WO2024122576A1 - 配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール - Google Patents

配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール Download PDF

Info

Publication number
WO2024122576A1
WO2024122576A1 PCT/JP2023/043635 JP2023043635W WO2024122576A1 WO 2024122576 A1 WO2024122576 A1 WO 2024122576A1 JP 2023043635 W JP2023043635 W JP 2023043635W WO 2024122576 A1 WO2024122576 A1 WO 2024122576A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
ground
ground line
conductor
pair
Prior art date
Application number
PCT/JP2023/043635
Other languages
English (en)
French (fr)
Inventor
芳規 川頭
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024122576A1 publication Critical patent/WO2024122576A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • Patent Document 1 A conventional wiring board is described, for example, in Patent Document 1.
  • the first signal conductor is located between the first ground conductor and the second ground conductor.
  • the second signal conductor is located with a space from the first signal conductor and is located between the first ground conductor and the second ground conductor.
  • the first ground conductor has a first ground line and a second ground line.
  • the second ground line faces the first ground line across the first region in the second direction.
  • the second ground conductor has a third ground line and a fourth ground line.
  • the fourth ground line faces the third ground line across the first region in the second direction.
  • the first signal conductor has a pair of first electrode portions, a first line portion, and a second line portion. The pair of first electrode portions face each other across the first region in the second direction.
  • the first line portion is connected to one of the pair of first electrode portions and extends away from the first region.
  • the second line portion is connected to the other of the pair of first electrode portions and extends away from the first region.
  • the second signal conductor has a pair of second electrode portions, a third line portion, and a fourth line portion.
  • the pair of second electrode portions face each other across the first region in the second direction.
  • the third line portion is connected to one of the pair of second electrode portions and extends away from the first region.
  • the fourth line portion is connected to the other of the pair of second electrode portions and extends away from the first region.
  • the first ground conductor, the first signal conductor, the second signal conductor, and the second ground conductor are arranged in this order in the first direction.
  • the first opening is located in a first portion of the first region that is located between the first signal conductor and the second signal conductor in the first direction.
  • the distance in the second direction between a pair of first electrode portions and the distance in the second direction between a pair of second electrode portions are smaller than at least one of the distance in the second direction between the first ground line and the second ground line and the distance in the second direction between the third ground line and the fourth ground line.
  • the dimension of the first opening in the second direction is greater than at least one of the distance in the second direction between the pair of first electrode portions and the distance in the second direction between the pair of second electrode portions.
  • the dimension of the first opening in the second direction is smaller than at least one of the distance in the second direction between the first ground line and the second ground line and the distance in the second direction between the third ground line and the fourth ground line.
  • the first opening extends at least between a pair of first electrode portions and between a pair of second electrode portions.
  • the dimension of the first opening in the first direction is greater than the distance in the first direction between the first ground conductor and the second ground conductor.
  • the insulator further has a second opening and a third opening.
  • the second opening is at least partially located in the first region.
  • the third opening is at least partially located in the first region.
  • the second opening is located between the first ground line and the second ground line in the second direction, and is spaced apart from the first signal conductor in the first direction.
  • the third opening is located between the third ground line and the fourth ground line in the second direction, and is spaced apart from the second signal conductor in the first direction.
  • the first opening has a first connection portion and a second connection portion.
  • the first connection portion is connected to the second opening.
  • the first connection portion is located between the pair of first electrode portions in the second direction.
  • the second connection portion is connected to the third opening.
  • the second connection portion is located between the pair of second electrode portions in the second direction.
  • the dimension of the first opening in the second direction is smaller than the dimension of the second opening in the second direction and the dimension of the third opening.
  • the depth of the first opening is greater than at least one of the depth of the second opening and the depth of the third opening.
  • the second opening is in contact with the first ground line and the second ground line in a plan view.
  • the third opening is in contact with the third ground line and the fourth ground line in a plan view.
  • the ground conductor portion further includes a third ground conductor located between the first signal conductor and the second signal conductor.
  • the third ground conductor includes a fifth ground line and a sixth ground line.
  • the sixth ground line faces the fifth ground line in the second direction across the first region.
  • the distance in the second direction between the fifth ground line and the sixth ground line is greater than at least one of the distance in the second direction between the first ground line and the second ground line and the distance in the second direction between the third ground line and the fourth ground line.
  • the package for mounting electronic components includes the wiring board described above in (1) to (13), a substrate, and a frame.
  • the frame is located on the substrate.
  • the wiring board is fixed to the frame.
  • the electronic module includes the electronic component mounting package of (14) above, an electronic component, and a lid.
  • the electronic component is housed in the electronic component mounting package and is electrically connected to the wiring board.
  • the lid is joined onto the frame and is positioned to cover the inside of the electronic component mounting package.
  • FIG. 13 is a perspective view of a wiring board according to a second embodiment.
  • FIG. 13 is a plan view of a wiring board according to a second embodiment.
  • FIG. 13 is a perspective view of a wiring board according to a third embodiment.
  • FIG. 13 is a plan view of a wiring board according to a third embodiment.
  • FIG. 13 is a perspective view of a wiring board according to a fourth embodiment.
  • FIG. 13 is a plan view of a wiring board according to a fourth embodiment.
  • FIG. 13 is a plan view of a wiring board according to a fourth embodiment.
  • FIG. 13 is a perspective view of a wiring board according to a fifth embodiment.
  • FIG. 13 is a plan view of a wiring board according to a fifth embodiment.
  • 12 is a cross-sectional view of the wiring board shown in FIG. 11 taken along the line XII-XII.
  • FIG. 13 is an exploded perspective view of a wiring board according to a fifth embodiment.
  • FIG. 13 is a perspective view of a wiring board according to a sixth embodiment.
  • FIG. 13 is a plan view of a wiring board according to a sixth embodiment.
  • FIG. 15 is an enlarged perspective view of a main part A shown in FIG. 14 .
  • 1 is an exploded perspective view of an electronic component mounting package and an electronic module including a wiring board according to an embodiment
  • 13 is a graph showing the reflection characteristics of wiring boards according to the fourth and fifth embodiments.
  • 13 is a graph showing transmission characteristics of wiring boards according to the fourth and fifth embodiments.
  • 13 is a graph showing TDR (Time Domain Reflectometry) of wiring boards according to the fourth and fifth embodiments.
  • a wiring board has a first ground pattern, a first wiring path, a second wiring path, a second ground pattern, a first pad pair, and a second pad pair on a ceramic base.
  • the first pad pair is provided midway through the first wiring path.
  • the second pad pair is provided midway through the second wiring path.
  • the technology disclosed in Patent Document 1 describes a wiring board in which a capacitor is mounted on each of the first pad pair and the second pad pair.
  • the bonding material may connect across the first and/or second pad pairs. This may result in electrical connection between the first and/or second pad pairs, causing a short circuit.
  • any direction of the wiring board may be upward or downward, for convenience, a Cartesian coordinate system xyz is defined, and the positive side of the z direction is upward.
  • a plan view is a concept including a planar perspective view.
  • the first direction refers to, for example, the x direction in the drawings.
  • the second direction refers to, for example, the y direction in the drawings.
  • the third direction refers to, for example, the z direction in the drawings.
  • the width, length, and thickness can be the dimensions in the x direction, the y direction, and the z direction, respectively.
  • the wiring board 101A includes an insulator 1, a ground conductor portion G0, and a signal conductor portion S0.
  • the insulator 1 has a first upper surface 1t.
  • the first upper surface 1t has a first region 1s extending in a first direction (in other words, the x-direction).
  • the first region 1s may be defined as a region sandwiched between a pair of first electrode portions S11 and a pair of second electrode portions S21, which will be described later. More specifically, the first region 1s may be a region extending in the x-direction from at least a first virtual line T1 connecting the outer edge of the first ground line G1a and the outer edge of the second ground line G1b to a second virtual line T2 connecting the outer edge of the third ground line G2a and the outer edge of the fourth ground line G2b.
  • the first region 1s is rectangular, but may also be elliptical, or may be partially inclined in the y-direction.
  • the material of the insulator 1 can be, for example, a ceramic material such as an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, or a silicon nitride sintered body, or a dielectric material such as a glass ceramic material or a glass epoxy material.
  • a ceramic material such as an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, or a silicon nitride sintered body
  • a dielectric material such as a glass ceramic material or a glass epoxy material.
  • the insulator 1 may be a single layer, or may be configured with multiple insulating layers stacked together. In a plan view, the insulator 1 is, for example, rectangular, with dimensions of 4 mm x 4 mm to 50 mm x 50 mm, and a thickness of 0.5 mm to 10 mm. In one embodiment, the insulator 1 may be configured with a third insulating layer 13, a second insulating layer 12, and a first insulating layer 11 stacked in this order in the positive direction of the z-axis, as shown in FIG. 1, etc.
  • the insulator 1 and the ground conductor portion G0 and signal conductor portion S0 described below may also be created by additive manufacturing (AM) using a 3D printer.
  • AM additive manufacturing
  • the insulator 1 can be manufactured, for example, as follows. A plurality of green sheets are processed using a mold or the like to prepare a plurality of green sheets formed to the outer shape of the insulator 1. Next, the plurality of green sheets are stacked so that their outer edges coincide to form a green sheet laminate. The green sheet laminate is fired to sinter the plurality of green sheets to obtain the insulator 1.
  • the ground conductor portion G0 is located on the first upper surface 1t and extends in a second direction (in other words, the y direction) that intersects with the first direction.
  • the ground conductor portion G0 has a first ground conductor G1 and a second ground conductor G2 that is spaced apart from the first ground conductor G1.
  • ground conductor portion G0 examples include metal materials such as gold, silver, copper, nickel, tungsten, molybdenum, and manganese.
  • the ground conductor portion G0 may be formed by sintering a metal paste onto the first upper surface 1t, or may be formed using a thin film formation technique such as a vapor deposition method or a sputtering method.
  • the first ground conductor G1, the second ground conductor G2, and the third ground conductor G3 described below do not need to be made of the same material, and may be made of different materials.
  • Metal plating such as nickel plating or gold plating may be formed on the surface of the ground conductor portion G0.
  • an insulating film such as ceramic (e.g., an alumina coating) and/or resin may be further positioned on a portion of the ground conductor portion G0.
  • the insulating film may be formed on the ground conductor portion G0 by screen printing. Furthermore, the insulating film may be positioned only on a portion of the ground conductor portion G0. With such a configuration, it is possible to reduce the possibility that the ground conductor portion G0 will short-circuit with other wiring.
  • the first ground conductor G1 has a first ground line G1a and a second ground line G1b.
  • the second ground line G1b faces the first ground line G1a across the first region 1s in the y direction.
  • the first ground line G1a and the second ground line G1b are separated by the first region 1s.
  • This state can also be said to mean that the first ground conductor G1 is cut by the first region 1s.
  • the first ground line G1a and the second ground line G1b are linear, but may be partially curved.
  • the first ground line G1a and the second ground line G1b are linearly symmetric across the first region 1s, but the first ground line G1a and the second ground line G1b may be different in shape.
  • the first ground conductor G1 may be electrically connected to the inner layer ground conductor G4 by a via or the like. More specifically, the first ground line G1a and the second ground line G1b may each be electrically connected to the inner layer ground conductor G4 by a via or the like. In this case, the first ground line G1a and the second ground line G1b may be electrically connected via the inner layer ground conductor G4.
  • the third ground line G2a and the fourth ground line G2b described below may also have the same or similar configuration as the first ground line G1a and the second ground line G1b.
  • the second ground conductor G2 has a third ground line G2a and a fourth ground line G2b.
  • the fourth ground line G2b faces the third ground line G2a across the first region 1s in the y direction. That is, the third ground line G2a and the fourth ground line G2b are separated by the first region 1s. In other words, this state may be said to be that the second ground conductor G2 is cut by the first region 1s.
  • the third ground line G2a and the fourth ground line G2b are linear, but may be partially curved.
  • the third ground line G2a and the fourth ground line G2b are linearly symmetrical with respect to the first region 1s, but the third ground line G2a and the fourth ground line G2b may be different in shape.
  • the second line conductor G2 does not need to have the same shape as the first ground conductor G1, and may be different in shape.
  • the width, length, and thickness of the first ground conductor G1 may be the same as or different from the width, length, and thickness of the second ground conductor G2.
  • the signal conductor portion S0 is located on the first upper surface 1t and extends in the y direction.
  • the material of the signal conductor portion S0 may be the same as or different from the material of the ground conductor portion G0, and may be, for example, the same or similar material as the material of the ground conductor portion G0 described above. Note that the signal conductor portion S0 and the ground conductor portion G0 do not necessarily need to be made of the same material, and may be different materials. Furthermore, the signal conductor portion S0 may be formed by the same or similar method as the ground conductor portion G0 described above.
  • the signal conductor portion S0 has a first signal conductor S1 and a second signal conductor S2.
