WO2024122481A1 - 粘着シート、粘着剤層付き面状発熱体および面状発熱部材 - Google Patents

粘着シート、粘着剤層付き面状発熱体および面状発熱部材 Download PDF

Info

Publication number
WO2024122481A1
WO2024122481A1 PCT/JP2023/043219 JP2023043219W WO2024122481A1 WO 2024122481 A1 WO2024122481 A1 WO 2024122481A1 JP 2023043219 W JP2023043219 W JP 2023043219W WO 2024122481 A1 WO2024122481 A1 WO 2024122481A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
adhesive layer
active energy
sheet
meth
Prior art date
Application number
PCT/JP2023/043219
Other languages
English (en)
French (fr)
Inventor
洋一 ▲高▼橋
結加 藤井
広太郎 浦川
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2024122481A1 publication Critical patent/WO2024122481A1/ja

Links

Images

Definitions

  • the present invention relates to an adhesive sheet, a sheet heating element with an adhesive layer, and a sheet heating member.
  • detection units such as optical detection systems (cameras, infrared sensors, LiDAR (Light Detection And Ranging), etc.), radar systems, ultrasonic systems, etc.
  • optical detection systems cameras, infrared sensors, LiDAR (Light Detection And Ranging), etc.
  • radar systems ultrasonic systems
  • these detection units are installed in locations on the vehicle that are exposed to the outside air, such as the front grille. For this reason, in cold environments, sleet, ice, snow, etc. may adhere to the detection units.
  • a sheet heating element is attached to the detection unit, and the sleet, ice, snow, etc. are melted by the heat generated by the sheet heating element.
  • Patent Document 1 proposes an adhesive composition for heating elements that contains a specific vinyl polymer and an acrylic adhesive polymer as such an adhesive.
  • the present invention was made in consideration of these circumstances, and aims to provide an adhesive sheet suitable for application to a sheet heating element, as well as a sheet heating element and sheet heating member with an adhesive layer obtained by using the adhesive sheet.
  • the present invention provides an adhesive sheet having an adhesive layer to be attached to a planar heating element, the adhesive layer having an average light transmittance of 60% or more in a wavelength region of 380 to 780 nm, the adhesive layer having an average light transmittance of 60% or more in a wavelength region of 800 to 1100 nm, and a laminate comprising a 100 ⁇ m thick polyethylene terephthalate film and a 1.1 mm thick soda lime glass plate bonded together by the adhesive layer (the adhesive constituting the adhesive layer is an active energy
  • the laminate (after lamination and active energy ray curing) is subjected to 200 cycles of heat shock testing in which temperatures of -35°C and 70°C are alternately applied for 30 minutes each, and then left at a temperature of 23°C for 24 hours.
  • the laminate of the polyethylene terephthalate film and the adhesive layer is then peeled off from the soda lime glass plate at a peel speed of 300 mm/min and a peel angle of 180°, and the adhesive strength measured is 10 N/25 mm or more (Invention 1).
  • the adhesive sheet according to the above invention (Invention 1) is suitable for attachment to sheet heating elements.
  • the average transmitted light diffusion rate of the adhesive layer in the wavelength region of 380 to 780 nm is 10% or less
  • the average transmitted light diffusion rate of the adhesive layer in the wavelength region of 800 to 1100 nm is 10% or less (Invention 2).
  • the adhesive strength of the adhesive sheet to soda lime glass at 23°C is 10 N/25 mm or more (Invention 3).
  • the adhesive strength of the adhesive sheet to soda lime glass at 85°C is 1 N/25 mm or more (Invention 4).
  • the adhesive strength of the adhesive sheet to soda lime glass at -20°C is 0.2 N/25 mm or more and 20 N/25 mm or less (Invention 5).
  • the adhesive constituting the adhesive layer is an acrylic adhesive (Invention 6).
  • the acrylic adhesive is an active energy ray-curable adhesive, or an adhesive that is thermally crosslinked and active energy ray-cured (Inventions 7 and 8).
  • the adhesive sheet has two release sheets, and the adhesive layer is sandwiched between the release sheets so as to be in contact with the release surfaces of the two release sheets (Invention 9).
  • the present invention provides a sheet heating element with an adhesive layer, comprising a sheet heating element and an adhesive layer of the adhesive sheet (Inventions 1 to 9) attached to at least one surface of the sheet heating element (Invention 10).
  • the present invention provides a planar heating member (Invention 11) comprising a planar heating element, a protective layer, and an adhesive layer of the adhesive sheet (Inventions 1 to 9) that bonds the planar heating element and the protective layer.
  • the adhesive sheet according to the present invention is suitable for application to a sheet heating element. Furthermore, the sheet heating element and sheet heating member with an adhesive layer according to the present invention have excellent durability due to the use of the adhesive sheet. Furthermore, when the sheet heating element and sheet heating member with an adhesive layer according to the present invention are applied to a sensor in an optical system, the sensor function is not impaired by the use of the adhesive sheet.
  • 1 is a cross-sectional view of a pressure-sensitive adhesive sheet according to one embodiment of the present invention.
  • 1 is a cross-sectional view of a planar heating member according to an embodiment of the present invention.
  • 1 is an image taken for Example 1 in evaluation of sensor sensitivity to visible light.
  • 1 is an image taken for Comparative Example 1 in evaluation of sensor sensitivity to visible light.
  • the pressure-sensitive adhesive sheet includes a pressure-sensitive adhesive layer to be attached to a sheet heating element.
  • the pressure-sensitive adhesive layer preferably has an average light transmittance of 60% or more in a wavelength region of 380 to 780 nm, and preferably has an average light transmittance of 60% or more in a wavelength region of 800 to 1100 nm.
  • a laminate obtained by laminating a 100 ⁇ m-thick polyethylene terephthalate film and a 1.1 mm-thick soda-lime glass plate with the pressure-sensitive adhesive layer (when the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is active energy ray-curable, the laminate after the lamination and active energy ray-curing) is subjected to a heat shock test in which temperatures of ⁇ 35° C. and 70° C. are alternately applied for 30 minutes each for 200 cycles, and then allowed to stand at a temperature of 23° C. for 24 hours.
  • the adhesive strength measured when the laminate of the polyethylene terephthalate film and the pressure-sensitive adhesive layer is then peeled off from the soda-lime glass plate under conditions of a peel speed of 300 mm/min and a peel angle of 180° (hereinafter sometimes referred to as “adhesive strength after heat shock”) is preferably 10 N/25 mm or more.
  • the light transmittance (and the diffuse transmittance described later) in this specification is a value measured in accordance with JIS K7361-1:1997, and the details of the measurement method are as shown in the test examples described later.
  • the adhesive strength in this specification basically refers to the adhesive strength measured by the 180-degree peeling method in accordance with JIS Z0237:2009, and the details of the measurement method are as shown in the test examples described later.
  • the adhesive constituting the adhesive layer is an active energy ray curable adhesive
  • the laminate subjected to the heat shock test is a laminate in which a polyethylene terephthalate film and a soda lime glass plate are bonded with the adhesive layer, and the adhesive layer is cured with active energy rays.
  • active energy ray curing refers to a state in which a new higher-order structure is formed by irradiation with active energy rays, and further formation of the higher-order structure is almost eliminated even by further irradiation with active energy rays.
  • the presence or absence of further formation of the higher-order structure can be determined, for example, by the amount of change in gel fraction. Specifically, if the increase in gel fraction due to further irradiation with active energy rays is minimal (preferably 5% or less), it can be said to be in a cured state.
  • the adhesive layer has an average light transmittance of 60% or more in the wavelength region of 380 to 780 nm, and the adhesive layer has an average light transmittance of 60% or more in the wavelength region of 800 to 1100 nm. Therefore, when the surface heating element to which the adhesive layer is attached is used as a sensor in an optical system, particularly LiDAR (Light Detection and Ranging), the sensor function in the visible light region and infrared region is not impaired. Naturally, the camera function and infrared sensor function are not impaired either.
  • LiDAR Light Detection and Ranging
  • the average light transmittance in the wavelength region of 380 to 780 nm is preferably 60% or more, more preferably 70% or more, particularly preferably 80% or more, even more preferably 90% or more, and of these, more preferably 95% or more.
  • the average light transmittance in this wavelength region is most preferably 100%.
  • the average light transmittance in the wavelength region of 800 to 1100 nm is preferably 60% or more, more preferably 70% or more, particularly preferably 80% or more, even more preferably 90% or more, and of these, more preferably 95% or more.
  • the average light transmittance in this wavelength region is most preferably 100%.
  • the adhesive strength after heat shock is 10 N/25 mm or more, so that even when the sheet is attached to a planar heating element, there is little change in the adhesive properties, and the adhesive reliability is excellent.
  • the adhesive strength after heat shock is preferably 15 N/25 mm or more, more preferably 20 N/25 mm or more, particularly preferably 30 N/25 mm or more, even more preferably 35 N/25 mm or more, and of these, preferably 40 N/25 mm or more.
  • the upper limit of the adhesive strength after heat shock is preferably 80 N/25 mm or less, more preferably 70 N/25 mm or less, especially preferably 60 N/25 mm or less, and even more preferably 52 N/25 mm or less.
  • the average value of the transmitted light diffusion rate in the wavelength region of 380 to 780 nm of the adhesive layer is preferably 10% or less, more preferably 5% or less, particularly preferably 3% or less, even more preferably 1% or less, and especially preferably 0.8% or less. This makes it less likely that the sensor function in the visible light region, such as the LiDAR function or the camera function, will be hindered when the sheet heating element to which the adhesive layer is attached is applied to a sensor in an optical system.
  • the lower limit of the average value of the transmitted light diffusion rate in the wavelength region is not particularly limited, and is most preferably 0%, but may be 0.1% or more, particularly 0.3% or more, or even 0.5% or more.
  • the transmitted light diffusion rate can be calculated by dividing the diffuse transmittance by the total light transmittance.
  • the average transmitted light diffusion rate of the adhesive layer in the wavelength region of 800 to 1100 nm is preferably 10% or less, more preferably 5% or less, particularly preferably 3% or less, even more preferably 1% or less, and most preferably 0.5% or less. This makes it less likely that the sensor function in the infrared region, such as the LiDAR function or infrared sensor function, will be inhibited when the sheet heating element to which the adhesive layer is attached is used as a sensor in an optical system.
  • the lower limit of the average transmitted light diffusion rate in this wavelength region is not particularly limited, and is most preferably 0%, but may be 0.1% or more, particularly 0.2% or more.
  • the gel fraction of the adhesive constituting the adhesive layer of the adhesive sheet according to this embodiment is preferably 30-90%, more preferably 35-85%, particularly preferably 40-80%, and even more preferably 46-70%. This makes it easier to achieve the excellent adhesive reliability mentioned above.
  • the method for measuring the gel fraction of the adhesive in this specification is as shown in the test examples described later.
  • the gel fraction of the adhesive after active energy ray curing is preferably 40 to 95%, more preferably 45 to 90%, particularly preferably 50 to 85%, even more preferably 60 to 80%, and of these, preferably 64 to 75%. This makes it easier to achieve the excellent adhesive reliability described above.
  • the adhesive has excellent blister resistance, and even if a plastic plate is present as the adherend and outgassing is released by heating, the occurrence of blisters such as air bubbles, floating, and peeling at the interface between the adhesive layer and the adherend is suppressed.
  • the storage modulus G' (23) at 23°C of the adhesive constituting the adhesive layer of the adhesive sheet according to this embodiment is preferably 0.01 to 10 MPa, more preferably 0.05 to 5 MPa. This makes it easier to achieve the excellent adhesive reliability described above. From the viewpoint of blister resistance, it is preferably 0.07 to 2 MPa, particularly preferably 0.08 to 1 MPa, and even more preferably 0.10 to 0.80 MPa.
  • the method for measuring the storage modulus G' of the adhesive in this specification is as shown in the test examples described later.
  • the storage modulus G'(85) at 85°C of the adhesive constituting the adhesive layer in this embodiment is preferably 0.01 to 10 MPa, more preferably 0.02 to 5 MPa, particularly preferably 0.03 to 1 MPa, and even more preferably 0.04 to 0.50 MPa. This makes it easier to achieve the excellent adhesive reliability described above. Furthermore, when the storage modulus G'(85) is 0.02 MPa or more, there is a tendency for the blister resistance to be excellent.
  • the storage modulus G'(-20) at -20°C of the adhesive constituting the adhesive layer in this embodiment is preferably 0.1 to 1000 MPa, more preferably 1 to 800 MPa, from the viewpoint of adhesion reliability. Furthermore, from the viewpoint of blister resistance, it is particularly preferably 10 to 600 MPa, and even more preferably 25 to 400 MPa.
  • the ratio of the storage modulus G'(-20) at -20°C to the storage modulus G'(23) at 23°C of the adhesive constituting the adhesive layer in this embodiment is preferably 1 to 2000, more preferably 10 to 1500, particularly preferably 50 to 1200, even more preferably 100 to 1000, and of these, preferably 200 to 800. This makes it easier to achieve the excellent adhesive reliability described above and also makes it easier to achieve excellent blister resistance.
  • the ratio of the storage modulus G'(23) at 23°C to the storage modulus G'(85) at 85°C of the adhesive constituting the adhesive layer in this embodiment is preferably 1 to 500, more preferably 2 to 200, particularly preferably 3 to 100, even more preferably 4 to 50, and of these, preferably 5 to 20. This makes it easier to achieve the excellent adhesive reliability described above and also makes it easier to achieve excellent blister resistance.
  • the ratio of the storage modulus G'(-20) at -20°C to the storage modulus G'(85) at 85°C of the adhesive constituting the adhesive layer in this embodiment is preferably 100 to 100,000, more preferably 300 to 50,000, particularly preferably 600 to 20,000, even more preferably 900 to 10,000, and of these, preferably 1,200 to 8,000. This makes it easier to achieve the excellent adhesive reliability described above and also makes it easier to achieve excellent blister resistance.
  • the storage modulus G' (23) of the adhesive at 23°C before active energy ray curing is preferably 0.01 to 1.00 MPa, more preferably 0.03 to 0.80 MPa, particularly preferably 0.05 to 0.50 MPa, and even more preferably 0.10 to 0.30 MPa. This makes it easier to satisfy the storage modulus G' (23) at 23°C after active energy ray curing described above.
  • the storage modulus G'(85) of the adhesive at 85°C before active energy ray curing is preferably 0.001 to 1.00 MPa, more preferably 0.003 to 0.50 MPa, particularly preferably 0.005 to 0.30 MPa, and even more preferably 0.01 to 0.20 MPa. This makes it easier to satisfy the storage modulus G'(85) at 85°C after active energy ray curing described above.
  • the storage modulus G'(-20) of the adhesive at -20°C before active energy ray curing is preferably 0.05 to 500 MPa, more preferably 0.1 to 300 MPa, particularly preferably 0.5 to 200 MPa, and even more preferably 1 to 100 MPa. This makes it easier to satisfy the storage modulus G'(-20) at -20°C after active energy ray curing described above.
  • the adhesive strength of the adhesive sheet according to this embodiment to soda lime glass at 23°C (when the adhesive constituting the adhesive layer is active energy ray curable, the adhesive strength after being applied to soda lime glass and cured with active energy ray) is preferably 10 N/25 mm or more, more preferably 20 N/25 mm or more, particularly preferably 30 N/25 mm or more, even more preferably 40 N/25 mm or more, and of these, preferably 44 N/25 mm or more. This makes it easier to achieve the excellent adhesive reliability described above and also makes it easier to achieve excellent blister resistance.
  • the upper limit of the adhesive strength is not particularly limited, but from the viewpoint of reworkability, it is preferably 100 N/25 mm or less, more preferably 80 N/25 mm or less, especially preferably 60 N/25 mm or less, and even more preferably 50 N/25 mm or less.
  • the adhesive strength of the adhesive sheet according to this embodiment to soda lime glass at 85°C is preferably 1 N/25 mm or more, more preferably 2 N/25 mm or more, particularly preferably 10 N/25 mm or more, and even more preferably 15 N/25 mm or more. This makes it easier to achieve the excellent adhesive reliability described above, and also makes it easier to achieve excellent blister resistance.
  • the upper limit of the adhesive strength is not particularly limited, but from the viewpoint of reworkability, it is preferably 100 N/25 mm or less, more preferably 80 N/25 mm or less, particularly preferably 60 N/25 mm or less, and even more preferably 40 N/25 mm or less.
  • the adhesive strength of the adhesive sheet according to this embodiment to soda lime glass at -20°C is preferably 0.2 to 20 N/25 mm, more preferably 0.5 to 15 N/25 mm, particularly preferably 1 to 12 N/25 mm, and even more preferably 2 to 9 N/25 mm. This makes it easier to achieve the excellent adhesive reliability mentioned above, and also makes it easier to achieve excellent blister resistance.
  • the ratio of the adhesive strength after heat shock to the adhesive strength to soda lime glass at 23°C is preferably 0.2 to 3, more preferably 0.4 to 2.5, particularly preferably 0.6 to 2, even more preferably 0.8 to 1.5, and of these, preferably 0.85 to 1.05. This makes it easier to achieve the excellent adhesive reliability mentioned above, and also makes it easier to achieve excellent blister resistance.
  • the adhesive according to this embodiment is not particularly limited in type as long as it satisfies the above physical properties.
  • it may be any of an acrylic adhesive, a polyester adhesive, a polyurethane adhesive, a rubber adhesive, a silicone adhesive, etc.
  • the adhesive may be any of an emulsion type, a solvent type, or a solventless type, and may be either a cross-linked type or a non-cross-linked type.
  • an acrylic adhesive is preferred, as it has excellent adhesive properties and optical properties.
  • a cross-linked type is preferred, and a thermally cross-linked type is even more preferred.
  • the adhesive according to the present embodiment may be either non-curable with active energy rays or curable with active energy rays.
  • an active energy ray-curable adhesive is preferable.
  • the adhesive may be cured with active energy rays at the stage of the adhesive sheet before being attached to the adherend, or the adhesive layer may be applied to the adherend and then cured with active energy rays.
  • the term "active energy ray-curable adhesive” refers to an adhesive that cures when irradiated with active energy rays. Therefore, an adhesive that has been cured by previous irradiation with active energy rays to the extent that it cannot be cured any more is not included in the term "active energy ray-curable adhesive".
  • the adhesive according to this embodiment is preferably a crosslinked adhesive composition (hereinafter sometimes referred to as "adhesive composition P") containing a (meth)acrylic acid ester polymer (A), a crosslinking agent (B), and, if desired, an active energy ray-curable component (C) from the viewpoint of easily satisfying the above-mentioned physical properties.
  • An adhesive obtained by crosslinking adhesive composition P is more likely to satisfy the above-mentioned physical properties.
  • (meth)acrylic acid means both acrylic acid and methacrylic acid. The same applies to other similar terms.
  • polymer is also considered to include the concept of "copolymer.”
  • the (meth)acrylic acid ester polymer (A) preferably contains, as a monomer unit constituting the polymer, a reactive group-containing monomer having in the molecule a reactive group that reacts with the crosslinking agent (B).
  • the reactive group derived from the reactive group-containing monomer reacts with the crosslinking agent (B) to form a crosslinked structure (three-dimensional network structure), thereby obtaining a pressure-sensitive adhesive having the desired cohesive strength.
  • Preferred examples of the reactive group-containing monomer include monomers having a hydroxyl group in the molecule (hydroxyl group-containing monomers), monomers having a carboxyl group in the molecule (carboxyl group-containing monomers), and monomers having an amino group in the molecule (amino group-containing monomers).
  • hydroxyl group-containing monomers or carboxyl group-containing monomers that have excellent reactivity with the crosslinking agent (B) are preferred.
  • hydroxyl group-containing monomers examples include (meth)acrylic acid hydroxyalkyl esters such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxybutyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
  • a (meth)acrylic acid hydroxyalkyl ester having a hydroxyalkyl group with 1 to 4 carbon atoms is preferred.
  • 2-hydroxyethyl (meth)acrylate and 4-hydroxybutyl (meth)acrylate are preferred, and in particular, 2-hydroxyethyl acrylate or 4-hydroxybutyl acrylate are preferred. These may be used alone or in combination of two or more.
  • Carboxy group-containing monomers include, for example, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid.
  • acrylic acid is preferred from the viewpoint of the reactivity of the carboxy group in the resulting (meth)acrylic acid ester polymer (A) with the crosslinking agent (B) and copolymerizability with other monomers. These may be used alone or in combination of two or more.
  • amino group-containing monomers examples include aminoethyl (meth)acrylate and n-butylaminoethyl (meth)acrylate. These may be used alone or in combination of two or more. Note that the amino group-containing monomers exclude the nitrogen atom-containing monomers described below.
  • the (meth)acrylic acid ester polymer (A) preferably contains 1 to 50 mass %, more preferably 2 to 40 mass %, and particularly preferably 3 to 30 mass % of reactive group-containing monomer as a monomer unit constituting the polymer. This allows a good crosslinking structure to be formed in the resulting adhesive, making it easier to obtain the storage modulus and gel fraction described above.
  • the reactive group-containing monomer is a carboxyl group-containing monomer
  • the (meth)acrylic acid ester polymer (A) preferably contains 5 to 20 mass %, more preferably 8 to 12 mass %, of carboxyl group-containing monomer as a monomer unit constituting the polymer.
  • the (meth)acrylic acid ester polymer (A) preferably contains 5 to 28 mass %, more preferably 10 to 25 mass %, of hydroxyl group-containing monomer as a monomer unit constituting the polymer.
  • the (meth)acrylic acid ester polymer (A) preferably contains an alkyl (meth)acrylic acid ester as a monomer unit constituting the polymer. This allows the polymer to exhibit good adhesion.
  • the alkyl group may be linear or branched.
  • the (meth)acrylic acid alkyl ester is preferably one in which the alkyl group has 1 to 20 carbon atoms.
  • Examples of the (meth)acrylic acid alkyl ester in which the alkyl group has 1 to 20 carbon atoms include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, n-decyl (meth)acrylate, n-dodecyl (meth)acrylate, myristyl (meth)acrylate, palmityl (meth)acrylate, and stearyl (meth)acrylate.
