WO2024124734A1 - 碱骨料复合抑制剂及其制备方法 - Google Patents

碱骨料复合抑制剂及其制备方法 Download PDF

Info

Publication number
WO2024124734A1
WO2024124734A1 PCT/CN2023/083638 CN2023083638W WO2024124734A1 WO 2024124734 A1 WO2024124734 A1 WO 2024124734A1 CN 2023083638 W CN2023083638 W CN 2023083638W WO 2024124734 A1 WO2024124734 A1 WO 2024124734A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali
composite inhibitor
aggregate composite
polyethylene glycol
organic acid
Prior art date
Application number
PCT/CN2023/083638
Other languages
English (en)
French (fr)
Inventor
倪涛
黄玉美
赵发香
杨晓锋
王进春
王龙
王龙飞
刘江涛
董树强
刘松光
袁海军
Original Assignee
石家庄市长安育才建材有限公司
四川砼道科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄市长安育才建材有限公司, 四川砼道科技有限公司 filed Critical 石家庄市长安育才建材有限公司
Publication of WO2024124734A1 publication Critical patent/WO2024124734A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present disclosure relates to the field of concrete building materials, and in particular to an alkali-aggregate composite inhibitor.
  • the present disclosure also relates to a preparation method of the alkali-aggregate composite inhibitor.
  • Concrete has become the world's largest building material due to its excellent cost-effectiveness.
  • Concrete is a composite material obtained by mixing and hardening cementitious materials, coarse and fine aggregates and water.
  • the main type of cementitious materials is cement. Cement undergoes a hydration reaction when it comes into contact with water, bonding coarse and fine aggregates together. Since the international energy crisis in the 1970s, the cement industry has gradually changed from wet production to dry production, which has increased the alkali content of cement.
  • Alkali-aggregate reaction is the slow reaction between the alkali in cement and the active silica in aggregate to form silicate gel.
  • the silicate gel accumulates over a long period of time and its output increases. It has strong water absorption, causing the silicate gel to expand in volume, thereby inducing expansion stress from the inside to the outside of the concrete structure, causing concrete cracking, reducing the mechanical properties of concrete, and damaging the durability of concrete.
  • Alkali-aggregate reaction cracking has been found. Some urban highway traffic has cracks in its moist parts a few years after construction and sampling has confirmed that it is alkali-aggregate reaction.
  • the present disclosure proposes an alkali-aggregate composite inhibitor to inhibit the alkali-aggregate reaction of concrete.
  • An alkali aggregate composite inhibitor the raw materials for preparing the alkali aggregate composite inhibitor include the following components by weight: 0.5-2.0 parts of a titanate coupling agent, 15-30 parts of an ester of polyethylene glycol and an organic acid, and 200-260 parts of a medium-pore zeolite.
  • the titanate coupling agent includes di(triethanolamine)titanate diisopropyl ester, bis(di At least one of a chelate of octyl pyrophosphate) ethylene titanate and triolamine, isopropyl tri(dioctyl phosphate) titanate, and isopropyl dioleyloxy(dioctyl phosphate) titanate.
  • the molar ratio of the alcohol acid in the ester of polyethylene glycol and organic acid is (5-8): (12-18).
  • the weight average molecular weight of the polyethylene glycol is 200-600.
  • the organic acid is at least one of formic acid, acetic acid and propionic acid.
  • the medium pore zeolite includes at least one of ferrierite, Y-type zeolite and ZSM-5 zeolite.
  • the present disclosure also provides a method for preparing an alkali-aggregate composite inhibitor, the method comprising the following steps:
  • the preparation method of the ester of polyethylene glycol and organic acid comprises the following steps:
  • the catalyst is at least one of phosphotungstic heteropoly acid, SO 4 2- /SiO 2 -TiO 2 , cerium sulfate and zirconium sulfate.
  • the dehydrating agent is at least one of calcium oxide and anhydrous calcium sulfate.
  • the preparation of the ester of polyethylene glycol and organic acid is carried out by heating in an oil bath.
  • the amount of the catalyst is 0.1-0.3% of the amount of the reactants.
  • An alkali aggregate composite inhibitor the raw materials for preparing the alkali aggregate composite inhibitor include the following components by weight: 0.5-2.0 parts of a titanate coupling agent, 15-30 parts of an ester of polyethylene glycol and an organic acid, and 200-260 parts of a medium-pore zeolite.
  • the alkali-aggregate composite inhibitor disclosed in the present invention is composed of three main components: titanate coupling agent, esterification product of polyethylene glycol and organic acid, and medium-porous zeolite powder.
  • the medium-porous zeolite powder can rely on its own porous structure to produce adsorption effect on titanate coupling agent and esterification product of polyethylene glycol and organic acid, so that the adsorbed titanate coupling agent and esterification product of polyethylene glycol and organic acid are slowly released in the hardened concrete system to play a long-term effect.