  • the first signal conductor S1 and the second signal conductor S2 form a pair of differential signal lines. Compared to a single-ended signal line, a differential signal line can reduce the possibility of being affected by noise.
  • the first signal conductor S1 is located between the first ground conductor G1 and the second ground conductor G2.
  • the first signal conductor S1 has a pair of first electrode portions S11, a first line portion S12a, and a second line portion S12b.
  • the pair of first electrode portions S11 face each other in the y direction with the first region 1s in between.
  • the first line portion S12a is connected to one of the pair of first electrode portions S11, S11a, and extends away from the first region 1s.
  • the second line portion S12b is connected to the other of the pair of first electrode portions S11, S11b, and extends away from the first region 1s.
  • One S11a of the pair of first electrode portions S11 and the other S11b of the pair of first electrode portions S11 do not have to be symmetrical with respect to the first region 1s.
  • the pair of first electrode portions S11 may have the same shape or different shapes.
  • the width of the pair of first electrode portions S11 may be larger than the width of the first line portion S12a and the width of the second line portion S12b.
  • the width of the pair of first electrode portions S11 may be the same as or different from the width of the first line portion S12a and the second line portion S12b.
  • the relationship between the width of the pair of second electrode portions S21, the width of the third line portion S22a, and the width of the fourth line portion S22b, which will be described later, may also be the same as the above.
  • the pair of first electrode portions S11 can be connected to electrical circuit elements such as capacitors, inductors, resistors, noise removal filters, and chip beads.
  • the pair of first electrode portions S11 can be electrically connected to a first capacitor 31 as shown in FIG. 3. By connecting the first capacitor 31 to the pair of first electrode portions S11, the DC voltage component of the signal transmitted through the first signal conductor S1 can be reduced.
  • the first capacitor 31 may be rectangular in plan view, with dimensions of 0.1 mm x 0.1 mm to 2 mm x 4 mm, and a height of 0.1 mm to 3 mm.
  • the width of the first capacitor 31 may be greater than the width of the pair of first electrode portions S11 in plan view.
  • the first capacitor 31 may contain, for example, forsterite, aluminum oxide, barium magnesium niobate, and barium neodymium titanate. More specifically, the first capacitor 31 may be a multi-layer ceramic capacitor (MLCC) or a silicon capacitor.
  • MLCC multi-layer ceramic capacitor
  • the second signal conductor S2 is located with a gap between it and the first ground conductor G1 and the second ground conductor G2.
  • the second signal conductor S2 has a pair of second electrode portions S21, a third line portion S22a, and a fourth line portion S22b.
  • the pair of second electrode portions S21 face each other in the y direction with the first region 1s in between.
  • the third line portion S22a is connected to one of the pair of second electrode portions S21, S21a, and extends away from the first region 1s.
  • the fourth line portion S22b is connected to the other of the pair of second electrode portions S21, S21b, and extends away from the first region 1s.
  • An electric circuit element such as a capacitor, an inductor, or a resistor can be connected to the pair of second electrode parts S21.
  • the electric circuit element connected to the pair of second electrode parts S21 may be the same as or different from the electric circuit element connected to the pair of first electrode parts S11.
  • a second capacitor 32 can be electrically connected to the pair of second electrode parts S21 as shown in Fig. 3. By connecting the second capacitor 32 to the pair of second electrode parts S21, the DC voltage component of the signal transmitted through the second signal conductor S2 can be reduced.
  • first electrode portions S11 and the pair of second electrode portions S21 may be collectively referred to as electrode portions.
  • first capacitor 31 and the second capacitor 32 may be collectively referred to as electrical circuit elements.
  • the first capacitor 31 can be connected to the pair of first electrode portions S11 by a bonding material.
  • the second capacitor 32 can be connected to the pair of second electrode portions S21 by a bonding material.
  • the bonding material for example, well-known solders such as Sn-Ag-Cu solder, Sn-Zn-Bi solder, Sn-Cu solder, etc. can be used.
  • the first ground conductor G1, the first signal conductor S1, the second signal conductor S2, and the second ground conductor G2 are positioned in this order in the x direction.
  • the first signal conductor S1 and the second signal conductor S2 are positioned between the first ground conductor G1 and the second line conductor G2 in the x direction.
  • the insulator 1 has a first opening O1, at least a portion of which is located in the first region 1s.
  • the first opening O1 may be formed by punching the insulator 1 before sintering, or by applying a known drilling process such as drilling, blasting, or laser processing to the insulator 1 after sintering.
  • the first opening O1 is rectangular with rounded corners in a plan view, but the first opening O1 may be square or circular, including elliptical, in a plan view.
  • the first opening O1 may penetrate the insulator 1.
  • the first opening O1 is filled with at least one of the dielectric materials, such as air, a resin material, or a glass material, and has a lower dielectric constant than the insulator 1. This allows the characteristic impedance of the first signal conductor S1 and the second signal conductor S2 to be adjusted to a desired value when transmitting a high-frequency signal. This allows the loss of signal power that occurs in the first signal conductor S1 and the second signal conductor S2 to be reduced.
  • the dielectric materials such as air, a resin material, or a glass material
  • the first opening O1 is located in the first portion 1r located between the first signal conductor S1 and the second signal conductor S2 in the x direction in the first region 1s. Therefore, even if at least one of the amount of bonding material connecting the first capacitor 31 and the pair of first electrode portions S11 and the amount of bonding material connecting the second capacitor 32 and the pair of second electrode portions S21 increases, the excess bonding material can be kept within the first opening O1, reducing the possibility of the bonding materials coming into contact with each other and causing an electrical short circuit. Furthermore, this makes it possible to reduce the distance between the pair of electrode portions S11 and the pair of second electrode portions S21. Therefore, even when the electrical circuit elements are miniaturized together with the wiring board 101A, the electrical circuit elements can be stably mounted on the electrodes.
  • At least a portion of the inner-layer ground conductor G4 may be located on the bottom surface of the first opening O1. In other words, at least a portion of the inner-layer ground conductor G4 may be exposed on the bottom surface of the first opening O1.
  • the distance Ls1 in the y direction between the pair of first electrode parts S11 and the distance Ls2 in the y direction between the pair of second electrode parts S21 may be smaller than at least one of the distance Lg1 in the y direction between the first ground line G1a and the second ground line G1b and the distance Lg2 in the y direction between the third ground line G2a and the fourth ground line G2b. More specifically, the first ground conductor G1 and the second ground conductor G2 may not be located on at least a part of the side in the x direction of the pair of electrode parts S11 and the pair of second electrode parts S21.
  • the impedance value is likely to be low in the pair of first electrode parts S11 to which the first capacitor 31 is connected and the pair of second electrode parts S21 to which the second capacitor 32 is connected. Therefore, by adopting the above-mentioned configuration, it is possible to reduce the possibility that the impedance value in the electrode parts will decrease. In addition, the above-mentioned configuration reduces the possibility that the protruding bonding material will come into contact with the first ground conductor G1 and/or the second ground conductor G2 when mounting an electrical circuit element on the electrode portion, causing a short circuit between the first signal conductor S1 and/or the second signal conductor S2.
  • the dimension L1y in the y direction of the first opening O1 may be greater than at least one of the distance Ls1 in the y direction between the pair of first electrode portions S11 and the distance Ls2 in the y direction between the pair of second electrode portions S21. This reduces the possibility of the impedance value decreasing in the electrode portions where the impedance value is likely to be low when implementing electrical circuit elements. Note that the dimension L1y in the y direction of the first opening O1 refers to the maximum dimension of the first opening O1 in the y direction.
  • first line portion S12a, the second line portion S12b, the third line portion S22a, and the fourth line portion S22b are not located to the sides of the first opening O1 in the x direction, but at least one of the first line portion S12a, the second line portion S12b, the third line portion S22a, and the fourth line portion S22 may be located to the sides of the first opening O1 in the x direction.
  • the dimension L1y of the first opening O1 in the y direction may be smaller than at least one of the distance Lg1 between the first ground line G1a and the second ground line G1b in the y direction and the distance Lg2 between the third ground line G2a and the fourth ground line G2b in the y direction.
  • the first ground line G1a and the second ground line G1b may be farther apart in the y direction than the dimension L1y of the first opening O1 in the y direction.
  • the third ground line G2a and the fourth ground line G2b may be farther apart in the y direction than the dimension L1y of the first opening O1 in the y direction.
  • the first ground conductor G1 and/or the second ground conductor G2 can be further away from the sides of the pair of electrode portions S11 and the pair of second electrode portions S21 in the x direction, thereby reducing the possibility of a decrease in the impedance value in the electrode portions.
  • the ground conductor portion G0 may further include a third ground conductor G3 located between the first signal conductor S1 and the second signal conductor S2.
  • the third ground conductor G3 may be sandwiched between the first signal conductor S1 and the second signal conductor S2.
  • the third ground conductor G3 may have a fifth ground line G3a and a sixth ground line G3b.
  • the fifth ground line G3a and the sixth ground line G3b are linear, but may also be partially curved.
  • the sixth ground line G3b may face the fifth ground line G3a across the first region 1s in the y direction. This configuration can strengthen the ground potential around the signal conductor portion S0. This can reduce the possibility of resonance occurring in the first signal conductor S1 and the second signal conductor S2.
  • the distance Lg3 in the y direction between the fifth ground line G3a and the sixth ground line G3b may be greater than at least one of the distance Lg1 in the y direction between the first ground line G1a and the second ground line G1b and the distance Lg2 in the y direction between the third ground line G2a and the fourth ground line G2b.
  • the impedance value is likely to decrease in the space between the first signal conductor S1 and the second signal conductor S2 (particularly the pair of first electrode portions S11 and the pair of second electrode portions S21), but the above-mentioned configuration can reduce the possibility of the impedance value decreasing in the first signal conductor S1 and the second signal conductor S2.
  • the first opening O1 may extend from at least between the pair of first electrode parts S11 to between the pair of second electrode parts S21. That is, the first opening O1 may be located under the first capacitor 31 and the second capacitor 32. Therefore, even if at least one of the amount of bonding material connecting the pair of first electrode parts S11 and the first capacitor 31 and the amount of bonding material connecting the pair of second electrode parts S21 and the second capacitor 32 is increased, the excess bonding material can be kept within the first opening O1, so that the possibility of the bonding materials coming into contact with each other and causing an electrical short circuit can be reduced. Furthermore, this makes it possible to reduce the distance between the pair of electrode parts S11 and the pair of second electrode parts S21. Therefore, even when the electric circuit element is miniaturized together with the wiring board 101B, the electric circuit element can be stably mounted on the electrode part.
  • the depth of the first opening O1 may be shallow in part. That is, in a cross-sectional view perpendicular to the first surface 1t, the first opening O1 may have a stepped portion. Note that the depth referred to here may be the maximum dimension in the z direction from the first surface 1t to the bottom surface of the first opening O1. Also, in a cross-sectional view perpendicular to the first surface 1t, the bottom surface of the first opening O1 may have a curved shape that is convex in the negative direction of the z axis.
  • the first opening O1 may have a portion extending in the positive direction of the x-axis beyond the space between the pair of first electrode portions S11. This portion may be regarded as a second opening O2 described later. In one embodiment, the first opening O1 may have a portion extending in the negative direction of the x-axis beyond the space between the pair of second electrode portions S21. This portion may be regarded as a third opening O3 described later.
  • the dimension L1x in the x direction of the first opening O1 may be greater than the distance Lg12 in the x direction between the first ground conductor G1 and the second ground conductor G2.
  • the distance Lg12 in the x direction between the first ground conductor G1 and the second ground conductor G2 refers to the smallest distance between the outer edge of the first ground conductor G1 and the outer edge of the second ground conductor G2.
  • the insulator 1 may further have a second opening O2 and a third opening O3.
  • the second opening O2 and the third opening O3 can be formed in the insulator 1 by the same or similar method as the first opening O1.
  • the first opening O1, the second opening O2, and the third opening O3 may be collectively referred to as the openings.
  • the second opening O2 may be at least partially located in the first region Is.
  • the second opening O2 is located between the first ground line G1a and the second ground line G1b in the y direction, and is located with a space from the first signal conductor S1 in the x direction. In other words, the second opening O2 is sandwiched between the first ground line G1a and the second ground line G1b in the y direction.
  • the second opening O2 is connected to the first opening O1, but the second opening O2 may be located with a space from the first opening O1. In other words, the second opening O2 and the first opening O1 do not have to be connected.
  • the third opening O3 may be at least partially located in the first region Is.
  • the third opening O3 is located between the third ground line G2a and the fourth ground line G2b in the y direction, and is spaced from the second signal conductor S2 in the x direction.
  • the second opening O2 is sandwiched between the third ground line G2a and the fourth ground line G2b in the y direction.
  • the third opening O3 is connected to the first opening O1, but the third opening O3 may be spaced from the first opening O1. In other words, the third opening O3 and the first opening O1 do not have to be connected.
  • the pair of first electrode portions S11 are at least partially surrounded by the first opening O1 and the second opening O2 and the pair of second electrode portions S21 are at least partially surrounded by the first opening O1 and the third opening O3.
  • excess bonding material when mounting the electrode portion and the electrical circuit element can be contained within the second opening O2 and/or the third opening O3. This reduces the possibility of the bonding materials coming into contact with each other and/or the possibility of the signal conductor portion S0 and the ground conductor portion G0 being electrically short-circuited by the bonding material.