  • (meth)acrylic acid esters having an alkyl group with 1 to 8 carbon atoms are preferred, with methyl (meth)acrylate, n-butyl (meth)acrylate, or 2-ethylhexyl (meth)acrylate being particularly preferred, and n-butyl acrylate or 2-ethylhexyl acrylate being even more preferred. These may be used alone or in combination of two or more.
  • the (meth)acrylic acid ester polymer (A) preferably contains 40 to 98 mass% of (meth)acrylic acid alkyl ester as a monomer unit constituting the polymer, more preferably 45 to 95 mass%, particularly preferably 50 to 90 mass%, and even more preferably 55 to 85 mass%.
  • the lower limit of the content is as above, the adhesive strength after heat shock described above is easily satisfied.
  • the upper limit of the content is as above, other monomer components such as reactive functional group-containing monomers can be introduced into the (meth)acrylic acid ester polymer (A) in suitable amounts, making it easier to adjust the storage modulus and gel fraction described above.
  • the (meth)acrylic acid ester polymer (A) also preferably contains a monomer having an alicyclic structure in the molecule (alicyclic structure-containing monomer) as a monomer unit constituting the polymer. Since the alicyclic structure-containing monomer is bulky, its presence in the polymer is presumed to increase the distance between the polymers, making it possible to give the resulting adhesive excellent flexibility. On the other hand, the alicyclic structure-containing monomer itself can impart a certain degree of hardness to the polymer. Therefore, the storage modulus or its ratio described above is more easily satisfied.
  • the carbon ring of the alicyclic structure in the alicyclic structure-containing monomer may be a saturated structure or may have an unsaturated bond in part.
  • the alicyclic structure may be a monocyclic alicyclic structure or a polycyclic alicyclic structure (polycyclic structure) such as a bicyclic or tricyclic structure.
  • the alicyclic structure is preferably a polycyclic structure.
  • the polycyclic structure is particularly preferably a bicyclic to tetracyclic structure.
  • the number of carbon atoms in the alicyclic structure (meaning the total number of carbon atoms in the portion forming the ring, and in the case where multiple rings exist independently, the total number of carbon atoms) is preferably 5 to 15, and particularly preferably 7 to 10.
  • monomers containing an alicyclic structure include cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, adamantyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, etc., and among these, dicyclopentanyl (meth)acrylate (number of carbon atoms in alicyclic structure: 10), adamantyl (meth)acrylate (number of carbon atoms in alicyclic structure: 10) or isobornyl (meth)acrylate (number of carbon atoms in alicyclic structure: 7) are preferred, as they exhibit superior adhesion, with isobornyl (meth)acrylate being particularly preferred. These may be used alone or in combination of two or more.
  • the (meth)acrylic acid ester polymer (A) contains an alicyclic structure-containing monomer as a monomer unit constituting the polymer, it preferably contains the alicyclic structure-containing monomer at 1 to 20 mass%, more preferably at 3 to 18 mass%, particularly preferably at 5 to 15 mass%, and even more preferably at 7 to 12 mass%. This makes it easier to satisfy the storage modulus or ratio described above.
  • the (meth)acrylic acid ester polymer (A) contains a nitrogen atom-containing monomer as a monomer unit constituting the polymer. This provides better adhesion to plastics such as polycarbonate and glass.
  • a nitrogen atom-containing monomer a monomer having a nitrogen-containing heterocycle is preferable. From the viewpoint of increasing the degree of freedom of the nitrogen atom-containing monomer-derived portion in the higher-order structure of the adhesive that is constituted, it is preferable that the nitrogen atom-containing monomer does not contain a reactive unsaturated double bond group other than one polymerizable group used in the polymerization to form the (meth)acrylic acid ester polymer (A).
  • the aforementioned reactive functional group-containing monomer is excluded from the nitrogen atom-containing monomer referred to here.
  • Examples of monomers having a nitrogen-containing heterocycle include N-(meth)acryloylmorpholine, N-vinyl-2-pyrrolidone, N-(meth)acryloylpyrrolidone, N-(meth)acryloylpiperidine, N-(meth)acryloylpyrrolidine, N-(meth)acryloylaziridine, aziridinylethyl (meth)acrylate, 2-vinylpyridine, 4-vinylpyridine, 2-vinylpyrazine, 1-vinylimidazole, N-vinylcarbazole, and N-vinylphthalimide.
  • N-(meth)acryloylmorpholine which exhibits superior adhesive strength, is preferred, and N-acryloylmorpholine is particularly preferred. These may be used alone or in combination of two or more.
  • the (meth)acrylic acid ester polymer (A) contains a nitrogen atom-containing monomer as a monomer unit constituting the polymer, it preferably contains 1 to 20 mass % of the nitrogen atom-containing monomer, more preferably 3 to 18 mass %, particularly preferably 5 to 15 mass %, and even more preferably 7 to 12 mass %. This makes it easier to satisfy the physical properties such as the adhesive strength and storage modulus described above.
  • the (meth)acrylic acid ester polymer (A) may contain other monomers as monomer units constituting the polymer, if desired.
  • monomers that do not contain reactive functional groups are preferred so as not to inhibit the above-mentioned action of the reactive functional group-containing monomer.
  • monomers include (meth)acrylic acid alkoxyalkyl esters such as methoxyethyl (meth)acrylate and ethoxyethyl (meth)acrylate, vinyl acetate, and styrene. These may be used alone or in combination of two or more.
  • the (meth)acrylic acid ester polymer (A) is preferably a linear polymer.
  • a linear polymer By using a linear polymer, entanglement of molecular chains occurs easily, and it becomes easier to obtain an adhesive having the physical properties such as the gel fraction and storage modulus described above.
  • the (meth)acrylic acid ester polymer (A) is preferably a solution polymer obtained by a solution polymerization method. This makes it easier to obtain a high molecular weight polymer, which is expected to improve the cohesive strength, making it easier to obtain an adhesive having the physical properties such as the gel fraction and storage modulus described above.
  • the polymerization form of the (meth)acrylic acid ester polymer (A) may be a random copolymer or a block copolymer.
  • the weight average molecular weight of the (meth)acrylic acid ester polymer (A) is preferably 100,000 to 2,000,000, more preferably 200,000 to 1,600,000, particularly preferably 300,000 to 1,200,000, and even more preferably 400,000 to 800,000. This allows sufficient entanglement of the (meth)acrylic acid ester polymers (A), making it easier to obtain the desired cohesive force and to obtain an adhesive having the aforementioned physical properties such as the gel fraction and storage modulus.
  • the weight average molecular weight in this specification is a value measured by gel permeation chromatography (GPC) in terms of standard polystyrene.
  • the (meth)acrylic acid ester polymer (A) may be used alone or in combination of two or more kinds.
  • crosslinking agent (B) can crosslink the (meth)acrylic acid ester polymer (A) and form a good three-dimensional network structure by heating the pressure-sensitive adhesive composition P. This improves the cohesive force of the resulting pressure-sensitive adhesive, and makes it easier to adjust the storage modulus and gel fraction of the resulting pressure-sensitive adhesive to the above-mentioned ranges.
  • the crosslinking agent (B) may be any that reacts with the reactive group of the (meth)acrylic acid ester polymer (A), and examples thereof include isocyanate-based crosslinking agents, epoxy-based crosslinking agents, amine-based crosslinking agents, melamine-based crosslinking agents, aziridine-based crosslinking agents, hydrazine-based crosslinking agents, aldehyde-based crosslinking agents, oxazoline-based crosslinking agents, metal alkoxide-based crosslinking agents, metal chelate-based crosslinking agents, metal salt-based crosslinking agents, and ammonium salt-based crosslinking agents.
  • the reactive group of the (meth)acrylic acid ester polymer (A) is a hydroxyl group
  • an isocyanate-based crosslinking agent that has excellent reactivity with the carboxyl group
  • an epoxy-based crosslinking agent that has excellent reactivity with the carboxyl group.
  • the crosslinking agent (B) may be used alone or in combination of two or more.
  • the isocyanate-based crosslinking agent contains at least a polyisocyanate compound.
  • polyisocyanate compounds include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, alicyclic polyisocyanates such as isophorone diisocyanate and hydrogenated diphenylmethane diisocyanate, and their biurets and isocyanurates, as well as adducts which are reactants with low-molecular active hydrogen-containing compounds such as ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, and castor oil.
  • trimethylolpropane-modified aromatic polyisocyanates particularly trimethylolpropane-modified tolylene diisocyanate and trimethylolpropane-modified xylylene diisocyanate, are preferred from the viewpoint of reactivity with hydroxyl groups.
  • epoxy crosslinking agents examples include 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-m-xylylenediamine, ethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane diglycidyl ether, diglycidylaniline, diglycidylamine, etc.
  • 1,3-bis(N,N-diglycidylaminomethyl)cyclohexane is preferred from the viewpoint of reactivity with carboxy groups.
  • the content of the crosslinking agent (B) in the adhesive composition P is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass, particularly preferably 0.08 to 1 part by mass, and even more preferably 0.1 to 0.5 parts by mass, per 100 parts by mass of the (meth)acrylic acid ester polymer (A). This makes it easier to satisfy the storage modulus and gel fraction mentioned above.
  • Active energy ray-curable component (C) In the adhesive obtained by crosslinking the adhesive composition P containing the active energy ray curable component (C) and curing the adhesive with active energy rays, it is presumed that the active energy ray curable components (C) polymerize with each other, and the polymerized active energy ray curable components (C) are entangled with the crosslinked structure (three-dimensional network structure) of the (meth)acrylic acid ester polymer (A). An adhesive having such a high-order structure has excellent blister resistance.
  • the active energy ray-curable component (C) is not particularly limited as long as it is a component that cures when irradiated with active energy rays and can provide the above-mentioned effects, and may be any of a monomer, oligomer, or polymer, or a mixture thereof. Among these, preferred examples include multifunctional acrylate monomers, which are superior in durability.
  • polyfunctional acrylate monomers include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, neopentyl glycol adipate di(meth)acrylate, hydroxypivalic acid neopentyl glycol di(meth)acrylate, dicyclopentanyl di(meth)acrylate, tricyclodecane dimethanol (meth)acrylate, caprolactone-modified dicyclopentenyl di(meth)acrylate, ethylene oxide-modified phosphoric acid di(meth)acrylate, di(acryloxyethyl)isocyanurate, allylated cyclohexyl di(meth)acrylate, ethoxylated bisphenol A diacrylate, 9,9-bis[4-(2-acryloyloxyethoxy)pheny
  • Such functional groups include bifunctional groups such as trimethylolpropane tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, propionic acid-modified dipentaerythritol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate, tris(acryloxyethyl)isocyanurate, ⁇ -caprolactone-modified tris-(2-(meth)acryloxyethyl)isocyanurate, tetrafunctional groups such as diglycerin tetra(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentafunctional groups such as propionic acid-modified dipentaerythritol penta(meth)acrylate, and hexafunctional groups such as dipentaerythritol hexa(meth)
  • the content of the active energy ray-curable component (C) in the adhesive composition P is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, particularly preferably 3 to 14 parts by mass, and even more preferably 5 to 10 parts by mass, per 100 parts by mass of the (meth)acrylic acid ester polymer (A). This provides better blister resistance and makes it easier to satisfy the physical properties such as adhesive strength described above.
  • the adhesive composition P further contains a photopolymerization initiator (D), which allows the active energy ray-curable component (C) to be polymerized efficiently and reduces the polymerization and curing time and the amount of irradiation of the active energy rays.
  • Examples of the photopolymerization initiator (D) include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propan-1-one, 4-(2-hydroxyethoxy)phenyl-2-(hydroxy-2-propyl)ketone, benzophenone, p-phenylbenzophenone, 4,
  • Examples of the benzoxanthone include 4'-diethylaminobenzophenone, dichlorobenzophenone, 2-methylan
  • the content of the photopolymerization initiator (D) in the adhesive composition P is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, and even more preferably 5 to 12 parts by mass, per 100 parts by mass of the active energy ray-curable component (C). This makes it easier for the resulting adhesive to satisfy the physical properties such as adhesive strength described above.
  • additives that are commonly used in acrylic adhesives such as silane coupling agents, corrosion inhibitors, UV absorbers, antistatic agents, tackifiers, antioxidants, light stabilizers, softeners, refractive index adjusters, etc., may be added to the adhesive composition P as desired. Note that polymerization solvents and dilution solvents described below are not included in the additives that constitute the adhesive composition P.
  • the adhesive composition P contains a silane coupling agent. This improves adhesion to the adherend, whether the adherend is a plastic member or a glass member, and provides better adhesion reliability.
  • the silane coupling agent is preferably an organosilicon compound having at least one alkoxysilyl group in the molecule, having good compatibility with the (meth)acrylic acid ester polymer (A), and having light transmittance.
  • Such silane coupling agents include, for example, silicon compounds containing polymerizable unsaturated groups, such as vinyltrimethoxysilane, vinyltriethoxysilane, and methacryloxypropyltrimethoxysilane; silicon compounds having an epoxy structure, such as 3-glycidoxypropyltrimethoxysilane and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; and silicon compounds containing mercapto groups, such as 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyldimethoxymethylsilane.
  • silicon compounds containing polymerizable unsaturated groups such as vinyltrimethoxysilane, vinyltriethoxysilane, and methacryloxypropyltrimethoxysilane
  • silicon compounds having an epoxy structure such as 3-glycidoxypropyltrimethoxysilane and 2-(3,4-ep
  • Examples of such compounds include amino group-containing silicon compounds such as 3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane; 3-chloropropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, and condensates of at least one of these compounds with alkyl group-containing silicon compounds such as methyltriethoxysilane, ethyltriethoxysilane, methyltrimethoxysilane, and ethyltrimethoxysilane. These compounds may be used alone or in combination of two or more.
  • the content of the silane coupling agent in the adhesive composition P is preferably 0.01 to 1.2 parts by mass, more preferably 0.05 to 0.8 parts by mass, and even more preferably 0.1 to 0.4 parts by mass, per 100 parts by mass of the (meth)acrylic acid ester polymer (A). This provides favorable improvement in adhesion to the adherend, contributing to improved adhesion reliability and blister resistance.
  • the adhesive composition P also preferably contains a corrosion inhibitor. This makes it possible to prevent corrosion of metals in contact with the adhesive layer.
  • corrosion inhibitors include carbodiimide compounds, adsorptive inhibitors, and chelate-forming metal deactivators.
  • chelate-forming metal deactivators include triazole group-containing compounds and benzotriazole group-containing compounds.
  • triazole group-containing compounds examples include 1,2,4-triazole, 1,2,3-triazole, 4-amino-1,2,4-triazole, N,N-bis(2-ethylhexyl)-1,2,4-triazol-1-ylmethanamine, etc.
  • benzotriazole group-containing compounds include 1,2,3-benzotriazole, methylbenzotriazole, methylbenzotriazole potassium salt, carboxybenzotriazole, 1-[N,N-bis(2-ethylhexyl)aminomethyl)benzotriazole, 1-[N,N-bis(2-ethylhexyl)aminomethyl)-4-ethyl-1H-benzotriazole, 3-(N-salicyloyl)amino-1,2,4-triazole, 2,2'-[[(methyl-1H-benzotriazole [2'-hydroxy-5'-methylphenyl)benzotriazole, 2-(2'-hydroxy-5'-tert-octylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-tert-amylphenyl)benzotriazole, 1-(methoxymethyl)-1H-benzotriazole, 1H-benzotriazo
  • the content of the corrosion inhibitor in the adhesive composition P is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, and even more preferably 0.1 to 1 part by mass, per 100 parts by mass of the (meth)acrylic acid ester polymer (A).
  • the adhesive composition P also preferably contains an ultraviolet absorber.
  • ultraviolet absorbers include compounds such as benzophenones, benzotriazoles, benzoates, benzoxazinones, triazines, phenyl salicylates, cyanoacrylates, and nickel complex salts. One type may be used alone, or two or more types may be used in combination.
  • the content of the ultraviolet absorber in the adhesive composition P is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, and even more preferably 1 to 5 parts by mass, per 100 parts by mass of the (meth)acrylic acid ester polymer (A).
  • the adhesive composition P can be prepared by producing a (meth)acrylic acid ester polymer (A), mixing the (meth)acrylic acid ester polymer (A) obtained with a crosslinking agent (B), and, if desired, adding an active energy ray-curable component (C), a photopolymerization initiator (D), an additive, and the like.
  • the (meth)acrylic acid ester polymer (A) can be produced by polymerizing a mixture of monomers constituting the polymer by a normal radical polymerization method.
  • the polymerization of the (meth)acrylic acid ester polymer (A) is preferably carried out by a solution polymerization method, using a polymerization initiator as desired.
  • the present invention is not limited to this, and the polymerization may be carried out without a solvent.
  • Polymerization solvents include, for example, ethyl acetate, n-butyl acetate, isobutyl acetate, toluene, acetone, hexane, methyl ethyl ketone, etc., and two or more types may be used in combination.
  • Polymerization initiators include, for example, azo compounds, organic peroxides, etc., and two or more types may be used in combination.
  • the weight average molecular weight of the resulting polymer can be adjusted by adding a chain transfer agent such as 2-mercaptoethanol.
  • the crosslinking agent (B) and, if desired, a dilution solvent, an active energy ray curable component (C), a photopolymerization initiator (D), additives, etc. are added to the solution of the (meth)acrylic acid ester polymer (A) and thoroughly mixed to obtain a solvent-diluted adhesive composition P (coating solution).
  • a solvent-diluted adhesive composition P coating solution
  • Dilution solvents that can be used include, for example, aliphatic hydrocarbons such as hexane, heptane, and cyclohexane; aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as methylene chloride and ethylene chloride; alcohols such as methanol, ethanol, propanol, butanol, and 1-methoxy-2-propanol; ketones such as acetone, methyl ethyl ketone, 2-pentanone, isophorone, and cyclohexanone; esters such as ethyl acetate and butyl acetate; and cellosolve-based solvents such as ethyl cellosolve.
  • aliphatic hydrocarbons such as hexane, heptane, and cyclohexane
  • aromatic hydrocarbons such as toluene and xylene
  • halogenated hydrocarbons such as
  • the concentration and viscosity of the coating solution prepared in this manner need only be within a range that allows coating, and are not particularly limited and can be appropriately selected depending on the situation.
  • the adhesive composition P is diluted so that its concentration is 10 to 60 mass %.
  • the addition of a dilution solvent or the like is not a necessary condition for obtaining the coating solution, and if the adhesive composition P has a viscosity that allows coating, it is not necessary to add a dilution solvent.
  • the adhesive composition P becomes a coating solution in which the polymerization solvent for the (meth)acrylic acid ester polymer (A) itself serves as the dilution solvent.
  • An adhesive is obtained by crosslinking the adhesive composition P.
  • the crosslinking of the adhesive composition P can usually be carried out by a heat treatment. This heat treatment can also serve as a drying treatment for volatilizing a diluting solvent and the like from a coating film of the adhesive composition P applied to a desired object.
  • the heating temperature for the heat treatment is preferably 50 to 150°C, and more preferably 70 to 120°C.
  • the heating time is preferably 10 seconds to 10 minutes, and more preferably 50 seconds to 2 minutes.
  • a curing period of about 1 to 2 weeks may be provided at room temperature (e.g., 23°C, 50% RH) if necessary. If this curing period is required, the adhesive will be formed after the curing period has elapsed. If no curing period is required, the adhesive will be formed after the heat treatment has been completed.
  • the above heat treatment (and curing) causes the (meth)acrylic acid ester polymer (A) to be crosslinked via the crosslinking agent (B), resulting in the adhesive.
  • the adhesive composition P contains an active energy ray-curable component (C)
  • active energy rays refer to electromagnetic waves or charged particle beams that have an energy quantum, and specific examples include ultraviolet rays and electron beams.
  • ultraviolet rays are particularly preferable because they are easy to handle.
  • the irradiation of ultraviolet rays can be performed by a high pressure mercury lamp, a Heraeus H lamp, a xenon lamp, or the like, and the irradiation amount of ultraviolet rays is preferably about 50 to 1000 mW/cm 2 in terms of illuminance, and more preferably about 100 to 500 mW/cm 2.
  • the light amount is preferably 50 to 10,000 mJ/cm 2 , more preferably 200 to 7000 mJ/cm 2 , and particularly preferably 500 to 3000 mJ/cm 2.
  • the irradiation of electron beams can be performed by an electron beam accelerator, and the irradiation amount of electron beams is preferably about 10 to 1000 krad.
  • the adhesive sheet according to this embodiment has an adhesive layer made of the adhesive described above.
  • FIG. 1 A specific configuration of an example of the adhesive sheet according to this embodiment is shown in FIG. 1.
  • the adhesive sheet 1 according to one embodiment is composed of two release sheets 12a, 12b and an adhesive layer 11 sandwiched between the two release sheets 12a, 12b so as to contact the release surfaces of the two release sheets 12a, 12b.
  • the release surface of the release sheet refers to the surface of the release sheet that has releasability, and includes both a surface that has been subjected to a release treatment and a surface that exhibits releasability even without being subjected to a release treatment.
  • the adhesive layer 11 is composed of the above-mentioned adhesive, and is preferably composed of an adhesive obtained by crosslinking the adhesive composition P, or an adhesive obtained by thermally crosslinking and curing the adhesive composition P with active energy rays.
  • the thickness of the adhesive layer 11 in the adhesive sheet 1 according to this embodiment is preferably 5 to 1000 ⁇ m, more preferably 10 to 800 ⁇ m, particularly preferably 15 to 500 ⁇ m, even more preferably 20 to 300 ⁇ m, and even more preferably 25 to 200 ⁇ m, most preferably 30 to 160 ⁇ m. This makes it easier to achieve the desired adhesive strength and to meet the aforementioned light transmittance.
  • the adhesive layer 11 may be formed as a single layer, or may be formed by laminating multiple layers.
  • release sheets 12a and 12b protect the adhesive layer 11 until the adhesive sheet 1 is used, and are peeled off when the adhesive sheet 1 (adhesive layer 11) is used.
