;
  • Formula Q-2 indicates that there are q substituents R” on each benzene ring of biphenyl, and the R on the two benzene rings "The number of substituents q can be the same or different, each R" can be the same or different, and the options for each R" do not affect each other.
  • non-located connecting bonds refer to single bonds protruding from the ring system" ”, which means that one end of the bond can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned bonds that penetrate the bicyclic ring, and its meaning includes such as the formula (f) -1)-Any possible connection method shown in formula (f-10).
  • the dibenzofuryl group represented by the formula (X') is connected to other positions of the molecule through an unpositioned bond extending from the middle of one side of the benzene ring, Its meaning includes any possible connection method shown in formula (X'-1) to formula (X'-4).
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • the above-mentioned substituent Rc may be, for example, deuterium, halogen group, cyano group, alkyl group, cycloalkyl group, aryl group, heteroaryl group, deuterated aryl group, haloaryl group, triarylsilyl group, etc.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L 1 is a substituted arylene group having 12 carbon atoms, then all of the carbon atoms in the arylene group and the substituents thereon are 12.
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • the aryl group may be a monocyclic aryl group (e.g. phenyl) or polycyclic aryl, in other words, the aryl group can be a single-ring aryl group, a fused-ring aryl group, two or more single-ring aryl groups conjugated through a carbon-carbon bond, a conjugated through a carbon-carbon bond Connected single-ring aryl groups and fused-ring aryl groups, two or more fused-ring aryl groups conjugated through carbon-carbon bonds.
  • the condensed ring aryl group may include, for example, bicyclic condensed aryl group (such as naphthyl), tricyclic condensed aryl group (such as phenanthrenyl, fluorenyl, anthracenyl), etc.
  • Aryl groups do not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthrenyl, biphenyl, terphenyl, benzo[9,10]phenanthrenyl, pyrenyl, benzofluoranthene base, base, spirobifluorenyl base, etc.
  • the arylene group refers to a bivalent group formed by the aryl group further losing one hydrogen atom.
  • terphenyl includes
  • the substituted aryl group may be one or more hydrogen atoms in the aryl group substituted by groups such as deuterium atoms, halogen groups, cyano groups, aryl groups, heteroaryl groups, alkyl groups, cycloalkyl groups, etc. .
  • the number of carbon atoms of a substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • a substituted aryl group with a carbon number of 18 refers to the aryl group and the substituted aryl group.
  • the total number of carbon atoms in the base is 18.
  • heteroaryl refers to a monovalent aromatic ring or its derivatives containing 1, 2, 3, 4, 5, 6 or 7 heteroatoms in the ring.
  • the heteroatoms can be B, O, N, P, Si At least one of , Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic single ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyridyl Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene Thiophenyl
  • a substituted heteroaryl group may be one or more hydrogen atoms in the heteroaryl group substituted by a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, an alkyl group, a cycloalkyl group, etc. group replaced.
  • a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, an alkyl group, a cycloalkyl group, etc. group replaced.
  • the number of carbon atoms of a substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituents on the heteroaryl group.
  • the number of carbon atoms of the substituted or unsubstituted aryl group may be 6-30, for example, the number of carbon atoms may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 , 18, 19, 20, 21, 22, 23, 24, 25 or 30.
  • aryl groups as substituents include, but are not limited to, phenyl, biphenyl, naphthyl, fluorenyl, phenanthrenyl, anthracenyl, base.
  • the number of carbon atoms of the substituted or unsubstituted heteroaryl group may be 3-30, for example, the number of carbon atoms may be 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or 30.
  • heteroaryl groups as substituents include, but are not limited to, triazinyl, pyridyl, pyrimidinyl, carbazolyl, dibenzofuranyl, dibenzothienyl, quinolyl, Quinazolinyl, quinoxalinyl, isoquinolinyl, carbazolyl, N-phenylcarbazolyl.
  • the alkyl group having 1 to 10 carbon atoms may include a linear alkyl group having 1 to 10 carbon atoms and a branched alkyl group having 3 to 10 carbon atoms.
  • the number of carbon atoms of the alkyl group may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-octyl, 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl, etc.
  • the halogen group can be, for example, fluorine, chlorine, bromine, or iodine.
  • the number of carbon atoms of the cycloalkyl group having 3 to 10 carbon atoms may be, for example, 3, 4, 5, 6, 7, 8 or 10.
  • Specific examples of cycloalkyl include, but are not limited to, cyclopentyl and cyclohexyl.
  • triarylsilyl groups with carbon atoms of 18-24 include, but are not limited to, triphenylsilyl groups and the like.
  • deuterated alkyl groups having 1 to 10 carbon atoms include, but are not limited to, trideuterated methyl.
  • deuterated aryl groups with 6 to 20 carbon atoms include, but are not limited to, monodeuterated phenyl, dideuterated phenyl, trideuterated phenyl, tetradeuterated phenyl, and pentadeuterated phenyl. Substituted phenyl.
  • halogenated aryl groups with 6 to 20 carbon atoms include, but are not limited to, monofluorophenyl, difluorophenyl, trifluorophenyl, tetrafluorophenyl, pentafluorophenyl, etc. Substituted phenyl.
  • the organic material has the structure shown in Formula 1-1 or Formula 1-2:
  • each R 1 and each R 2 are hydrogen.
  • n is selected from 1 or 2.
  • L is selected from a substituted or unsubstituted arylene group with 6-15 carbon atoms, and a substituted or unsubstituted heteroarylene group with 12-20 carbon atoms.
  • the substituents in L are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 5 carbon atoms, phenyl, naphthyl or biphenyl group.
  • L is selected from substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene, substituted or unsubstituted anthracene, substituted Or unsubstituted phenanthrene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted carbazolylene group, substituted or unsubstituted dibenzofurylene group, substituted or unsubstituted dibenzothienylene group .
  • the substituents in L are the same or different, and are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, naphthyl, biphenyl or phenyl.
  • L is selected from a substituted or unsubstituted group W, wherein the unsubstituted group W is selected from the group consisting of:
  • the substituted group W has one or more substituents, and the substituents are independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, phenyl, and naphthyl. or biphenyl, and when the number of substituents is greater than 1, each substituted The basis is the same or different.
  • L is selected from the group consisting of:
  • L 1 , L 2 and L 3 are the same or different, and are independently selected from single bonds or phenylene groups.
  • L 1 , L 2 and L 3 are the same or different, and are independently selected from the group consisting of single bonds or the following groups:
  • the substituents in Ar 1 and Ar 2 are the same or different, and are independently selected from deuterium, halogen groups, cyano groups, alkyl groups with 1 to 5 carbon atoms, and Deuterated alkyl group with 1-5 carbon atoms, aryl group with 6-12 carbon atoms, deuterated aryl group with 6-12 carbon atoms, haloaryl group or triphenyl group with 6-12 carbon atoms Silicon based;
  • any two adjacent substituents form a saturated or unsaturated ring with 5-13 carbon atoms.
  • any two adjacent substituents can form cyclohexane cyclopentane benzene ring naphthalene ring or fluorene ring
  • the substituents in Ar 1 and Ar 2 are the same or different, and are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl , naphthyl, biphenyl, trideuterated methyl, pentadeuterated phenyl, monofluorophenyl or triphenylsilyl.
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted group V, wherein unsubstituted group V is selected from the group of the following groups:
  • the substituted group V has one or more substituents, and the substituents in the substituted group V are independently selected from deuterium, fluorine, cyano, phenyl, methyl, ethyl, n-propyl , isopropyl, tert-butyl, phenyl, naphthyl, biphenyl, trideuterated methyl, pentadeuterated phenyl, monofluorophenyl or triphenylsilyl group, and when the base When the number of substituents on group V is greater than 1, each substituent may be the same or different.
  • Ar 1 and Ar 2 are the same or different, and are independently selected from the group consisting of the following groups:
  • Ar 3 is selected from substituted or unsubstituted aryl groups with carbon atoms of 6-25.
  • the substituents in Ar 3 are the same and different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-5 carbon atoms, and deuterated alkyl group with 1-5 carbon atoms. or phenyl;
  • any two adjacent substituents form a saturated or unsaturated ring with 5-13 carbon atoms.
  • any two adjacent substituents can form cyclohexane cyclopentane benzene ring naphthalene ring or fluorene ring
  • Ar 3 is selected from substituted or unsubstituted aryl groups having 6 to 20 carbon atoms.
  • Ar 3 is selected from substituted or unsubstituted aryl groups having 6 to 15 carbon atoms.
  • Ar 3 is selected from substituted or unsubstituted aryl groups having 6 to 12 carbon atoms.
  • Ar 3 is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted fluorenyl, substituted or unsubstituted 9,9'-spirobifluorenyl.
  • the substituents in Ar 3 are the same and different, and are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, trideuterated methyl or benzene base.
  • Ar 3 is selected from a substituted or unsubstituted group G, wherein the unsubstituted group G is selected from the following group:
  • the substituted group G has one or more substituents, and the substituents in the substituted group G are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, A group consisting of tert-butyl, trideuterated methyl or phenyl, and when the number of substituents on group G is greater than 1, each substituent may be the same or different.
  • Ar 3 is selected from the group consisting of:
  • the organic material is selected from the group consisting of the following compounds:
  • the present application provides an electronic component, including an anode and a cathode arranged oppositely, and a functional layer disposed between the anode and the cathode; the functional layer contains the organic compound of the present application.
  • the electronic component is an organic electroluminescent device.
  • the electronic component is an organic electroluminescent device.
  • the organic electroluminescent device may include an anode 100 , a hole transport layer 320 , a hole auxiliary layer 330 , an organic light emitting layer 340 , an electron transport layer 350 and a cathode 200 that are stacked in sequence.
  • the organic electroluminescent device is a red organic electroluminescent device.
  • the anode 100 includes an anode material, which is optionally a material with a large work function that facilitates injection of holes into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO2 :Sb ; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto.
  • a transparent electrode including indium tin oxide (ITO) as an anode is preferred.
  • the hole transport layer 320 includes one or more hole transport materials.
  • the hole transport materials may be selected from carbazole polymers, carbazole-linked triarylamine compounds, or other types of compounds. Those skilled in the art The selection can be made with reference to the existing technology, and this application does not impose special limitations on this. In some embodiments of the present application, the hole transport layer 320 is HT-15.
  • the hole auxiliary layer 330 is an organic material of the present application.
  • a hole injection layer 310 may also be provided between the anode 100 and the hole transport layer 320 to enhance the ability to inject holes into the hole transport layer 320.
  • the hole injection layer 310 can be made of benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the material of the hole injection layer 310 may, for example, be selected from the following compounds or any combination thereof;
  • the hole injection layer 310 is composed of HAT-CN.
  • the organic light-emitting layer 340 may be composed of a single light-emitting layer material, or may include a host material and a doping material.
  • the organic light-emitting layer 340 is composed of a host material and a doping material. The holes injected into the organic light-emitting layer 340 and the electrons injected into the organic light-emitting layer 340 can recombine in the organic light-emitting layer 340 to form excitons, and the excitons transfer energy. To the host material, the host material transfers energy to the doping material, thereby enabling the doping material to emit light.
  • the main material of the organic light-emitting layer 340 may be metal chelate compounds, bistyryl derivatives, aromatic amine derivatives, dibenzofuran derivatives or other types of materials, which are not specifically limited in this application.
  • the host material of the organic light-emitting layer 340 is RH-01.