  • the first opening O1 may have a first connection portion O11 and a second connection portion O12.
  • the first connection portion O11 may be connected to the second opening O2. Furthermore, the first connection portion O11 is located between the pair of first electrode portions S11 in the y direction. In other words, the region of the first opening O1 that is located between the pair of first electrode portions S11 in the y direction and where the first opening O1 and the second opening O2 are connected can be the first connection portion O11.
  • the second connection portion O12 may be connected to the third opening O3. Furthermore, the second connection portion O12 is located between the pair of second electrode portions S21 in the y direction. In other words, the region of the first opening O1 that is located between the pair of second electrode portions S21 in the y direction and where the first opening O1 and the third opening O3 are connected can be the second connection portion O12.
  • the above-described configuration effectively reduces the possibility of a drop in the impedance value in the pair of first electrode portions S11 and the pair of second electrode portions S21.
  • the openings can be formed simultaneously, making it easy to manufacture the wiring board 101C.
  • the dimension L1y in the y direction of the first opening O1 may be smaller than the dimension L2y in the y direction of the second opening O2 and the dimension L3y of the third opening O3. This allows the dimension L1y in the y direction of the first opening O1 to be a distance that matches the size of the electrical circuit element, effectively reducing the possibility of a decrease in impedance around the electrical circuit element without increasing the size of the wiring board 101C.
  • the insulator 1 further has a second opening O2 and a third opening O3.
  • the dimension L1y in the y direction of the first opening O1 may be larger than the dimension L2y in the y direction of the second opening O2 and the dimension L3y in the y direction of the third opening O3.
  • the impedance value can be effectively adjusted by providing the openings, while the dimension L2y in the y direction of the second opening O2 and/or the dimension L3y in the y direction of the third opening O3 can be made smaller than the dimension L1y in the y direction of the first opening O1, thereby reducing the possibility of the strength of the insulator 1 decreasing.
  • the dimension L2y in the y direction of the second opening O2 may be the same as or different from the dimension L3y in the y direction of the third opening O3.
  • the first opening O1 may have a maximum dimension L1y in the y direction between the first signal conductor S1 and the second signal conductor S2.
  • the dimension L11y in the y direction of the first connection portion O11 and the dimension L12y in the y direction of the second connection portion O12 may be smaller than the dimension L1y in the y direction of the first opening O1.
  • the dimension L2y in the y direction of the second opening O2 and/or the dimension L3y in the y direction of the third opening O3 may be equal to or larger than the dimension L1y in the y direction of the first opening O1.
  • the pair of first electrode portions S11 may be at least partially surrounded by the first opening O1 including the first connection portion O11 and the second opening O2.
  • the pair of second electrode portions S21 may be at least partially surrounded by the first opening O1 including the second connection portion O12 and the third opening O3. This makes it possible to further reduce the volume of the insulator 1 around the electrode portions. This makes it possible to more effectively reduce the possibility of the impedance value decreasing in the first signal conductor S1 and the second signal conductor S2.
  • the depth D1 of the first opening O1 may be deeper than at least one of the depth D2 of the second opening O2 and the depth D3 of the third opening O3.
  • This configuration can reduce the possibility of the strength of the insulator 1 decreasing in the second opening O2 and/or the third opening O3 while further reducing the volume of the insulator 1 around the electrode portion where the impedance value may decrease.
  • the depth here can be the maximum dimension in the z direction from the first surface 1t to the bottom surfaces of the first opening O1, the second opening O2, and the third opening O3.
  • the bottom surfaces of the openings may have a curved shape that is convex in the negative direction of the z axis.
  • the first opening O1 extends to the first insulating layer 11 and the second insulating layer 12, but the second opening O2 and the third opening O3 are located only in the first insulating layer 11. Note that the second opening O2 and the third opening O3 do not necessarily need to penetrate the first insulating layer 11. Moreover, the first opening O1 does not necessarily need to penetrate the first insulating layer 11 and the second insulating layer 12.
  • the depth D1 of the first opening O1 may be shallower than at least one of the depth D2 of the second opening O2 and the depth D3 of the third opening O3.
  • the impedance value may decrease between adjacent signal conductor portions S0. Therefore, the above configuration can reduce the possibility of the impedance value decreasing between adjacent signal conductor portions S0.
  • the inner-layer ground conductor G4 may be located between the second insulating layer 12 and the third insulating layer 13. Also, as shown in FIG. 13, the inner-layer ground conductor G4 may have a lattice portion G4m.
  • the lattice portion G4m is a portion in which through holes are provided in the inner-layer ground conductor G4, and the conductor is in a mesh shape. A part of the lattice portion G4m may be exposed at the bottom surface of the first opening O1. Also, at least a part of the electrode portion may be located at a position of the lattice portion G4m that overlaps with the through hole in a plan view. With this configuration, it is possible to stabilize the ground potential of the wiring board 101E while reducing the possibility of impedance reduction in the electrode portion.
  • the second opening O2 may be in contact with the first ground line G1a and the second ground line G1b.
  • the third opening O3 may be in contact with the third ground line G2a and the fourth ground line G2b. This configuration makes it even easier to adjust the impedance around the electrode portion.
  • the second opening O2 may have a first cutout K1 at a position where it contacts the first ground line G1a, and a second cutout K2 at a position where it contacts the second ground line G1b.
  • the third opening O3 may have a third cutout K3 at a position where it contacts the third ground line G2a, and a fourth cutout K4 at a position where it contacts the fourth ground line G2b.
  • a conductor may be located on the inner surface of the first notch portion K1, the second notch portion K2, the third notch portion K3, and the fourth notch portion K4.
  • the first notch portion K1, the second notch portion K2, the third notch portion K3, and the fourth notch portion K4 may be so-called castellations. This makes it possible to strengthen the ground potential in the wiring board 101F.
  • ⁇ Simulation results> 18 is a graph showing the reflection characteristics of the wiring board 101 according to the fourth and fifth embodiments, with the horizontal axis showing the frequency (GHz) of the input signal and the vertical axis showing the reflection characteristics (dB). In addition, in the graph showing the reflection characteristics, the smaller the value of the reflection characteristics (dB), the smaller the reflection of the signal.
  • the dashed line shows the characteristics of the fourth embodiment, and the solid line shows the characteristics of the fifth embodiment (the same applies to FIGS. 19 and 20 described later). It can be seen that both the fourth and fifth embodiments have good reflection characteristics in the range of 0 GHz to 110 GHz. Furthermore, it can be seen that the fifth embodiment has better characteristics than the fourth embodiment.
  • FIG. 19 is a graph showing the pass characteristics of the wiring board 101 according to the fourth and fifth embodiments, with the horizontal axis showing the frequency (GHz) of the input signal and the vertical axis showing the pass characteristics (dB).
  • the larger the pass characteristic (dB) value the smaller the signal loss. It can be seen that in the range of 0 GHz to 110 GHz, both the fifth and fourth embodiments provide good pass characteristics.
  • FIG. 20 is a graph showing the TDR of the wiring board 101 according to the fourth and fifth embodiments, with the horizontal axis showing time (ps) and the vertical axis showing TDR (Ohm). It can be seen that both the fourth and fifth embodiments have good characteristics. Furthermore, it can be seen that the fifth embodiment has better characteristics than the fourth embodiment.
  • an electronic component mounting package 10a includes a wiring substrate 101, a base 104, and a frame 102.
  • the frame 102 is located on the base 104.
  • the wiring substrate 101 is fixed to the frame 102.
  • the wiring board 101 may have an input/output terminal portion 101a and a frame portion 101b.
  • the wiring board 101 may also be connected to an external connection member by an adhesive.
  • the input/output terminal portion 101a may be located outside the electronic component mounting package 10a.
  • the input/output terminal portion 101a may be electrically connected to the signal conductor portion S0 and the ground conductor portion G0 of the wiring board 101, and may provide electrical continuity between the inside and outside of the electronic component mounting package 10a.
  • the pair of first electrode portions S11 and the pair of second electrode portions S12 described above may be located inside the electronic component mounting package 10a.
  • An external connection member may be connected to the input/output terminal portion 101a.
  • the external connection member referred to here may be, for example, a flexible printed circuit (FPC), a printed circuit board (PCB) on which an electronic circuit is formed, or a metal member such as a lead terminal and/or a bonding wire.
  • FPC flexible printed circuit
  • PCB printed circuit board
  • metal member such as a lead terminal and/or a bonding wire.
  • the frame-shaped portion 101b may be partially joined to the frame body 102 described below. In other words, the inside of the electronic component mounting package 10a is surrounded by the frame-shaped portion 101b and the frame body 102.
  • the wiring board 101 may be bonded to the upper surface of the base 104.
  • the base 104 is, for example, rectangular in plan view, with a size of 10 mm ⁇ 10 mm to 50 mm ⁇ 50 mm and a thickness of 0.5 mm to 20 mm.
  • Examples of the material of the base 104 include metal materials such as copper, iron, tungsten, molybdenum, nickel, and cobalt, and alloys containing these metal materials.
  • the base 104 may be a single metal plate or a laminate of multiple metal plates.
  • the material of the base 104 when the material of the base 104 is the above-mentioned metal material, a plating layer of nickel, gold, or the like may be formed on the surface of the base 104 by using an electroplating method or an electroless plating method in order to reduce oxidation corrosion.
  • the material of the base 104 may be an insulating material, and may be, for example, a ceramic material such as an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic.
  • the base 104 may be a PCB on which an electric circuit is printed. In this case, the wiring board 101 may be joined to the base 104 by a BGA.
  • the frame 102 is located on the upper surface of the base 104, and protects the electronic components 103 located inside in a plan view. In other words, in a plan view, the frame 102 surrounds at least a portion of the periphery of the electronic components 103. The frame 102 does not have to surround the entire outer edge of the upper surface of the base 104. In one embodiment, the frame 102 is located along the outer edge of the upper surface of the base 104, but the frame 102 may be located inside the outer edge of the upper surface of the base 104.
  • the frame body 102 may be rectangular in plan view.
  • the wiring board 101 may be bonded to the lower surface of the frame body 102.
  • the wiring board 101 may be sandwiched between the frame body 102 and the base body 104.
  • the material of the frame 102 may be, for example, a metal material such as copper, iron, tungsten, molybdenum, nickel, or cobalt, or an alloy containing these metal materials.
  • the material of the frame 102 may also be an insulating material, such as an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a ceramic material such as glass ceramics.
  • the frame 102 can be joined to the base 104 via a brazing material or the like.
  • the brazing material can be, for example, silver, copper, gold, aluminum, or magnesium, and may contain additives such as nickel, cadmium, or phosphorus.
  • the frame 102 may have a through-hole portion 102a.
  • a fixing member including a light-transmitting window member may be joined to the through-hole portion 102a.
  • An optical fiber may be inserted and fixed in the fixing member.
  • An electronic module 10 includes an electronic component mounting package 10a, an electronic component 103, and a lid 105.
  • the electronic component 103 is located on a base 104 and is electrically connected to a wiring board 101.
  • the lid 105 is located on a frame 102 and is positioned to cover the inside of the electronic component mounting package 10a.
  • the wiring substrate 101 may be a wiring structure 100 connected to an external connection member via an adhesive.
  • the electronic component 103 may be a component that performs signal processing, such as converting an optical signal into an electrical signal or an electrical signal into an optical signal.
  • the electronic component 103 is located on the upper surface of the base 104 and is housed in the electronic component mounting package 10a.
  • the electronic component 103 may be a component that performs signal processing, such as converting a radio signal or an optical signal into an electrical signal, or converting an electrical signal into a radio signal or an optical signal.
  • the electronic component 103 may be directly bonded to the base 104.
  • a seat containing a ceramic material and/or a metal material may be located between the electronic component 103 and the base 104. That is, the electronic component 103 may be indirectly bonded to the base 104.
  • Examples of the electronic component 103 include optical semiconductor elements such as a semiconductor laser (LD: Laser Diode) or a photodiode (PD: Photodiode), semiconductor integrated circuit elements such as a field effect transistor (FET: Field Effect Transistor), and sensor elements such as an optical sensor.
  • the electronic component 103 can be formed of a semiconductor material such as gallium arsenide or gallium nitride.
  • the lid 105 is positioned on the frame 102, covering the inside of the electronic component mounting package 10a, and protects the electronic component 103 together with the frame 102.
  • the lid 105 may be rectangular in plan view.
  • the lid 105 may have a size of 10 mm x 10 mm to 50 mm x 50 mm and a thickness of 0.5 mm to 2 mm.
  • materials for the lid 105 include metal materials such as iron, copper, nickel, chromium, cobalt, molybdenum, or tungsten, or alloys that combine multiple of these metal materials.
  • the metal member that constitutes the lid 105 can be produced by subjecting an ingot of such a metal material to metal processing methods such as rolling and punching.
  • the electronic module 10 may further include a seal ring located between the lid body 105 and the frame body 102.
  • the seal ring has a function of joining the lid body 105 and the frame body 102.
  • the seal ring is located on the frame body 102 and surrounds the electronic component 103 in a planar view.
  • materials for the seal ring include metal materials such as iron, copper, silver, nickel, chromium, cobalt, molybdenum, and tungsten, or alloys combining a plurality of these metal materials. Note that if a seal ring is not provided on the frame body 102, the lid body 105 may be joined to the frame body 102 via an adhesive such as solder, brazing material, glass, or resin adhesive.
  • This disclosure can be used as a wiring board, a package for mounting electronic components using a wiring board, and an electronic module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