  • the adhesive sheet 1 according to this embodiment, one or both of the release sheets 12a and 12b are not necessarily required.
  • the release sheets 12a and 12b may be, for example, polyethylene films, polypropylene films, polybutene films, polybutadiene films, polymethylpentene films, polyvinyl chloride films, vinyl chloride copolymer films, polyethylene terephthalate films, polyethylene naphthalate films, polybutylene terephthalate films, polyurethane films, ethylene vinyl acetate films, ionomer resin films, ethylene-(meth)acrylic acid copolymer films, ethylene-(meth)acrylic acid ester copolymer films, polystyrene films, polycarbonate films, polyimide films, fluororesin films, etc. Crosslinked films of these may also be used. Furthermore, laminated films of these may also be used.
  • release surfaces of the release sheets 12a and 12b have been subjected to a release treatment.
  • release agents used in the release treatment include alkyd-based, silicone-based, fluorine-based, unsaturated polyester-based, polyolefin-based, and wax-based release agents. It is preferable that one of the release sheets 12a and 12b is a heavy release type release sheet with a large release strength, and the other is a light release type release sheet with a small release strength.
  • the thickness of the release sheets 12a and 12b there are no particular limitations on the thickness of the release sheets 12a and 12b, but from the viewpoint of ease of handling, a thickness of 10 to 200 ⁇ m is preferred, and 20 to 150 ⁇ m is even more preferred.
  • a coating solution of the adhesive composition P is applied to the release surface of one release sheet 12a (or 12b), and the adhesive composition P is thermally crosslinked by heat treatment to form a coating layer, and then the release surface of the other release sheet 12b (or 12a) is superposed on the coating layer. If a curing period is required, a curing period is provided, and if a curing period is not required, the coating layer becomes the adhesive layer 11 as it is. If the adhesive composition P contains an active energy ray curable component (C), the thermal crosslinking may be performed and the coating layer may be cured with active energy rays by irradiating the active energy rays. In this way, the adhesive sheet 1 is obtained.
  • the conditions of the heat treatment, curing, and active energy ray irradiation are as described above.
  • a coating solution of the adhesive composition P is applied to the release surface of one of the release sheets 12a, and a heat treatment is performed to thermally crosslink the adhesive composition P, forming a coating layer, to obtain a release sheet 12a with a coating layer.
  • a coating solution of the adhesive composition P is applied to the release surface of the other release sheet 12b, and a heat treatment is performed to thermally crosslink the adhesive composition P, forming a coating layer, to obtain a release sheet 12b with a coating layer. Then, the release sheet 12a with the coating layer and the release sheet 12b with the coating layer are bonded together so that both coating layers come into contact with each other.
  • the adhesive composition P contains an active energy ray curable component (C)
  • the thermal crosslinking may be performed and the coating layer may be cured with active energy rays by irradiating the active energy rays. In this way, the adhesive sheet 1 is obtained. According to this production example, even if the adhesive layer 11 is thick, it is possible to stably produce it.
  • the coating solution of the adhesive composition P can be applied using methods such as bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
  • the sheet heating element with an adhesive layer comprises a sheet heating element and an adhesive layer attached to at least one surface of the sheet heating element.
  • the adhesive layer in this embodiment is the adhesive layer of the adhesive sheet according to the above-mentioned examples.
  • the sheet-shaped heating element examples include flat, sheet-shaped, and plate-shaped heating elements, which may be flexible or pliable, or may be hard.
  • sheet-shaped heating elements include sheet-shaped heating elements in which metal wires such as nichrome wires and iron chrome wires, or heating wires such as carbon fibers are embedded in resin; sheet-shaped heating elements in which conductive fillers are dispersed in resin; sheet-shaped heating elements made of conductive fibers containing metals, carbon black, carbon nanotubes, and the like; sheet-shaped heating elements made of plastic films coated with conductive paint; and sheet-shaped heating elements made of conductive materials such as tin-doped indium oxide (ITO) and conductive polymers.
  • ITO tin-doped indium oxide
  • resins that can be used in planar heating elements with heating wires embedded in resin include thermosetting resins such as epoxy resin, phenolic resin, melamine resin, polyester resin, urethane resin, and acrylic resin, and thermoplastic resins such as polycarbonate resin, polyester resin, polyamide resin, and polyimide resin, which have heat resistance to the heat generated by the heating wire. These resins may be adhesives or pressure-sensitive adhesives that have adhesive properties.
  • the thickness of the sheet heating element is not particularly limited, but is usually preferably 1 to 5000 ⁇ m, more preferably 5 to 3000 ⁇ m, particularly preferably 10 to 1000 ⁇ m, and even more preferably 15 to 500 ⁇ m.
  • a protective layer for the planar heating member described below may be laminated on the surface of the adhesive layer of the planar heating element with adhesive layer according to this embodiment, opposite the planar heating element, or a desired detection unit (sensor) such as an optical detection system (LiDAR, camera, infrared sensor, etc.), radar system, ultrasonic system, etc. may be laminated on the surface.
  • a desired detection unit such as an optical detection system (LiDAR, camera, infrared sensor, etc.), radar system, ultrasonic system, etc.
  • the sheet heating member includes a sheet heating element, a protective layer, and an adhesive layer for bonding the sheet heating element and the protective layer.
  • the adhesive layer in this embodiment is the adhesive layer of the adhesive sheet according to the above-mentioned embodiment.
  • the planar heat generating member 2 is composed of a substrate 21, a heater layer 22 laminated on one side of the substrate 21, an adhesive layer 11 laminated on the heater layer 22 on the side opposite the substrate 21, and a protective layer 23 laminated on the adhesive layer 11 on the side opposite the heater layer 22.
  • the substrate 21 supports the heater layer 22 and is made of, for example, a glass plate, a plastic plate, a glass film, a plastic film, etc.
  • the detection unit to which the planar heating member 2 of this embodiment is applied is an optical system sensor, it is preferable that the substrate 21 be light-transmitting.
  • the thickness of the substrate 21 is not particularly limited, but is usually preferably 100 to 5000 ⁇ m, more preferably 300 to 4000 ⁇ m, particularly preferably 500 to 3500 ⁇ m, and even more preferably 1000 to 3000 ⁇ m.
  • the heater layer 22 is, as an example, a planar heating element in which the heating wire 221 is embedded in the resin 222, but the present invention is not limited to this.
  • the material and thickness of the heater layer 22 are as described above for the planar heating element.
  • the resin 222 is preferably an adhesive or a tackifier, and is particularly preferably a tackifier, and is further preferably a thermosetting tackifier.
  • a thermosetting tackifier an epoxy-based tackifier is particularly preferred.
  • the adhesive layer 11 in this embodiment is the adhesive layer 11 of the adhesive sheet 1 according to the above-mentioned embodiment.
  • the protective layer 23 protects the heater layer 22 and is made of, for example, a plastic film, a plastic plate, a glass plate, etc.
  • the detection unit to which the planar heating member 2 of this embodiment is applied is an optical system sensor, it is preferable that the protective layer 23 be light-transmitting.
  • plastic films examples include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyurethane films, polyethylene films, polypropylene films, cellulose films such as triacetyl cellulose, polyvinyl chloride films, polyvinylidene chloride films, polyvinyl alcohol films, ethylene-vinyl acetate copolymer films, polystyrene films, polycarbonate films, acrylic resin films, norbornene resin films, and cycloolefin resin films; and laminates of two or more of these.
  • the plastic film may be uniaxially or biaxially stretched.
  • polycarbonate films are particularly preferred from the standpoint of impact resistance.
  • the thickness of the protective layer 23 is not particularly limited, but is usually preferably 10 to 500 ⁇ m, more preferably 50 to 300 ⁇ m, particularly preferably 75 to 250 ⁇ m, and even more preferably 100 to 200 ⁇ m.
  • the heater layer 22 which has been manufactured in advance by a conventional method, is laminated on the substrate 21. If the resin 222 of the heater layer 22 has adhesive properties, the heater layer 22 is attached to the substrate 21. If the resin 222 of the heater layer 22 is thermosetting, it is thermally cured at this stage.
  • one release sheet 12a is peeled off from the adhesive sheet 1 according to the embodiment described above, and the exposed adhesive layer 11 is attached to the heater layer 22.
  • the other release sheet 12b is peeled off from the adhesive layer 11, and the protective layer 23 is attached to the exposed adhesive layer 11.
  • the adhesive layer 11 is active energy ray curable, the adhesive layer 11 is irradiated with active energy rays from the desired side, preferably the protective layer 23 side, to cure the adhesive layer 11.
  • the conditions for irradiating the active energy rays are the same as when the adhesive layer 11 is cured with active energy rays at the adhesive sheet 1 stage.
  • the planar heating member 2 is laminated with a detection unit (sensor) such as a desired light detection system (LiDAR, camera, infrared sensor, etc.), radar system, ultrasonic system, etc.
  • a detection unit such as a desired light detection system (LiDAR, camera, infrared sensor, etc.), radar system, ultrasonic system, etc.
  • LiDAR desired light detection system
  • radar radar system
  • ultrasonic system ultrasonic system
  • the planar heating member 2 uses an adhesive layer 11, so that when the planar heating member 2 is applied to an optical sensor, particularly LiDAR, the sensor function in the visible light and infrared light regions is not impaired. Even when low and high temperatures are repeatedly applied, the adhesive properties of the adhesive in the adhesive layer 11 change little, so that the adhesion state between the heater layer 22 and the protective layer 23 is well maintained, resulting in excellent adhesion reliability and durability.
  • an optical sensor particularly LiDAR
  • one of the release sheets 12a and 12b in the adhesive sheet 1 may be omitted.
  • the substrate 21 of the planar heat generating member 2 may be omitted.
  • Example 1 Preparation of (meth)acrylic acid ester polymer 30 parts by mass of n-butyl acrylate, 25 parts by mass of 2-ethylhexyl acrylate, 10 parts by mass of isobornyl acrylate, 10 parts by mass of N-acryloylmorpholine, and 25 parts by mass of 2-hydroxyethyl acrylate were copolymerized by a solution polymerization method to prepare a (meth)acrylic acid ester polymer (A). The molecular weight of this (meth)acrylic acid ester polymer (A) was measured by the method described below, and the weight average molecular weight (Mw) was 500,000.
  • Mw weight average molecular weight
  • release sheet R1 a polyethylene terephthalate film with one side treated with a silicone-based release agent, so that the release-treated surface of release sheet R2 was in contact with the coating layer.
  • release sheet R2 a polyethylene terephthalate film with one side treated with a silicone-based release agent, so that the release-treated surface of release sheet R2 was in contact with the coating layer.
  • an adhesive sheet consisting of release sheet R2/adhesive layer (thickness: 25 ⁇ m)/release sheet R1 was produced.
  • release sheet R1 had a greater peel strength than release sheet R2.
  • the thickness of the adhesive layer was measured using a constant pressure thickness gauge (manufactured by Techrock, product name "PG-02") in accordance with JIS K7130 (same below).
  • the release sheet R2 was peeled off from the adhesive sheet obtained above, and the exposed adhesive layer was attached to the heater layer.
  • the release sheet R1 was peeled off from the adhesive layer on the heater layer, and a polycarbonate film (thickness 100 ⁇ m) was attached as a protective layer to the exposed adhesive layer.
  • the laminate was irradiated with active energy rays (ultraviolet rays; UV) through the protective layer under the following condition X to cure the adhesive layer with the active energy rays.
  • active energy rays ultraviolet rays; UV
  • a planar heating member consisting of a protective layer/adhesive layer/heater layer (planar heating element)/substrate was produced.
  • ⁇ Active energy ray irradiation condition X> - Uses high pressure mercury lamp - Illuminance 200mW/ cm2 , light quantity 1000mJ/ cm2 ⁇ UV illuminance/light intensity meter used is "UVPF-A1" manufactured by iGraphics
  • Examples 2 to 6, 8 to 9 Pressure-sensitive adhesive sheets and planar heating members were produced in the same manner as in Example 1, except that the types and ratios of the monomers constituting the (meth)acrylic acid ester polymer (A), the weight average molecular weight (Mw) of the (meth)acrylic acid ester polymer (A), the type and amount of the crosslinking agent (B), the amount of the active energy ray-curable component (C), the type and amount of the photopolymerization initiator (D), the amount of the silane coupling agent, the type and amount of the additive, and the thickness of the pressure-sensitive adhesive layer were changed as shown in Table 1. The thickness of the pressure-sensitive adhesive layer was changed by changing the thickness and/or the number of layers of the pressure-sensitive adhesive layer formed on the release sheet.
  • Example 7 Except for changing the thickness of the adhesive layer to 50 ⁇ m, a pressure-sensitive adhesive sheet was produced in the same manner as in Example 1.
  • the obtained pressure-sensitive adhesive sheet was irradiated with active energy rays (ultraviolet rays; UV) through the release sheet R2 under the same conditions as those in the above-mentioned condition X, and the pressure-sensitive adhesive layer was cured with the active energy rays.
  • active energy rays ultraviolet rays
  • the above adhesive sheet was used to manufacture a planar heat generating member in the same manner as in Example 1. However, the planar heat generating member was not irradiated with active energy rays.
  • Example 10 100 parts by mass of the (meth)acrylic acid ester polymer (A) prepared in the same manner as in Example 1, 0.25 parts by mass of an isocyanate-based crosslinking agent (B) (B1; manufactured by Mitsui Chemicals, Inc., product name "Takenate D-110N") as the crosslinking agent, and 0.2 parts by mass of 3-glycidoxypropyltrimethoxysilane as the silane coupling agent were mixed, thoroughly stirred, and diluted with methyl ethyl ketone to obtain a coating solution of the adhesive composition.
  • B isocyanate-based crosslinking agent
  • 3-glycidoxypropyltrimethoxysilane 3-glycidoxypropyltrimethoxysilane
  • An adhesive sheet was produced in the same manner as in Example 1, except that the thickness of the adhesive layer was changed to 50 ⁇ m, using the coating solution of the obtained adhesive composition.
  • a planar heat generating member was produced in the same manner as in Example 1, using the adhesive sheet. However, the planar heat generating member was not irradiated with active energy rays.
  • Comparative Example 1 An adhesive sheet and a planar heating member were produced in the same manner as in Example 10, except that the types and ratios of the monomers constituting the (meth)acrylic acid ester polymer (A), the weight average molecular weight (Mw) of the (meth)acrylic acid ester polymer (A), the types and blending amounts of the additives, and the thickness of the adhesive layer were changed as shown in Table 1.
  • Comparative Example 1 20 parts by mass of cesium tungsten oxide (E3) was blended into the adhesive as a near-infrared absorbing material.
  • Comparative Example 2 100 parts by mass of a commercially available acrylic acid alkyl ester copolymer (manufactured by Lion Specialty Chemicals, product name "AS-665", Mw: 600,000) as the (meth)acrylic acid ester polymer (A) and 8 parts by mass of an isocyanate crosslinking agent (B1; manufactured by Mitsui Chemicals, product name "Takenate D-110N") as the crosslinking agent (B) were mixed, thoroughly stirred, and diluted with methyl ethyl ketone to obtain a coating solution of a pressure-sensitive adhesive composition.
  • a commercially available acrylic acid alkyl ester copolymer manufactured by Lion Specialty Chemicals, product name "AS-665", Mw: 600,000
  • B1 isocyanate crosslinking agent
  • An adhesive sheet and a planar heat generating member were manufactured in the same manner as in Example 10, except that the coating solution of the obtained adhesive composition was used.
  • the weight average molecular weight (Mw) is a polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) under the following conditions (GPC measurement).
  • GPC measuring device Tosoh Corporation, HLC-8020 GPC columns (passed in the following order): TSK guard column HXL-H manufactured by Tosoh Corporation TSK gel GMHXL (x2) TSK gel G2000HXL Measurement solvent: tetrahydrofuran Measurement temperature: 40°C
  • the diffuse transmittance (%) at each wavelength with a 1 nm pitch was divided by the total light transmittance (%) to calculate the transmitted light diffuseness (%) at each wavelength with a 1 nm pitch in the wavelength range from 380 to 1500 nm.
  • the adhesive wrapped in the polyester mesh was immersed in ethyl acetate at room temperature (23°C) for 24 hours.
  • the adhesive was then removed and air-dried for 24 hours in an environment with a temperature of 23°C and a relative humidity of 50%, and then dried in an oven at 80°C for 12 hours.
  • the mass was weighed using a precision balance, and the mass of the adhesive alone was calculated by subtracting the mass of the mesh alone. This mass was designated M2.
  • the gel fraction (%) was expressed as (M2/M1) x 100. This allowed the gel fraction (pre-UV; %) of the adhesive to be derived.
  • the results are shown in Table 2.
  • the adhesive layers of the adhesive sheets produced in Examples 1 to 6 and 8 to 9 were irradiated with active energy rays (ultraviolet rays; UV) through the release sheet R2 under the same conditions as those of Condition X above, to harden the adhesive layers.
  • active energy rays ultraviolet rays; UV
  • the gel fraction (post-UV; %) of the adhesive in the hardened adhesive layers was calculated in the same manner as above. The results are shown in Table 2.
  • Example 1 to 6 and 8 to 9 the molded body was irradiated with active energy rays (ultraviolet rays; UV) under the same conditions as in Test Example 2 to cure the adhesive with the active energy rays, and this was used as a sample.
  • active energy rays ultraviolet rays; UV
  • the storage modulus (before UV; MPa) of the above samples was measured under the following conditions at ⁇ 20° C., 23° C. and 85° C. by a torsional shear method using a viscoelasticity measuring device (manufactured by Physica, product name “MCR300”) in accordance with JIS K7244-6.
  • Measurement frequency 1Hz Heating rate: 5° C./min Measurement temperature: -20°C, 23°C, 85°C
  • the ratio of the storage modulus G'(-20) at -20°C to the storage modulus G'(23) at 23°C (storage modulus G'(-20)/storage modulus G'(23))
  • the ratio of the storage modulus G'(23) at 23°C to the storage modulus G'(85) at 85°C (storage modulus G'(23)/storage modulus G'(85))
  • the ratio of the storage modulus G'(-20) at -20°C to the storage modulus G'(85) at 85°C (storage modulus G'(-20)/storage modulus G'(85)) were calculated.
  • Table 2 The results are shown in Table 2.
  • the release sheet R1 was peeled off from the laminate, and the exposed adhesive layer was attached to a soda lime glass plate (manufactured by Nippon Sheet Glass Co., Ltd., product name "Soda Lime Glass", thickness: 1.1 mm), and pressurized in an autoclave manufactured by Kurihara Manufacturing Co., Ltd. at 0.5 MPa and 50°C for 20 minutes.
  • a soda lime glass plate manufactured by Nippon Sheet Glass Co., Ltd., product name "Soda Lime Glass", thickness: 1.1 mm
  • Example 1 to 6 and 8 to 9 the laminate was irradiated with active energy rays (ultraviolet rays; UV) through the PET film under the same conditions as in Test Example 2 to cure the adhesive with the active energy rays, and this was used as a sample.
  • active energy rays ultraviolet rays; UV
  • Examples 7 and 10 and Comparative Examples 1 and 2 the laminate after the autoclave treatment was used as a sample.
  • the obtained samples were left for 24 hours under each of the following conditions: 23°C, relative humidity 50%, -20°C, and 85°C. Then, using a tensile tester (Tensilon, manufactured by Orientec Co., Ltd.), the adhesive strength (N/25 mm) was measured when the laminate of the PET film and adhesive layer was peeled from the adherend at a peel speed of 300 mm/min and a peel angle of 180 degrees. Measurements were performed in accordance with JIS Z0237:2009 under conditions other than those described here. The results are shown in Table 2.
  • the adhesive strength after being left at 85° C. (high-temperature adhesive strength) and the adhesive reliability at high temperatures were evaluated based on the following criteria. The results are shown in Table 2.
  • ⁇ High temperature adhesion reliability> ⁇ ...High temperature adhesive strength is 10N/25mm or more.
  • ⁇ ...High temperature adhesive strength is 2N/25mm or more, but less than 10N/25mm.
  • ⁇ ...High temperature adhesive strength is 1N/25mm or more, but less than 2N/25mm.
  • ⁇ ...High temperature adhesive strength is less than 1N/25mm.
  • Adhesive strength after heat shock was evaluated based on the above-mentioned adhesive strength after heat shock (HS) (adhesive strength after HS) and the following criteria.
  • the results are shown in Table 2.
  • ⁇ Post-HS adhesion reliability> ⁇ : Adhesive strength after HS is 40N/25mm or more.
  • Adhesive strength after HS is 10N/25mm or more, but less than 20N/25mm.
  • Adhesive strength after HS is less than 10N/25mm.
  • the captured images were checked, and the visible light detection performance (sensor sensitivity) was evaluated based on the following criteria from the viewpoint of whether or not the characters could be recognized.
  • the evaluation results are shown in Table 2.
  • the images captured for Example 1 are shown in FIG. 3, and the images captured for Comparative Example 1 are shown in FIG. 4. ⁇ ...All characters were recognized without any problems. ⁇ ...There were characters that were difficult to recognize.
  • the distance between the infrared transmission side mobile phone and the measurement sample, and the distance between the measurement sample and the infrared reception side mobile phone were each arranged to be 20 cm.
  • the surface of the infrared transmission side mobile phone on the near-infrared light source side and the surface of the measurement sample on the adhesive layer side were arranged so as to face each other.
  • infrared communication was performed between the mobile phone that sent infrared rays and the mobile phone that received infrared rays. Whether or not the mobile phone that received infrared rays was able to receive near-infrared light was checked 10 times, and the detection performance (sensor sensitivity) of near-infrared light (IR) was evaluated according to the following criteria. The evaluation results are shown in Table 2. ⁇ : Near-infrared light was received normally all 10 times. ⁇ : Near infrared light could not be received at least once.
  • the adhesive sheets produced in the examples had excellent adhesive reliability after heat shock and at high temperatures, as well as sensor sensitivity to visible light and near-infrared light.
  • the adhesive sheets produced in Examples 1 to 9 also had excellent blister resistance in a heat shock test.
  • the adhesive sheet, adhesive layer-attached sheet heating element, and sheet heating member of the present invention are suitable for use in optical detection systems, particularly LiDAR.