  • the long carbon chain hydrophobic group of the titanate coupling agent is grafted onto the surface of the aggregate, which can hydrophobically modify the active silica on the surface of the aggregate, so that the silica on the surface of the aggregate has a hydrophobic effect, so that water cannot adhere to the surface of the aggregate, reducing the wetting effect of water molecules on the active silica in the hardened concrete under a humid environment, and alkaline substances cannot be ionized by water to produce hydroxide ions, which is helpful to inhibit the reaction between alkaline ions and active silica in the hardened concrete.
  • the titanium element contained in the titanate coupling agent can improve the durability of concrete, and an appropriate amount of titanium dioxide helps to improve the self-cleaning performance of concrete.
  • the titanate coupling agent may preferably be at least one of diisopropyl di(triethanolamine)titanate, a chelate of bis(dioctyl pyrophosphate)ethylene titanate and triolamine, isopropyl tri(dioctyl phosphate acyloxy) titanate, and isopropyl dioleyloxy(dioctyl phosphate acyloxy) titanate.
  • the ester of polyethylene glycol and organic acid undergoes hydrolysis reaction under alkaline conditions to generate organic acid, which neutralizes the alkali in the system, reduces the pH value of hardened concrete, and inhibits alkali-aggregate reaction.
  • the molar ratio of the alcohol acid in the ester of polyethylene glycol and organic acid is (5-8): (12-18).
  • the weight average molecular weight of the polyethylene glycol is 200-600. The molecular weight in this range is relatively small, the esterification efficiency is high, and more organic acid can be released by hydrolysis.
  • the organic acid can preferably be at least one of formic acid, acetic acid and propionic acid. This organic acid has a strong acidity and is more efficient in neutralization with alkali.
  • the present disclosure also provides a method for preparing an alkali-aggregate composite inhibitor, the method comprising the following steps:
  • 0.5-0.8 mol of polyethylene glycol is added to the reactor, the oil bath heater is turned on, the temperature is set to 60-65°C, stirring is turned on, 1.2-1.8 mol of organic acid monomer and catalyst are added, and after reacting for 2-3 hours, a dehydrating agent is added, and the reaction is continued for 2-3 hours. The dehydrating agent is continued to be added, and the reaction is cooled to room temperature to obtain a viscous paste of polyethylene glycol and organic acid ester.
  • the amount of catalyst used in this step is 0.1-0.3% of the mass of the reactants, and it can be preferably at least one of phosphotungstic heteropoly acid, SO 4 2- /SiO 2 -TiO 2 , cerium sulfate and zirconium sulfate, which has a high catalytic efficiency compared to ordinary concentrated sulfuric acid.
  • the total amount of the dehydrating agent is 0.5-1.0 mol, and it can be preferably at least one of calcium oxide and anhydrous calcium sulfate. The catalyst and the dehydrating agent do not need to be removed separately.
  • the preparation method of the ester of polyethylene glycol and an organic acid includes the following process steps: first, 0.8 mol of polyethylene glycol with a weight average molecular weight of 200 is added into a reactor, the oil bath heater is turned on, the temperature is set to 62° C., stirring is turned on, 1.8 mol of formic acid and 0.36 g of zirconium sulfate are added, and after reacting for 3 hours, 28 g of calcium oxide is added, the reaction is continued for 3 hours, 28 g of calcium oxide is added, and the mixture is cooled to room temperature to obtain a viscous paste, that is, the ester of polyethylene glycol and an organic acid is obtained.
  • alkali aggregate composite inhibitor Add 210g of medium-pore Y-type zeolite powder to a kneader, heat to 62°C, add 16g of ester of polyethylene glycol and organic acid, knead for 1.2 hours, then add 1.0g of isopropyl tri(dioctylphosphoyloxy) titanate, knead for 1.5 hours, cool to room temperature, and obtain powdery Alkali aggregate composite inhibitor.
  • the preparation method of the ester of polyethylene glycol and an organic acid comprises the following process steps: firstly, 0.6 mol of polyethylene glycol with a weight average molecular weight of 400 is added into a reactor, the oil bath heater is turned on, the temperature is set to 65° C., stirring is turned on, 1.4 mol of acetic acid and 0.32 g of phosphotungstic heteropoly acid are added, and after reacting for 2 hours, 35 g of calcium sulfate is added, and reacting for 3 hours, 35 g of calcium sulfate is continuously added, and the mixture is cooled to room temperature to obtain a viscous paste, that is, the ester of polyethylene glycol and an organic acid is obtained.