  • the guest material of the organic light-emitting layer 340 may be a compound with a condensed aryl ring or its derivatives, a compound with a heteroaryl ring or its derivatives, an aromatic amine derivative or other materials, which is not specified in this application. limit. Guest materials are also called doping materials or dopants. Specific examples of red phosphorescent dopants for red organic electroluminescent devices include, but are not limited to,
  • the host material of the organic light-emitting layer 340 is RH-01, and the guest material is Ir(piq) 2 (acac).
  • the electron transport layer 350 may have a single-layer structure or a multi-layer structure, and may include one or more electron transport materials.
  • the electron transport materials may be selected from, but are not limited to, ET-01, LiQ, and benzimidazole derivatives. , oxadiazole derivatives, quinoxaline derivatives or other electron transport materials, there are no special limitations for comparison in this application.
  • the materials of the electron transport layer 350 include but are not limited to the following compounds:
  • the electron transport layer 350 is composed of ET-01 and LiQ.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multilayer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca.
  • a metal electrode containing magnesium and silver is included as the cathode.
  • an electron injection layer may also be provided between the cathode 200 and the electron transport layer 350 360, the electron injection layer 360 may include ytterbium (Yb).
  • Yb ytterbium
  • a third aspect of this application provides an electronic device, including the electronic component described in the second aspect of this application.
  • the electronic device provided is an electronic device 400 , which includes the above-mentioned organic electroluminescent device.
  • the electronic device 400 may be, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices.
  • it may include but is not limited to a computer screen, a mobile phone screen, a television, electronic paper, emergency lighting, an optical module, etc.
  • the compounds of the synthesis methods not mentioned in this application are all raw material products obtained through commercial channels.
  • Example 1 Red organic electroluminescent device
  • the anode is prepared by the following process: ITO/Ag/ITO with a thickness of The glass substrate (manufactured by Corning) was cut into a size of 40 mm ⁇ 40 mm ⁇ 0.7 mm, and the photolithography process was used to prepare it into an experimental substrate with cathode, anode and insulating layer patterns, using ultraviolet ozone and O 2 : N 2 plasma. Surface treatment to increase the work function of the anode (experimental substrate) and remove scum.
  • HIL hole injection layer
  • HTL hole transport layer
  • Compound 1 was vacuum evaporated on the hole transport layer to form hole auxiliary layer.
  • RH-01 and Ir(piq) 2 were co-evaporated with a film thickness ratio of 94%:6% to form organic light-emitting layer (R-EML).
  • ETL Electron transport layer
  • Yb is evaporated on the electron transport layer to form a thickness of
  • the electron injection layer (EIL) is then mixed with magnesium (Mg) and silver (Ag) at an evaporation rate of 1:9, and vacuum evaporated on the electron injection layer to form a thickness of the cathode.
  • the evaporation thickness on the cathode is of HT-16 to form an organic covering layer (CPL), thereby completing the manufacture of organic light-emitting devices.
  • An organic electroluminescent device was produced using the same method as in Example 1, except that the compound shown in Table 6 below was used instead of Compound 1 when forming the hole auxiliary layer.
  • Organic electroluminescence was produced using the same method as in Example 1, except that Compound A, Compound B, Compound C, Compound D, Compound E and Compound F in Table 6 were used instead of Compound 1 when forming the hole auxiliary layer. device.
  • Examples 1-35 and Comparative Examples 1-6 were tested for IVL (current, voltage, brightness, etc.) under a current density of 10mA/ cm2 , and their T95 lifespan was tested under a current density of 20mA/ cm2 .
  • IVL current, voltage, brightness, etc.
  • T95 lifespan was tested under a current density of 20mA/ cm2 .
  • Table 6 The test results are shown in Table 6 below.
  • the performance of the organic electroluminescent device of Example 1-35 is improved.
  • the driving voltage of the organic electroluminescent devices of Examples 1-35 is close to that of the comparative example, the current efficiency is increased by at least 15.5%, and the lifetime is increased by at least 10.2%. Therefore, using the organic material of the present application as a hole auxiliary layer of an organic electroluminescent device can improve efficiency and effectiveness while maintaining a low operating voltage.
  • Examples 1-35 of the present application have an increase rate of current efficiency of at least 26% and an increase of lifespan of at least 10.2%.
  • the reason may be that the aryl part of the triarylamine group in Compound A and Compound F uses a specific binaphthyl group, and the binaphthyl group is connected to the amine group, which reduces the T1 energy level of the compound, resulting in organic electroluminescence. The efficiency of the device decreases.
  • Examples 1-35 of the present application have the current efficiency increased by at least 15.5% and the service life increased by at least 20.4%.
  • the reason may be that the aryl part of the triarylamine group of Compound B, Compound C and Compound D is phenyl or benzyl.
  • the conjugation range of phenyl or benzyl is small, resulting in insufficient molecular stability of the compounds. , resulting in reduced lifetime of organic electroluminescent devices.
  • the core structure of this application is a combination of a triarylamine group and an aryl group through 1,1-substitution of a cycloalkyl group, and the aromatic group in the triarylamine group is selected from several specific group. These specific groups create a steric conjugation effect between the groups of the compound molecules. Through the spatial conjugation effect, the molecule has a suitable HOMO energy level and higher hole mobility, which is suitable for use in the hole auxiliary layer of organic electroluminescent devices; at the same time, the molecular structure has good amorphous stacking properties.
  • the material can reduce the crystallinity of the material and extend the device life; in particular, when the aromatic group in the triarylamine selects a specific group, the electron tolerance of the material can be effectively improved, thereby further improving the life of the organic electroluminescent device. Especially when the cycloalkyl group is cyclopentane, the device performance is better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请涉及一种有机材料、电子元件和电子装置。本申请的有机材料具有如式1所示的结构,将该有机材料应用于有机电致发光器件中,可显著改善器件的性能。