Landscapes

  • Adhesives Or Adhesive Processes (AREA)

Abstract

面状発熱体に貼付される粘着剤層11を備えた粘着シート1であって、粘着剤層11の波長380~780nmの波長領域における光線透過率の平均値が60%以上であり、粘着剤層11の波長800~1100nmの波長領域における光線透過率の平均値が60%以上であり、厚さ100μmのポリエチレンテレフタレートフィルムと、厚さ1.1mmのソーダライムガラス板とを粘着剤層11により貼合してなる積層体について、-35℃および70℃を交互に各30分印加するヒートショック試験を200サイクル行った後、ポリエチレンテレフタレートフィルムおよび粘着剤層の積層体をソーダライムガラス板から剥離したときに測定される粘着力が10N/25mm以上である粘着シート1。当該粘着シート1は、面状発熱体への貼付に好適である。

Description

粘着シート、粘着剤層付き面状発熱体および面状発熱部材
 本発明は、粘着シート、粘着剤層付き面状発熱体および面状発熱部材に関するものである。
 近年、車両には、光検知システム(カメラ、赤外線センサー、LiDAR(Light Detection And Ranging)等)、レーダーシステム、超音波システム等の検知ユニットが設けられることが多くなっている。これらの検知ユニットは、その種類によっては、車両における外気に触れる箇所、例えば、フロントグリル部等に設けられる。このため、寒冷環境下では、当該検知ユニットにみぞれ、氷、雪等が付着することがある。
 しかしながら、検知ユニットに付着したみぞれ、氷、雪等は、当該検知ユニットの受信を妨害してしまうため、それらを検知ユニットから除去する必要がある。そのために、検知ユニットに面状発熱体を取り付け、その面状発熱体の発熱によって、みぞれ、氷、雪等を溶かすことが行われている。
 検知ユニットに面状発熱体を取り付けるにあたり、粘着剤を使用することが簡便で望ましい。特許文献1は、そのような粘着剤として、所定のビニル重合体およびアクリル系粘着性ポリマーを含有する発熱体用粘着剤組成物を提案している。
特開2021-80352号公報
 本発明は、このような実状に鑑みてなされたものであり、面状発熱体への貼付に好適な粘着シート、ならびに当該粘着シートを使用して得られる粘着剤層付き面状発熱体および面状発熱部材を提供することを目的とする。
 上記目的を達成するために、第1に本発明は、面状発熱体に貼付される粘着剤層を備えた粘着シートであって、前記粘着剤層の波長380~780nmの波長領域における光線透過率の平均値が、60%以上であり、前記粘着剤層の波長800~1100nmの波長領域における光線透過率の平均値が、60%以上であり、厚さ100μmのポリエチレンテレフタレートフィルムと、厚さ1.1mmのソーダライムガラス板とを前記粘着剤層により貼合してなる積層体(前記粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、前記貼合後、活性エネルギー線硬化した後の積層体)について、-35℃および70℃を交互に各30分印加するヒートショック試験を200サイクル行った後、23℃の温度下に24時間放置し、次いで、剥離速度300mm/分、剥離角度180°の条件で、前記ポリエチレンテレフタレートフィルムおよび前記粘着剤層の積層体を前記ソーダライムガラス板から剥離したときに測定される粘着力が、10N/25mm以上であることを特徴とする粘着シートを提供する(発明1)。
 上記発明(発明1)においては、上記の光線透過率の物性値を有することにより、上記粘着剤層が貼付された面状発熱体の適用対象が光学系のセンサーである場合に、可視光領域および赤外線領域におけるセンサー機能、そしてカメラ機能および赤外線センサー機能が阻害されない。また、ヒートショック後粘着力が上記の値であることにより、面状発熱体に貼付されても粘着物性の変化が少なく、接着信頼性に優れたものとなる。すなわち、上記発明(発明1)に係る粘着シートは、面状発熱体への貼付に好適なものである。
 上記発明(発明1)においては、前記粘着剤層の波長380~780nmの波長領域における透過光拡散率の平均値が、10%以下であり、前記粘着剤層の波長800~1100nmの波長領域における透過光拡散率の平均値が、10%以下であることが好ましい(発明2)。
 上記発明(発明1,2)においては、前記粘着シートの23℃におけるソーダライムガラスに対する粘着力(前記粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、前記ソーダライムガラスに貼付し、活性エネルギー線硬化した後の粘着力)が、10N/25mm以上であることが好ましい(発明3)。
 上記発明(発明1~3)においては、前記粘着シートの85℃におけるソーダライムガラスに対する粘着力(前記粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、前記ソーダライムガラスに貼付し、活性エネルギー線硬化した後の粘着力)が、1N/25mm以上であることが好ましい(発明4)。
 上記発明(発明1~4)においては、前記粘着シートの-20℃におけるソーダライムガラスに対する粘着力(前記粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、前記ソーダライムガラスに貼付し、活性エネルギー線硬化した後の粘着力)が、0.2N/25mm以上、20N/25mm以下であることが好ましい(発明5)。
 上記発明(発明1~5)においては、前記粘着剤層を構成する粘着剤が、アクリル系粘着剤であることが好ましい(発明6)。
 上記発明(発明6)においては、前記アクリル系粘着剤が、活性エネルギー線硬化性の粘着剤であること、または熱架橋および活性エネルギー線硬化してなる粘着剤であることが好ましい(発明7,8)。
 上記発明(発明1~8)においては、前記粘着シートが、2枚の剥離シートを備えており、前記粘着剤層が、前記2枚の剥離シートの剥離面と接するように前記剥離シートに挟持されていることが好ましい(発明9)。
 第2に本発明は、面状発熱体と、前記面状発熱体の少なくとも一方の面側に貼付された前記粘着シート(発明1~9)の粘着剤層とを備えた、粘着剤層付き面状発熱体を提供する(発明10)。
 第3に本発明は、面状発熱体と、保護層と、前記面状発熱体および前記保護層を貼合する前記粘着シート(発明1~9)の粘着剤層とを備えた、面状発熱部材を提供する(発明11)。
 本発明に係る粘着シートは、面状発熱体への貼付に好適である。また、本発明に係る粘着剤層付き面状発熱体および面状発熱部材は、上記粘着シートの使用によって、耐久性に優れる。さらに、本発明に係る粘着剤層付き面状発熱体および面状発熱部材の適用対象が光学系のセンサーである場合には、上記粘着シートの使用によって、センサー機能が阻害されない。
本発明の一実施形態に係る粘着シートの断面図である。 本発明の一実施形態に係る面状発熱部材の断面図である。 可視光に対するセンサー感度の評価において、実施例1について撮影した画像である。 可視光に対するセンサー感度の評価において、比較例1について撮影した画像である。
 以下、本発明の実施形態について説明する。
〔粘着シート〕
 本発明の一実施形態に係る粘着シートは、面状発熱体に貼付される粘着剤層を備えている。当該粘着剤層の波長380~780nmの波長領域における光線透過率の平均値は、60%以上であることが好ましく、波長800~1100nmの波長領域における光線透過率の平均値は、60%以上であることが好ましい。また、厚さ100μmのポリエチレンテレフタレートフィルムと、厚さ1.1mmのソーダライムガラス板とを上記粘着剤層により貼合してなる積層体(粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、上記貼合後、活性エネルギー線硬化した後の積層体)について、-35℃および70℃を交互に各30分印加するヒートショック試験を200サイクル行った後、23℃の温度下に24時間放置し、次いで、剥離速度300mm/分、剥離角度180°の条件で、上記ポリエチレンテレフタレートフィルムおよび上記粘着剤層の積層体を前記ソーダライムガラス板から剥離したときに測定される粘着力(以下「ヒートショック後粘着力」という場合がある。)は、10N/25mm以上であることが好ましい。
 本明細書における光線透過率(および後述する拡散透過率)は、JIS K7361-1:1997に準拠して測定した値であり、測定方法の詳細は後述する試験例に示す通りである。また、本明細書における粘着力は、基本的にはJIS Z0237:2009に準じた180度引き剥がし法により測定した粘着力をいうが、測定方法の詳細は後述する試験例に示す通りである。なお、粘着剤層を構成する粘着剤が活性エネルギー線硬化性の粘着剤である場合、上記ヒートショック試験に付す積層体は、ポリエチレンテレフタレートフィルムとソーダライムガラス板とを上記粘着剤層により貼合した後、当該粘着剤層を活性エネルギー線硬化した積層体である。ここで、活性エネルギー線硬化(硬化した状態)とは、活性エネルギー線照射により新たな高次構造が形成され、さらなる活性エネルギー線照射によっても高次構造のさらなる形成が殆どなくなった状態をいう。高次構造のさらなる形成の有無は、例えば、ゲル分率の変化量等によって判断することができる。具体的には、さらなる活性エネルギー線照射によってゲル分率の増加量が微小(好ましくは5%以下)であった場合には、硬化した状態ということができる。
 本実施形態に係る粘着シートにおいては、上記粘着剤層の波長380~780nmの波長領域における光線透過率の平均値が60%以上であり、かつ、上記粘着剤層の波長800~1100nmの波長領域における光線透過率の平均値が60%以上であることにより、当該粘着剤層が貼付された面状発熱体の適用対象が光学系のセンサー、特にLiDAR(Light Detection And Ranging)である場合に、可視光領域および赤外線領域におけるセンサー機能が阻害されない。もちろん、カメラ機能や赤外線センサー機能も阻害されない。
 上記の観点から、波長380~780nmの波長領域における光線透過率の平均値は、60%以上であることが好ましく、70%以上であることがより好ましく、特に80%以上であることが好ましく、さらには90%以上であることが好ましく、中でも95%以上であることが好ましい。当該波長領域における光線透過率の平均値の上限値は、特に限定されず、100%であることが最も好ましい。
 同じく上記の観点から、波長800~1100nmの波長領域における光線透過率の平均値は、60%以上であることが好ましく、70%以上であることがより好ましく、特に80%以上であることが好ましく、さらには90%以上であることが好ましく、中でも95%以上であることが好ましい。当該波長領域における光線透過率の平均値の上限値は、特に限定されず、100%であることが最も好ましい。
 本実施形態に係る粘着シートにおいては、ヒートショック後粘着力が10N/25mm以上であることにより、面状発熱体に貼付されても粘着物性の変化が少なく、接着信頼性に優れたものとなる。かかる観点から、上記ヒートショック後粘着力は、15N/25mm以上であることが好ましく、20N/25mm以上であることがより好ましく、特に30N/25mm以上であることが好ましく、さらには35N/25mm以上であることが好ましく、中でも40N/25mm以上であることが好ましい。上記ヒートショック後粘着力の上限値は、特に限定されないが、リワーク性の観点からは、80N/25mm以下であることが好ましく、70N/25mm以下であることがより好ましく、特に60N/25mm以下であることが好ましく、さらには52N/25mm以下であることが好ましい。
 本実施形態に係る粘着シートにおいては、上記粘着剤層の波長380~780nmの波長領域における透過光拡散率の平均値が、10%以下であることが好ましく、5%以下であることがより好ましく、特に3%以下であることが好ましく、さらには1%以下であることが好ましく、中でも0.8%以下であることが好ましい。これにより、当該粘着剤層が貼付された面状発熱体の適用対象が光学系のセンサーである場合に、可視光領域におけるセンサー機能、例えばLiDAR機能やカメラ機能がより阻害され難くなる。当該波長領域における透過光拡散率の平均値の下限値は、特に限定されず、0%であることが最も好ましいが、0.1%以上であってもよく、特に0.3%以上であってもよく、さらには0.5%以上であってもよい。なお、透過光拡散率は、拡散透過率を全光線透過率によって除することで算出することができる。
 本実施形態に係る粘着シートにおいては、上記粘着剤層の波長800~1100nmの波長領域における透過光拡散率の平均値が、10%以下であることが好ましく、5%以下であることがより好ましく、特に3%以下であることが好ましく、さらには1%以下であることが好ましく、中でも0.5%以下であることが好ましい。これにより、当該粘着剤層が貼付された面状発熱体の適用対象が光学系のセンサーである場合に、赤外線領域におけるセンサー機能、例えばLiDAR機能や赤外線センサー機能がより阻害され難くなる。当該波長領域における透過光拡散率の平均値の下限値は、特に限定されず、0%であることが最も好ましいが、0.1%以上であってもよく、特に0.2%以上であってもよい。
 本実施形態に係る粘着シートの粘着剤層を構成する粘着剤のゲル分率は、30~90%であることが好ましく、35~85%であることがより好ましく、特に40~80%であることが好ましく、さらには46~70%であることが好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなる。なお、本明細書における粘着剤のゲル分率の測定方法は、後述する試験例に示す通りである。
 本実施形態における粘着剤層を構成する粘着剤が活性エネルギー線硬化性の粘着剤である場合、当該粘着剤の活性エネルギー線硬化後のゲル分率は、40~95%であることが好ましく、45~90%であることがより好ましく、特に50~85%であることが好ましく、さらには60~80%であることが好ましく、中でも64~75%が好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなる。また、耐ブリスター性に優れたものとなり、被着体にプラスチック板が存在し、加熱によってアウトガスが放出されたとしても、粘着剤層と被着体との界面に気泡、浮き、剥がれ等のブリスターが発生することが抑制される。
 本実施形態に係る粘着シートの粘着剤層を構成する粘着剤(当該粘着剤が活性エネルギー線硬化性の場合には、活性エネルギー線硬化後の粘着剤)の23℃における貯蔵弾性率G’(23)は、0.01~10MPaであることが好ましく、0.05~5MPaであることがより好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなる。また、耐ブリスター性の観点からは、0.07~2MPaであることが好ましく、特に0.08~1MPaであることが好ましく、さらには0.10~0.80MPaであることが好ましい。なお、本明細書における粘着剤の貯蔵弾性率G’の測定方法は、後述する試験例に示す通りである。
 本実施形態における粘着剤層を構成する粘着剤(当該粘着剤が活性エネルギー線硬化性の場合には、活性エネルギー線硬化後の粘着剤)の85℃における貯蔵弾性率G’(85)は、0.01~10MPaであることが好ましく、0.02~5MPaであることがより好ましく、特に0.03~1MPaであることが好ましく、さらには0.04~0.50MPaであることが好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなる。また、上記貯蔵弾性率G’(85)が0.02MPa以上であると、耐ブリスター性に優れる傾向がある。
 本実施形態における粘着剤層を構成する粘着剤(当該粘着剤が活性エネルギー線硬化性の場合には、活性エネルギー線硬化後の粘着剤)の-20℃における貯蔵弾性率G’(-20)は、接着信頼性の観点から、0.1~1000MPaであることが好ましく、1~800MPaであることがより好ましい。さらに耐ブリスター性の観点から、特に10~600MPaであることが好ましく、さらには25~400MPaであることが好ましい。
 本実施形態における粘着剤層を構成する粘着剤(当該粘着剤が活性エネルギー線硬化性の場合には、活性エネルギー線硬化後の粘着剤)の23℃における貯蔵弾性率G’(23)に対する-20℃における貯蔵弾性率G’(-20)の比(貯蔵弾性率G’(-20)/貯蔵弾性率G’(23))は、1~2000であることが好ましく、10~1500であることがより好ましく、特に50~1200であることが好ましく、さらには100~1000であることが好ましく、中でも200~800であることが好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなるとともに、耐ブリスター性も優れたものとなり易い。
 本実施形態における粘着剤層を構成する粘着剤(当該粘着剤が活性エネルギー線硬化性の場合には、活性エネルギー線硬化後の粘着剤)の85℃における貯蔵弾性率G’(85)に対する23℃における貯蔵弾性率G’(23)の比(貯蔵弾性率G’(23)/貯蔵弾性率G’(85))は、1~500であることが好ましく、2~200であることがより好ましく、特に3~100であることが好ましく、さらには4~50であることが好ましく、中でも5~20であることが好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなるとともに、耐ブリスター性も優れたものとなり易い。
 本実施形態における粘着剤層を構成する粘着剤(当該粘着剤が活性エネルギー線硬化性の場合には、活性エネルギー線硬化後の粘着剤)の85℃における貯蔵弾性率G’(85)に対する-20℃における貯蔵弾性率G’(-20)の比(貯蔵弾性率G’(-20)/貯蔵弾性率G’(85))は、100~100000であることが好ましく、300~50000であることがより好ましく、特に600~20000であることが好ましく、さらには900~10000であることが好ましく、中でも1200~8000であることが好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなるとともに、耐ブリスター性も優れたものとなり易い。
 本実施形態に係る粘着シートの粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合、活性エネルギー線硬化前の粘着剤の23℃における貯蔵弾性率G’(23)は、0.01~1.00MPaであることが好ましく、0.03~0.80MPaであることがより好ましく、特に0.05~0.50MPaであることが好ましく、さらには0.10~0.30MPaであることが好ましい。これにより、前述した活性エネルギー線硬化後の23℃における貯蔵弾性率G’(23)が満たされ易くなる。
 本実施形態に係る粘着シートの粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合、活性エネルギー線硬化前の粘着剤の85℃における貯蔵弾性率G’(85)は、0.001~1.00MPaであることが好ましく、0.003~0.50MPaであることがより好ましく、特に0.005~0.30MPaであることが好ましく、さらには0.01~0.20MPaであることが好ましい。これにより、前述した活性エネルギー線硬化後の85℃における貯蔵弾性率G’(85)が満たされ易くなる。
 本実施形態に係る粘着シートの粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合、活性エネルギー線硬化前の粘着剤の-20℃における貯蔵弾性率G’(-20)は、0.05~500MPaであることが好ましく、0.1~300MPaであることがより好ましく、特に0.5~200MPaであることが好ましく、さらには1~100MPaであることが好ましい。これにより、前述した活性エネルギー線硬化後の-20℃における貯蔵弾性率G’(-20)が満たされ易くなる。
 本実施形態に係る粘着シートの23℃におけるソーダライムガラスに対する粘着力(粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、ソーダライムガラスに貼付し、活性エネルギー線硬化した後の粘着力)は、10N/25mm以上であることが好ましく、20N/25mm以上であることがより好ましく、特に30N/25mm以上であることが好ましく、さらには40N/25mm以上であることが好ましく、中でも44N/25mm以上であることが好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなるとともに、耐ブリスター性も優れたものとなり易い。上記粘着力の上限値は、特に限定されないが、リワーク性の観点からは、100N/25mm以下であることが好ましく、80N/25mm以下であることがより好ましく、特に60N/25mm以下であることが好ましく、さらには50N/25mm以下であることが好ましい。
 本実施形態に係る粘着シートの85℃におけるソーダライムガラスに対する粘着力(粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、ソーダライムガラスに貼付し、活性エネルギー線硬化した後の粘着力)は、1N/25mm以上であることが好ましく、2N/25mm以上であることがより好ましく、特に10N/25mm以上であることが好ましく、さらには15N/25mm以上であることが好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなるとともに、耐ブリスター性も優れたものとなり易い。上記粘着力の上限値は、特に限定されないが、リワーク性の観点からは、100N/25mm以下であることが好ましく、80N/25mm以下であることがより好ましく、特に60N/25mm以下であることが好ましく、さらには40N/25mm以下であることが好ましい。