  • alkali-aggregate composite inhibitor Add 260g of medium-pore ferrous alkali zeolite powder into a kneader, heat to 62°C, add 30g of ester of polyethylene glycol and organic acid, knead for 1.5 hours, then add 2.0g of chelate of bis(dioctyloxypyrophosphate)ethylene titanate and triolamine, knead for 2 hours, cool to room temperature, and obtain a powdery alkali-aggregate composite inhibitor.
  • the preparation method of the esterification product of polyethylene glycol and organic acid includes the following process steps: first, 0.5 mol of polyethylene glycol with a weight average molecular weight of 600 is added into a reactor, the oil bath heater is turned on, the temperature is set to 65°C, stirring is turned on, 0.6 mol of formic acid and 0.2 g of SO42- / SiO2 - TiO2 catalyst are added, after reacting for 2.5 hours, 30 g of calcium oxide are added, 0.6 mol of acetic acid and 0.18 g of SO42- / SiO2 - TiO2 catalyst are added, the reaction is continued for 2.5 hours, 30 g of calcium oxide are added, and the reaction is cooled to room temperature to obtain a viscous paste, that is, the esterification product of polyethylene glycol and organic acid is obtained.
  • the preparation method of the alkali-aggregate composite inhibitor is as follows: 230 g of ZSM-5 medium-pore zeolite powder is added to a kneader, heated to 60° C., 25 g of an ester of polyethylene glycol and an organic acid is added, kneaded for 1.5 hours, and then 2 g of a chelate of bis(dioctyloxypyrophosphate)ethylene titanate and triolamine is added, kneaded for 1.5 hours, and cooled to room temperature to obtain a powdery alkali-aggregate composite inhibitor.
  • the method for preparing the ester of polyethylene glycol and organic acid comprises the following process steps: firstly, 0.4 mol of polyethylene glycol with weight average molecular weight of 200 and 400 respectively is added into the reactor, the oil bath heater is turned on, the temperature is set to 63°C, stirring is turned on, 1.8 mol of propionic acid and 0.3 g of SO42- / SiO2 - TiO2 catalyst are added, after reacting for 3 hours, 36 g of calcium sulfate is added, and 0.2 g of SO42-/SiO2-TiO2 catalyst is added , and the reaction is continued for 3 hours. When the mixture was stirred for 2 hours, 36 g of calcium sulfate was added and the mixture was cooled to room temperature to obtain a viscous paste, that is, an ester of polyethylene glycol and an organic acid.
  • Preparation of alkali-aggregate composite inhibitor Add 260 g of ZSM-5 zeolite medium-pore zeolite powder into a kneader, heat to 65°C, add 20 g of an ester of polyethylene glycol and an organic acid, knead for 1.5 hours, then add 1 g each of a chelate of bis(dioctylpyrophosphate)ethylene titanate and triolamine and isopropyl tri(dioctylphosphoacyl) titanate, knead for 1.8 hours, cool to room temperature, and obtain a powdery mixture.
  • Examples 1-4 were used for alkali-aggregate reaction test. Before the test, petrographic analysis of the machine-made sand in the stockpile showed that it was granite, and the active mineral contained was strained quartz with a content of about 38%. According to GB/T14684-2011, the samples of Examples 1-4 were used for alkali-aggregate reaction test, the cement used was Esheng PO.42.5 ordinary Portland cement, and the fly ash used was primary ash. First, the sand was graded and sieved with a square hole sieve to remove sand with a particle size greater than 4.75 mm and less than 0.15 mm. The mass of each particle size of sand used in the alkali-aggregate reaction experiment is shown in Table 1:
  • the mortar mixing should be carried out according to the provisions of GB/T 17671. After the mixing is completed, the mortar is immediately loaded into the test mold equipped with the expansion probe in two times, and each layer is tamped 40 times. Note that the expansion probe should be carefully tamped around. After pouring, use a steamed knife to scrape off the excess mortar, smooth it, number it and indicate the measurement direction. Each group of tests is formed into 3 groups.
  • test results are shown in Table 2:
  • the test block showed brittleness after 180 days, and its expansion rate reached 0.5%, and the expansion rate after 14 days was 0.12%, which was much higher than the requirement of less than 0.1% in GB14684-2011 for an expansion rate of less than 0.1% after 180 days, indicating that its alkali-aggregate reaction was very serious.
  • 1st-grade fly ash was used to replace 30% of cement. In the first 30 days, the expansion rate of the test block was less than 0.1%, but the expansion rate of the test block after 60 days reached 0.1%, and the expansion rate of the test block after 180 days reached 0.18%, indicating that fly ash reduced the alkali-aggregate reaction to a certain extent, but still could not meet the standard requirements.
  • the alkali-aggregate composite inhibitor provided by the present disclosure has the advantages of low dosage and good inhibition effect, which plays an energy-saving and efficiency-enhancing role in construction projects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Polyethers (AREA)

