WO2024125580A1 - 一种奥司他韦中间体的制备方法 - Google Patents

一种奥司他韦中间体的制备方法 Download PDF

Info

Publication number
WO2024125580A1
WO2024125580A1 PCT/CN2023/138627 CN2023138627W WO2024125580A1 WO 2024125580 A1 WO2024125580 A1 WO 2024125580A1 CN 2023138627 W CN2023138627 W CN 2023138627W WO 2024125580 A1 WO2024125580 A1 WO 2024125580A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
compound
preparation
formula
reaction
Prior art date
Application number
PCT/CN2023/138627
Other languages
English (en)
French (fr)
Inventor
王万春
陈鑫磊
梁尊俊
颜峰峰
Original Assignee
浙江华海药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华海药业股份有限公司 filed Critical 浙江华海药业股份有限公司
Publication of WO2024125580A1 publication Critical patent/WO2024125580A1/zh

Links

Definitions

  • the invention belongs to the field of chemical synthesis, and particularly relates to a method for preparing an oseltamivir intermediate.
  • Oseltamivir phosphate is an anti-influenza drug that acts as a specific inhibitor of neuraminidase. It can inhibit mature influenza viruses from leaving host cells, thereby inhibiting the spread of influenza viruses in the human body to treat influenza. It is considered to be an effective and highly specific influenza treatment drug currently available.
  • oseltamivir phosphate is (3R, 4R, 5S)-4-acetylamino-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylic acid ethyl ester phosphate (1:1), and its structure is shown in the following formula:
  • Trifluoroacetic acid is used in the de-tert-butylation.
  • trifluoroacetic acid acts as a strong acid to catalyze the de-tert-butylation.
  • it is used as a solvent. Therefore, the amount of trifluoroacetic acid used is relatively large.
  • the treatment after the reaction is completed is relatively complicated. First, the trifluoroacetic acid is evaporated under vacuum, and then toluene-hexane (1:1) is added and concentrated in vacuum. The residual oil is diluted with toluene-hexane (1:1), and then a saturated sodium carbonate solution is added.
  • the mixture is stirred for 15 minutes, and water is added to separate the layers.
  • the aqueous layer is extracted with toluene-hexane.
  • the aqueous layer is diluted with toluene, and an aqueous sodium hydroxide solution is added to adjust the pH to 13-14.
  • the layers are separated, the aqueous layer is extracted, the organic layers are combined, and concentrated in vacuum to obtain a brown slurry. The purity and yield are not disclosed.
  • CN109438276A discloses a method for synthesizing an oseltamivir intermediate compound 2, wherein trifluoroacetic acid is used for de-tert-butylation, the reaction solvent is toluene, the reaction is stirred at 45-55°C, toluene is added after the reaction is completed, the temperature is lowered to 0-10°C, cold water is added, sodium hydroxide aqueous solution is slowly added dropwise to adjust the pH to about 12-13, extraction is performed, filtration is performed, the filtrate is concentrated under reduced pressure in a hot water bath, n-heptane is added, stirring is performed for 2 hours, crystallization is performed, and drying is performed.
  • CN111253276B uses the same method to remove the tert-butyl group, wherein the amount of trifluoroacetic acid used is 4 times that of the oseltamivir intermediate compound 1.
  • toluene and water are added, the temperature is controlled at 10°C and the pH is adjusted to 9 with 10% sodium carbonate solution.
  • the aqueous layer is extracted with toluene three times, the combined organic layers are washed with water until neutral, dried over anhydrous sodium sulfate, and concentrated under reduced pressure at 60°C to obtain an oily substance with a yield of 96.2% and a content of 97.3%.
  • CN109438276A discloses a method for synthesizing oseltamivir, wherein acetonitrile is used as a solution and concentrated sulfuric acid is added as a catalyst during the de-tert-butylation reaction.
  • the API usage of oseltamivir phosphate in 2021 was close to 20 tons.
  • the API usage of this product is large, so it is very necessary to develop a cost-effective, efficient and green preparation method.
  • the present invention provides a method for preparing an oseltamivir intermediate, which replaces the original expensive reagents with lower-cost materials, uses less amount, improves molecular utilization, greatly reduces costs, and has simple post-processing, which is very suitable for large-scale commercial production.
  • the present invention provides a method for preparing an oseltamivir intermediate as shown in Formula 2, the method comprising the following steps:
  • the compound of formula 1 is subjected to a de-tert-butylation reaction under acidic conditions to obtain a compound of formula 2;