 本実施形態に係る粘着シートの-20℃におけるソーダライムガラスに対する粘着力(粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、ソーダライムガラスに貼付し、活性エネルギー線硬化した後の粘着力)は、0.2~20N/25mmであることが好ましく、0.5~15N/25mmであることがより好ましく、特に1~12N/25mmであることが好ましく、さらには2~9N/25mmであることが好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなるとともに、耐ブリスター性も優れたものとなり易い。
 上記23℃におけるソーダライムガラスに対する粘着力(常温粘着力)に対するヒートショック後粘着力の比(ヒートショック後粘着力/常温粘着力)は、0.2~3であることが好ましく、0.4~2.5であることがより好ましく、特に0.6~2であることが好ましく、さらには0.8~1.5であることが好ましく、中でも0.85~1.05であることが好ましい。これにより、前述した優れた接着信頼性がより発揮され易くなるとともに、耐ブリスター性も優れたものとなり易い。
 本実施形態に係る粘着剤は、上記の物性を満たすものであれば、その種類は特に限定されない。例えば、アクリル系粘着剤、ポリエステル系粘着剤、ポリウレタン系粘着剤、ゴム系粘着剤、シリコーン系粘着剤等のいずれであってもよい。また、当該粘着剤は、エマルション型、溶剤型または無溶剤型のいずれでもよく、架橋タイプまたは非架橋タイプのいずれであってもよい。それらの中でも、粘着物性、光学特性等に優れるアクリル系粘着剤が好ましい。アクリル系粘着剤としては、架橋タイプのものが好ましく、さらには熱架橋タイプのものが好ましい。
 本実施形態に係る粘着剤は、活性エネルギー線非硬化性のものであってもよいし、活性エネルギー線硬化性のものであってもよい。耐ブリスター性の観点からは、活性エネルギー線硬化性の粘着剤であることが好ましい。この場合、被着体貼付前の粘着シートの段階で、活性エネルギー線硬化させてもよいし、粘着剤層を被着体に貼付した後、活性エネルギー線硬化させてもよい。接着信頼性および耐ブリスター性の観点からは、粘着剤層を被着体に貼付した後、活性エネルギー線硬化させることが特に好ましい。なお、本明細書における「活性エネルギー線硬化性(の)粘着剤」とは、活性エネルギー線の照射によって硬化する粘着剤をいう。それゆえ、従前の活性エネルギー線の照射によって、それ以上硬化しない程硬化した粘着剤は、「活性エネルギー線硬化性粘着剤」には含まれない。
 本実施形態に係る粘着剤は、前述した物性を満たし易い観点から、(メタ)アクリル酸エステル重合体(A)と、架橋剤(B)と、所望により活性エネルギー線硬化性成分(C)とを含有する粘着性組成物(以下「粘着性組成物P」という場合がある。)を架橋したものであることが好ましい。粘着性組成物Pを架橋して得られる粘着剤は、前述した物性をより満たし易いものとなる。なお、本明細書において、(メタ)アクリル酸とは、アクリル酸及びメタクリル酸の両方を意味する。他の類似用語も同様である。また、「重合体」には「共重合体」の概念も含まれるものとする。
1.粘着性組成物Pの成分
(1)(メタ)アクリル酸エステル重合体(A)
 本実施形態における(メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、架橋剤(B)と反応する反応性基を分子内に有する反応性基含有モノマーを含むことが好ましい。この反応性基含有モノマー由来の反応性基が架橋剤(B)と反応して、架橋構造(三次元網目構造)が形成され、所望の凝集力を有する粘着剤が得られる。
 上記反応性基含有モノマーとしては、分子内に水酸基を有するモノマー(水酸基含有モノマー)、分子内にカルボキシ基を有するモノマー(カルボキシ基含有モノマー)、分子内にアミノ基を有するモノマー(アミノ基含有モノマー)などが好ましく挙げられる。これらの中でも、架橋剤(B)との反応性に優れる水酸基含有モノマーまたはカルボキシ基含有モノマーが好ましい。
 水酸基含有モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチルなどの(メタ)アクリル酸ヒドロキシアルキルエステル等が挙げられる。中でも、得られる(メタ)アクリル酸エステル重合体(A)における水酸基の架橋剤(B)との反応性および他の単量体との共重合性の点から、炭素数が1~4のヒドロキシアルキル基を有する(メタ)アクリル酸ヒドロキシアルキルエステルが好ましい。具体的には、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル等が好ましく挙げられ、特に、アクリル酸2-ヒドロキシエチルまたはアクリル酸4-ヒドロキシブチルが好ましく挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸等のエチレン性不飽和カルボン酸が挙げられる。中でも、得られる(メタ)アクリル酸エステル重合体(A)におけるカルボキシ基の架橋剤(B)との反応性および他の単量体との共重合性の点からアクリル酸が好ましい。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 アミノ基含有モノマーとしては、例えば、(メタ)アクリル酸アミノエチル、(メタ)アクリル酸n-ブチルアミノエチル等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なお、このアミノ基含有モノマーからは、後述の窒素原子含有モノマーは除かれる。
 (メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、反応性基含有モノマーを、1~50質量%含有することが好ましく、2~40質量%含有することがより好ましく、特に3~30質量%含有することが好ましい。これにより、得られる粘着剤において良好な架橋構造が形成され、前述した貯蔵弾性率およびゲル分率が得られ易くなる。特に、反応性基含有モノマーがカルボキシ基含有モノマーである場合、前述した物性を満たし易くなる観点から、(メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、カルボキシ基含有モノマーを、5~20質量%含有することが好ましく、8~12質量%含有することがより好ましい。また、反応性基含有モノマーが水酸基含有モノマーである場合、前述した物性を満たし易くなる観点から、(メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、水酸基含有モノマーを、5~28質量%含有することが好ましく、10~25質量%含有することがより好ましい。
 本実施形態における(メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、(メタ)アクリル酸アルキルエステルを含有することが好ましい。これにより、良好な粘着性を発現することができる。アルキル基は、直鎖状または分岐鎖状であってもよい。
 (メタ)アクリル酸アルキルエステルとしては、粘着性の観点から、アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルが好ましい。アルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸n-ドデシル、(メタ)アクリル酸ミリスチル、(メタ)アクリル酸パルミチル、(メタ)アクリル酸ステアリル等が挙げられる。中でも、粘着性をより向上させる観点から、アルキル基の炭素数が1~8の(メタ)アクリル酸エステルが好ましく、(メタ)アクリル酸メチル、(メタ)アクリル酸n-ブチルまたは(メタ)アクリル酸2-エチルヘキシルが特に好ましく、アクリル酸n-ブチルまたはアクリル酸2-エチルヘキシルがさらに好ましい。なお、これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、(メタ)アクリル酸アルキルエステルを40~98質量%含有することが好ましく、45~95質量%含有することがより好ましく、特に50~90質量%含有することが好ましく、さらには55~85質量%含有することが好ましい。当該含有量の下限値が上記であると、前述したヒートショック後粘着力が満たされ易くなる。また、当該含有量の上限値が上記であると、(メタ)アクリル酸エステル重合体(A)中に反応性官能基含有モノマー等の他のモノマー成分を好適な量導入することができ、前述した貯蔵弾性率およびゲル分率を調節し易くなる。
 (メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、分子内に脂環式構造を有するモノマー(脂環式構造含有モノマー)を含有することも好ましい。脂環式構造含有モノマーは嵩高いため、これを重合体中に存在させることにより、重合体同士の間隔を広げるものと推定され、得られる粘着剤を柔軟性に優れたものとすることができる。一方、脂環式構造含有モノマーそのものは、重合体にある程度の硬さを付与することができる。したがって、前述した貯蔵弾性率またはその比が満たされ易くなる。
 脂環式構造含有モノマーにおける脂環式構造の炭素環は、飽和構造のものであってもよいし、不飽和結合を一部に有するものであってもよい。また、脂環式構造は、単環の脂環式構造であってもよいし、二環、三環等の多環の脂環式構造(多環構造)であってもよい。上記と同様に、得られる粘着剤の物性値調整の観点から、上記脂環式構造は、多環構造であることが好ましい。さらに、(メタ)アクリル酸エステル重合体(A)と他の成分との相溶性を考慮して、上記多環構造は、二環から四環であることが特に好ましい。また、上記と同様に、得られる粘着剤の物性値調整の観点および相溶性の観点から、脂環式構造の炭素数(環を形成している部分の全ての炭素数をいい、複数の環が独立して存在する場合には、その合計の炭素数をいう)は、5~15であることが好ましく、7~10であることが特に好ましい。
 脂環式構造含有モノマーとしては、具体的には、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル等が挙げられ、中でも、より優れた粘着性を発揮する、(メタ)アクリル酸ジシクロペンタニル(脂環式構造の炭素数:10)、(メタ)アクリル酸アダマンチル(脂環式構造の炭素数:10)または(メタ)アクリル酸イソボルニル(脂環式構造の炭素数:7)が好ましく、特に(メタ)アクリル酸イソボルニルが好ましい。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として脂環式構造含有モノマーを含有する場合、当該脂環式構造含有モノマーを1~20質量%含有することが好ましく、3~18質量%含有することがより好ましく、特に5~15質量%含有することが好ましく、さらには7~12質量%含有することが好ましい。これにより、前述した貯蔵弾性率またはその比がより満たされ易くなる。
 (メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として、窒素原子含有モノマーを含有することも好ましい。これにより、ポリカーボネート等のプラスチックやガラスに対する粘着力がより優れたものとなる。窒素原子含有モノマーとしては、窒素含有複素環を有するモノマーが好ましい。構成される粘着剤の高次構造中で窒素原子含有モノマー由来部分の自由度を高める観点から、当該窒素原子含有モノマーは、(メタ)アクリル酸エステル重合体(A)を形成するための重合に使用される1つの重合性基以外に反応性不飽和二重結合基を含有しないことが好ましい。なお、前述の反応性官能基含有モノマーは、ここでいう窒素原子含有モノマーからは除かれる。
 窒素含有複素環を有するモノマーとしては、例えば、N-(メタ)アクリロイルモルホリン、N-ビニル-2-ピロリドン、N-(メタ)アクリロイルピロリドン、N-(メタ)アクリロイルピペリジン、N-(メタ)アクリロイルピロリジン、N-(メタ)アクリロイルアジリジン、アジリジニルエチル(メタ)アクリレート、2-ビニルピリジン、4-ビニルピリジン、2-ビニルピラジン、1-ビニルイミダゾール、N-ビニルカルバゾール、N-ビニルフタルイミド等が挙げられる。中でも、より優れた粘着力を発揮するN-(メタ)アクリロイルモルホリンが好ましく、特にN-アクリロイルモルホリンが好ましい。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (メタ)アクリル酸エステル重合体(A)は、当該重合体を構成するモノマー単位として窒素原子含有モノマーを含有する場合、当該窒素原子含有モノマーを1~20質量%含有することが好ましく、3~18質量%含有することがより好ましく、特に5~15質量%含有することが好ましく、さらには7~12質量%含有することが好ましい。これにより、前述した粘着力や貯蔵弾性率等の物性が満たされ易くなる。
 (メタ)アクリル酸エステル重合体(A)は、所望により、当該重合体を構成するモノマー単位として、他のモノマーを含有してもよい。他のモノマーとしては、反応性官能基含有モノマーの前述した作用を阻害しないためにも、反応性官能基を含有しないモノマーが好ましい。かかるモノマーとしては、例えば、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル等の(メタ)アクリル酸アルコキシアルキルエステル、酢酸ビニル、スチレンなどが挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (メタ)アクリル酸エステル重合体(A)は、直鎖状のポリマーであることが好ましい。直鎖状のポリマーであることにより、分子鎖の絡み合いが起こりやすくなり、前述したゲル分率や貯蔵弾性率等の物性を有する粘着剤が得られ易くなる。
 (メタ)アクリル酸エステル重合体(A)は、溶液重合法によって得られた溶液重合物であることが好ましい。これにより、高分子量のポリマーが得られ易くなり、凝集力の向上が期待できるため、前述したゲル分率や貯蔵弾性率等の物性を有する粘着剤が得られ易くなる。
 (メタ)アクリル酸エステル重合体(A)の重合態様は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。
 (メタ)アクリル酸エステル重合体(A)の重量平均分子量は、10万~200万であることが好ましく、20万~160万であることがより好ましく、特に30万~120万であることが好ましく、さらには40万~80万であることが好ましい。これにより、(メタ)アクリル酸エステル重合体(A)同士の絡み合いを十分なものとして所望の凝集力を得易く、前述したゲル分率や貯蔵弾性率等の物性を有する粘着剤が得られ易くなる。なお、本明細書における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定した標準ポリスチレン換算の値である。
 なお、粘着性組成物Pにおいて、(メタ)アクリル酸エステル重合体(A)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
(2)架橋剤(B)
 架橋剤(B)は、粘着性組成物Pの加熱により(メタ)アクリル酸エステル重合体(A)を架橋し、三次元網目構造を良好に形成することができる。これにより、得られる粘着剤の凝集力が向上し、得られる粘着剤の貯蔵弾性率およびゲル分率を前述した範囲に調整し易くなる。
 架橋剤(B)としては、(メタ)アクリル酸エステル重合体(A)が有する反応性基と反応するものであればよく、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、アミン系架橋剤、メラミン系架橋剤、アジリジン系架橋剤、ヒドラジン系架橋剤、アルデヒド系架橋剤、オキサゾリン系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、アンモニウム塩系架橋剤等が挙げられる。中でも、(メタ)アクリル酸エステル重合体(A)が有する反応性基が水酸基の場合、水酸基との反応性に優れたイソシアネート系架橋剤を使用することが好ましく、(メタ)アクリル酸エステル重合体(A)が有する反応性基がカルボキシ基の場合、カルボキシ基との反応性に優れたエポキシ系架橋剤を使用することが好ましい。なお、架橋剤(B)は、1種を単独で、または2種以上を組み合わせて使用することができる。
 イソシアネート系架橋剤は、少なくともポリイソシアネート化合物を含むものである。ポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族ポリイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート、イソホロンジイソシアネート、水素添加ジフェニルメタンジイソシアネート等の脂環式ポリイソシアネートなど、及びそれらのビウレット体、イソシアヌレート体、さらにはエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ヒマシ油等の低分子活性水素含有化合物との反応物であるアダクト体などが挙げられる。中でも、水酸基との反応性の観点から、トリメチロールプロパン変性の芳香族ポリイソシアネート、特にトリメチロールプロパン変性トリレンジイソシアネートおよびトリメチロールプロパン変性キシリレンジイソシアネートが好ましい。
 エポキシ系架橋剤としては、例えば、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、エチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ジグリシジルアニリン、ジグリシジルアミン等が挙げられる。中でもカルボキシ基との反応性の観点から、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンが好ましい。
 粘着性組成物P中における架橋剤(B)の含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、0.01~10質量部であることが好ましく、0.05~5質量部であることがより好ましく、特に0.08~1質量部であることが好ましく、さらには0.1~0.5質量部であることが好ましい。これにより、前述した貯蔵弾性率およびゲル分率が満たされ易くなる。
(3)活性エネルギー線硬化性成分(C)
 活性エネルギー線硬化性成分(C)を含有する粘着性組成物Pを架橋してなる粘着剤を活性エネルギー線硬化した粘着剤においては、活性エネルギー線硬化性成分(C)が互いに重合し、その重合した活性エネルギー線硬化性成分(C)が(メタ)アクリル酸エステル重合体(A)の架橋構造(三次元網目構造)に絡み付くものと推定される。かかる高次構造を有する粘着剤は、耐ブリスター性に優れたものとなる。
 活性エネルギー線硬化性成分(C)は、活性エネルギー線の照射によって硬化し、上記の効果が得られる成分であれば特に制限されず、モノマー、オリゴマーまたはポリマーのいずれであってもよいし、それらの混合物であってもよい。中でも、耐久性により優れる多官能アクリレート系モノマーを好ましく挙げることができる。
 多官能アクリレート系モノマーとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、ジ(アクリロキシエチル)イソシアヌレート、アリル化シクロヘキシルジ(メタ)アクリレート、エトキシ化ビスフェノールAジアクリレート、9,9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン等の2官能型;トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス-(2-(メタ)アクリロキシエチル)イソシアヌレート等の3官能型;ジグリセリンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の4官能型;プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート等の5官能型;ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能型などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、(メタ)アクリル酸エステル重合体(A)との相溶性の観点から、多官能アクリレート系モノマーは、分子量1000未満のものが好ましい。
 目的とする粘着剤が活性エネルギー線硬化性粘着剤である場合、粘着性組成物P中における活性エネルギー線硬化性成分(C)の含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、1~30質量部であることが好ましく、2~20質量部であることがより好ましく、特に3~14質量部であることが好ましく、さらには5~10質量部であることが好ましい。これにより、耐ブリスター性により優れたものとなるとともに、前述した粘着力等の物性が満たされ易くなる。
(4)光重合開始剤(D)
 活性エネルギー線硬化性の粘着剤を硬化させる活性エネルギー線として紫外線を用いる場合には、粘着性組成物Pは、さらに光重合開始剤(D)を含有することが好ましい。これにより、活性エネルギー線硬化性成分(C)を効率良く重合させることができ、また重合硬化時間および活性エネルギー線の照射量を少なくすることができる。