Description

有机材料、电子元件和电子装置
相关申请的交叉引用
本申请要求于2022年4月19日递交的申请号为202210407500.1的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请属于有机材料技术领域,尤其涉及一种有机材料及包含其的电子元件和电子装置。
背景技术
随着电子技术的发展和材料科学的进步,电致发光或者光电转化的电子元器件的研究范围越来越广泛。其中,有机电致发光器件又称为有机发光二极管,是指有机发光材料在电场作用下,受到电流的激发而发光的现象。该类电子元器件通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括能量转化层、位于能量转化层与阳极之间的空穴传输层、位于能量转化层与阴极之间的电子传输层。以有机电致发光器件为例,其一般包括依次层叠设置的阳极、空穴传输层、作为能量转化层的电致发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向电致发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在电致发光层结合形成激子,激子处于激发态向外释放能量,进而使得电致发光层对外发光。
有机电荷传输材料是一类当有载流子(电子或空穴)注入时,在电场作用下可以实现载流子的定向有序的可控迁移从而达到传输电荷的有机半导体材料。这类材料需要优秀的给电子特性、较低的离子化电位、高空穴迁移率、良溶解性与无定形成膜性、较强荧光性能与光稳定性。目前,空穴传输层材料中三芳胺类材料的性能较为优异是研究的热点之一。虽然现有技术公开了可以在有机电致发光器件中制备空穴传输层的材料,但是现有的三芳胺类空穴传输层材料在器件中的电压、发光效率、功率以及寿命方面表现不佳。因此,依然有必要继续研发新型的材料,以进一步提高电子元件的性能。
发明内容
针对现有技术存在的上述问题,本申请的目的在于提供一种有机材料及包含其的电子元件和电子装置,所述有机材料可以改善电子元件和电子装置的性能,例如降低器件的驱动电压,提升器件效率和寿命。
为了实现上述发明目的,本申请采用如下技术方案:
本申请的第一方面,提供一种有机材料,该有机材料具有如式1表示的结构:
其中,X选自C(R1R2),各R1和各R2分别独立地选自氢、氘或碳原子数为1-10的烷基;
n选自1、2或3,当n大于等于2时,任意两个R1相同或不同,任意两个R2相同或不同;
L选自取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为3-30的亚杂芳基;
L1、L2和L3分别独立地选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为3-30的亚杂芳基;
Ar1和Ar2分别独立地选自取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的9,9’-螺二芴基;
Ar3选自取代或未取代的碳原子数为6-30的芳基;
L、L1、L2、L3、Ar1和Ar2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为6-20的芳基、碳原子数为5-20的杂芳基、碳原子数为6-20的氘代芳基、碳原子数为6-20的卤代芳基、碳原子数为18-24的三芳基硅基;
Ar3中的取代基相同或不同,分别独立地选自氘、卤素、氰基、碳原子数为1-10的烷基、碳原子数为1-10的氘代烷基、碳原子数为3-10的环烷基、碳原子数为6-20的芳基、碳原子数为6-20的氘代芳基、碳原子数为6-20的卤代芳基、碳原子数为18-24的三芳基硅基;
任选地,在Ar1、Ar2和Ar3中,任意两个相邻的取代基形成环。
本申请的第二方面,提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的有机材料。
本申请的第三方面,提供了一种电子装置,包括第二方面所述的电子元件。
本申请化合物的结构包含三芳基胺基团和芳基基团,二者通过环烷基基团上的同一个亚甲基相结合,并且三芳基胺基团中的芳香基团选自几种特定的基团。这几种特定的基团使得化合物分子的基团间产生空间共轭效应。通过空间共轭效应使得分子具有合适的HOMO能级和更高的空穴迁移率,适合用于有机电致发光器件的空穴辅助层中;同时该分子结构具有良好的无定形态堆叠性能,可降低材料结晶性并延长器件寿命;特别地,当三芳基胺中的芳香基团选择特定的基团时,可有效提升材料的电子耐受性,从而进一步提升有机电致发光器件寿命。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。
图1是本申请一种的有机电致发光器件的结构示意图。
图2是本申请一种的电子装置的结构示意图。
附图标记
100、阳极        200、阴极        300、功能层      310、空穴注入层
320、空穴传输层  330、空穴辅助层  340、有机发光层  350、电子传输层
360、电子注入层  400、电子装置
具体实施方式
现在将参考附图更全面地描述示例性实施方式。然而,示例性实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例性实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多个实施方式中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
第一方面,本申请提供一种有机材料,该有机材料具有如式1所示的结构:
其中,X选自C(R1R2),各R1和各R2分别独立地选自氢、氘或碳原子数为1-10的烷基;
n选自1、2或3,当n大于等于2时,任意两个R1相同或不同,任意两个R2相同或不同;
L选自取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为3-30的亚杂芳基;
L1、L2和L3分别独立地选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为3-30的亚杂芳基;
Ar1和Ar2分别独立地选自取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的9,9’-螺二芴基;
Ar3选自取代或未取代的碳原子数为6-30的芳基;
L、L1、L2、L3、Ar1和Ar2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为6-20的芳基、碳原子数为5-20的杂芳基、碳原子数为6-20的氘代芳基、碳原子数为6-20的卤代芳基、碳原子数为18-24的三芳基硅基;
Ar3中的取代基相同或不同,分别独立地选自氘、卤素、氰基、碳原子数为1-10的烷基、碳原子数为1-10的氘代烷基、碳原子数为3-10的环烷基、碳原子数为6-20的芳基、碳原子数为6-20的氘代芳基、碳原子数为6-20的卤代芳基、碳原子数为18-24的三芳基硅基;
任选地,在Ar1、Ar2和Ar3中,任意两个相邻的取代基形成环。
在本申请中,术语“任选”、“任选地”意味着随后所描述的事件或者环境可以发生但不必发生,该说明包括该事情或者环境发生或者不发生的场合。例如,“任选地,两个相邻取代基形成环;”意味着这两个取代基可以形成环但不是必须形成环,包括:两个相邻的取代基形成环的情景和两个相邻的取代基不形成环的情景。
在本申请中,“任意两个相邻的取代基形成环”中,“任意相邻”可以包括同一个原子上具有两个取代基,还可以包括两个相邻的原子上分别具有一个取代基;其中,当同一个原子上具有两个取代基时,两个取代基可以与其共同连接的该原子形成饱和或不饱和的环;当两个相邻的原子上分别具有一个取代基时,这两个取代基可以稠合成环。举例而言,当Ar1有2 个或2个以上的取代基,任意相邻的取代基形成环时,形成的是饱和或不饱和的环状基团,例如:苯环、萘环、菲环、蒽环、芴环、环戊烷、环己烷、金刚烷等等。