配線基板は、絶縁体と、絶縁体上に第1方向においてこの順に並ぶ第1接地導体と、第1信号導体と、第2信号導体と、第2接地導体と、を備える。絶縁体は、第1方向に延びる第1領域と、第1領域に位置する第1開口部と、を有する。第1接地導体は、互いに対向する第1接地線路および第2接地線路を有する。第2接地導体は、互いに対向する第3接地線路および第4接地線路を有する。第1信号導体は、第1領域を挟んで対向する一対の第1電極部と、第1線路部と、第2線路部と、を有する。第2信号導体は、第1領域を挟んで対向する一対の第2電極部と、第3線路部と、第4線路部と、を有する。第1開口部は、第1方向において、第1領域のうち第1信号導体と第2信号導体の間に位置する第1部分に位置する。

Description

配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール
 配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュールに関する。
 従来技術の配線基板は、例えば特許文献1に記載されている。
国際公開第2020/040072号
 一実施形態において(1)配線基板は、絶縁体と、接地導体部と、信号導体部と、を備えている。絶縁体は、第1上面を有している。第1上面は、第1方向に延びる第1領域を有している。接地導体部は、第1上面に位置し、第1方向と交差する第2方向に延びている。信号導体部は、第1上面に位置し、第2方向に延びている。絶縁体は、少なくとも一部が第1領域に位置する第1開口部を有する。接地導体部は、第1接地導体と、第1接地導体と間を空けて位置する第2接地導体と、を有している。信号導体部は、第1信号導体と、第2信号導体と、を有している。第1信号導体は、第1接地導体および第2接地導体の間に位置している。第2信号導体は、第1信号導体と間を空けて位置するとともに第1接地導体および第2接地導体の間に位置している。第1接地導体は、第1接地線路と、第2接地線路と、を有している。第2接地線路は、第2方向において第1領域を挟んで第1接地線路と対向している。第2接地導体は、第3接地線路と、第4接地線路と、を有している。第4接地線路は、第2方向において第1領域を挟んで第3接地線路と対向している。第1信号導体は、一対の第1電極部と、第1線路部と、第2線路部と、を有している。一対の第1電極部は、第2方向において第1領域を挟んで対向している。第1線路部は、一対の第1電極部の一方に接続されて第1領域から遠ざかるように延びている。第2線路部は、一対の第1電極部の他方に接続されて第1領域から遠ざかるように延びている。第2信号導体は、一対の第2電極部と、第3線路部と、第4線路部と、を有している。一対の第2電極部は、第2方向において第1領域を挟んで対向している。第3線路部は、一対の第2電極部の一方に接続されて第1領域から遠ざかるように延びている。第4線路部は、一対の第2電極部の他方に接続されて第1領域から遠ざかるように延びている。平面視で、第1方向において、第1接地導体、第1信号導体、第2信号導体、第2接地導体は、この順に並んで位置している。第1開口部は、第1方向において、第1領域のうち第1信号導体と第2信号導体の間に位置する第1部分に位置している。
 (2)上記(1)の配線基板において、一対の第1電極部間の第2方向における距離および一対の第2電極部間の第2方向における距離は、第1接地線路と第2接地線路の第2方向における距離および第3接地線路と第4接地線路の第2方向における距離の少なくともいずれか一方よりも小さい。
 (3)上記(1)又は(2)の配線基板において、第1開口部の第2方向における寸法は、一対の第1電極部間の第2方向における距離および一対の第2電極部間の第2方向における距離の少なくともいずれか一方よりも大きい。
 (4)上記(1)~(3)の配線基板において、第1開口部の第2方向における寸法は、第1接地線路と第2接地線路の第2方向における距離および第3接地線路と第4接地線路の第2方向における距離の少なくともいずれか一方よりも小さい。
 (5)上記(1)~(4)の配線基板において、第1開口部は、少なくとも一対の第1電極部間から一対の第2電極部間にまで延びている。
 (6)上記(5)の配線基板において、第1開口部の第1方向における寸法は、第1接地導体と第2接地導体との第1方向における距離よりも大きい。
 (7)上記(1)~(6)の配線基板において、絶縁体は、第2開口部と、第3開口部と、を更に有している。第2開口部は、少なくとも一部が第1領域に位置している。第3開口部は、少なくとも一部が第1領域に位置している。第2開口部は、第2方向において第1接地線路と第2接地線路との間に位置するとともに、第1方向において第1信号導体と間を空けて位置している。第3開口部は、第2方向において第3接地線路と第4接地線路との間に位置するとともに、第1方向において第2信号導体と間を空けて位置している。
 (8)上記(7)の配線基板において、第1開口部は、第1接続部と、第2接続部と、を有している。第1接続部は、第2開口部と接続している。また、第1接続部は、第2方向において、一対の第1電極部間に位置している。第2接続部は、第3開口部と接続している。第2接続部は、第2方向において、一対の第2電極部間に位置している。
 (9)上記(7)又は(8)の配線基板において、第1開口部の第2方向における寸法は、第2開口部の第2方向における寸法および第3開口部の寸法よりも小さい。
 (10)上記(7)~(9)の配線基板において、第1開口部の深さは、第2開口部の深さおよび第3開口部の深さの少なくともいずれか一方よりも深い。
 (11)上記(7)~(10)の配線基板において、平面視において、第2開口部は、第1接地線路および第2接地線路と接している。平面視において、第3開口部は、第3接地線路および第4接地線路と接している。
 (12)上記(1)~(11)の配線基板において、接地導体部は、第1信号導体および第2信号導体の間に位置する第3接地導体を更に有している。第3接地導体は、第5接地線路と、第6接地線路と、を有している。第6接地線路は、第2方向において第1領域を挟んで第5接地線路と対向している。
 (13)上記(12)の配線基板において、第5接地線路と第6接地線路の第2方向における距離は、第1接地線路と第2接地線路の第2方向における距離および第3接地線路と第4接地線路の第2方向における距離の少なくともいずれか一方よりも大きい。
 (14)一実施形態において、電子部品実装用パッケージは、上記(1)~(13)の配線基板と、基板と、枠体と、を備えている。枠体は、基板上に位置している。配線基板は、枠体に固定されている。
 (15)一実施形態において、電子モジュールは、上記(14)の電子部品実装用パッケージと、電子部品と、蓋体と、を備えている。電子部品は、電子部品実装用パッケージに収容されるとともに、配線基板と電気的に接続されている。蓋体は、枠体上に接合され、電子部品実装用パッケージの内部を覆って位置している。
第1の実施形態に係る配線基板の斜視図である。 第1の実施形態に係る配線基板の平面図である。 第1の実施形態に係る配線基板にコンデンサを実装した斜視図である。 第2の実施形態に係る配線基板の斜視図である。 第2の実施形態に係る配線基板の平面図である。 第3の実施形態に係る配線基板の斜視図である。 第3の実施形態に係る配線基板の平面図である。 第4の実施形態に係る配線基板の斜視図である。 第4の実施形態に係る配線基板の平面図である。 第5の実施形態に係る配線基板の斜視図である。 第5の実施形態に係る配線基板の平面図である。 図11に示す配線基板のXII-XII断面図である。 第5の実施形態に係る配線基板の分解斜視図である。 第6の実施形態に係る配線基板の斜視図である。 第6の実施形態に係る配線基板の平面図である。 図14に示す要部Aの拡大斜視図である。 一実施形態に係る配線基板を備えた電子部品実装用パッケージおよび電子モジュールの分解斜視図である。 第4の実施形態と第5の実施形態に係る配線基板の反射特性を示すグラフである。 第4の実施形態と第5の実施形態に係る配線基板の通過特性を示すグラフである。 第4の実施形態と第5の実施形態に係る配線基板のTDR(Time Domain Reflectmetry)を示すグラフである。
 特許文献1に開示された技術では、配線基板は、セラミック基体上に第1の接地パターンと、第1の配線路と、第2の配線路と、第2の接地パターンと、第1のパッド対と、第2のパッド対とを有している。第1のパッド対は、第1の配線路の中途に設けられている。第2のパッド対は、第2の配線路の中途に設けられている。さらに、特許文献1に開示された技術では、第1のパッド対および第2のパッド対のそれぞれには、キャパシタが実装された配線基板について記載されている。
 しかしながら、キャパシタの小型化、低背化が進むと、キャパシタをはんだ等の接合材で第1のパッド対および第2のパッド対に実装する際に、接合材が第1のパッド対および/又は第2のパッド対に跨って接続される場合があった。このため、第1のパッド対同士および/又は第2のパッド対同士が電気的に接続されて短絡する可能性があった。
 また、更に配線基板の小型化、低背化が進むと、第1の配線路および第2の配線路に、第1の接地パターンおよび/又は第2の接地パターンを近づける必要がある。その場合、接合材が第1の接地パターンおよび/又は第2の接地パターンに接触し、電気的に短絡してしまう可能性があった。また、第1の配線路および第2の配線路におけるインピーダンスの値の調整が困難になる可能性があった。
  <配線基板の構成>
 以下、いくつかの例示的な実施形態について、図面を参照しながら説明する。なお、配線基板は、いずれの方向が上方もしくは下方とされてもよいが、便宜的に、直交座標系xyzを定義するとともに、z方向の正側を上方とする。本開示においては、平面視は平面透視を含む概念である。また、本開示において、第1方向とは、例えば、図面で言うx方向を指す。第2方向とは、例えば、図面で言うy方向を指す。第3方向とは、例えば、図面で言うz方向を指す。なお、本開示において、幅、長さ、厚みとは、それぞれ、x方向における寸法、y方向における寸法、z方向における寸法とすることができる。