 光重合開始剤(D)としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-2-(ヒドロキシ-2-プロピル)ケトン、ベンゾフェノン、p-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリ-ブチルアントラキノン、2-アミノアントラキノン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p-ジメチルアミノ安息香酸エステル、オリゴ[2-ヒドロキシ-2-メチル-1[4-(1-メチルビニル)フェニル]プロパノン]、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 目的とする粘着剤が活性エネルギー線硬化性粘着剤である場合、粘着性組成物P中における光重合開始剤(D)の含有量は、活性エネルギー線硬化性成分(C)100質量部に対して、0.1~30質量部であることが好ましく、特に1~20質量部であることが好ましく、さらには5~12質量部であることが好ましい。これにより、得られる粘着剤は、前述した粘着力等の物性が満たされ易くなる。
(5)各種添加剤
 粘着性組成物Pには、所望により、アクリル系粘着剤に通常使用されている各種添加剤、例えばシランカップリング剤、腐食防止剤、紫外線吸収剤、帯電防止剤、粘着付与剤、酸化防止剤、光安定剤、軟化剤、屈折率調整剤などを添加することができる。なお、後述の重合溶媒や希釈溶媒は、粘着性組成物Pを構成する添加剤に含まれないものとする。
 粘着性組成物Pは、上記の中でもシランカップリング剤を含有することが好ましい。これにより、被着体がプラスチック部材であっても、ガラス部材であっても、当該被着体との密着性が向上し、接着信頼性がより優れたものとなる。
 シランカップリング剤としては、分子内にアルコキシシリル基を少なくとも1個有する有機ケイ素化合物であって、(メタ)アクリル酸エステル重合体(A)との相溶性がよく、光線透過性を有するものが好ましい。
 かかるシランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン等の重合性不飽和基含有ケイ素化合物、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ構造を有するケイ素化合物、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルジメトキシメチルシラン等のメルカプト基含有ケイ素化合物、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン等のアミノ基含有ケイ素化合物、3-クロロプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、あるいはこれらの少なくとも1つと、メチルトリエトキシシラン、エチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン等のアルキル基含有ケイ素化合物との縮合物などが挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 粘着性組成物P中におけるシランカップリング剤の含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、0.01~1.2質量部であることが好ましく、特に0.05~0.8質量部であることが好ましく、さらには0.1~0.4質量部であることが好ましい。これにより、被着体との密着性が良好に向上し、接着信頼性の向上や耐ブリスター性の向上に寄与する。
 粘着性組成物Pは、腐食防止剤を含有することも好ましい。これにより、粘着剤層に接触している金属の腐食を防止することができる。腐食防止剤としては、例えば、例えば、カルボジイミド化合物、吸着型インヒビター、キレート形成型金属不活性剤等が挙げられる。キレート形成型金属不活性剤としては、例えば、トリアゾール基含有化合物、ベンゾトリアゾール基含有化合物等が挙げられる。
 トリアゾール基含有化合物としては、例えば、1,2,4-トリアゾール、1,2,3-トリアゾール、4-アミノ-1,2,4-トリアゾール、N,N-ビス(2-エチルヘキシル)-1,2,4-トリアゾール-1-イルメタンアミン等が挙げられる。ベンゾトリアゾール基含有化合物としては、例えば、1,2,3-ベンゾトリアゾール、メチルベンゾトリアゾール、メチルベンゾトリアゾールカリウム塩、カルボキシベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル)ベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル)-4-エチル-1H-ベンゾトリアゾール、3-(N-サリチロイル)アミノ-1,2,4-トリアゾール、2,2´-[[(メチル-1H-ベンゾトリアゾール-1-イル)メチル]イミノ]ビスエタノール、2-(2´-ヒドロキシ-5´-メチルフェニル)ベンゾトリアゾール、2-(2´-ヒドロキシ-5´-tert-オクチルフェニル)ベンゾトリアゾール、2-(2´-ヒドロキシ-3´,5´-ジ-tert-アミルフェニル)ベンゾトリアゾール、1-(メトキシメチル)-1H-ベンゾトリアゾール、1H-ベンゾトリアゾール-1-メタノール、および1-(クロロメチル)-1H-ベンゾトリアゾール等が挙げられる。
 粘着性組成物P中における腐食防止剤の含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、0.01~5質量部であることが好ましく、特に0.05~3質量部であることが好ましく、さらには0.1~1質量部であることが好ましい。
 粘着性組成物Pは、紫外線吸収剤を含有することも好ましい。紫外線吸収剤としては、例えば、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系、ベンゾオキサジノン系、トリアジン系、フェニルサリシレート系、シアノアクリレート系、ニッケル錯塩系等の化合物が挙げられ、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 粘着性組成物P中における紫外線吸収剤の含有量は、(メタ)アクリル酸エステル重合体(A)100質量部に対して、0.1~20質量部であることが好ましく、特に0.5~10質量部であることが好ましく、さらには1~5質量部であることが好ましい。
2.粘着性組成物Pの調製
 粘着性組成物Pは、(メタ)アクリル酸エステル重合体(A)を製造し、得られた(メタ)アクリル酸エステル重合体(A)と、架橋剤(B)とを混合するとともに、所望により、活性エネルギー線硬化性成分(C)、光重合開始剤(D)、添加剤等を加えることで調製することができる。
 (メタ)アクリル酸エステル重合体(A)は、重合体を構成するモノマーの混合物を通常のラジカル重合法で重合することにより製造することができる。(メタ)アクリル酸エステル重合体(A)の重合は、所望により重合開始剤を使用して、溶液重合法により行うことが好ましい。ただし、本発明はこれに限定されるものではなく、無溶剤にて重合してもよい。
 重合溶媒としては、例えば、酢酸エチル、酢酸n-ブチル、酢酸イソブチル、トルエン、アセトン、ヘキサン、メチルエチルケトン等が挙げられ、2種類以上を併用してもよい。重合開始剤としては、アゾ系化合物、有機過酸化物等が挙げられ、2種類以上を併用してもよい。なお、上記重合工程において、2-メルカプトエタノール等の連鎖移動剤を配合することにより、得られる重合体の重量平均分子量を調節することができる。
 (メタ)アクリル酸エステル重合体(A)が得られたら、(メタ)アクリル酸エステル重合体(A)の溶液に、架橋剤(B)ならびに所望により希釈溶剤、活性エネルギー線硬化性成分(C)、光重合開始剤(D)、添加剤等を添加し、十分に混合することにより、溶剤で希釈された粘着性組成物P(塗布溶液)を得る。なお、上記各成分のいずれかにおいて、固体状のものを用いる場合、あるいは、希釈されていない状態で他の成分と混合した際に析出を生じる場合には、その成分を単独で予め希釈溶媒に溶解もしくは希釈してから、その他の成分と混合してもよい。
 希釈溶剤としては、例えば、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、塩化エチレン等のハロゲン化炭化水素、メタノール、エタノール、プロパノール、ブタノール、1-メトキシ-2-プロパノール等のアルコール、アセトン、メチルエチルケトン、2-ペンタノン、イソホロン、シクロヘキサノン等のケトン、酢酸エチル、酢酸ブチル等のエステル、エチルセロソルブ等のセロソルブ系溶剤などが用いられる。
 このようにして調製された塗布溶液の濃度・粘度としては、コーティング可能な範囲であればよく、特に制限されず、状況に応じて適宜選定することができる。例えば、粘着性組成物Pの濃度が10~60質量%となるように希釈する。なお、塗布溶液を得るに際して、希釈溶剤等の添加は必要条件ではなく、粘着性組成物Pがコーティング可能な粘度等であれば、希釈溶剤を添加しなくてもよい。この場合、粘着性組成物Pは、(メタ)アクリル酸エステル重合体(A)の重合溶媒をそのまま希釈溶剤とする塗布溶液となる。
3.粘着剤の製造
 粘着性組成物Pを架橋することにより、粘着剤が得られる。粘着性組成物Pの架橋は、通常は加熱処理により行うことができる。なお、この加熱処理は、所望の対象物に塗布した粘着性組成物Pの塗膜から希釈溶剤等を揮発させる際の乾燥処理で兼ねることもできる。
 加熱処理の加熱温度は、50~150℃であることが好ましく、特に70~120℃であることが好ましい。また、加熱時間は、10秒~10分であることが好ましく、特に50秒~2分であることが好ましい。
 加熱処理後、必要に応じて、常温(例えば、23℃、50%RH)で1~2週間程度の養生期間を設けてもよい。この養生期間が必要な場合は、養生期間経過後、養生期間が不要な場合には、加熱処理終了後、粘着剤が形成される。
 上記の加熱処理(及び養生)により、架橋剤(B)を介して、(メタ)アクリル酸エステル重合体(A)が架橋され、粘着剤が得られる。
 粘着性組成物Pが活性エネルギー線硬化性成分(C)を含有する場合、上記の架橋(熱架橋)を行うとともに、粘着性組成物Pを活性エネルギー線硬化させることも好ましい。活性エネルギー線とは、電磁波または荷電粒子線の中でエネルギー量子を有するものをいい、具体的には、紫外線や電子線などが挙げられる。活性エネルギー線の中でも、取扱いが容易な紫外線が特に好ましい。
 紫外線の照射は、高圧水銀ランプ、へレウス社製Hランプ、キセノンランプ等によって行うことができ、紫外線の照射量は、照度が50~1000mW/cm程度であることが好ましく、100~500mW/cm程度であることが好ましい。また、光量は、50~10000mJ/cmであることが好ましく、200~7000mJ/cmであることがより好ましく、500~3000mJ/cmであることが特に好ましい。一方、電子線の照射は、電子線加速器等によって行うことができ、電子線の照射量は、10~1000krad程度が好ましい。
 本実施形態に係る粘着シートは、上述した粘着剤からなる粘着剤層を有するものである。本実施形態に係る粘着シートの一例としての具体的構成を図1に示す。図1に示すように、一実施形態に係る粘着シート1は、2枚の剥離シート12a,12bと、それら2枚の剥離シート12a,12bの剥離面と接するように当該2枚の剥離シート12a,12bに挟持された粘着剤層11とから構成される。なお、本明細書における剥離シートの剥離面とは、剥離シートにおいて剥離性を有する面をいい、剥離処理を施した面および剥離処理を施さなくても剥離性を示す面のいずれをも含むものである。
1.各部材
(1)粘着剤層
 粘着剤層11は、前述した粘着剤から構成され、好ましくは、粘着性組成物Pを架橋してなる粘着剤、または粘着性組成物Pを熱架橋および活性エネルギー線硬化してなる粘着剤から構成される。
 本実施形態に係る粘着シート1における粘着剤層11の厚さ(JIS K7130に準じて測定した値)は、5~1000μmであることが好ましく、10~800μmであることがより好ましく、特に15~500μmであることが好ましく、さらには20~300μmであることが好ましく、中でも25~200μmであることが好ましく、30~160μmであることが最も好ましい。これにより、所望の粘着力を発揮し易くなるとともに、前述した光線透過率を満たし易くなる。なお、粘着剤層11は単層で形成してもよいし、複数層を積層して形成することもできる。
(2)剥離シート
 剥離シート12a,12bは、粘着シート1の使用時まで粘着剤層11を保護するものであり、粘着シート1(粘着剤層11)を使用するときに剥離される。本実施形態に係る粘着シート1において、剥離シート12a,12bの一方または両方は必ずしも必要なものではない。
 剥離シート12a,12bとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニルフィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルム等が用いられる。また、これらの架橋フィルムも用いられる。さらに、これらの積層フィルムであってもよい。
 剥離シート12a,12bの剥離面(特に粘着剤層11と接する面)には、剥離処理が施されていることが好ましい。剥離処理に使用される剥離剤としては、例えば、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系の剥離剤が挙げられる。なお、剥離シート12a,12bのうち、一方の剥離シートを剥離力の大きい重剥離型剥離シートとし、他方の剥離シートを剥離力の小さい軽剥離型剥離シートとすることが好ましい。
 剥離シート12a,12bの厚さについては特に制限はないが、取扱い性の観点から、10~200μmが好ましく、20~150μmがより好ましい。
2.粘着シートの製造
 粘着シート1の一製造例として、上記粘着性組成物Pを使用した場合について説明する。一方の剥離シート12a(または12b)の剥離面に、粘着性組成物Pの塗布液を塗布し、加熱処理を行って粘着性組成物Pを熱架橋し、塗布層を形成した後、その塗布層に他方の剥離シート12b(または12a)の剥離面を重ね合わせる。養生期間が必要な場合は養生期間をおくことにより、養生期間が不要な場合はそのまま、上記塗布層が粘着剤層11となる。上記粘着性組成物Pが活性エネルギー線硬化性成分(C)を含有する場合には、上記熱架橋を行うとともに、活性エネルギー線を照射して、塗布層を活性エネルギー線硬化させてもよい。このようにして、上記粘着シート1が得られる。加熱処理、養生、活性エネルギー線照射の条件については、前述した通りである。
 粘着シート1の他の製造例としては、一方の剥離シート12aの剥離面に、粘着性組成物Pの塗布液を塗布し、加熱処理を行って粘着性組成物Pを熱架橋し、塗布層を形成して、塗布層付きの剥離シート12aを得る。また、他方の剥離シート12bの剥離面に、上記粘着性組成物Pの塗布液を塗布し、加熱処理を行って粘着性組成物Pを熱架橋し、塗布層を形成して、塗布層付きの剥離シート12bを得る。そして、塗布層付きの剥離シート12aと塗布層付きの剥離シート12bとを、両塗布層が互いに接触するように貼り合わせる。養生期間が必要な場合は養生期間をおくことにより、養生期間が不要な場合はそのまま、上記の積層された塗布層が粘着剤層11となる。上記粘着性組成物Pが活性エネルギー線硬化性成分(C)を含有する場合には、上記熱架橋を行うとともに、活性エネルギー線を照射して、塗布層を活性エネルギー線硬化させてもよい。このようにして、上記粘着シート1が得られる。この製造例によれば、粘着剤層11が厚い場合であっても、安定して製造することが可能となる。
 上記粘着性組成物Pの塗布液を塗布する方法としては、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等を利用することができる。
〔粘着剤層付き面状発熱体〕
 本発明の一実施形態に係る粘着剤層付き面状発熱体は、面状発熱体と、当該面状発熱体の少なくとも一方の面側に貼付された粘着剤層とを備えたものである。本実施形態における粘着剤層は、前述した実施例に係る粘着シートの粘着剤層である。
 面状発熱体は、平面を有するシート状、板状等のものが例示され、柔軟性や可撓性を有するものであってよいし、硬質体であってもよい。かかる面状発熱体としては、例えば、ニクロム線、鉄クロム線等の金属線やカーボン繊維などの電熱線を樹脂中に埋設した面状発熱体;導電性フィラーを樹脂中に分散させた面状発熱体;金属、カーボンブラック、カーボンナノチューブ等を含有する導電性繊維で構成された面状発熱体;プラスチックフィルムに導電性塗料が塗工された面状発熱体;スズドープ酸化インジウム(ITO)、導電性高分子等の導電性材料からなる面状発熱体などが挙げられる。
 電熱線を樹脂中に埋設した面状発熱体において使用可能な樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂等の熱硬化性樹脂、あるいは、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂等の熱可塑性樹脂であって、電熱線の発熱に対して耐熱性を有するものなどが挙げられる。これらの樹脂は、粘着性を有する粘着剤または粘接着剤であってもよい。
 面状発熱体の厚さは、特に限定されないが、通常、1~5000μmであることが好ましく、5~3000μmであることがより好ましく、特に10~1000μmであることが好ましく、さらには15~500μmであることが好ましい。
 本実施形態に係る粘着剤層付き面状発熱体の粘着剤層における面状発熱体とは反対側の面には、後述する面状発熱部材の保護層が積層されてもよいし、所望の光検知システム(LiDAR、カメラ、赤外線センサー等)、レーダーシステム、超音波システム等の検知ユニット(センサー)が積層されてもよい。
〔面状発熱部材〕
 本発明の一実施形態に係る面状発熱部材は、面状発熱体と、保護層と、それら面状発熱体および保護層を貼合する粘着剤層とを備えたものである。本実施形態における粘着剤層は、前述した実施例に係る粘着シートの粘着剤層である。
 本実施形態に係る面状発熱部材の一例としての具体的構成を図2に示す。図2に示すように、一実施形態に係る面状発熱部材2は、基板21と、基板21の一方の面側に積層されたヒーター層22と、ヒーター層22における基板21とは反対側に積層された粘着剤層11と、粘着剤層11におけるヒーター層22とは反対側に積層された保護層23とから構成される。
 基板21は、ヒーター層22を支持するものであり、例えば、ガラス板、プラスチック板、ガラスフィルム、プラスチックフィルム等からなる。本実施形態に係る面状発熱部材2の適用対象の検知ユニットが光学系のセンサーである場合、基板21は、光線透過性を有するものであることが好ましい。
 基板21の厚さは、特に限定されないが、通常、100~5000μmであることが好ましく、300~4000μmであることがより好ましく、特に500~3500μmであることが好ましく、さらには1000~3000μmであることが好ましい。
 本実施形態におけるヒーター層22は、一例として電熱線221を樹脂222中に埋設した面状発熱体であるが、本発明はこれに限定されるものではない。ヒーター層22の材料および厚さは、面状発熱体として前述した通りである。本実施形態では、ヒーター層22を基板21に貼付する形態となるため、樹脂222は、粘着剤または粘接着剤であることが好ましく、特に粘接着剤であることが好ましく、さらには熱硬化性の粘接着剤であることが好ましい。熱硬化性の粘接着剤としては、特にエポキシ系の粘接着剤が好ましい。
 本実施形態における粘着剤層11は、前述した実施例に係る粘着シート1の粘着剤層11である。
 保護層23は、ヒーター層22を保護するものであり、例えば、プラスチックフィルム、プラスチック板、ガラス板等からなる。本実施形態に係る面状発熱部材2の適用対象の検知ユニットが光学系のセンサーである場合、保護層23は、光線透過性を有するものであることが好ましい。
 プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリウレタンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、トリアセチルセルロース等のセルロースフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレン-酢酸ビニル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、アクリル樹脂フィルム、ノルボルネン系樹脂フィルム、シクロオレフィン樹脂フィルム等のプラスチックフィルム;これらの2種以上の積層体などを挙げることができる。プラスチックフィルムは、一軸延伸または二軸延伸されたものでもよい。上記の中でも、耐衝撃性の観点から、特にポリカーボネートフィルムが好ましい。
 保護層23の厚さは、特に限定されないが、通常、10~500μmであることが好ましく、50~300μmであることがより好ましく、特に75~250μmであることが好ましく、さらには100~200μmであることが好ましい。
 本実施形態に係る面状発熱部材2の好ましい一製造例を説明する。
 最初に、あらかじめ常法によって製造したヒーター層22を基板21上に積層する。ヒーター層22の樹脂222が粘着性を有するものである場合には、ヒーター層22を基板21に貼付する。また、ヒーター層22の樹脂222が熱硬化性のものであれば、この段階で熱硬化させる。