本申请中,芴基可以被1个或2个取代基取代,其中,在上述芴基被取代的情况下,可以为:等,但并不限定于此。
本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……各自独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中,不定位连接键是指从环体系中伸出的单键“”,其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)-式(f-10)所示出的任一可能的连接方式。
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)-式(X'-4)所示出的任一可能的连接方式。
本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。举例来讲,“取代或未取代的芳基”是指具有取代基Rc的芳基或者没有取代的芳基。其中上述的取代基即Rc例如可以为氘、卤素基团、氰基、烷基、环烷基、芳基、杂芳基、氘代芳基、卤代芳基、三芳基硅基等。
本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L1为碳原子数为12的取代的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。
本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如 苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。芳基的实例可以包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、基、螺二芴基等。本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
本申请中,三联苯基包括
本申请中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、烷基、环烷基等基团取代。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
本申请中,杂芳基是指环中包含1、2、3、4、5、6或7个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、***基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、烷基、环烷基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
本申请中,取代或未取代的芳基的碳原子数可以为6-30,例如碳原子数可以为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25或30。
在本申请中,作为取代基的芳基的具体实例包括但不限于,苯基、联苯基、萘基、芴基、菲基、蒽基、基。
本申请中,取代或未取代的杂芳基的碳原子数可以为3-30,例如碳原子数可以为3、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20或30。
在本申请中,作为取代基的杂芳基的具体实例包括但不限于,三嗪基、吡啶基、嘧啶基、咔唑基、二苯并呋喃基、二苯并噻吩基、喹啉基、喹唑啉基、喹喔啉基、异喹啉基、咔唑基、N-苯基咔唑基。
本申请中,碳原子数为1-10的烷基可以包括碳原子数为1至10的直链烷基和碳原子数为3至10的支链烷基。烷基的碳原子数例如可以为1、2、3、4、5、6、7、8、9或10,烷 基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基、正辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等。
本申请中,卤素基团例如可以为氟、氯、溴、碘。
本申请中,碳原子数为3-10的环烷基的碳原子数例如可以为3、4、5、6、7、8或10。环烷基的具体实例包括但不限于,环戊基、环己基。
在本申请中,碳原子数为18-24的三芳基硅基的具体实例包括但不限于,三苯基硅基等。
在本申请中,碳原子数为1-10的氘代烷基具体实例包括但不限于,三氘代甲基。
在本申请中,碳原子数为6-20的氘代芳基具体实例包括但不限于,一氘代苯基、二氘代苯基、三氘代苯基、四氘代苯基、五氘代苯基。
在本申请中,碳原子数为6-20的卤代芳基具体实例包括但不限于,一氟代苯基、二氟代苯基、三氟代苯基、四氟代苯基、五氟代苯基。
在本申请一些实施方式中,有机材料具有式1-1或者式1-2所示的结构:
在本申请一些实施方式中,各R1和各R2均为氢。
在本申请一些实施方式中,n选自1或2。
在本申请一些实施方式中,L选自碳原子数为6-15的取代或未取代的亚芳基、碳原子数为12-20的取代或未取代的亚杂芳基。
可选地,L中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-5的烷基、苯基、萘基或联苯基。
在本申请另一些实施方式中,L选自取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚蒽基、取代或未取代的亚菲基、取代或未取代的亚芴基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基。
可选地,L中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、萘基、联苯基或苯基。
在本申请一些实施方式中,L选自取代或未取代的基团W,其中,未取代的基团W选自如下基团组成的组:
取代的基团W中具有一个或两个以上取代基,所述取代基分别独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基、萘基或联苯基,且当所述取代基个数大于1时,各取代 基相同或不同。
可选地,L选自如下基团组成的组:
在本申请一些实施方式中,L1、L2和L3相同或不同,分别独立地选自单键或亚苯基。
在本申请另一些实施方式中,L1、L2和L3相同或不同,分别独立地选自单键或如下基团组成的组:
在本申请另一些实施方式中,Ar1和Ar2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-5的烷基、碳原子数为1-5的氘代烷基、碳原子数为6-12的芳基、碳原子数为6-12的氘代芳基、碳原子数为6-12的卤代芳基或三苯基硅基;
任选地,在Ar1和Ar2中,任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。
可选地,在Ar1和Ar2中,任意两个相邻的取代基可以形成环己烷环戊烷苯环萘环或芴环
进一步可选地,Ar1和Ar2中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基、三氘代甲基、五氘代苯基、一氟代苯基或三苯基硅基。
在本申请另一些实施方式中,Ar1和Ar2相同或不同,分别独立地选自取代或未取代的基团V,其中,未取代的基团V选自如下基团的组:
其中,取代的基团V中具有一个或两个以上取代基,取代的基团V中的取代基分别独立地选自由氘、氟、氰基、苯基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基、三氘代甲基、五氘代苯基、一氟代苯基或三苯基硅基所组成的组,且当基团V上的取代基个数大于1时,各取代基相同或不同。
可选地,Ar1和Ar2相同或不同,分别独立地选自如下基团组成的组:
在本申请一些实施方式中,分别独立地选自如下基团组成的组:
可选地,分别独立地选自如下基团组成的组:
在本申请一些实施方式中,选自如下基团所组成的组:



在本申请一些实施方式中,Ar3选自碳原子数为6-25的取代或未取代的芳基。
可选地,Ar3中的取代基相同不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-5的烷基、碳原子数为1-5的氘代烷基或苯基;
任选地,在Ar3中,任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。
可选地,在Ar3中,任意两个相邻的取代基可以形成环己烷环戊烷苯环萘环或芴环
可选地,Ar3选自碳原子数为6-20的取代或未取代的芳基。
可选地,Ar3选自碳原子数为6-15的取代或未取代的芳基。
进一步可选地,Ar3选自碳原子数为6-12的取代或未取代的芳基。
在本申请另一些实施方式中,Ar3选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的9,9’-螺二芴基。
可选地,Ar3中的取代基相同不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、三氘代甲基或苯基。
在本申请一些实施方式中,Ar3选自取代或未取代的基团G,其中,未取代的基团G选自如下基团组成组:
取代的基团G中具有一个或两个以上取代基,取代的基团G中的取代基分别独立地选自由氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、三氘代甲基或苯基所组成的组,且当基团G上的取代基个数大于1时,各取代基相同或不同。
可选地,Ar3选自如下基团组成的组:

可选地,所述有机材料选自如下化合物组成的组:













第二方面,本申请提供一种电子元件,包括相对设置的阳极和阴极,以及设于阳极和阴极之间的功能层;所述功能层包含本申请的有机化合物。
可选地,所述电子元件为有机电致发光器件。
在本申请一些实施方式中,电子元件为有机电致发光器件。如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、空穴传输层320、空穴辅助层330、有机发光层340、电子传输层350和阴极200。
在本申请一些具体的实施方式中,有机电致发光器件为红色有机电致发光器件。
可选地,阳极100包括以下阳极材料,其可选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO∶Al或SnO2∶Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,空穴传输层320包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本领域技术人员可参照现有技术选择,本申请对此不做特殊的限定。在本申请一些实施方式中,空穴传输层320为HT-15。
在本申请一种实施方式中,空穴辅助层330为本申请有机材料。
可选地,在阳极100和空穴传输层320之间还可以设置有空穴注入层310,以增强向空穴传输层320注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。所述空穴注入层310的材料例如可以选自如下化合物或者其任意组合;
在本申请一些实施方式中,空穴注入层310由HAT-CN组成。
可选地,有机发光层340可以由单一发光层材料组成,也可以包括主体材料和掺杂材料。可选地,有机发光层340由主体材料和掺杂材料组成,注入有机发光层340的空穴和注入有机发光层340的电子可以在有机发光层340复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给掺杂材料,进而使得掺杂材料能够发光。
有机发光层340的主体材料可以为金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。
在本申请一些实施方式中,有机发光层340的主体材料为RH-01。
有机发光层340的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。客体材料又称为掺杂材料或掺杂剂。用于红色有机电致发光器件的红光磷光掺杂剂的具体实例包括但不限于,
在一种更具体的实施方式中,有机发光层340的主体材料为RH-01,客体材料为Ir(piq)2(acac)。
电子传输层350可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自但不限于,ET-01、LiQ、苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对比不作特殊限定。所述电子传输层350的材料包含但不限于以下化合物:
在本申请一些具体实施方式中,电子传输层350由ET-01和LiQ组成。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO2/Al、LiF/Ca、LiF/Al和BaF2/Ca。可选地,包括包含镁和银的金属电极作为阴极。
在本申请一些实施方式中,在阴极200和电子传输层350之间还可以设置有电子注入层 360,电子注入层360可以包括镱(Yb)。
本申请第三方面提供一种电子装置,包括本申请第二方面所述的电子元件。
按照一种实施方式,如图2所示,所提供的电子装置为电子装置400,其包括上述有机电致发光器件。电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
下面结合合成实施例来具体说明本申请的有机化合物的合成方法,但是本申请并不因此而受到任何限制。
本申请中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
合成实施例
中间体IM-a-1的合成:
在氮气保护下,将4-溴氯苯(25.5g,133.1mmol)、THF(150mL)加入500mL圆口烧瓶中,将体系降温至-90℃至-78℃,滴加正丁基锂(2mol/L;79.9mL,159.7mmol)的四氢呋喃溶液,在-90℃至-78℃下反应1h,然后将环戊酮(11.2g,133.1mmol)用THF(100mL)溶解后缓慢滴加至反应体系中,在-78℃至-90℃下反应1h,之后自然升至室温并同时搅拌6h;向反应体系中加入稀盐酸(260mL,1mol/L)终止反应,将体系pH值调成2-3,随后用乙酸乙酯和水进行萃取,将有机层减压浓缩后得到粗品,将粗品用乙腈重结晶,得到中间体IM-a-1(17.0g,收率62%)。
参照中间体IM-a-1的合成方法,用表1中的原料1替代环戊酮、原料2替代4-溴氯苯,合成表1所示的中间体:
表1:中间体IM-a-2至IM-a-14的制备

中间体IM-b-1的合成
将中间体IM-a-1(19.7g,100mmol)、苯(7.8g,100mmol)和二氯甲烷(200mL)加入圆底烧瓶中,在0℃下滴加三氟甲磺酸(22.5g,150mmol),反应2h后停止反应;将反应液用二氯甲烷和水萃取,有机相合并后水洗两次,无水硫酸镁干燥半小时,浓缩有机相,粗品使用正庚烷重结晶一次,得到中间体IM-b-1(19.2g;收率75%)。
参照中间体IM-b-1的合成方法,以表2中的原料3替代中间体IM-a-1、原料4替代苯,合成表2所示的中间体:
表2:中间体IM-b-2至IM-b-25的制备