 また、以下では、第2の実施形態、第3の実施形態、第4の実施形態、第5の実施形態、および第6の実施形態の構成のうち、各実施形態の構成と異なる部分についてのみ説明し、それ以外の構成については、各実施形態と同一の符号を付すとともに説明を省略する。
  (第1の実施形態)
 図1~図3を参照して第1の実施形態に係る配線基板101Aについて説明する。なお、いくつかの図面において、便宜上、第1領域1sを省略してある。
 配線基板101Aは、絶縁体1と、接地導体部G0と、信号導体部S0と、を備えている。
 絶縁体1は、第1上面1tを有している。第1上面1tは、第1方向(言い換えるとx方向)に延びる第1領域1sを有している。第1領域1sは後述する一対の第1電極部S11と一対の第2電極部S21で挟まれた領域と定義してもよい。より具体的には、第1領域1sは、x方向において、少なくとも、第1接地線路G1aの外縁と第2接地線路G1bの外縁とを結んだ第1仮想線T1から、第3接地線路G2aの外縁と第4接地線路G2bの外縁とを結んだ第2仮想線T2にまで延びている領域であってもよい。一実施形態において、第1領域1sは、矩形状であるが、楕円形状であってもよいし、一部でy方向に傾いていてもよい。
 絶縁体1の材料としては、例えば、酸化アルミニウム質燒結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体又は窒化珪素質焼結体等のセラミック材料や、ガラスセラミック材料、ガラスエポキシ材料などの誘電体材料を用いることができる。
 絶縁体1は、単層であってもよいし、複数の絶縁層が積層された構成であっても良い。絶縁体1は、例えば、平面視において、矩形状であり、大きさが4mm×4mm~50mm×50mmで、厚みが0.5mm~10mmである。一実施形態において、絶縁体1は、図1等に示すように、第3絶縁層13、第2絶縁層12、第1絶縁層11が、z軸の正の方向に、この順に積層された構成であってもよい。
 また、絶縁体1および後述する接地導体部G0、信号導体部S0は、3Dプリンターを用いたアディティブマニュファクチャリング(AM:Additive Manufacturing)によって作成してもよい。
 絶縁体1は、例えば、次のように製造することができる。複数のグリーンシートを金型等によって加工し、絶縁体1の外形に形成された複数のグリーンシートを準備する。次に、複数のグリーンシートの外縁部が一致するように積層し、グリーンシート積層体を形成する。グリーンシート積層体を焼成することによって、複数のグリーンシートを焼結させて、絶縁体1を得ることができる。接地導体部G0は、第1上面1tに位置し、第1方向と交差する第2方向(言い換えるとy方向)に延びている。接地導体部G0は、第1接地導体G1と、第1接地導体G1と間を空けて位置する第2接地導体G2と、を有している。
 接地導体部G0の材料としては、例えば、金、銀、銅、ニッケル、タングステン、モリブデンおよびマンガンなどの金属材料が挙げられる。また、接地導体部G0は、第1上面1tに金属ペーストを焼結して形成されてもよいし、蒸着法又はスパッタ法などの薄膜形成技術を用いて形成されてもよい。後述する第1接地導体G1、第2接地導体G2、および第3接地導体G3は、同じ材料を用いる必要はなく、異なった材料を用いていてもよい。
 接地導体部G0の表面には、ニッケルめっきや金めっきなどの金属めっきが形成されてもよい。また、接地導体部G0上の一部には、更に、セラミック(例えばアルミナコート)および/又は樹脂などの絶縁膜が位置していてもよい。絶縁膜は、接地導体部G0上にスクリーン印刷により形成することができる。また、絶縁膜は、接地導体部G0上の一部のみに位置していてもよい。このような構成により、接地導体部G0が、他の配線と短絡してショートする可能性を低減することができる。
 第1接地導体G1は、第1接地線路G1aと、第2接地線路G1bと、を有している。第2接地線路G1bは、y方向において第1領域1sを挟んで第1接地線路G1aと対向している。つまり、第1接地線路G1aおよび第2接地線路G1bは、第1領域1sによって隔てられている。また、このような状態を、第1接地導体G1が、第1領域1sによって、切断されている、と言い換えてもよい。一実施形態において、第1接地線路G1aおよび第2接地線路G1bは、直線形状であるが、一部が湾曲した形状であってもよい。また、一実施形態において、第1接地線路G1aおよび第2接地線路G1bは、第1領域1sを挟んで線対称の形状であるが、第1接地線路G1aおよび第2接地線路G1bは異なった形状であってもよい。
 第1接地導体G1は、ビア等によって、内層接地導体G4と電気的に接続されていてもよい。より具体的には、第1接地線路G1aおよび第2接地線路G1bは、それぞれ、ビア等によって、内層接地導体G4と電気的に接続されていてもよい。この場合、第1接地線路G1aと第2接地線路G1bは、内層接地導体G4を介して電気的に接続されていてもよい。後述する第3接地線路G2aおよび第4接地線路G2bについても、第1接地線路G1aおよび第2接地線路G1bと同一又は類似の構成とすることができる。
 第2接地導体G2は、第3接地線路G2aと、第4接地線路G2bと、を有している。
 第4接地線路G2bは、y方向において第1領域1sを挟んで第3接地線路G2aと対向している。つまり、第3接地線路G2aおよび第4接地線路G2bは、第1領域1sによって隔てられている。また、このような状態を、第2接地導体G2が、第1領域1sによって、切断されている、と言い換えてもよい。一実施形態において、第3接地線路G2aおよび第4接地線路G2bは、直線形状であるが、一部が湾曲した形状であってもよい。また、第3接地線路G2aおよび第4接地線路G2bは、第1領域1sを挟んで線対称の形状であるが、第3接地線路G2aおよび第4接地線路G2bは異なった形状であってもよい。また、第2線路導体G2は、第1接地導体G1と、同一の形状である必要はなく、異なった形状であってもよい。また、第1接地導体G1の幅、長さ、厚みと、第2接地導体G2の幅、長さ、厚みとは、それぞれ同じであってもよいし、異なっていてもよい。
 信号導体部S0は、第1上面1tに位置し、y方向に延びている。信号導体部S0の材料としては接地導体部G0の材料と同じであっても異なっていてもよく、例えば、前述した接地導体部G0の材料と同一又は類似の材料が挙げられる。なお、信号導体部S0と接地導体部G0は、必ずしも同様の材料である必要はなく、異なっていてもよい。また、信号導体部S0は、上述した接地導体部G0と同一又は類似の手法によって形成されてもよい。
 信号導体部S0は、第1信号導体S1と、第2信号導体S2と、を有している。一実施形態において、第1信号導体S1と第2信号導体S2とは、一対の差動信号線路を形成している。差動信号線路は、シングルエンド信号線路と比較して、ノイズの影響を受ける可能性を低減することができる。
 第1信号導体S1は、第1接地導体G1および第2接地導体G2の間に位置している。第1信号導体S1は、一対の第1電極部S11と、第1線路部S12aと、第2線路部S12bと、を有している。一対の第1電極部S11は、y方向において第1領域1sを挟んで対向している。第1線路部S12aは、一対の第1電極部S11の一方S11aに接続されて第1領域1sから遠ざかるように延びている。第2線路部S12bは、一対の第1電極部S11の他方S11bに接続されて第1領域1sから遠ざかるように延びている。
 一対の第1電極部S11の一方S11aと、一対の第1電極部S11の他方S11bは第1領域1sを挟んで線対称の形状でなくてもよい。つまり、一対の第1電極部S11は同一の形状であってもよいし、異なっていてもよい。また、一実施形態において、一対の第1電極部S11の幅は、第1線路部S12aの幅および第2線路部S12bの幅よりも大きくてもよい。なお、一対の第1電極部S11の幅は、第1線路部S12aおよび第2線路部S12bの幅と同じであっても異なっていてもよい。後述する、一対の第2電極部S21の幅、第3線路部S22aの幅、および第4線路部S22bの幅との関係についても、上記と同一の構成であってもよい。
 一対の第1電極部S11には、例えば、コンデンサ、インダクタ、抵抗、ノイズ除去フィルタ、チップビーズなどの電気回路要素を接続することができる。なお、一実施形態においては、一対の第1電極部S11には、図3に示すように、第1コンデンサ31を電気的に接続することができる。一対の第1電極部S11に第1コンデンサ31を接続することによって、第1信号導体S1を伝送される信号の直流電圧成分を低減することができる。
 第1コンデンサ31は、平面視において、矩形状であり、大きさが0.1mm×0.1mm~2mm×4mmで、高さが0.1mm~3mmであってもよい。また、第1コンデンサ31の幅は、平面視において、一対の第1電極部S11の幅よりも大きくてもよい。また、第1コンデンサ31は、例えば、フォルステライト、酸化アルミニウム、ニオブ酸マグネシウム酸バリウム、およびチタン酸ネオジウム酸バリウムを含んでいる。より具体的には、第1コンデンサ31は、積層セラミックコンデンサ(MLCC:Multi-Layer Ceramic Capacitor)であってもよいし、シリコンコンデンサであってもよい。
 第2信号導体S2は、第1信号導体S1と間を空けて位置するとともに第1接地導体G1および第2接地導体G2の間に位置している。第2信号導体S2は、一対の第2電極部S21と、第3線路部S22aと、第4線路部S22bと、を有している。一対の第2電極部S21は、y方向において第1領域1sを挟んで対向している。第3線路部S22aは、一対の第2電極部S21の一方S21aに接続されて第1領域1sから遠ざかるように延びている。第4線路部S22bは、一対の第2電極部S21の他方S21bに接続されて第1領域1sから遠ざかるように延びている。
 一対の第2電極部S21には、例えば、コンデンサ、インダクタ、抵抗などの電気回路要素を接続することができる。一対の第2電極部S21に接続される電気回路要素は、一対の第1電極部S11に接続される電気回路要素と同じであっても異なっていてもよい。なお、一実施形態においては、一対の第2電極部S21には、図3に示すように、第2コンデンサ32を電気的に接続することができる。一対の第2電極部S21に第2コンデンサ32を接続することによって、第2信号導体S2を伝送される信号の直流電圧成分を低減することができる。
 