 次に、前述した実施形態に係る粘着シート1から一方の剥離シート12aを剥離し、露出した粘着剤層11をヒーター層22に貼付する。次いで、粘着剤層11から他方の剥離シート12bを剥離し、露出した粘着剤層11に対して保護層23を貼付する。
 粘着剤層11が活性エネルギー線硬化性の場合、所望の側、好ましくは保護層23側から粘着剤層11に対して活性エネルギー線を照射して、粘着剤層11を硬化させる。活性エネルギー線の照射条件は、粘着シート1の段階で粘着剤層11を活性エネルギー線硬化させる場合と同様である。
 本実施形態に係る面状発熱部材2は、所望の光検知システム(LiDAR、カメラ、赤外線センサー等)、レーダーシステム、超音波システム等の検知ユニット(センサー)と積層される。面状発熱部材2と検知ユニットとの貼合には、前述した実施形態に係る粘着シート1(粘着剤層11)を使用することが好ましいが、その他の粘着シート等を使用することもできる。
 本実施形態に係る面状発熱部材2は、粘着剤層11を使用したことにより、当該面状発熱部材2の適用対象が光学系のセンサー、特にLiDARである場合に、可視光領域および赤外線領域におけるセンサー機能が阻害されない。また、低温および高温が繰り返された場合でも、粘着剤層11の粘着剤は粘着物性の変化が少ないため、ヒーター層22と保護層23との貼合状態が良好に維持され、接着信頼性、そして耐久性に優れる。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 例えば、粘着シート1における剥離シート12a,12bのいずれか一方は省略されてもよい。また、面状発熱部材2の基板21は省略されてもよい。
 なお、本明細書において、「X~Y」(X,Yは任意の数字)と記載した場合、特に断らない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含するものである。また、「X以上」(Xは任意の数字)と記載した場合、特に断らない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と記載した場合、特に断らない限り「好ましくはYより小さい」の意も包含するものである。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
〔実施例1〕
1.(メタ)アクリル酸エステル重合体の調製
 アクリル酸n-ブチル30質量部、アクリル酸2-エチルヘキシル25質量部、アクリル酸イソボニル10質量部、N-アクリロイルモルホリン10質量部およびアクリル酸2-ヒドロキシエチル25質量部を溶液重合法により共重合させて、(メタ)アクリル酸エステル重合体(A)を調製した。この(メタ)アクリル酸エステル重合体(A)の分子量を後述する方法で測定したところ、重量平均分子量(Mw)50万であった。
2.粘着性組成物の調製
 上記工程(1)で得られた(メタ)アクリル酸エステル重合体(A)100質量部(固形分換算値;以下同じ)と、架橋剤(B)としてのイソシアネート系架橋剤(B1;三井化学社製,製品名「タケネートD-110N」)0.2質量部と、活性エネルギー線硬化性成分(C)としてのε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート(新中村化学社製,製品名「NKエステル A-9300-1CL」)8質量部と、光重合開始剤(D)としての2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(D1)0.8質量部と、シランカップリング剤としての3-グリシドキシプロピルトリメトキシシラン0.2質量部とを混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着性組成物の塗布溶液を得た。
 ここで、(メタ)アクリル酸エステル重合体(A)を100質量部(固形分換算値)とした場合の粘着性組成物の各配合(固形分換算値)を表1に示す。なお、表1に記載の略号等の詳細は以下の通りである。
[(メタ)アクリル酸エステル重合体(A)]
 BA:アクリル酸n-ブチル
 2EHA:アクリル酸2-エチルヘキシル
 IBXA:アクリル酸イソボルニル
 ACMO:N-アクリロイルモルホリン
 HEA:アクリル酸2-ヒドロキシエチル
 AA:アクリル酸
[架橋剤(B)]
 B1:イソシアネート系架橋剤(三井化学社製,製品名「タケネートD-110N」)
 B2:1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン
[光重合開始剤(D)]
 D1:2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド
 D2:ベンゾフェノンと1-ヒドロキシシクロヘキシルフェニルケトンとの混合物(質量比50:50)
[添加剤]
 E1:腐食防止剤としての1-[N,N-ビス(2-エチルヘキシル)アミノメチル)-4-エチル-1H-ベンゾトリアゾール
 E2:ベンゾフェノン系紫外線吸収剤(ソルベイ社製,製品名「サイアソーブUV-24」)
 E3:近赤外線吸収材料としてのセシウム酸化タングステン(住友金属鉱山社製,製品名「YMF-02AS」)
3.粘着シートの製造
 得られた粘着性組成物の塗布溶液を、ポリエチレンテレフタレートフィルムの片面をシリコーン系剥離剤で剥離処理した剥離シートR1の剥離処理面に、ナイフコーターで塗布したのち、90℃で1分間加熱処理して塗布層を形成した。
 次いで、上記で得られた剥離シートR1上の塗布層と、ポリエチレンテレフタレートフィルムの片面をシリコーン系剥離剤で剥離処理した剥離シートR2とを、当該剥離シートR2の剥離処理面が塗布層に接触するように貼合した。そして、23℃、50%RHの条件下で7日間養生することにより、剥離シートR2/粘着剤層(厚さ:25μm)/剥離シートR1の構成からなる粘着シートを作製した。なお、剥離シートR1は、剥離シートR2よりも剥離力が大きかった。また、粘着剤層の厚さは、JIS K7130に準拠し、定圧厚さ測定器(テクロック社製,製品名「PG-02」)を使用して測定した値である(以下同じ)。
4.面状発熱部材の製造
(1)ヒーター層の作製
 上記とは別の剥離シートR1の剥離処理面上に、エポキシ系の熱硬化型粘接着剤を塗布した。当該塗布層上に、電熱線(カーボンで被覆されたタングステンワイヤー,直径10μm)を複数設けた。さらに、当該電熱線が被覆されるようにエポキシ系の熱硬化型粘接着剤を塗布し、上記とは別の剥離シートR2の剥離処理面側が塗布面を覆うように、当該剥離シートR2を積層した。これにより、電熱線がエポキシ系の熱硬化型粘接着剤中に埋設されたヒーター層を製造した。このとき、隣り合う電熱線同士の間隔は、等間隔(0.5mm)であった。
(2)ヒーター層の積層
 基板としての無アルカリガラス板(厚さ1.1mm)の片面に、剥離シートR2を剥離した上記ヒーター層を貼付し、栗原製作所製オートクレーブにて、0.5MPa、120℃で、30分加熱・加圧した。これにより、ヒーター層の熱硬化型粘接着剤が熱硬化した。その後、ヒーター層から剥離シートR1を剥離した。なお、熱硬化後のヒーター層の厚さは15μmであった。
(3)粘着剤層および保護層の積層
 上記で得られた粘着シートから剥離シートR2を剥離し、露出した粘着剤層をヒーター層に貼付した。次いで、ヒーター層上の粘着剤層から剥離シートR1を剥離し、露出した粘着剤層に対して、保護層としてのポリカーボネートフィルム(厚さ100μm)を貼付した。
 その後、上記積層体に対し、保護層越しに、下記の条件Xにて活性エネルギー線(紫外線;UV)を照射し、粘着剤層を活性エネルギー線硬化させた。このようにして、保護層/粘着剤層/ヒーター層(面状発熱体)/基材からなる面状発熱部材を製造した。
<活性エネルギー線照射条件X>
・高圧水銀ランプ使用
・照度200mW/cm,光量1000mJ/cm
・UV照度・光量計はアイグラフィックス社製「UVPF-A1」を使用
〔実施例2~6,8~9〕
 (メタ)アクリル酸エステル重合体(A)を構成する各モノマーの種類および割合、(メタ)アクリル酸エステル重合体(A)の重量平均分子量(Mw)、架橋剤(B)の種類および配合量、活性エネルギー線硬化性成分(C)の配合量、光重合開始剤(D)の種類および配合量、シランカップリング剤の配合量、添加剤の種類および配合量、ならびに粘着剤層の厚さを表1に示すように変更する以外、実施例1と同様にして粘着シートおよび面状発熱部材を製造した。なお、粘着剤層の厚さの変更は、剥離シート上に形成した粘着剤層の厚さ及び/又は積層数を変えることにより行った。
〔実施例7〕
 粘着剤層の厚さを50μmに変更する以外、実施例1と同様にして粘着シートを製造した。得られた粘着シートに対し、剥離シートR2越しに、上記の条件Xと同様の条件にて活性エネルギー線(紫外線;UV)を照射し、粘着剤層を活性エネルギー線硬化させた。
 上記粘着シートを使用して、実施例1と同様にして面状発熱部材を製造した。ただし、面状発熱部材に対し、活性エネルギー線は照射しなかった。
〔実施例10〕
 実施例1と同様にして調製した(メタ)アクリル酸エステル重合体(A)100質量部と、架橋剤(B)としてのイソシアネート系架橋剤(B1;三井化学社製,製品名「タケネートD-110N」)0.25質量部と、シランカップリング剤としての3-グリシドキシプロピルトリメトキシシラン0.2質量部とを混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着性組成物の塗布溶液を得た。
 得られた粘着性組成物の塗布溶液を使用し、粘着剤層の厚さを50μmに変更する以外、実施例1と同様にして粘着シートを製造した。また、当該粘着シートを使用して、実施例1と同様にして面状発熱部材を製造した。ただし、面状発熱部材に対し、活性エネルギー線は照射しなかった。
〔比較例1〕
 (メタ)アクリル酸エステル重合体(A)を構成する各モノマーの種類および割合、(メタ)アクリル酸エステル重合体(A)の重量平均分子量(Mw)、添加剤の種類および配合量、ならび粘着剤層の厚さを表1に示すように変更する以外、実施例10と同様にして粘着シートおよび面状発熱部材を製造した。なお、比較例1では、粘着剤に、近赤外線吸収材料としてのセシウム酸化タングステン(E3)20質量部を配合した。
〔比較例2〕
 (メタ)アクリル酸エステル重合体(A)としての市販のアクリル酸アルキルエステル系共重合物(ライオン・スペシャリティ・ケミカルズ社製,製品名「AS-665」,Mw:60万)100質量部と、架橋剤(B)としてのイソシアネート系架橋剤(B1;三井化学社製,製品名「タケネートD-110N」)8質量部とを混合し、十分に撹拌して、メチルエチルケトンで希釈することにより、粘着性組成物の塗布溶液を得た。
 得られた粘着性組成物の塗布溶液を使用する以外、実施例10と同様にして粘着シートおよび面状発熱部材を製造した。
 前述した重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定(GPC測定)したポリスチレン換算の重量平均分子量である。
<測定条件>
・GPC測定装置:東ソー社製,HLC-8020
・GPCカラム(以下の順に通過):東ソー社製
 TSK guard column HXL-H
 TSK gel GMHXL(×2)
 TSK gel G2000HXL
・測定溶媒:テトラヒドロフラン
・測定温度:40℃
〔試験例1〕(光学特性の測定)
 実施例および比較例で製造した粘着シートの粘着剤層について、分光光度計(島津製作所社製,製品名「紫外可視近赤外分光光度計UV-3600」)を用いて、380~1500nmの波長領域について、1nmピッチの各波長における全光線透過率(%)および拡散透過率(%)を測定した。
 続いて、1nmピッチの各波長における拡散透過率(%)を全光線透過率(%)によってそれぞれ除することで、380~1500nmの波長領域についての1nmピッチの各波長における透過光拡散率(%)を算出した。
 上記の通り、380~1500nmの波長領域について1nmピッチの各波長にて測定された全光線透過率(%)から、380~780nmの波長領域(可視光領域)における測定値の平均値、および800~1100nmの波長領域(赤外線領域)における測定値の平均値をそれぞれ算出した。また、透過光拡散率(%)についても同様に、380~780nmの波長領域(可視光領域)における測定値の平均値および800~1100nmの波長領域(赤外線領域)における測定値の平均値を算出した。これらの結果を表2に示す。
〔試験例2〕(ゲル分率の測定)
 実施例および比較例で得られた粘着シートを80mm×80mmのサイズに裁断して、その粘着剤層をポリエステル製メッシュ(メッシュサイズ200)に包み、その質量を精密天秤にて秤量し、上記メッシュ単独の質量を差し引くことにより、粘着剤のみの質量を算出した。このときの質量をM1とする。
 次に、上記ポリエステル製メッシュに包まれた粘着剤を、室温下(23℃)で酢酸エチルに24時間浸漬させた。その後粘着剤を取り出し、温度23℃、相対湿度50%の環境下で、24時間風乾させ、さらに80℃のオーブン中にて12時間乾燥させた。乾燥後、その質量を精密天秤にて秤量し、上記メッシュ単独の質量を差し引くことにより、粘着剤のみの質量を算出した。このときの質量をM2とする。ゲル分率(%)は、(M2/M1)×100で表される。これにより、粘着剤のゲル分率(UV前;%)を導出した。結果を表2に示す。
 また、実施例1~6,8~9で製造した粘着シートの粘着剤層に対して、剥離シートR2越しに、上記の条件Xと同様の条件にて活性エネルギー線(紫外線;UV)を照射し、粘着剤層を硬化させた。この硬化後の粘着剤層の粘着剤について、上記と同様にしてゲル分率(UV後;%)を導出した。結果を表2に示す。
〔試験例3〕(貯蔵弾性率の測定)
 実施例および比較例で得られた粘着シートから剥離シートを剥がし、粘着剤層を厚さ3mmになるように複数層積層した。得られた粘着剤層の積層体から、直径8mmの円柱体(高さ3mm)を打ち抜き、成形体を得た。
 実施例1~6,8~9においては、上記成形体に対し、試験例2と同じ条件で活性エネルギー線(紫外線;UV)を照射して、粘着剤を活性エネルギー線硬化させ、これをサンプルとした。実施例7,10および比較例1~2においては、上記成形体をサンプルとした。
 上記サンプルについて、JIS K7244-6に準拠し、粘弾性測定装置(Physica社製,製品名「MCR300」)を用いてねじりせん断法により、以下の条件で-20℃、23℃および85℃における貯蔵弾性率(UV前;MPa)を測定した。結果を表2に示す。
 測定周波数:1Hz
 昇温速度:5℃/min
 測定温度:-20℃,23℃,85℃
 また、上記で得られた結果から、23℃における貯蔵弾性率G’(23)に対する-20℃における貯蔵弾性率G’(-20)の比(貯蔵弾性率G’(-20)/貯蔵弾性率G’(23))、85℃における貯蔵弾性率G’(85)に対する23℃における貯蔵弾性率G’(23)の比(貯蔵弾性率G’(23)/貯蔵弾性率G’(85))、および85℃における貯蔵弾性率G’(85)に対する-20℃における貯蔵弾性率G’(-20)の比(貯蔵弾性率G’(-20)/貯蔵弾性率G’(85))を算出した。結果を表2に示す。
〔試験例4〕(粘着力の測定/接着信頼性の評価)
 実施例および比較例で製造した粘着シートから剥離シートR2を剥離し、露出した粘着剤層を、易接着層を有するポリエチレンテレフタレート(PET)フィルム(東洋紡社製,製品名「コスモシャイン A4360」,厚さ:100μm)の易接着層に貼合し、剥離シートR1/粘着剤層/PETフィルムの積層体を得た。得られた積層体を25mm幅、110mm長に裁断した。
 23℃、50%RHの環境下にて、上記積層体から剥離シートR1を剥離し、露出した粘着剤層をソーダライムガラス板(日本板硝子社製,製品名「ソーダライムガラス」,厚さ:1.1mm)に貼付し、栗原製作所社製オートクレーブにて0.5MPa、50℃で、20分加圧した。
 実施例1~6,8~9においては、上記の積層体に対し、PETフィルム越しに、試験例2と同じ条件で活性エネルギー線(紫外線;UV)を照射して、粘着剤を活性エネルギー線硬化させ、これをサンプルとした。実施例7,10および比較例1~2においては、上記オートクレーブ処理後の積層体をサンプルとした。
 得られたサンプルを、23℃・相対湿度50%、-20℃、および85℃のそれぞれの条件下で24時間放置した。そして、引張試験機(オリエンテック社製,テンシロン)を用い、剥離速度300mm/min、剥離角度180度の条件で、PETフィルムと粘着剤層との積層体を被着体から剥離したときの粘着力(N/25mm)を測定した。ここに記載した以外の条件はJIS Z0237:2009に準拠して、測定を行った。結果を表2に示す。
 さらに、上記サンプルについて、-35℃および70℃を交互に各30分印加するヒートショック(HS)試験を200サイクル行った後、23℃・50%RHの条件下で24時間放置した。その後、上記と同様にして粘着力(HS後粘着力;N/25mm)を測定した。結果を表2に示す。
 上記で得られた結果から、上記の23℃・50%RHの条件下で放置した後の粘着力(常温粘着力)に対する上記のヒートショック(HS)後の粘着力(HS後粘着力)の比(HS後粘着力/常温粘着力)を算出した。結果を表2に示す。
 また、上記の85℃の条件下で放置した後の粘着力(高温粘着力)および以下の基準に基づいて、高温下での接着信頼性を評価した。結果を表2に示す。
<高温接着信頼性>
 ◎…高温粘着力が10N/25mm以上
 〇…高温粘着力が2N/25mm以上、10N/25mm未満
 △…高温粘着力が1N/25mm以上、2N/25mm未満
 ×…高温粘着力が1N/25mm未満
 さらに、上記のヒートショック(HS)後の粘着力(HS後粘着力)および以下の基準に基づいて、ヒートショック後の接着信頼性を評価した。結果を表2に示す。
<HS後接着信頼性>
 ◎…HS後粘着力が40N/25mm以上
 〇…HS後粘着力が20N/25mm以上、40N/25mm未満
 △…HS後粘着力が10N/25mm以上、20N/25mm未満
 ×…HS後粘着力が10N/25mm未満
〔試験例5〕(耐ブリスター性の評価)
 実施例および比較例で製造した面状発熱部材について、-35℃および70℃を交互に各30分印加するヒートショック試験を200サイクル行った。その後、10倍ルーペを用いて、粘着剤層と被着体(ヒーター層・保護層)との界面における気泡および浮き・剥がれの有無を確認した。評価基準は以下の通りである。結果を表2に示す。
 ◎…気泡も浮き・剥がれも確認できなかった。
 〇…小さい気泡がわずかに確認されたが、浮き・剥がれは確認されなかった。
 ×…大きな気泡または浮き・剥がれが確認できた。
〔試験例6〕(センサー感度の評価)
(1)可視光に対するセンサー感度
 実施例および比較例で製造した粘着シートにおける粘着剤層をガラス板に貼付し、得られた粘着剤層とガラス板との積層体を評価用サンプルとした。また、白地の紙に黒い文字(A~Gのアルファベット及び0~9の数字/文字の種類:Times New Roman/文字の大きさ:36,26,18ポイント)が印刷された紙を準備した。上記評価用サンプルをデジタルカメラ(キヤノン社製,製品名「IXY 200」)のレンズ前に配置し、評価用サンプルを介して文字が印刷された紙を撮影した。このとき、デジタルカメラと評価用サンプルとの距離、および評価用サンプルと文字が印刷された紙との距離が、それぞれ40cmとなるように配置した。
 撮影した画像を確認し、文字を認識できるか否かの観点から、以下の基準に基づいて、可視光の検出性能(センサー感度)を評価した。その評価結果を表2に示す。参考として、実施例1について撮影した画像を図3に、比較例1について撮影した画像を図4に示す。
 〇…すべての文字が問題なく認識できた。
 ×…認識困難な文字があった。
(2)近赤外光に対するセンサー感度
 実施例および比較例で製造した粘着シートにおける粘着剤層をガラス板に貼付し、得られた粘着剤層とガラス板との積層体を測定サンプルとした。また、互いに赤外線通信(近赤外光による通信)のできる携帯電話機(シャープ社製,製品名「AQUOSケータイ SH-01J」)を2台準備した。まず、赤外線発信側の携帯電話機と、上記測定サンプルと、赤外線受信側の携帯電話機とをこの順に配置した。このとき、2台の携帯電話機の赤外線通信ポート同士が向かい合うように配置した。また、赤外線発信側の携帯電話機と測定サンプルとの距離、および測定サンプルと赤外線受信側の携帯電話機との距離が、それぞれ20cmとなるように配置した。なお、赤外線発信側の携帯電話機における近赤外光光源側の面と、測定サンプルにおける粘着剤層側の面とが向き合うように配置した。
 上記携帯電話機の赤外線通信機能を使用して、赤外線発信側の携帯電話機と赤外線受信側の携帯電話機との間にて赤外線通信を行った。赤外線受信側の携帯電話機にて近赤外光を受信できた否かを10回確認し、以下の基準にて、近赤外光(IR)の検出性能(センサー感度)を評価した。その評価結果を表2に示す。
 〇…近赤外光を10回とも正常に受信できた。
 ×…近赤外光を1回以上受信できないことがあった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例で製造した粘着シートは、ヒートショック後の接着信頼性および高温での接着信頼性、ならびに可視光および近赤外光のセンサー感度に優れるものであった。また、実施例1~9で製造した粘着シートは、ヒートショック試験による耐ブリスター性にも優れるものであった。
 本発明に係る粘着シート、粘着剤層付き面状発熱体および面状発熱部材は、光検知システム、特にLiDARに適用するのに好適である。
1…粘着シート
 11…粘着剤層
 12a,12b…剥離シート
2…面状発熱部材
 21…基板
 22…ヒーター層(面状発熱体)
 23…保護層