化合物1的合成
在氮气保护下,将中间体IM-b-1(3.4g,13.1mmol)、二(4-联苯基)胺(4.2g,13.1mmol)、三(二亚苄基丙酮)二钯(0.2g,0.3mmol)、2-二环己基磷-2,6-二甲氧基联苯(0.2g,0.5mmol)、叔丁醇钠(1.9g,19.7mmol)和甲苯(50mL)加入圆底烧瓶中,搅拌并同时升温至105℃-110℃,反 应4小时;将反应液降至室温,水洗后分离有机相,使用无水硫酸镁干燥,减压除去溶剂;使用二氯甲烷/正庚烷对所得粗品进行硅胶柱色谱提纯,而后使用甲苯/正庚烷进行重结晶提纯,得到白色固体化合物1(4.8g;收率67%)。质谱:m/z=542.3[M+H]+
参照化合物1的合成方法,合成表3所示的化合物,不同的是,使用原料5代替中间体IM-b-1、原料6代替二(4-联苯基)胺,制备下表3中的化合物。
表3:化合物结构制备及表征数据






部分化合物及中间体核磁数据如下表4所示:
表4
有机电致发光器件制备及评估
实施例1:红色有机电致发光器件
通过以下过程制备阳极:将ITO/Ag/ITO厚度为的玻璃基板(康宁制造)切割成40mm×40mm×0.7mm的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极(实验基板)的功函数并清除浮渣。
在实验基板阳极上真空蒸镀的HAT-CN作为空穴注入层(HIL),再在空穴注入层上蒸镀的HT-15,形成空穴传输层(HTL)。
在空穴传输层上真空蒸镀化合物1,形成的空穴辅助层。
在空穴辅助层上,将RH-01与Ir(piq)2(acac)以94%:6%的膜厚比共同蒸镀,以形成的有机发光层(R-EML)。
继续在发光层上将ET-01和LiQ以1:1的比例共同蒸镀,以形成的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。
最后,在阴极上蒸镀厚度为的HT-16,形成有机覆盖层(CPL),从而完成有机发光器件的制造。
实施例2-35
除了在形成空穴辅助层时,以下表6中所示的化合物替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例1-6
除了在形成空穴辅助层时,分别以下表6中的化合物A、化合物B、化合物C、化合物D、化合物E和化合物F替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
其中,以上实施例和比较例使用的其他材料结构如下表5所示:
表5
将实施例1-35、比较例1-6的器件在10mA/cm2电流密度条件下测试IVL(电流、电压、亮度等),在20mA/cm2电流密度下测试T95寿命,其测试结果见下表6。
表6器件性能测试结果
根据上述表6的结果可知,相较于比较例1-6的有机电致发光器件,实施例1-35的有机电致发光器件性能得到改善。具体地,实施例1-35的有机电致发光器件的驱动电压与比较例相接近,电流效率至少提高了15.5%,寿命至少提高了10.2%。因此,将本申请有机材料用作有机电致发光器件的空穴辅助层,具有在保持低工作电压的同时,提高效率及效率。
本申请实施例1-35相比于比较例A和比较例F,电流效率至少提高率26%,寿命至少提高10.2%。究其原因,可能在于,化合物A和化合物F中三芳胺基团中芳基部分选用特定的联萘基,联萘基与胺基连接,使得化合物的T1能级降低,从而导致有机电致发光器件的效率降低。
本申请实施例1-35相比于比较例B、比较例C和比较例D,电流效率至少提高了15.5%,寿命至少提高了20.4%。究其原因,可能在于,化合物B、化合物C和化合物D三芳胺基团中芳基部分选用苯基或苯甲基,苯基或苯甲基的共轭范围较小,使得化合物分子稳定性不足,从而导致有机电致发光器件的寿命降低。
本申请核心结构为三芳基胺基团和芳基基团通过环烷基基团的1,1-取代的方式相结合而成,并且三芳基胺基团中的芳香基团选自几种特定的基团。这几种特定的基团使得化合物分子的基团间产生空间共轭效应。通过空间共轭效应使得分子具有合适的HOMO能级和更高的空穴迁移率,适合用于有机电致发光器件的空穴辅助层中;同时该分子结构具有良好的无定形态堆叠性能,可降低材料结晶性并延长器件寿命;特别地,当三芳基胺中的芳香基团选择特定的基团时,可有效提升材料的电子耐受性,从而进一步提升有机电致发光器件寿命。尤其是当环烷基基团为环戊烷时,器件性能更优。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (15)