  • the acidic condition is trichloroacetic acid, chloroacetic acid, dichloroacetic acid, acetic acid, methanesulfonic acid, benzenesulfonic acid, formic acid or a mixture thereof.
  • the de-tert-butylation reaction temperature is 40 to 100° C., preferably 50 to 85° C.; the reaction time is 10 to 48 hours, preferably 5 to 14 hours.
  • the mass ratio of the compound of formula 1 to the acid is 1:0.7-5, and the preferred mass ratio is 1:0.8-2.0.
  • the acidic condition is formic acid, acetic acid, methanesulfonic acid or a mixture thereof; when a mixture is used, it is preferably a mixture of acetic acid and methanesulfonic acid, or a mixture of formic acid and methanesulfonic acid; wherein the molar ratio of methanesulfonic acid to acetic acid or formic acid is 1:15-25.
  • the obtained compound of formula 2 further includes the following post-treatment steps: after the reaction is completed, it is dissolved with an organic solvent to obtain a solution containing the compound of formula 2, and then the solution of the compound of formula 2 obtained above is cooled and the pH value is adjusted to 7 to 14 (for example, 7 to 8, 8 to 10 or any value or range therebetween) with an inorganic alkali aqueous solution, extracted and layered, and concentrated to obtain.
  • post-treatment steps after the reaction is completed, it is dissolved with an organic solvent to obtain a solution containing the compound of formula 2, and then the solution of the compound of formula 2 obtained above is cooled and the pH value is adjusted to 7 to 14 (for example, 7 to 8, 8 to 10 or any value or range therebetween) with an inorganic alkali aqueous solution, extracted and layered, and concentrated to obtain.
  • the feed liquid can be concentrated under reduced pressure, cooled to room temperature, and then dissolved in an organic solvent to obtain a solution containing the compound of formula 2.
  • the organic solvent is a halogenated hydrocarbon solvent or an aromatic hydrocarbon solvent, and its usage is 5 to 10 volume equivalents of the reaction solution.
  • the halogenated hydrocarbon solvent is dichloromethane or dichloroethane, and the aromatic hydrocarbon solvent is selected from toluene.
  • the temperature for cooling the solution of the compound of Formula 2 and adjusting the pH is -10 to 10°C, such as 0 to 10°C, -10 to 5°C, or any value or range therebetween.
  • the inorganic alkali aqueous solution is selected from a saturated sodium bicarbonate aqueous solution and a sodium hydroxide aqueous solvent; wherein the mass percentage concentration of the aqueous solution is 8-10%, preferably 10-15%.
  • the structural formula of the hydrolysis impurities is:
  • the present invention has the following positive technical effects:
  • the preparation method provided by the present invention uses a weak acid such as formic acid or acetic acid instead of trifluoroacetic acid, thereby improving the molecular utilization rate, having obvious cost advantages, avoiding the damage to the equipment caused by the strong corrosiveness of the strong acid, and reducing the risk of excessive heavy metals in the product.
  • a weak acid such as formic acid or acetic acid instead of trifluoroacetic acid
  • the preparation method provided by the present invention uses a hydrocarbon or aromatic hydrocarbon solvent for post-treatment, which has a good dissolving effect and does not require the addition of water to assist dissolution.
  • the preparation method provided by the present invention has high reaction efficiency, simple purification system, easy solvent recovery, is green and environmentally friendly, and is suitable for large-scale industrial production.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the two organic layers were combined, extracted twice with 2N hydrochloric acid (30 ml for the first time and 15 ml for the second time), the combined aqueous layers were diluted with 100 ml of toluene, and then 5.67 g (142 mmol) of sodium hydroxide was dissolved in 17 ml of water to obtain a pH of 13-14, the layers were separated, the aqueous layer was extracted three times with 50 ml of toluene, the combined organic layers were dried over sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to constant weight to obtain 38.73 g of brown oil, 200 ml of hexane was added, seed crystals were added, and stirring was maintained at 25°C for about 24 hours to precipitate a large amount of solid, about 26.76 g, with a yield of 72% and a purity of about 98.0%.
  • Table 1 is a comparison of the results of Examples 1 to 3 and Comparative Example 1 * Note: The price of formic acid is about 8 yuan/kg, and the price of trifluoroacetic acid is about 72 yuan/kg.