Claims (11)

  1.  面状発熱体に貼付される粘着剤層を備えた粘着シートであって、
     前記粘着剤層の波長380~780nmの波長領域における光線透過率の平均値が、60%以上であり、
     前記粘着剤層の波長800~1100nmの波長領域における光線透過率の平均値が、60%以上であり、
     厚さ100μmのポリエチレンテレフタレートフィルムと、厚さ1.1mmのソーダライムガラス板とを前記粘着剤層により貼合してなる積層体(前記粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、前記貼合後、活性エネルギー線硬化した後の積層体)について、-35℃および70℃を交互に各30分印加するヒートショック試験を200サイクル行った後、23℃の温度下に24時間放置し、次いで、剥離速度300mm/分、剥離角度180°の条件で、前記ポリエチレンテレフタレートフィルムおよび前記粘着剤層の積層体を前記ソーダライムガラス板から剥離したときに測定される粘着力が、10N/25mm以上である
    ことを特徴とする粘着シート。
  2.  前記粘着剤層の波長380~780nmの波長領域における透過光拡散率の平均値が、10%以下であり、
     前記粘着剤層の波長800~1100nmの波長領域における透過光拡散率の平均値が、10%以下である
    ことを特徴とする請求項1に記載の粘着シート。
  3.  前記粘着シートの23℃におけるソーダライムガラスに対する粘着力(前記粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、前記ソーダライムガラスに貼付し、活性エネルギー線硬化した後の粘着力)が、10N/25mm以上であることを特徴とする請求項1に記載の粘着シート。
  4.  前記粘着シートの85℃におけるソーダライムガラスに対する粘着力(前記粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、前記ソーダライムガラスに貼付し、活性エネルギー線硬化した後の粘着力)が、1N/25mm以上であることを特徴とする請求項1に記載の粘着シート。
  5.  前記粘着シートの-20℃におけるソーダライムガラスに対する粘着力(前記粘着剤層を構成する粘着剤が活性エネルギー線硬化性の場合には、前記ソーダライムガラスに貼付し、活性エネルギー線硬化した後の粘着力)が、0.2N/25mm以上、20N/25mm以下であることを特徴とする請求項1に記載の粘着シート。
  6.  前記粘着剤層を構成する粘着剤が、アクリル系粘着剤であることを特徴とする請求項1に記載の粘着シート。
  7.  前記アクリル系粘着剤が、活性エネルギー線硬化性の粘着剤であることを特徴とする請求項6に記載の粘着シート。
  8.  前記アクリル系粘着剤が、熱架橋および活性エネルギー線硬化してなる粘着剤であることを特徴とする請求項6に記載の粘着シート。
  9.  前記粘着シートが、2枚の剥離シートを備えており、
     前記粘着剤層が、前記2枚の剥離シートの剥離面と接するように前記剥離シートに挟持されている
    ことを特徴とする請求項1に記載の粘着シート。
  10.  面状発熱体と、
     前記面状発熱体の少なくとも一方の面側に貼付された、請求項1~9のいずれか一項に記載の粘着シートの粘着剤層と
    を備えた、粘着剤層付き面状発熱体。
  11.  面状発熱体と、
     保護層と、
     前記面状発熱体および前記保護層を貼合する、請求項1~9のいずれか一項に記載の粘着シートの粘着剤層と
    を備えた、面状発熱部材。
PCT/JP2023/043219 2022-12-06 2023-12-04 粘着シート、粘着剤層付き面状発熱体および面状発熱部材 WO2024122481A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-194684 2022-12-06
JP2022194684 2022-12-06

Publications (1)

Publication Number Publication Date
WO2024122481A1 true WO2024122481A1 (ja) 2024-06-13

Family

ID=91379220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043219 WO2024122481A1 (ja) 2022-12-06 2023-12-04 粘着シート、粘着剤層付き面状発熱体および面状発熱部材

Country Status (1)

Country Link
WO (1) WO2024122481A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211305A (ja) * 2011-03-23 2012-11-01 Mitsubishi Plastics Inc 画像表示装置用透明両面粘着シートおよび画像表示装置
WO2017188229A1 (ja) * 2016-04-28 2017-11-02 リンテック株式会社 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法
JP2019080066A (ja) * 2014-01-22 2019-05-23 リンテック株式会社 保護膜形成フィルム、保護膜形成用シート、保護膜形成用複合シートおよび検査方法
JP2021080352A (ja) * 2019-11-18 2021-05-27 東亞合成株式会社 発熱体用粘着剤組成物及びその用途
WO2021193315A1 (ja) * 2020-03-24 2021-09-30 日東電工株式会社 粘着シート
WO2021193316A1 (ja) * 2020-03-24 2021-09-30 日東電工株式会社 粘着シート
WO2021200293A1 (ja) * 2020-03-31 2021-10-07 日東電工株式会社 赤外光透過粘着剤組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211305A (ja) * 2011-03-23 2012-11-01 Mitsubishi Plastics Inc 画像表示装置用透明両面粘着シートおよび画像表示装置
JP2019080066A (ja) * 2014-01-22 2019-05-23 リンテック株式会社 保護膜形成フィルム、保護膜形成用シート、保護膜形成用複合シートおよび検査方法
WO2017188229A1 (ja) * 2016-04-28 2017-11-02 リンテック株式会社 保護膜形成用フィルム、保護膜形成用複合シート、及び半導体チップの製造方法
JP2021080352A (ja) * 2019-11-18 2021-05-27 東亞合成株式会社 発熱体用粘着剤組成物及びその用途
WO2021193315A1 (ja) * 2020-03-24 2021-09-30 日東電工株式会社 粘着シート
WO2021193316A1 (ja) * 2020-03-24 2021-09-30 日東電工株式会社 粘着シート
JP2021152114A (ja) * 2020-03-24 2021-09-30 日東電工株式会社 粘着シート
WO2021200293A1 (ja) * 2020-03-31 2021-10-07 日東電工株式会社 赤外光透過粘着剤組成物

Similar Documents

Publication Publication Date Title
KR102620334B1 (ko) 점착 시트 및 표시체
CN103980820B (zh) 压敏粘合性组合物、压敏粘合剂以及压敏粘合片
JP6554377B2 (ja) 粘着剤組成物及び粘着シート
JP6356786B2 (ja) 粘着シートおよび積層体
KR102470720B1 (ko) 점착 시트 및 표시체
KR20190024606A (ko) 점착 시트, 표시체 및 표시체의 제조 방법
KR102670338B1 (ko) 점착 시트 및 광학 적층체
CN110093109B (zh) 粘着片、结构体及其制造方法
JP2019035061A (ja) 粘着シートおよび表示体
JP2018173549A (ja) 粘着性組成物、粘着剤、粘着シートおよび表示体
KR20190024605A (ko) 점착 시트, 표시체 및 표시체의 제조 방법
KR20160138154A (ko) 점착성 조성물, 점착제 및 점착 시트
JP7184528B2 (ja) 表示体の製造方法
KR102632908B1 (ko) 점착성 조성물, 점착제 및 점착 시트
KR102599155B1 (ko) 점착 시트 권회체
JP6768018B2 (ja) 活性エネルギー線硬化性粘着シートおよび積層体
JP6744850B2 (ja) 構成体およびその製造方法、表示体、ならびに光学用粘着シート
WO2024122481A1 (ja) 粘着シート、粘着剤層付き面状発熱体および面状発熱部材
JP6959749B2 (ja) 粘着シートおよび表示体
JP7369757B2 (ja) 粘着シート、構成体および構成体の製造方法
KR20170107980A (ko) 점착성 조성물, 점착제 및 점착 시트
JP2020026491A (ja) 接着剤、粘着シートおよび表示体
JP2020105360A (ja) 粘着性組成物、粘着剤、粘着シート、構成体および構成体の製造方法
JP7090128B2 (ja) 両面粘着シート、表示体および表示体の製造方法
JP7148369B2 (ja) 構成体の製造方法