 なお、以下において、一対の第1電極部S11および一対の第2電極部S21をまとめて、電極部と呼ぶことがある。また、第1コンデンサ31および第2コンデンサ32をまとめて、電気回路要素と呼ぶことがある。
 第1コンデンサ31は、一対の第1電極部S11に接合材によって接続することができる。また、第2コンデンサ32は、一対の第2電極部S21に接合材によって接続することができる。接合材としては、例えば、Sn-Ag-Cu系はんだ、Sn-Zn-Bi系はんだ、Sn-Cu系はんだ等の周知のはんだを用いることができる。
 平面視で、x方向において、第1接地導体G1、第1信号導体S1、第2信号導体S2、第2接地導体G2は、この順に並んで位置している。言い換えると、第1信号導体S1および第2信号導体S2は、x方向において、第1接地導体G1および第2線路導体G2に挟まれて位置している。このため、配線基板101Aを差動信号線路またはコプレナー構造とすることができ、信号導体部S0において、高周波信号を安定して伝送することができる。
 絶縁体1は、少なくとも一部が第1領域1sに位置する第1開口部O1を有している。第1開口部O1は、焼結前の絶縁体1に打ち抜き加工を施すことによって形成しても良いし、焼結後の絶縁体1に対して、ドリル加工、ブラスト加工、およびレーザー加工などの既知の穴あけ加工を施すことによって形成しても良い。一実施形態において、第1開口部O1は、平面視において、角部が丸い矩形状であるが、第1開口部O1は、平面視において、四角形状であってもよいし、楕円形状を含む円形状であってもよい。第1開口部O1は、絶縁体1を貫通していてもよい。
 第1開口部O1は、空気、樹脂材料、又は、ガラス材料等の少なくともいずれか1つの誘電体材料で満たされており、絶縁体1よりも誘電率が低くなっている。このため、第1信号導体S1および第2信号導体S2において、高周波信号を伝送する場合における特性インピーダンスを所望の値に調整することができる。このため、第1信号導体S1および第2信号導体S2に生じる信号電力の損失を低減することができる。
 第1開口部O1は、x方向において、第1領域1sのうち第1信号導体S1と第2信号導体S2の間に位置する第1部分1rに位置している。このため、第1コンデンサ31と一対の第1電極部S11とを接続する接合材の量と、第2コンデンサ32と一対の第2電極部S21とを接続する接合材の量の少なくともいずれか一方が多くなった場合であっても、余分な接合材を第1開口部O1内に留めることができるので、接合材同士が接触して電気的に短絡する可能性を低減することができる。更に、このことによって、一対の電極部S11と一対の第2電極部S21との間隔を小さくすることが可能となる。このため、配線基板101Aとともに電気回路要素を小型化した際にも安定して電気回路要素を、電極部に実装することができる。
 平面視において、第1開口部O1の底面には、内層接地導体G4の少なくとも一部が位置していてもよい。つまり、第1開口部O1の底面には、内層接地導体G4の少なくとも一部が露出していてもよい。
 一実施形態において、一対の第1電極部S11間のy方向における距離Ls1および一対の第2電極部S21間のy方向における距離Ls2は、第1接地線路G1aと第2接地線路G1bのy方向における距離Lg1および第3接地線路G2aと第4接地線路G2bのy方向における距離Lg2の少なくともいずれか一方よりも小さくてもよい。より具体的には、一対の電極部S11および一対の第2電極部S21のx方向における側方の少なくとも一部には、第1接地導体G1および第2接地導体G2が位置していなくてもよい。第1コンデンサ31が接続される一対の第1電極部S11と、第2コンデンサ32が接続される一対の第2電極部S21と、においては、インピーダンスの値が低くなりやすい。このため、上述の構成とすることで、電極部におけるインピーダンスの値が低下する可能性を低減することができる。また、上述の構成により、電極部に電気回路要素を実装する際に、はみ出した接合材が、第1接地導体G1および/又は第2接地導体G2に接触して、第1信号導体S1および/又は第2信号導体S2が短絡する可能性を低減することができる。
 第1開口部O1のy方向における寸法L1yは、一対の第1電極部S11間のy方向における距離Ls1および一対の第2電極部S21間のy方向における距離Ls2の少なくともいずれか一方よりも大きくてもよい。このため、電気回路要素を実装する際に、インピーダンスの値が低くなりやすい電極部において、インピーダンスの値が低下する可能性を低減することができる。なお、第1開口部O1のy方向における寸法L1yとは、第1開口部O1が、y方向において最大となる寸法のことを指す。
 一実施形態において、第1開口部O1のx方向における側方には、第1線路部S12a、第2線路部S12b、第3線路部S22a、および第4線路部S22bが位置していないが、第1線路部S12a、第2線路部S12b、第3線路部S22a、および第4線路部S22の少なくともいずれかが第1開口部O1のx方向における側方に第1開口部O1のx方向における側方に位置していてもよい。
 第1開口部O1のy方向における寸法L1yは、第1接地線路G1aと第2接地線路G1bのy方向における距離Lg1および第3接地線路G2aと第4接地線路G2bのy方向における距離Lg2の少なくともいずれか一方よりも小さくてもよい。つまり、第1接地線路G1aと第2接地線路G1bとが、y方向において、第1開口部O1のy方向における寸法L1yよりも離れていてもよい。また、第3接地線路G2aと第4接地線路G2bとが、y方向において、第1開口部O1のy方向における寸法L1yよりも離れていてもよい。この構成により、一対の電極部S11および一対の第2電極部S21のx方向における側方から、第1接地導体G1および/又は第2接地導体G2を更に遠ざけることができるので、電極部におけるインピーダンスの値が低下する可能性を低減することができる。
 接地導体部G0は、第1信号導体S1および第2信号導体S2の間に位置する第3接地導体G3を更に有していてもよい。つまり、第3接地導体G3は、第1信号導体S1および第2信号導体S2に挟まれていてもよい。
 第3接地導体G3は、第5接地線路G3aと、第6接地線路G3bと、を有していてもよい。一実施形態において、第5接地線路G3aおよび第6接地線路G3bは、直線形状であるが、一部が湾曲した形状であってもよい。
 第6接地線路G3bは、y方向において第1領域1sを挟んで第5接地線路G3aと対向していてもよい。このような構成により、信号導体部S0周辺における、接地電位を強化できる。このため、第1信号導体S1および第2信号導体S2において、共振が発生する可能性を低減することができる。
 第5接地線路G3aと第6接地線路G3bのy方向における距離Lg3は、第1接地線路G1aと第2接地線路G1bのy方向における距離Lg1および第3接地線路G2aと第4接地線路G2bのy方向における距離Lg2の少なくともいずれか一方よりも大きくてもよい。第1信号導体S1および第2信号導体S2(特に、一対の第1電極部S11、および一対の第2電極部S21)によって挟まれる空間においては、インピーダンスの値が低下しやすいが、上述の構成により、第1信号導体S1および第2信号導体S2におけるインピーダンスの値が低下する可能性を低減することができる。
  (第2の実施形態)
 図4および図5を参照して第2の実施形態に係る配線基板101Bについて説明する。
 第2の実施形態において、第1開口部O1は、少なくとも一対の第1電極部S11間から一対の第2電極部S21間にまで延びていてもよい。つまり、第1開口部O1が、第1コンデンサ31および第2コンデンサ32の下に位置していてもよい。このため、一対の第1電極部S11と第1コンデンサ31とを接続する接合材の量と、一対の第2電極部S21と第2コンデンサ32とを接続する接合材の量の少なくともいずれか一方が多くなった場合であっても、余分な接合材を第1開口部O1内に留めることができるので、接合材同士が接触して電気的に短絡する可能性を低減することができる。更に、このことにより、一対の電極部S11と一対の第2電極部S21との間隔を小さくすることが可能となる。このため、配線基板101Bとともに電気回路要素を小型化した際にも安定して電気回路要素を、電極部に実装することができる。
 ここで、第1開口部O1の深さは、一部が浅くなっていてもよい。つまり、第1面1tに垂直な断面視において、第1開口部O1は、段差部分を有していてもよい。なお、ここで言う、深さとは、第1面1tから第1開口部O1の底面までのz方向における最大の寸法とすることができる。また、第1面1tに垂直な断面視において、第1開口部O1の底面は、z軸の負の方向に凸の曲線形状を有していてもよい。
 なお、一実施形態において、第1開口部O1は、x方向において、一対の第1電極部S11間よりもx軸の正の方向に延びる部分を有していてもよい。当該部分は、後述する第2開口部O2とみなしてもよい。
 また、一実施形態において、第1開口部O1は、x方向において、一対の第2電極部S21間よりもx軸の負の方向に延びる部分を有していてもよい。当該部分は、後述する第3開口部O3とみなしてもよい。
 第1開口部O1のx方向における寸法L1xは、第1接地導体G1と第2接地導体G2とのx方向における距離Lg12よりも大きくてもよい。ここで言う、第1接地導体G1と第2接地導体G2とのx方向における距離Lg12とは、第1接地導体G1の外縁と、第2接地導体G2の外縁との距離のうち、最小の距離のことを指す。第1開口部O1が、一対の第1電極部S11、一対の第2電極部S21、第1接地導体G1、第2接地導体G2をx方向に横断することにより、電気回路要素周辺におけるインピーダンスの値が低下する可能性を低減することができる。
  (第3の実施形態)
 図6および図7を参照して第3の実施形態に係る配線基板101Cについて説明する。
 絶縁体1は、第2開口部O2と、第3開口部O3と、を更に有していてもよい。第2開口部O2および第3開口部O3は、第1開口部O1と同一又は類似の手法により、絶縁体1に形成することができる。以下において、第1開口部O1と、第2開口部O2と、第3開口部O3と、をまとめて開口部と呼ぶことがある。
 第2開口部O2は、少なくとも一部が第1領域1sに位置していてもよい。第2開口部O2は、y方向において第1接地線路G1aと第2接地線路G1bとの間に位置するとともに、x方向において第1信号導体S1と間を空けて位置している。言い換えると、第2開口部O2は、y方向において第1接地線路G1aおよび第2接地線路G1bに挟まれている。図6において、第2開口部O2は、第1開口部O1と接続しているが、第2開口部O2は、第1開口部O1と間を空けて位置していてもよい。つまり、第2開口部O2と第1開口部O1とは、接続していなくてもよい。
 第3開口部O3は、少なくとも一部が第1領域1sに位置していてもよい。第3開口部O3は、y方向において第3接地線路G2aと第4接地線路G2bとの間に位置するとともに、x方向において第2信号導体S2と間を空けて位置している。言い換えると、第2開口部O2は、y方向において第3接地線路G2aおよび第4接地線路G2bに挟まれている。図6において、第3開口部O3は、第1開口部O1と接続しているが、第3開口部O3は、第1開口部O1と間を空けて位置していてもよい。つまり、第3開口部O3と第1開口部O1とは、接続していなくてもよい。
 上述のような構成により、一対の第1電極部S11が、第1開口部O1および第2開口部O2によって少なくとも一部が囲まれ、一対の第2電極部S21が、第1開口部O1および第3開口部O3によって少なくとも一部が囲まれることになる。このため、気回路要素を実装する際に、インピーダンスの値が低くなる可能性のある電極部において、インピーダンスの値が低下する可能性をより効果的に低減することができる。
 また、上述のような構成により、電極部と電気回路要素を実装する際の余分な接合材を第2開口部O2内および/又は第3開口部O3内に留めることができる。このため、接合材同士が接触する可能性および/又は信号導体部S0と接地導体部G0とが接合材によって電気的に短絡する可能性を低減することができる。
 図6に示すように、第1開口部O1は、第1接続部O11と、第2接続部O12と、を有していてもよい。
 第1接続部O11は、第2開口部O2と接続していてもよい。また、第1接続部O11は、y方向において、一対の第1電極部S11間に位置している。つまり、第1開口部O1のうち、y方向において一対の第1電極部S11間に位置するとともに、第1開口部O1と第2開口部O2とが接続する領域を、第1接続部O11とすることができる。
 第2接続部O12は、第3開口部O3と接続していてもよい。また、第2接続部O12は、y方向において、一対の第2電極部S21間に位置している。つまり、第1開口部O1のうち、y方向において一対の第2電極部S21間に位置するとともに、第1開口部O1と第3開口部O3とが接続する領域を、第2接続部O12とすることができる。
 上述のような構成により、一対の第1電極部S11および一対の第2電極部S21において、効果的にインピーダンスの値が低下する可能性を低減することができる。また、この場合には、開口部を同時に形成することができるので、配線基板101Cを容易に製造することができる。
 第1開口部O1のy方向における寸法L1yは、第2開口部O2のy方向における寸法L2yおよび第3開口部O3の寸法L3yよりも小さくてもよい。このため、第1開口部O1のy方向における寸法L1yを電気回路要素のサイズに合わせた距離にすることができ、配線基板101Cのサイズを大きくすることなく、電気回路要素周辺のインピーダンスが低下する可能性を効果的に低減することができる。
  (第4の実施形態)
 図8および図9を参照して第4の実施形態に係る配線基板101Dについて説明する。
 絶縁体1は、第2開口部O2と、第3開口部O3と、を更に有している。
 第4の実施形態において、第1開口部O1のy方向における寸法L1yは、第2開口部O2のy方向における寸法L2yおよび第3開口部O3のy方向における寸法L3yよりも大きくてもよい。この構成により、開口部を設けることで、効果的にインピーダンスの値の調整をしつつ、第2開口部O2のy方向における寸法L2yおよび/又は第3開口部O3のy方向における寸法L3yを、第1開口部O1のy方向における寸法L1yよりも小さくすることで、絶縁体1の強度が低下する可能性を低減することができる。
 なお、第2開口部O2のy方向における寸法L2yは、第3開口部O3のy方向における寸法L3yと同じであっても異なっていてもよい。
  (第5の実施形態)
 図10~図13を参照して第5の実施形態に係る配線基板101Eについて説明する。