Abstract

本公开提供了一种碱骨料复合抑制剂及其制备方法,该碱骨料复合抑制剂的制备原料按重量份计包括以下组分:钛酸酯偶联剂0.5-2.0份、聚乙二醇与有机酸的酯化物15-30份、中孔沸石200-260份。该碱骨料复合抑制剂有利于抑制混凝土后期的碱骨料反应,降低混凝土后期的开裂风险,提升混凝土工程以及建筑的耐久性,降低工程项目的后期维护成本。

Description

碱骨料复合抑制剂及其制备方法
本公开要求在2022年12月16日提交中国专利局、申请号为CN202211621255.0、专利申请名称为“碱骨料复合抑制剂及其制备方法”的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及混凝土建筑材料领域,特别涉及一种碱骨料复合抑制剂,同时本公开还涉及一种上述碱骨料复合抑制剂的制备方法。
背景技术
近年来,混凝土材料因其优异的性价比已成为全球第一大建材。混凝土材料是由胶凝材料,粗、细骨料和水经过拌合、硬化得到的复合材料。胶凝材料的主要品种为水泥,水泥遇水后发生水化反应,将粗、细骨料粘接在一起。自上世纪70年代国际能源危机以来,水泥工业逐渐由湿法改为干法生产,使水泥含碱量增加。特别是80年代后期,作为利用工业废料和节能措施,将加收高碱窑灰掺入水泥作为先进措施在全国推广,使国产水泥碱含量大大增加,导致其水化过程中孔隙液的PH大于12,呈现较强的碱性。另外,粗集料和细集料虽然有天然和人工之分,但是都来源于岩石材料。岩石种类繁多,有叶腊石、蛇纹岩、伊里石、绿泥石、云母、滑石、高岭石,蛭石,火成岩、变质岩、沉积岩等。其中后面三种岩矿中含有应变石英、活性二氧化硅、微晶石英。在潮湿多水的条件下,硬化混凝土中这些活性组分也发生着缓慢的化学反应。
碱骨料反应是水泥中的碱与骨料中的活性二氧化硅缓慢反应生成硅酸盐凝胶,硅酸盐凝胶通过长期累积,其产量越来越大,且具有强的吸水性,造成硅酸盐凝胶体积膨胀,从而引发混凝土结构由内向外的膨胀应力,导致混凝土开裂,降低混凝土的力学性能,损害混凝土的耐久性。我国一些机场混凝土跑道 已发现碱骨料反应开裂,一些城市公路交通在建成几年后,其潮湿部位开裂取样证实为碱骨料反应。
目前本领域技术人员试图用阻挡水分来源的方式控制碱骨料反应的发展,但是由于水蒸气无孔不入,因此该方案效果不佳。也有从控制水泥碱含量的方式来抑制混凝土碱骨料反应,但在GB175-2007《通用硅酸盐水泥》中并未对水泥碱含量进行限制,因此从降低水泥碱含量的方式抑制混凝土碱骨料反应就必须对水泥材料进行定制生产,出于成本、生产效率考虑对许多工程项目来说实施难度较大。还有对骨料进行限定,不使用具有活性的粗、细骨料,对于目前砂、石材料供求日益紧张的形式下,很多工程不仅无法避免地应用到活性骨料,未来甚至还会用到建筑垃圾为原材料。而常见的做法是用掺合料替代部分胶凝材料,如硅灰、粉煤灰等,替代量水泥量20-30%,这样来降低水泥中碱含量,从应用结果来看对抑制混凝土碱骨料反应有一定的效果,而缺点是掺合料用量大,而效果还有待提升。
发明内容
有鉴于此,本公开提出了一种碱骨料复合抑制剂,以抑制混凝土碱骨料反应。
为达上述目的,本公开的技术方案是这样实现的:
一种碱骨料复合抑制剂,所述碱骨料复合抑制剂的制备原料按重量份计包括以下组分:钛酸酯偶联剂0.5-2.0份、聚乙二醇与有机酸的酯化物15-30份、中孔沸石200-260份。
本公开的碱骨料复合抑制剂可用于砂石骨料中含有无定形或结晶性差的二氧化硅的混凝土中,有利于抑制混凝土后期的碱骨料反应,降低混凝土后期的开裂风险,提升混凝土工程以及建筑的耐久性,降低工程项目的后期维护成本。本公开可用于常态混凝土、泵送混凝土以及预制混凝土中,可广泛用于工、民建设工程中。
进一步的,所述钛酸酯偶联剂包括二(三乙醇胺)钛酸二异丙酯、双(二 辛氧基焦磷酸酯基)乙撑钛酸酯和三醇胺的螯合物、异丙基三(二辛基磷酸酰氧基)钛酸酯、异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯中的至少一种。
进一步的,所述聚乙二醇与有机酸的酯化物中醇酸的摩尔比为(5-8):(12-18)。
进一步的,所述聚乙二醇的重均分子量为200-600。
进一步的,所述有机酸为甲酸、乙酸和丙酸中的至少一种。
进一步的,所述中孔沸石包括镁碱沸石、Y型沸石和ZSM-5沸石中的至少一种。
本公开还提出了一种碱骨料复合抑制剂的制备方法,该方法包括以下步骤:
在捏合机中加入中孔沸石,加温至60-65℃,加入聚乙二醇与有机酸的酯化物,捏合1.0-1.5小时,然后加入钛酸酯偶联剂,捏合1.5-2小时,冷却至室温,得到所述碱骨料复合抑制剂。