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种奥司他韦中间体的制备方法,该方法包括以下步骤:将化合物1在酸性条件下进行脱叔丁基反应,得到化合物2;其中酸性条件为三氯乙酸、氯乙酸、二氯乙酸、乙酸、甲基磺酸、苯磺酸、甲酸或其混合物。后处理步骤包括反应完毕后,用有机溶剂溶解得到含式2化合物的溶液,再将上述得到的式2化合物溶液降温后用无机碱水溶液调pH值,萃取分层,浓缩可得。本发明提供的一种奥司他韦中间体的制备方法,用成本更低的物料代替原先昂贵的试剂,分子利用度提高,成本大大降低,优化后处理,纯化方法简便。

Description

一种奥司他韦中间体的制备方法 技术领域
本发明属于化学合成领域,具体涉及一种奥司他韦中间体的制备方法。
背景技术
磷酸奥司他韦是一款作用于神经氨酸酶的特异性抑制剂的抗流感药物,能够抑制成熟的流感病毒脱离宿主细胞,从而抑制流感病毒在人体内的传播以起到治疗流行性感冒的作用,被认为是目前有效、特异性高的流感治疗药物。
磷酸奥司他韦化学名称为(3R,4R,5S)-4-乙酰氨基-5-氨基-3-(1-乙基丙氧基)-1-环己烯-1-羧酸乙酯磷酸盐(1:1),其结构如下式所示:
目前磷酸奥司他韦合成路线多,主要分为叠氮合成路线和非叠氮合成路线,鉴于叠氮路线需要用到叠氮化钠等剧毒品,叠氮极易***,生产安全压力较大等缺点,因此工业上常用CN100545145C公开的合成路线,该路线主要包括开氧环,氮环合成、开氮环、酰化、成盐、脱叔丁基、脱双烯丙基再成磷酸盐,反应式如下:
该路线为一条比较实用的方案,收率较高,在脱叔丁基时采用三氟乙酸,一方面三氟乙酸作为强酸起催化脱叔丁基的作用,另一方面作为溶剂使用,因此三氟乙酸用量比较大;另外反应结束后处理较为复杂,先真空下蒸除三氟乙酸,然后加入甲苯-己烷(1:1)并真空浓缩,将残余油状物用甲苯-己烷(1:1)稀释,再加入饱和碳酸钠溶液,搅拌15分钟,加水分层,再用甲苯-己烷萃取水层,水层用甲苯稀释,加入氢氧化钠水溶液调pH值至13-14,分层,水层萃取,合并有机层,真空浓缩,得到棕色的浆状物,未公开纯度和收率。
CN109438276A公开一种奥司他韦中间体化合物2的合成方法,脱叔丁基时采用三氟乙酸,反应溶剂为甲苯,45~55℃搅拌进行反应,反应结束后,加入甲苯,降温至0~10℃,然后加入冷水,缓慢滴加氢氧化钠水溶液调pH约12~13,萃取,过滤,滤液热水浴减压浓缩,再加入正庚烷搅拌2小时,析晶,干燥。
CN111253276B用同样的方法脱叔丁基,其中三氟乙酸的用量为奥司他韦中间体化合物1的4倍,反应结束后加入甲苯和水,控温10℃用10%碳酸钠溶液调pH=9,水层甲苯萃取三次,合并有机层水洗至中性,无水硫酸钠干燥,60℃减压浓缩干燥得油状物,收率为96.2%,含量97.3%。
CN109438276A公开一种奥司他韦的合成方法,其中脱叔丁基反应时,采用乙腈为溶液,加入浓硫酸做催化剂。
根据Newport数据库查询,2021年磷酸奥司他韦的API用量接近20吨,该产品API用量较大,开发一条具有成本优势,且高效、绿色的制备方法是十分必要的。
发明内容
针对现有技术中的缺点和不足,本发明提供了一种奥司他韦中间体的制备方法,用成本更低的物料代替原先昂贵的试剂,用量更少,分子利用度提高,成本大大降低,但且后处理简单,非常适合大规模商业化生产。
本发明提供一种如式2所示的奥司他韦中间体的制备方法,该方法包括以下步骤:
将式1化合物在酸性条件下进行脱叔丁基反应,得到式2化合物;