  1. 一种有机材料,其特征在于,该有机材料具有如式1所示的结构:
    其中,X选自C(R1R2),各R1和各R2分别独立地选自氢、氘或碳原子数为1-10的烷基;
    n选自1、2或3,当n大于等于2时,任意两个R1相同或不同,任意两个R2相同或不同;
    L选自取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为3-30的亚杂芳基;
    L1、L2和L3分别独立地选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为3-30的亚杂芳基;
    Ar1和Ar2分别独立地选自取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的9,9’-螺二芴基;
    Ar3选自取代或未取代的碳原子数为6-30的芳基;
    L、L1、L2、L3、Ar1和Ar2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为6-20的芳基、碳原子数为5-20的杂芳基、碳原子数为6-20的氘代芳基、碳原子数为6-20的卤代芳基、碳原子数为18-24的三芳基硅基;
    Ar3中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为1-10的氘代烷基、碳原子数为3-10的环烷基、碳原子数为6-20的芳基、碳原子数为6-20的氘代芳基、碳原子数为6-20的卤代芳基、碳原子数为18-24的三芳基硅基;
    任选地,在Ar1、Ar2和Ar3中,任意两个相邻的取代基形成环。
  2. 根据权利要求1所述的有机材料,其特征在于,所述有机材料具有式1-1或者式1-2所示的结构:
  3. 根据权利要求1所述的有机材料,其特征在于,L选自碳原子数为6-15的取代或未取代的亚芳基、碳原子数为12-20的取代或未取代的亚杂芳基;
    优选地,L中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-5的烷基、苯基、萘基或联苯基。
  4. 根据权利要求1所述的有机材料,其特征在于,L选自取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚蒽基、取代或未取代的亚菲基、取代或未取代的亚芴基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基;
    优选地,L中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
  5. 根据权利要求1所述的有机材料,其特征在于,L中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、萘基、联苯基或苯基。
  6. 根据权利要求1所述的有机材料,其特征在于,L1、L2和L3相同或不同,分别独立地选自单键或亚苯基。
  7. 根据权利要求1所述的有机材料,其特征在于,Ar1和Ar2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-5的烷基、碳原子数为6-12的芳基、碳原子数为6-12的氘代芳基、碳原子数为6-12的卤代芳基或三苯基硅基;
    任选地,在Ar1和Ar2中,任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。
  8. 根据权利要求1所述的有机材料,其特征在于,分别独立地选自如下基团组成的组:
  9. 根据权利要求1所述的有机材料,其特征在于,Ar3选自碳原子数为6-25的取代或未取代的芳基;
    优选地,Ar3中的取代基相同不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-5的烷基、碳原子数为1-5的氘代烷基或苯基;
    任选地,在Ar3中,任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。
  10. 根据权利要求1所述的有机材料,其特征在于,Ar3选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的9,9’-螺二芴基;
    优选地,Ar3中的取代基相同不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、三氘代甲基或苯基。
  11. 根据权利要求1所述的有机材料,其特征在于,Ar3选自如下基团组成的组:
  12. 根据权利要求1所述的有机材料,其特征在于,所述有机材料选自如下化合物组成的组:













  13. 一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;其特征在于,所述功能层包含权利要求1-12中任一项所述的有机材料。
  14. 根据权利要求13所述的电子元件,其特征在于,所述功能层包括空穴辅助层,所述空穴辅助层包含所述有机材料;
    可选地,所述电子元件为有机电致发光器件。
  15. 一种电子装置,其特征在于,包括权利要求13或14所述的电子元件。
PCT/CN2023/076636 2022-04-19 2023-02-16 有机材料、电子元件和电子装置 WO2023202198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210407500.1A CN115521212B (zh) 2022-04-19 2022-04-19 有机材料、电子元件及电子装置
CN202210407500.1 2022-04-19

Publications (1)

Publication Number Publication Date
WO2023202198A1 true WO2023202198A1 (zh) 2023-10-26

Family

ID=84695294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076636 WO2023202198A1 (zh) 2022-04-19 2023-02-16 有机材料、电子元件和电子装置

Country Status (2)

Country Link
CN (1) CN115521212B (zh)
WO (1) WO2023202198A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521212B (zh) * 2022-04-19 2024-03-22 陕西莱特光电材料股份有限公司 有机材料、电子元件及电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109456256A (zh) * 2018-12-28 2019-03-12 武汉天马微电子有限公司 化合物、显示面板以及显示装置
CN110129034A (zh) * 2019-05-24 2019-08-16 武汉华星光电半导体显示技术有限公司 蓝荧光材料及显示面板
CN110283084A (zh) * 2019-07-02 2019-09-27 武汉华星光电半导体显示技术有限公司 电致发光材料、电致发光材料的制备方法及发光器件
CN113636945A (zh) * 2020-05-11 2021-11-12 北京鼎材科技有限公司 一种化合物及其应用
WO2021227655A1 (zh) * 2020-05-11 2021-11-18 北京鼎材科技有限公司 化合物、有机电致发光器件和显示装置
CN115521212A (zh) * 2022-04-19 2022-12-27 陕西莱特光电材料股份有限公司 有机材料、电子元件和电子装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077142A (en) * 1989-04-20 1991-12-31 Ricoh Company, Ltd. Electroluminescent devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109456256A (zh) * 2018-12-28 2019-03-12 武汉天马微电子有限公司 化合物、显示面板以及显示装置
CN110129034A (zh) * 2019-05-24 2019-08-16 武汉华星光电半导体显示技术有限公司 蓝荧光材料及显示面板
CN110283084A (zh) * 2019-07-02 2019-09-27 武汉华星光电半导体显示技术有限公司 电致发光材料、电致发光材料的制备方法及发光器件
CN113636945A (zh) * 2020-05-11 2021-11-12 北京鼎材科技有限公司 一种化合物及其应用
WO2021227655A1 (zh) * 2020-05-11 2021-11-18 北京鼎材科技有限公司 化合物、有机电致发光器件和显示装置
CN115521212A (zh) * 2022-04-19 2022-12-27 陕西莱特光电材料股份有限公司 有机材料、电子元件和电子装置

Also Published As

Publication number Publication date
CN115521212B (zh) 2024-03-22
CN115521212A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2021135207A1 (zh) 含氮化合物、电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
CN114133332B (zh) 有机化合物、电子元件及电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
CN113233987B (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
WO2022222646A1 (zh) 含氮化合物、电子元件和电子装置
WO2024055658A1 (zh) 含氮化合物和电子元件及电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2021136006A1 (zh) 含氮化合物、电子元件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2024037073A1 (zh) 含氮化合物、电子元件和电子装置
WO2023185078A1 (zh) 有机化合物和电子元件及电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
CN113896720B (zh) 有机化合物、电子元件及电子装置
WO2022217791A1 (zh) 一种组合物及包含其的电子元件和电子装置
WO2021174967A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2023185039A1 (zh) 有机化合物及包含其的电子元件和电子装置
CN115490601B (zh) 有机化合物、电子元件及电子装置
WO2024041079A1 (zh) 有机化合物、有机电致发光器件和电子装置
CN114335399B (zh) 有机电致发光器件及包括其的电子装置
CN115521214B (zh) 有机化合物及包含其的电子元件和电子装置
WO2024041060A1 (zh) 芳胺化合物及有机电致发光器件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790861

Country of ref document: EP

Kind code of ref document: A1