进一步的,所述聚乙二醇与有机酸的酯化物的制备方法包括以下步骤:
将聚乙二醇、有机酸、催化剂和脱水剂混合均匀,加热升温为60-65℃,保温。
进一步的,所述催化剂为磷钨杂多酸、SO4 2-/SiO2-TiO2、硫酸铈和硫酸锆中的至少一种。
进一步的,所述脱水剂为氧化钙和无水硫酸钙中的至少一种。
进一步的,所述聚乙二醇与有机酸的酯化物的制备采用油浴加热。
进一步的,所述催化剂用量是反应物质量的0.1-0.3%。
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂商店购买得到的。另外, 除本实施例特别说明之外,本实施例中所涉及的各术语及工艺依照现有技术中的一般认知及常规方法进行理解即可。
一种碱骨料复合抑制剂,所述碱骨料复合抑制剂的制备原料按重量份计包括以下组分:钛酸酯偶联剂0.5-2.0份、聚乙二醇与有机酸的酯化物15-30份、中孔沸石200-260份。
本公开的碱骨料复合抑制剂由钛酸酯偶联剂、聚乙二醇与有机酸的酯化物和中孔沸石粉组成三种主要成分组成。其中中孔沸石粉可以依靠自身的多孔结构,对钛酸酯偶联剂和聚乙二醇与有机酸的酯化物产生吸附作用,使被吸附的钛酸酯偶联剂和聚乙二醇与有机酸的酯化物在硬化混凝土中体系中缓慢释放出来,发挥长效作用。另外中孔沸石自身能够吸附硬化混凝土中的K+离子和Na+,降低可溶性碱性离子浓度,进而抑制***中氢氧根电离,从而降低***的pH值,起到抑制碱骨料反应作用。中孔沸石可以选用包括镁碱沸石、Y型沸石和ZSM-5沸石中的至少一种。
钛酸酯偶联剂组分可以对骨料表面的活性二氧化硅进行疏水改性,可降低潮湿环境下水分子对硬化混凝土中的活性二氧硅的润湿作用,从而有利于抑制硬化混凝土中碱性离子与活性二氧化硅反应。钛酸酯偶联剂的长碳链疏水基团,接枝到骨料表面,可以对骨料表面的活性二氧化硅进行疏水改性,这样骨料表面的二氧化硅就具有疏水的作用,使水分不能在骨料表面附着,降低潮湿环境下水分子对硬化混凝土中的活性二氧硅的润湿作用,碱性物质不能被水电离出氢氧根离子,从而有利于抑制硬化混凝土中碱性离子与活性二氧化硅反应。另外钛酸酯偶联剂含有的钛元素可以提升混凝土的耐久性,适量的二氧化钛有助于改善混凝土的自洁性能。钛酸酯偶联剂可以优选采用包括二(三乙醇胺)钛酸二异丙酯、双(二辛氧基焦磷酸酯基)乙撑钛酸酯和三醇胺的螯合物、异丙基三(二辛基磷酸酰氧基)钛酸酯、异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯中的至少一种。
聚乙二醇与有机酸的酯化物则在碱性条件下发生水解反应生成有机酸,中和***中的碱,降低硬化混凝土的pH值,起到抑制碱骨料反应作用。优选的 聚乙二醇与有机酸的酯化物中醇酸的摩尔比为(5-8):(12-18)。其聚乙二醇的重均分子量为200-600。此范围分子量较小,酯化效率高,水解能放更多的有机酸。有机酸可以优选为甲酸、乙酸和丙酸中的至少一种。此有机酸酸性较强,对碱中和的效率更高。
本公开还提出了一种碱骨料复合抑制剂的制备方法,该方法包括以下步骤:
制备聚乙二醇与有机酸的酯化物:
将0.5-0.8mol聚乙二醇加入反应器中,开启油浴加热器,设定温度60-65℃,开启搅拌,加入1.2-1.8mol有机酸类单体和催化剂,反应2-3小时后,加入脱水剂,继续反应2-3小时,继续加入脱水剂,冷却至室温,得到粘稠膏状的聚乙二醇与有机酸的酯化物。此步的催化剂用量是反应物质量的0.1-0.3%,可以优选为磷钨杂多酸、SO4 2-/SiO2-TiO2、硫酸铈和硫酸锆中的至少一种,相比于普通的浓硫酸,催化效率高。脱水剂总的用量是0.5-1.0mol,可以优选为氧化钙和无水硫酸钙中的至少一种。催化剂和脱水剂可以不用另外脱除。
制备碱骨料复合抑制剂:
在捏合机中加入中孔沸石粉,加温至60-65℃,加入聚乙二醇与有机酸的酯化物,捏合1.0-1.5小时,然后加入钛酸酯偶联剂,捏合1.5-2小时,冷却至室温,得到所述碱骨料复合抑制剂。上述的反应试剂均可向市场购买获得。
下面对本公开的具体实现方案做详细的描述。
实施例1
聚乙二醇与有机酸的酯化物制备方法包括如下工艺步骤:先将重均分子量为200的聚乙二醇0.8mol加入反应器中,开启油浴加热器,设定温度62℃,开启搅拌,加入1.8mol甲酸,0.36克硫酸锆,反应3小时后,加入28克氧化钙,继续反应3小时,加入28克氧化钙,冷却至室温,得到粘稠膏状物,即得到聚乙二醇与有机酸的酯化物。