其中所述酸性条件为三氯乙酸、氯乙酸、二氯乙酸、乙酸、甲基磺酸、苯磺酸、甲酸或其混合物。
在一些实施方式中,脱叔丁基反应温度为40~100℃,优选为50℃~85℃;反应时间为10~48小时,优选为5~14小时。
在一些实施方式中,式1化合物与酸的用量质量比为1:0.7~5,优选的质量比为1:0.8~2.0。
在一些实施方式中,酸性条件为甲酸、乙酸、甲磺酸或其混合物;当使用混合物时,优选为乙酸和甲磺酸的混合物、甲酸和甲磺酸的混合物;其中甲磺酸与乙酸或甲酸的摩尔用量为1:15~25。
在一些实施方式中,得到的式2化合物还包括以下后处理步骤:反应完成后,再用有机溶剂溶解得到含式2化合物溶液,再将上述得到的式2化合物溶液降温后用无机碱水溶液调pH值至7~14(例如7~8,8~10或其间任一数值或范围),萃取分层,浓缩可得。
在一些实施方式中,反应完成后,可以先将料液减压浓缩,再降温至室温后用有机溶剂溶解得到含式2化合物溶液。
在一些实施方式中,有机溶剂为卤代烃类溶剂或芳香烃溶剂,其用量为反应液的5~10体积当量。
在一些实施方式中,卤代烃类溶剂为二氯甲烷或二氯乙烷,芳香烃溶剂选自甲苯。
在一些实施方式中,式2化合物溶液降温和调pH值的温度为-10~10℃,例如0~10℃、-10~5℃或其间任意数值或范围。
在一些实施方式中,所述无机碱水溶液选自饱和碳酸氢钠水溶液、氢氧化钠水溶剂;其中水溶液的质量百分比浓度为8-10%,优选为10~15%。
迄今为止就奥司他韦中间体的制备方法而言,现有技术没有公开三氯乙酸、甲酸、乙酸等作为酸性溶剂用于该脱叔丁基反应,而三氟乙酸的用量较大,成本昂贵,发明人意外地发现使用三氯乙酸、甲酸、乙酸、甲磺酸或其混合物等作为酸性溶剂也能达到同样的效果,而成本大大地降低。
另外本发明人重复CN109438276A公开的方法,发现加入浓硫酸后碳化严重,且工艺用到昂贵的溶剂乙腈,综合成本较高。
本发明人发现将反应液加入烃类溶剂或芳香烃溶剂,其溶解效果好,无需再加水助溶;后处理步骤中,将反应液滴加到饱和碳酸氢钠水溶液,此时反应液一直处于弱碱或中性状态,产生的水解杂质较少,后续无需多次萃取和重结晶纯化。其中水解杂质的结构式为:
当反应液用氢氧化钠水溶液调pH值时,会产生少量水解产物,后处理通过水洗可以去除,收率与产品的质量水平与使用碳酸氢钠相当。
与现有技术相比,本发明得到的积极技术效果有:
1、本发明提供的制备方法,其中使用甲酸、乙酸等弱酸代替三氟乙酸,分子利用率提高,成本优势明显,且避免强酸的强腐蚀性对设备造成的损害,减少产品中重金属超标的风险。
2、本发明提供的制备方法,其中后处理使用烃类或芳香烃溶剂,该溶剂溶解效果好,无需再加水助溶。
3、本发明提供的制备方法,反应高效,纯化体系简单,溶剂容易回收,绿色环保,适合工业化大生产。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例仅用于说明本发明,但不用于限制本发明的范围。
实施例1:
在四口瓶中投入甲酸80kg,升温至75℃,开启搅拌,取40kg化合物1分批次投入含有甲酸的四口瓶,维持75℃保温反应搅拌12小时,HPLC中控,化合物1≤0.5%,反应毕,控制75℃将反应液减压浓缩至干,将料液降温至室温后加入二氯甲烷200L搅拌溶解,缓慢降温至0~10℃,维持料液0~10℃,将料液缓慢加入至约60kg过饱和碳酸氢钠水溶液中,pH值显示7~8,后分层,水层再加100L二氯甲烷萃取一次,合并两次有机层,减压浓缩至恒重得到黄色至白色固体化合物2,收率约96%,纯度98.8%,其中水解杂质为0.25%。