 第5の実施形態において、第1開口部O1は、第1信号導体S1と第2信号導体S2の間において、y方向において最大となる寸法L1yを有していてもよい。また、この場合、第1接続部O11のy方向における寸法L11yおよび第2接続部O12のy方向における寸法L12yは、第1開口部O1のy方向における寸法L1yよりも小さくてもよい。更に、第2開口部O2のy方向における寸法L2yおよび/又は第3開口部O3のy方向における寸法L3yは、第1開口部O1のy方向における寸法L1y以上であってもよい。言い換えると、一対の第1電極部S11は、第1接続部O11を含む第1開口部O1と、第2開口部O2と、によって少なくとも一部が囲まれていてもよい。また、一対の第2電極部S21は、第2接続部O12を含む第1開口部O1と、第3開口部O3と、によって少なくとも一部が囲まれていてもよい。このため、電極部の周辺において、絶縁体1の体積を更に減少させることができる。このため、第1信号導体S1および第2信号導体S2において、インピーダンスの値が低下する可能性を更に効果的に低減することができる。
 第1開口部O1の深さD1は、第2開口部O2の深さD2および第3開口部O3の深さD3の少なくともいずれか一方よりも深くてもよい。この構成により、インピーダンスの値が低下する可能性のある電極部周辺において、絶縁体1の体積を更に減少させつつ、第2開口部O2および/又は第3開口部O3において、絶縁体1の強度が低下する可能性を低減することができる。ここで言う、深さとは、第1面1tから第1開口部O1、第2開口部O2、第3開口部O3の底面までのz方向における最大の寸法とすることができる。また、第1面1tに垂直な断面視において、開口部の底面は、z軸の負の方向に凸の曲線形状を有していてもよい。
 図12に示すように、第5の実施形態において、第1開口部O1は、第1絶縁層11および第2絶縁層12にまで及んでいるが、第2開口部O2および第3開口部O3は、第1絶縁層11にのみ位置している。なお、第2開口部O2および第3開口部O3は、必ずしも第1絶縁層11を貫通している必要はない。また、第1開口部O1についても、必ずしも第1絶縁層11および第2絶縁層12を貫通している必要はない。
 また、他の実施形態において、第1開口部O1の深さD1は、第2開口部O2の深さD2および第3開口部O3の深さD3の少なくともいずれか一方よりも浅くてもよい。例えば、配線基板101Eが、近接して位置する場合、隣り合う信号導体部S0間において、インピーダンスの値が低下する可能性がある。このため、上記、構成とすることで、隣り合う信号導体部S0におけるインピーダンスの値が低下する可能性を低減することができる。
 一実施形態において、内層接地導体G4は、第2絶縁層12と第3絶縁層13の間に位置していてもよい。また、図13に示すように、内層接地導体G4は、格子状部G4mを有していてもよい。格子状部G4mは、内層接地導体G4に貫通孔を設けた部分であり、導体が網目状になっている。第1開口部O1の底面において、格子状部G4mの一部が露出していてもよい。また、平面視において、格子状部G4mのうち、貫通孔と重なる位置に、電極部の少なくとも一部が位置していてもよい。この構成により、配線基板101Eの接地電位を安定させつつ、電極部においてインピーダンスが低下する可能性を低減することができる。
  (第6の実施形態)
 図14~図16を参照して第6の実施形態に係る配線基板101Fについて説明する。
 平面視において、第2開口部O2は、第1接地線路G1aおよび第2接地線路G1bと接していてもよい。平面視において、第3開口部O3は、第3接地線路G2aおよび第4接地線路G2bと接していてもよい。この構成により、電極部周辺のインピーダンス調整を更に容易に行うことができる。
 第2開口部O2は、第1接地線路G1aと接する位置に第1切欠き部K1を、第2接地線路G1bと接する位置に第2切欠き部K2を有していてもよい。
 第3開口部O3は、第3接地線路G2aと接する位置に第3切欠き部K3を、第4接地線路G2bと接する位置に第4切欠き部K4を有していてもよい。
 第1切欠き部K1、第2切欠き部K2、第3切欠き部K3、および第4切欠き部K4の内面には、導体が位置していてもよい。つまり、第1切欠き部K1、第2切欠き部K2、第3切欠き部K3、および第4切欠き部K4は、いわゆるキャスタレーションとなっていてもよい。このため、配線基板101Fにおいて、接地電位を強化することができる。
  <シミュレーション結果>
 図18は、第4の実施形態と第5の実施形態に係る配線基板101の反射特性を示すグラフであり、横軸は入力信号の周波数(GHz)、縦軸は反射特性(dB)を示している。また、反射特性を示すグラフにおいては、反射特性(dB)の値が小さいほど、信号の反射が小さいことを意味する。破線は、第4の実施形態の特性を示し、実線は、第5の実施形態の特性を示している(後述する図19および図20においても同じである)。0GHz~110GHzにおいて、第4の実施形態および第5の実施形態は、いずれも良好な反射特性が得られていることがわかる。さらに、第5の実施形態は、第4の実施形態と比較して、より良好な特性が得られていることがわかる。
 図19は、第4の実施形態と第5の実施形態に係る配線基板101の通過特性を示すグラフであり、横軸は入力信号の周波数(GHz)、縦軸は通過特性(dB)を示している。また、通過特性を示すグラフにおいては、通過特性(dB)の値が大きいほど、信号の損失が小さいことを意味する。0GHz~110GHzにおいて、第5の実施形態および第4の実施形態はいずれも、良好な通過特性が得られていることがわかる。
 図20は、第4の実施形態と第5の実施形態に係る配線基板101のTDRを示すグラフであり、横軸はTime(ps)、縦軸はTDR(Ohm)を示している。第4の実施形態および第5の実施形態は、いずれも良好な特性が得られていることがわかる。さらに、第5の実施形態は、第4の実施形態と比較して、より良好な特性が得られていることがわかる。
  <電子部品実装用パッケージの構成>
 図17に示すように、一実施形態に係る電子部品実装用パッケージ10aは、配線基板101と、基体104と、枠体102と、を備えている。枠体102は、基体104上に位置している。配線基板101は、枠体102に固定されている。
 一実施形態において、配線基板101は、入出力端子部101aと、枠状部101bと、を有していてもよい。また、配線基板101は、接着剤によって外部接続部材と接続されていてもよい。
 入出力端子部101aは、電子部品実装用パッケージ10aの外側に位置していてもよい。この場合、入出力端子部101aは、配線基板101の信号導体部S0および接地導体部G0に電気的に接続され、電子部品実装用パッケージ10aの内外を導通していてもよい。また、上述の一対の第1電極部S11および一対の第2電極部S12は、電子部品実装用パッケージ10aの内部に位置していてもよい。
 入出力端子部101aには、外部接続部材が接続されていてもよい。
 ここで言う、外部接続部材としては、例えば、フレキシブル基板(FPC:Flexible Printed Circuits)や、電子回路が形成されたプリント基板(PCB:Printed Circuit Board)であってもよいし、リード端子および/又はボンディングワイヤ等の金属部材であってもよい。入出力端子部101aに、外部接続部材を接続することで、電子部品実装用パッケージ10aに実装した電子部品103を、動作させることができる。
 枠状部101bは、後述する枠体102と一部が接合されていてもよい。つまり、電子部品実装用パッケージ10aの内部は、枠状部101bと、枠体102によって囲まれている。
 基体104の上面には、配線基板101が接合されていてもよい。基体104は、例えば、平面視において、矩形状であり、大きさが10mm×10mm~50mm×50mmで、厚みが0.5mm~20mmである。基体104の材料としては、例えば、銅、鉄、タングステン、モリブデン、ニッケル又はコバルト等の金属材料、あるいはこれらの金属材料を含有する合金が挙げられる。この場合、基体104は、1枚の金属板又は複数の金属板を積層させた積層体であっても良い。また、基体104の材料が、上記金属材料である場合には、酸化腐食を低減するために、基体104の表面には、電気めっき法又は無電解めっき法を用いて、ニッケル又は金等の鍍金層が形成されていてもよい。また、基体104の材料は、絶縁材料であって、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体又はガラスセラミックス等のセラミック材料であってもよい。
 また、基体104は、電気回路が印刷されたPCBであってもよい。この場合、配線基板101は、基体104に対してBGAによって接合されていてもよい。
 枠体102は、基体104の上面に位置し、平面視において、内部に位置する電子部品103を保護している。つまり、平面視において、枠体102は、電子部品103の周囲の少なくとも一部を取り囲んでいる。枠体102は、基体104の上面の外縁の全てを囲っていなくてもよい。また、一実施形態においては、枠体102は、基体104の上面の外縁に沿って位置しているが、枠体102は、基体104の上面の外縁よりも内側に位置していてもよい。
 枠体102は平面視において、矩形状であってもよい。この場合、配線基板101は、枠体102の下面に接合されていてもよい。更に、配線基板101が、基体104の上面に接合される場合には、枠体102および基体104によって、配線基板101が挟まれていてもよい。
 枠体102の材料は、例えば、銅、鉄、タングステン、モリブデン、ニッケル又はコバルト等の金属材料、あるいはこれらの金属材料を含有する合金であってもよい。また、枠体102の材料は、絶縁材料であって、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体又はガラスセラミックス等のセラミック材料であってもよい。
 枠体102は、ろう材等を介して基体104に接合することができる。なお、ろう材の材料は、例えば、銀、銅、金、アルミニウム又はマグネシウムであり、ニッケル、カドミウム又はリンなどの添加物を含有させてもよい。
 枠体102は、貫通孔部102aを有していてもよい。貫通孔部102aには、透光性の窓部材を含む固定部材が接合されていてもよい。また、固定部材には、光ファイバーが挿入されて固定されていてもよい。
  <電子モジュールの構成>
 一実施形態に係る電子モジュール10は、電子部品実装用パッケージ10aと、電子部品103と、蓋体105と、を備えている。電子部品103は、基体104上に位置し、配線基板101と電気的に接続されている。蓋体105は、枠体102上に位置し、電子部品実装用パッケージ10aの内部を覆って位置している。
 電子モジュール10において、配線基板101は、接着剤を介して外部接続部材と接続された配線構造体100であってもよい。
 電子部品103は、例えば、光信号を電気信号に変換又は電気信号を光信号に変換するなど信号の処理を行う部品であってもよい。電子部品103は、基体104の上面に位置し、電子部品実装用パッケージ10aに収納されている。
 電子部品103は、例えば、無線信号又は光信号を電気信号に変換、又は、電気信号を無線信号又は光信号に変換するなど信号の処理を行う部品であってもよい。電子部品103は、基体104に直接接合されても良い。また、電子部品103と基体104の間には、セラミック材料および/又は金属材料を含有する台座が位置していてもよい。つまり、電子部品103は、間接的に基体104に接合されていてもよい。
 電子部品103としては、例えば、半導体レーザー(LD:Laser Diode)又は、フォトダイオード(PD:Photodiode)等の光半導体素子、電界効果トランジスタ(FET:Field Effect Transistor)等の半導体集積回路素子、および光センサ等のセンサ素子が挙げられる。電子部品103は、例えばガリウム砒素又は窒化ガリウムなどの半導体材料によって形成することができる。
 蓋体105は、枠体102上に、電子部品実装用パッケージ10aの内部を覆って位置し、枠体102とともに電子部品103を保護する。蓋体105は、平面視において、四角形状であってもよい。蓋体105は、大きさが10mm×10mm~50mm×50mmで、厚みが0.5mm~2mmであってもよい。蓋体105の材料としては、例えば、鉄、銅、ニッケル、クロム、コバルト、モリブデン又はタングステンなどの金属材料、あるいはこれらの金属材料を複数組み合わせた合金などが挙げられる。このような金属材料のインゴットに圧延加工法、打ち抜き加工法のような金属加工法を施すことによって、蓋体105を構成する金属部材を作製することができる。
 電子モジュール10は、蓋体105と枠体102の間に位置するシールリングを更に備えていてもよい。シールリングは、蓋体105と枠体102を接合する機能を有する。シールリングは枠体102上に位置しており、平面視において電子部品103を取り囲んでいる。シールリングの材料としては、例えば、鉄、銅、銀、ニッケル、クロム、コバルト、モリブデン又はタングステンなどの金属材料、あるいはこれらの金属材料を複数組み合わせた合金などが挙げられる。なお、枠体102上にシールリングを設けない場合には、蓋体105は、例えば、半田、ろう材、ガラス又は樹脂接着材などの接着剤を介して枠体102上に接合されてもよい。
 なお、各実施形態、各変形例における特徴部の種々の組み合わせは上述の実施形態の例に限定されるものでない。また、各実施形態同士、各変形例同士の組み合わせも可能である。
 本開示は、配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュールとして利用できる。
1 絶縁体
1t 第1上面
1s 第1領域
1r 第1部分
11 第1絶縁層
12 第2絶縁層
13 第3絶縁層
O1 第1開口部
O11 第1接続部
O12 第2接続部
O2 第2開口部
O3 第3開口部
K1 第1切欠き部
K2 第2切欠き部
K3 第3切欠き部
K4 第4切欠き部
T1 第1仮想線
T2 第2仮想線
D1 第1開口部の深さ
D2 第2開口部の深さ
D3 第3開口部の深さ
L1x 第1開口部のx方向における寸法
L1y 第1開口部のy方向における寸法
L2y 第2開口部のy方向における寸法
L3y 第3開口部のy方向における寸法
L11y 第1接続部O11のy方向における寸法
L12y 第2接続部O12のy方向における寸法
G0 接地導体部
G1 第1接地導体
G1a 第1接地線路
G1b 第2接地線路
G2 第2接地導体
G2a 第3接地線路
G2b 第4接地線路
G3 第3接地導体
G3a 第5接地線路
G3b 第6接地線路
G4 内層接地導体
G4m 格子状部
Lg1 第1接地線路と第2接地線路のy方向における距離
Lg2 第3接地線路と第4接地線路のy方向における距離
Lg3 第5接地線路と第6接地線路のy方向における距離
Lg12 第1接地導体と第2接地導体とのx方向における距離
S0 信号導体部
S1 第1信号導体
S11 一対の第1電極部
S12a 第1線路部
S12b 第2線路部
S2 第2信号導体
S21 一対の第2電極部
S22a 第3線路部
S22b 第4線路部
Ls1 一対の第1電極部間の距離
Ls2 一対の第2電極部間の距離
31 第1コンデンサ
32 第2コンデンサ
10 電子モジュール
10a 電子部品実装用パッケージ
101A~101F 配線基板
101a 入出力端子部
101b 枠状部
102 枠体
102a 貫通孔部
103 電子部品
104 基体
105 蓋体