碱骨料复合抑制剂的制备:在捏合机中加入中孔210gY型沸石粉,加温至62℃,加入聚乙二醇与有机酸的酯化物16g,捏合1.2小时,再加入1.0g异丙基三(二辛基磷酸酰氧基)钛酸酯,捏合1.5小时,冷却至室温,得到粉状的 碱骨料复合抑制剂。
实施例2
聚乙二醇与有机酸的酯化物制备方法包括如下工艺步骤:先将重均分子量为400的聚乙二醇0.6mol加入反应器中,开启油浴加热器,设定温度65℃,开启搅拌,加入乙酸1.4mol,磷钨杂多酸0.32克,反应2小时后,加入35克硫酸钙,反应3小时,继续加入35克硫酸钙,冷却至室温,得到粘稠膏状物,即得到聚乙二醇与有机酸的酯化物。
碱骨料复合抑制剂的制备:在捏合机中加入260g中孔镁碱沸石粉,加温至62℃,加入30g聚乙二醇与有机酸的酯化物,捏合1.5小时,再加入2.0g双(二辛氧基焦磷酸酯基)乙撑钛酸酯和三醇胺的螯合物,捏合2小时,冷却至室温,得到粉状碱骨料复合抑制剂。
实施例3
聚乙二醇与有机酸的酯化物制备方法包括如下工艺步骤:先将重均分子量为600的聚乙二醇0.5mol加入反应器中,开启油浴加热器,设定温度65℃,开启搅拌,加入甲酸0.6mol,SO4 2-/SiO2-TiO2催化剂0.2克,反应2.5小时后,加入30克氧化钙,继续加入0.6mol乙酸,0.18克SO4 2-/SiO2-TiO2催化剂,反应2.5小时,加入30克氧化钙,冷却至室温,得到粘稠膏状物,即得到聚乙二醇与有机酸的酯化物。
碱骨料复合抑制剂的制备方法为:在捏合机中加入ZSM-5中孔沸石粉230g,加温至60℃,加入聚乙二醇与有机酸的酯化物25g,捏合1.5小时,再加入双(二辛氧基焦磷酸酯基)乙撑钛酸酯和三醇胺的螯合物2g,捏合1.5小时,冷却至室温,得到粉状的碱骨料复合抑制剂。
实施例4
聚乙二醇与有机酸的酯化物制备方法包括如下工艺步骤:先将重均分子量分别为200和400的聚乙二醇各0.4mol加入反应器中,开启油浴加热器,设定温度63℃,开启搅拌,加入丙酸1.8mol,SO4 2-/SiO2-TiO2催化剂0.3克,反应3小时后,加入36克硫酸钙,继续加入SO4 2-/SiO2-TiO2催化剂0.2克,反应3小 时,加入36克硫酸钙,冷却至室温,得到粘稠膏状物,即得到聚乙二醇与有机酸的酯化物。
碱骨料复合抑制剂的制备:在捏合机中加入ZSM-5沸石中孔沸石粉260g,加温至65℃,加入聚乙二醇与有机酸的酯化物20g,捏合1.5小时,再加入双(二辛氧基焦磷酸酯基)乙撑钛酸酯和三醇胺的螯合物、异丙基三(二辛基磷酸酰氧基)钛酸酯各1g,捏合1.8小时,冷却至室温,得到粉状混合物。
将以上实施例1-4用于碱骨料反应测试。在测试之前,对料堆中的机制砂进行岩相分析为花岗岩石,且所含的活性矿物为应变石英,含量约为38%。按照GB/T14684-2011对实施例1-4的样品用于碱骨料反应测试,水泥采用峨胜PO.42.5普通硅酸盐水泥,所用的煤灰为一级灰。首先对砂进行分级,采用方孔筛进行筛分,筛除大于4.75mm以及小于0.15mm粒径的砂。碱集料反应实验用砂的各粒级的质量如表1所示:
表1碱集料反应用砂各粒级的质量
称取440克胶凝材料,990克砂,一定的水进行砂浆实验,实验用水量按GB 2419确定。跳桌跳动频率为6s跳动10次,流动度以105mm~120mm为准。砂浆搅拌应按GB/T 17671规定进行,搅拌完成后,立即将砂浆分两次装入已装有膨胀测头的试模中,每层捣40次,注意膨胀测头四周应小心捣实,浇捣完毕后用馒刀刮除多余砂浆,抹平、编号并表明测长方向,每一组试验成型3组。然后按GB/T14684-2011进行养护,测试、计算试块14天,30天,60天以及180天的膨胀率,观察、记录试块各龄期的外观情况。测试结果如表2所示:
表2碱骨料反应测试结果
由表2可知,实验1中,试块的180天出现了酥脆现象,其膨胀率已达到0.5%,14天膨胀率为0.12%,远大于GB14684-2011中180天膨胀率小于0.1%的要求,说明其碱骨料反应很严重。实验2中采用1级粉煤灰替代30%的水泥,前30天,试块的膨胀率都小于0.1%,但是试块60天的膨胀率达到了0.1%,试块180天的膨胀率达到0.18%,说明粉煤灰一定程度上降低了碱骨料反应,但是还不能满足标准要求。而采用实施例1-4后,其掺量为胶材的3%,180天的试块无明显裂纹,且膨胀率为0.1%以下,完全抑制了碱骨料反应。综上所述,本公开提供的碱骨料复合抑制剂具有掺量低,且抑制效果好的优点,对建筑工程起到节能增效作用。
以上详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。