实施例2:
在四口瓶中投入三氯乙酸90kg,升温至75℃,开启搅拌,取40kg化合物1分批次投入含有三氯乙酸的四口瓶,维持75℃保温反应搅拌14小时,HPLC中控,化合物1≤0.5%,反应毕,将料液降温至室温后后加入二氯乙烷200L搅拌溶解,缓慢降温至0~10℃,维持料液0~10℃,将料液缓慢加入至约60kg过饱和碳酸钠水溶液中,pH值显示7~8,后分层,水层再加100L二氯乙烷萃取一次,合并两次有机层,减压浓缩至恒重得到黄色至白色固体化合物2,收率约92%,纯度97.5%。
实施例3:
在四口瓶中投入乙酸80kg升温至75℃,开启搅拌,取40kg化合物1分批次投入含有乙酸的四口瓶,维持85℃保温反应搅拌14小时,HPLC中控,化合物1≤0.5%,控制75℃减压浓缩至干,将料液降温至室温后后加入二氯乙烷200L搅拌溶解,缓慢降温至0~10℃,维持料液0~10℃,将料液缓慢加入至约60kg过饱和碳酸氢钠水溶液中,pH值显示7~8,后分层,水层再加100L二氯乙烷萃取一次,合并两次有机层,减压浓缩至恒重得到黄色至白色固体化合物2,收率约94.5%,纯度98.2%。
实施例4:
在反应釜中投入甲酸70kg,开启搅拌,取40kg化合物1分批次投入含有甲酸的反应釜,维持65~75℃保温反应搅拌7~12小时,HPLC中控,化合物1≤0.5%,将料液降温至室温后后加入甲苯200L搅拌溶解,缓慢降温至-10~5℃,维持料液-10~5℃,缓慢加入约420kg 15%氢氧化钠水溶液中,pH值显示8~10,后分层,水层再加100L甲苯萃取一次,合并两次有机层,加入50L饮用水洗涤1次,有机层减压浓缩至恒重得到黄色至白色固体化合物2,收率约94.7%,纯度98.1%。
实施例5:
在反应釜中投入甲酸34kg,开启搅拌,降温至20~30℃,缓慢滴加甲磺酸约5kg,滴加毕,搅拌20~30分钟,取40kg化合物1分批次投入含有甲酸和甲磺酸混合物的反应釜,维持50~60℃保温反应搅拌5~~8小时,HPLC中控,化合物1≤0.5%,将料液降温至室温后后加入甲苯200L搅拌溶解,缓慢降温至-10~5℃,维持料液-10~5℃,缓慢加入约220kg 15%氢氧化钠水溶液中,pH值显示8~10,后分层,水层再加100L甲苯萃取一次,合并两次有机层,加入50L饮用水洗涤1次,有机层减压浓缩至恒重得到黄色至白色固体化合物2,收率约95.0%,纯度98.5%,其中水解杂质为0.28%。
对比实施例1:(参考CN100545145C)
在四口瓶中投入三氟乙酸311g,冷却至至0~5℃,开启搅拌,后加到42.56g化合物1中,维持25℃下,保温反应搅拌5.5小时,HPLC中控,化合物1≤0.5%,反应毕,控制30℃将反应液减压浓缩至干,将料液降温至室温后加入甲苯:己烷=1:1(v:v)150ml搅拌稀释,缓慢降温至0~10℃,维持料液0~10℃,缓慢加入饱和碳酸钠约150ml,后加入水150ml,后分层,水层再加甲苯:己烷=1:1(v:v)50ml萃取一次,合并两次有机层,用2N盐酸萃取两次(第一次用30ml,第二次用15ml),合并水层用100ml甲苯稀释,后通过将5.67g(142mmol)氢氧化钠溶解于17ml水中,得PH=13~14,分层,水层再用50ml甲苯萃取三次,合并有机层用硫酸钠干燥,过滤,滤液减压浓缩至恒重得到38.73g棕色油状物,加200ml己烷,加晶种,维持25℃搅拌打浆搅拌约24小时,析出大量固体,约的26.76g,收率72%,纯度约98.0%
表1为实施例1~3和对比实施例1的结果对比