Claims (15)

  1.  第1方向に延びる第1領域を含む第1上面を有する絶縁体と、
     前記第1上面に位置し、前記第1方向と交差する第2方向に延びる接地導体部と、
     前記第1上面に位置し、前記第2方向に延びる信号導体部と、を備え、
     前記絶縁体は、少なくとも一部が前記第1領域に位置する第1開口部を有し、
     前記接地導体部は、第1接地導体と、該第1接地導体と間を空けて位置する第2接地導体と、を有し、
     前記信号導体部は、前記第1接地導体および前記第2接地導体の間に位置する第1信号導体と、該第1信号導体と間を空けて位置するとともに前記第1接地導体および前記第2接地導体の間に位置する第2信号導体と、を有しており、
     前記第1接地導体は、第1接地線路と、前記第2方向において前記第1領域を挟んで前記第1接地線路と対向する第2接地線路と、を有し、
     前記第2接地導体は、第3接地線路と、前記第2方向において前記第1領域を挟んで前記第3接地線路と対向する第4接地線路と、を有し、
     前記第1信号導体は、前記第2方向において前記第1領域を挟んで対向する一対の第1電極部と、前記一対の第1電極部の一方に接続されて前記第1領域から遠ざかるように延びる第1線路部と、前記一対の第1電極部の他方に接続されて前記第1領域から遠ざかるように延びる第2線路部と、を有し、
     前記第2信号導体は、前記第2方向において前記第1領域を挟んで対向する一対の第2電極部と、前記一対の第2電極部の一方に接続されて前記第1領域から遠ざかるように延びる第3線路部と、前記一対の第2電極部の他方に接続されて前記第1領域から遠ざかるように延びる第4線路部と、を有し、
     平面視で、前記第1方向において、前記第1接地導体、前記第1信号導体、前記第2信号導体、前記第2接地導体は、この順に並んで位置しており、
     前記第1開口部は、前記第1方向において、前記第1領域のうち前記第1信号導体と前記第2信号導体の間に位置する第1部分に位置している、配線基板。
  2.  前記一対の第1電極部間の前記第2方向における距離および前記一対の第2電極部間の前記第2方向における距離は、前記第1接地線路と前記第2接地線路の前記第2方向における距離および前記第3接地線路と前記第4接地線路の前記第2方向における距離の少なくともいずれか一方よりも小さい、請求項1に記載の配線基板。
  3.  前記第1開口部の前記第2方向における寸法は、前記一対の第1電極部間の前記第2方向における距離および前記一対の第2電極部間の前記第2方向における距離の少なくともいずれか一方よりも大きい、請求項1又は2に記載の配線基板。
  4.  前記第1開口部の前記第2方向における寸法は、前記第1接地線路と前記第2接地線路の前記第2方向における距離および前記第3接地線路と前記第4接地線路の前記第2方向における距離の少なくともいずれか一方よりも小さい、請求項1~3のいずれか一つに記載の配線基板。
  5.  前記第1開口部は、少なくとも前記一対の第1電極部間から前記一対の第2電極部間にまで延びている、請求項1~4のいずれか一つに記載の配線基板。
  6.  前記第1開口部の前記第1方向における寸法は、前記第1接地導体と前記第2接地導体との前記第1方向における距離よりも大きい、請求項5に記載の配線基板。
  7.  前記絶縁体は、少なくとも一部が前記第1領域に位置する第2開口部と、少なくとも一部が前記第1領域に位置する第3開口部と、を更に有しており、
     前記第2開口部は、前記第2方向において前記第1接地線路と前記第2接地線路との間に位置するとともに、前記第1方向において前記第1信号導体と間を空けて位置し、
     前記第3開口部は、前記第2方向において前記第3接地線路と前記第4接地線路との間に位置するとともに、前記第1方向において前記第2信号導体と間を空けて位置している、請求項1~6のいずれか一つに記載の配線基板。
  8.  前記第1開口部は、前記第2開口部と接続する第1接続部と、前記第3開口部と接続する第2接続部と、を有しており、
     前記第1接続部は、前記第2方向において、前記一対の第1電極部間に位置し、
     前記第2接続部は、前記第2方向において、前記一対の第2電極部間に位置している、請求項7に記載の配線基板。
  9.  前記第1開口部の前記第2方向における寸法は、前記第2開口部の前記第2方向における寸法および前記第3開口部の寸法よりも小さい、請求項7又は8に記載の配線基板。
  10.  前記第1開口部の深さは、前記第2開口部の深さおよび前記第3開口部の深さの少なくともいずれか一方よりも深い、請求項7~9のいずれか1つに記載の配線基板。
  11.  平面視において、前記第2開口部は、前記第1接地線路および前記第2接地線路と接しており、
     平面視において、前記第3開口部は、前記第3接地線路および前記第4接地線路と接している、請求項7~10のいずれか1つに記載の配線基板。
  12.  前記接地導体部は、前記第1信号導体および前記第2信号導体の間に位置する第3接地導体を更に有し、
     前記第3接地導体は、第5接地線路と、前記第2方向において前記第1領域を挟んで前記第5接地線路と対向する第6接地線路を有している、請求項1~11のいずれか1つに記載の配線基板。
  13.  前記第5接地線路と前記第6接地線路の前記第2方向における距離は、前記第1接地線路と前記第2接地線路の前記第2方向における距離および前記第3接地線路と前記第4接地線路の前記第2方向における距離の少なくともいずれか一方よりも大きい、請求項12に記載の配線基板。
  14.  基板と、
     前記基板上に位置する枠体と、
     前記枠体に固定された請求項1~13のいずれか1つに記載の配線基板と、を備える電子部品実装用パッケージ。
  15.  請求項14に記載の電子部品実装用パッケージと、
     前記電子部品実装用パッケージに収容されるとともに、前記配線基板と電気的に接続された電子部品と、
     前記枠体上に接合され、前記電子部品実装用パッケージの内部を覆って位置する蓋体と、を備えていることを特徴とする電子モジュール。
PCT/JP2023/043635 2022-12-07 2023-12-06 配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール WO2024122576A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-195727 2022-12-07
JP2022195727 2022-12-07

Publications (1)

Publication Number Publication Date
WO2024122576A1 true WO2024122576A1 (ja) 2024-06-13

Family

ID=91379104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043635 WO2024122576A1 (ja) 2022-12-07 2023-12-06 配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール

Country Status (1)

Country Link
WO (1) WO2024122576A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179181A (ja) * 2001-12-11 2003-06-27 Ngk Spark Plug Co Ltd 樹脂製配線基板
WO2020040072A1 (ja) * 2018-08-21 2020-02-27 Ngkエレクトロデバイス株式会社 配線基板、パッケージおよびモジュール

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179181A (ja) * 2001-12-11 2003-06-27 Ngk Spark Plug Co Ltd 樹脂製配線基板
WO2020040072A1 (ja) * 2018-08-21 2020-02-27 Ngkエレクトロデバイス株式会社 配線基板、パッケージおよびモジュール

Similar Documents

Publication Publication Date Title
JP6119845B2 (ja) 高周波部品およびこれを備える高周波モジュール
US7649252B2 (en) Ceramic multilayer substrate
JP6093020B2 (ja) 素子収納用パッケージおよび実装構造体
US10806033B2 (en) Interposer and electronic device
JP5926290B2 (ja) 入出力部材ならびに電子部品収納用パッケージおよび電子装置
US6936921B2 (en) High-frequency package
WO2024122576A1 (ja) 配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール
JP2003152124A (ja) 高周波用パッケージ
WO2015088028A1 (ja) 素子収納用パッケージおよび実装構造体
JPH11176987A (ja) 高周波用電力増幅器
WO2017077837A1 (ja) 部品実装基板
WO2024075816A1 (ja) 配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール
US20240128170A1 (en) Hybrid chip carrier package
WO2023145651A1 (ja) 配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール
JP7432703B2 (ja) 配線基体および電子装置
WO2024014433A1 (ja) 配線構造体および電子モジュール
WO2024029628A1 (ja) 配線基板、配線基板を用いた電子部品実装用パッケージおよび電子モジュール
CN219626637U (zh) 电路模块
WO2024135849A1 (ja) 配線基板、配線基板を用いた電子部品実装用基板、および電子モジュール
JP7244630B2 (ja) 配線基板、電子部品用パッケージおよび電子装置
WO2023223846A1 (ja) 配線基板、配線基板を用いた電子部品実装用パッケージ、および電子モジュール
WO2021149491A1 (ja) 配線基体および電子装置
WO2022215372A1 (ja) 電子回路モジュール
JP2024048912A (ja) 配線基板、配線基板を用いた配線構造体、電子部品実装用パッケージ、および電子モジュール
US6888432B2 (en) Laminated substrate, method of producing the same, nonreciprocal circuit element, and communication device