Claims (12)

  1. 一种碱骨料复合抑制剂,其特征在于:所述碱骨料复合抑制剂的制备原料按重量份计包括以下组分:钛酸酯偶联剂0.5-2.0份、聚乙二醇与有机酸的酯化物15-30份、中孔沸石200-260份。
  2. 根据权利要求1所述的碱骨料复合抑制剂,其特征在于:所述钛酸酯偶联剂包括二(三乙醇胺)钛酸二异丙酯、双(二辛氧基焦磷酸酯基)乙撑钛酸酯和三醇胺的螯合物、异丙基三(二辛基磷酸酰氧基)钛酸酯、异丙基二油酸酰氧基(二辛基磷酸酰氧基)钛酸酯中的至少一种。
  3. 根据权利要求1所述的碱骨料复合抑制剂,其特征在于:所述聚乙二醇与有机酸的酯化物中醇酸的摩尔比为(5-8):(12-18)。
  4. 根据权利要求1所述的碱骨料复合抑制剂,其特征在于:所述聚乙二醇的重均分子量为200-600。
  5. 根据权利要求1所述的碱骨料复合抑制剂,其特征在于:所述有机酸为甲酸、乙酸和丙酸中的至少一种。
  6. 根据权利要求1-5任一项所述的碱骨料复合抑制剂,其特征在于:所述中孔沸石包括镁碱沸石、Y型沸石和ZSM-5沸石中的至少一种。
  7. 一种碱骨料复合抑制剂的制备方法,其特征在于,该方法包括以下步骤:
    在捏合机中加入中孔沸石,加温至60-65℃,加入聚乙二醇与有机酸的酯化物,捏合1.0-1.5小时,然后加入钛酸酯偶联剂,捏合1.5-2小时,冷却至室温,得到所述碱骨料复合抑制剂。
  8. 根据权利要求7所述的碱骨料复合抑制剂的制备方法,其特征在于:所述聚乙二醇与有机酸的酯化物的制备方法包括以下步骤:
    将聚乙二醇、有机酸、催化剂和脱水剂混合均匀,加热升温为60-65℃,保温。
  9. 根据权利要求8所述的碱骨料复合抑制剂的制备方法,其特征在于:所述催化剂为磷钨杂多酸、SO4 2-/SiO2-TiO2、硫酸铈和硫酸锆中的至少一种。
  10. 根据权利要求8所述的碱骨料复合抑制剂的制备方法,其特征在于:所 述脱水剂为氧化钙和无水硫酸钙中的至少一种。
  11. 根据权利要求8所述的碱骨料复合抑制剂的制备方法,其特征在于:所述聚乙二醇与有机酸的酯化物的制备采用油浴加热。
  12. 根据权利要求8-11任一项所述的碱骨料复合抑制剂的制备方法,其特征在于:所述催化剂用量是反应物质量的0.1-0.3%。
PCT/CN2023/083638 2022-12-16 2023-03-24 碱骨料复合抑制剂及其制备方法 WO2024124734A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211621255.0 2022-12-16
CN202211621255.0A CN115611551B (zh) 2022-12-16 2022-12-16 碱骨料复合抑制剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2024124734A1 true WO2024124734A1 (zh) 2024-06-20

Family

ID=84879629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083638 WO2024124734A1 (zh) 2022-12-16 2023-03-24 碱骨料复合抑制剂及其制备方法

Country Status (2)