*备注:其中甲酸的价格约为8元/公斤,三氟乙酸的价格约为72元/公斤。
上述表1结果可以看出,本发明的技术方案具有成本优势,在用较便宜的试剂替代昂贵的试剂进行反应,但反应收率没有影响,且有一定的收率提高,非常适合大规模工业化生产。
本发明中所述的具体实施例仅对本发明精神做举例说明。本发明所述技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或超越所附权利要求书所定义的范围。

Claims (12)

  1. 一种如式2所示的奥司他韦中间体的制备方法,其特征在于,该方法包括以下步骤:将式1化合物在酸性条件下进行脱叔丁基反应,得到式2化合物;
    所述酸性条件为三氯乙酸、氯乙酸、二氯乙酸、乙酸、甲基磺酸、苯磺酸、甲酸或其混合物。
  2. 根据权利要求1所述的制备方法,其特征在于,所述的脱叔丁基反应温度为40~100℃,优选为50℃~85℃;反应时间为3~48小时,优选为5~14小时。
  3. 根据权利要求1所述的制备方法,其特征在于,所述的式1化合物与酸的用量质量比为1:0.7~5,优选的质量比为1:0.8~2.0。
  4. [根据细则26改正 22.12.2023]
    根据权利要求1所述的制备方法,其特征在于,所述的酸性条件为乙酸、甲酸、甲磺酸或其混合物。
  5. 根据权利要求1所述的制备方法,其特征在于,还包含如下后处理步骤:反应完成后,用有机溶剂溶解得到含式2化合物的溶液,再将上述得到的式2化合物溶液降温后用无机碱水溶液调pH值,萃取分层,浓缩可得。
  6. 根据权利要求5所述的制备方法,其特征在于,反应结束后,可以先将料液减压浓缩,再降温至室温后用有机溶剂溶解得到含式2化合物的溶液。
  7. 根据权利要求5所述的制备方法,其特征在于,所述有机溶剂为卤代烃类溶剂或芳香烃溶剂,其用量为反应液的5~10体积当量。
  8. 根据权利要求5所述的制备方法,其特征在于,所述的pH值为7~14。
  9. 根据权利要求5所述的制备方法,其特征在于,所述卤代烃类溶剂选自二氯甲烷或二氯乙烷,芳香烃选自甲苯。
  10. 根据权利要求5所述的制备方法,其特征在于,所述降温的温度和调pH值的温度为-10~10℃。
  11. 根据权利要求5所述的制备方法,其特征在于,所述无机碱水溶液选自饱和碳酸氢钠水溶液、氢氧化钠水溶剂;其中水溶液的质量百分比浓度为8-10%,优选为10~15%。
  12. 根据权利要求4所述的制备方法,其特征在于,所述的酸性条件为乙酸、甲酸、乙酸和甲磺酸的混合物、甲酸和甲磺酸的混合物;当使用混合物时,甲磺酸与乙酸或甲酸的摩尔用量为1:15~25。
PCT/CN2023/138627 2022-12-15 2023-12-14 一种奥司他韦中间体的制备方法 WO2024125580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211623975.0A CN118206464A (zh) 2022-12-15 2022-12-15 一种奥司他韦中间体的制备方法
CN202211623975.0 2022-12-15