Country Link
CN (1) CN115611551B (zh)
WO (1) WO2024124734A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115611551B (zh) * 2022-12-16 2023-03-14 石家庄市长安育才建材有限公司 碱骨料复合抑制剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169144A (ja) * 2005-11-04 2007-07-05 Tokuyama Corp アルカリ性低減剤
JP2008247686A (ja) * 2007-03-30 2008-10-16 Taiheiyo Cement Corp アルカリ骨材反応抑制剤
JP2010024112A (ja) * 2008-07-23 2010-02-04 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2022134233A (ja) * 2021-03-03 2022-09-15 Ube三菱セメント株式会社 セメント組成物及びその製造方法、アルカリシリカ反応抑制剤、アルカリシリカ反応抑制方法
CN115611551A (zh) * 2022-12-16 2023-01-17 石家庄市长安育才建材有限公司 碱骨料复合抑制剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100509684C (zh) * 2007-04-13 2009-07-08 俞锡贤 一种阻裂抗渗剂及其生产方法
CN102515606B (zh) * 2012-01-09 2016-05-04 水利部交通运输部国家能源局南京水利科学研究院 可抑制碱-硅酸反应的混凝土掺合料
CN103864336B (zh) * 2014-02-09 2015-08-12 郑州市公路工程公司 一种水泥复合添加剂的制备方法
CN108341619B (zh) * 2018-05-03 2020-07-07 黄河勘测规划设计研究院有限公司 一种混凝土内外部水分迁移抑制剂
CN109608085B (zh) * 2018-12-28 2020-03-06 内蒙古自治区水利水电勘测设计院 一种碱骨料反应抑制剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169144A (ja) * 2005-11-04 2007-07-05 Tokuyama Corp アルカリ性低減剤
JP2008247686A (ja) * 2007-03-30 2008-10-16 Taiheiyo Cement Corp アルカリ骨材反応抑制剤
JP2010024112A (ja) * 2008-07-23 2010-02-04 Denki Kagaku Kogyo Kk セメント混和材及びセメント組成物
JP2022134233A (ja) * 2021-03-03 2022-09-15 Ube三菱セメント株式会社 セメント組成物及びその製造方法、アルカリシリカ反応抑制剤、アルカリシリカ反応抑制方法
CN115611551A (zh) * 2022-12-16 2023-01-17 石家庄市长安育才建材有限公司 碱骨料复合抑制剂及其制备方法

Also Published As

Publication number Publication date
CN115611551A (zh) 2023-01-17
CN115611551B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
Ahmad et al. Influence of different admixtures on the mechanical and durability properties of one-part alkali-activated mortars
RU2517729C2 (ru) Геополимерные композиционные связущие с заданными характеристиками для цемента и бетона
WO2019080527A1 (zh) 石膏基机械喷涂抹灰砂浆及其制备方法和石膏基机械喷涂料浆
CN101265069A (zh) 一种高强度耐水粉刷石膏及其生产方法
CN111792902B (zh) 一种高强耐水型磷石膏复合胶凝材料及其制备方法
CN105777035A (zh) 一种利用水化硅酸钙晶种粉制备的混凝土裂缝灌浆修补材料及其使用方法
JP7047634B2 (ja) モルタル・コンクリート用混和材、これを含むセメント組成物、モルタル組成物及びコンクリート組成物、並びに、モルタル硬化物及びコンクリート硬化物の製造方法
CN112939561B (zh) 一种磷石膏基轻质抹灰石膏及其制备方法
JP7014063B2 (ja) モルタル・コンクリート用混和材、これを含むセメント組成物、モルタル組成物及びコンクリート組成物、並びに、モルタル硬化物及びコンクリート硬化物の製造方法
WO2024124734A1 (zh) 碱骨料复合抑制剂及其制备方法
CN103979866A (zh) 一种含玛雅蓝加气砖及其制备方法
CN111285654A (zh) 一种脱硫建筑石膏基复合胶凝材料的制备方法
CN111807770A (zh) 生态水泥高强灌浆料及制备方法
CN111943626A (zh) 石膏基墙体找平材料及其制备方法和使用方法
CN115353361A (zh) 一种复合胶凝材料及其制备方法和应用
RU2361833C2 (ru) Комплексный модификатор бетона полифункционального действия (варианты)
CN114149187B (zh) 一种改性磷石膏基增强增韧胶凝材料的制备方法
KR101579790B1 (ko) 탈황반수석고를 포함하는 건축용 모르타르 조성물
JP2020128315A (ja) モルタル・コンクリート用混和材、これを含むセメント組成物、モルタル組成物及びコンクリート組成物、並びに、モルタル硬化物及びコンクリート硬化物の製造方法
RU2448921C2 (ru) Комплексная модифицирующая добавка для бетонных растворов
JPH11246260A (ja) セメント組成物およびそれを用いた硬化体の製造方法
JPH07267704A (ja) セルフレベリング性水性組成物
CN103011743B (zh) 钠沸石无机人造石制备工艺
CN110436870A (zh) 一种适于装配式建筑的调湿功能磷石膏墙体材料及其制备方法
JP4197363B2 (ja) 調湿性石膏、その製造方法および石膏硬化体