Publications (1)

Publication Number Publication Date
WO2024125580A1 true WO2024125580A1 (zh) 2024-06-20

Family

ID=91455277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138627 WO2024125580A1 (zh) 2022-12-15 2023-12-14 一种奥司他韦中间体的制备方法

Country Status (2)

Country Link
CN (1) CN118206464A (zh)
WO (1) WO2024125580A1 (zh)

Also Published As

Publication number Publication date
CN118206464A (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
CN114573560B (zh) 一种富马酸伏诺拉生的制备方法
CN103435507B (zh) L-α-甲基-3,4-二羟基苯丙氨酸的制备方法
CN112457266A (zh) 一种缬沙坦母液回收方法
CN110790721B (zh) 头孢他啶侧链酸乙酯的合成方法
CN115108918B (zh) 一种3,3`,4,4`-四氨基联苯的制备方法
CN107118161B (zh) 2-正丙基-4-甲基苯并咪唑-6-羧酸的合成方法
WO2021098847A1 (zh) 一种克林霉素磷酸酯的纯化方法
WO2024125580A1 (zh) 一种奥司他韦中间体的制备方法
CN111138351A (zh) 一种2-氨甲基-3-氯-5-三氟甲基吡啶醋酸盐的合成方法
CN110818590A (zh) 对羟基苯甲腈的制备方法
CN114605276A (zh) 甘氨酸的制备方法
CN114478290A (zh) 奥司他韦中间体的合成方法
CN111892541A (zh) 一种咪唑苯脲的回收提纯方法
US1989093A (en) Amino alcohols and the production thereof
CN115850199B (zh) 一种高纯度磺胺异噁唑钠的制备方法
CN113336636B (zh) 一种高收率的dl-扁桃酸的合成工艺
CN112661727B (zh) 一种7-(2,2,2-三氯乙基氧基羰基)紫杉醇的纯化方法
CN110845354B (zh) 一种西司他丁钠中间体的制备方法
CN115010599B (zh) 一种水杨酸钠酸化物料分离精制水杨酸的方法
CN116621720B (zh) 一种氨己烯酸的制备方法
CN113956183B (zh) 一种Boc-Ser(Bzl)-OH及其制备方法
WO2022126388A1 (zh) 一种合成5-溴-1h-3-氨基-1,2,4-三氮唑的方法
CN118290280A (zh) 一种温和氧化条件下合成氨甲环酸的方法
CN117777053A (zh) 一种噻奈普汀的工业化生产方法
CN115888701A (zh) 一种用于催化加氢制备l-氨基丙醇的催化剂及其制备方法和应用