WO2024120065A1 - 一种矿尾砂衍生自成型材料及其应用 - Google Patents

一种矿尾砂衍生自成型材料及其应用 Download PDF

Info

Publication number
WO2024120065A1
WO2024120065A1 PCT/CN2023/128191 CN2023128191W WO2024120065A1 WO 2024120065 A1 WO2024120065 A1 WO 2024120065A1 CN 2023128191 W CN2023128191 W CN 2023128191W WO 2024120065 A1 WO2024120065 A1 WO 2024120065A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
tailings
derived
molding material
whole
Prior art date
Application number
PCT/CN2023/128191
Other languages
English (en)
French (fr)
Inventor
吴振军
解修强
瞿双林
杨文�
黄中原
张晓兵
Original Assignee
湖南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南大学 filed Critical 湖南大学
Publication of WO2024120065A1 publication Critical patent/WO2024120065A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the technical field of industrial solid waste resource utilization and building materials, and in particular relates to a molding material derived from mine tailings, and its application in mine tailings-based molding materials and concrete.
  • epoxy floor paint has been the dominant form in recent years. It uses epoxy resin binders, amine curing agents, organic solvents and organic pigments as main ingredients. It is costly and consumes a lot of fossil resources. Volatile organic compounds cause serious air pollution. It is not water-resistant, easy to scratch and wear, and easy to peel off. It is environmentally unfriendly and has poor durability. As a result, epoxy flooring has been banned from indoor use in developed areas of the Pearl River Delta and the Yangtze River Delta. When the concrete floor begins to set, corundum is ground and rolled into the surface of the ground to obtain a water-resistant, oil-resistant, high-hardness, pollution-free inorganic floor.
  • the purpose of the present invention is to provide a self-molding material derived from mine tailings to solve the current problem of using all tailings to produce high-value resource products and lack of technology. At the same time, it does not contain volatile organic compounds, has low cost, is green and environmentally friendly, is simple to prepare, has a wide range of applications, and has high product added value. It can meet the huge demand for environmentally friendly self-leveling, self-compacting new high-cost-effective products for indoor and outdoor floors and prefabricated parts.
  • the present invention provides a mine tailings-derived molding material, characterized in that it includes whole tailings-modified micro powder TMP and a blending agent;
  • the preparation method of the whole tailings modified micro powder TMP is as follows: by weight, 500 to 900 parts of whole tailings, 100 to 500 parts of metal smelting slag and 0.05 to 0.5% of the modifier AP are mixed and ground for 20 to 60 minutes;
  • the modifier AP is composed of the following raw materials in weight percentage: 15-30% calcium citrate, 1-20% organic fluorine-based calcium sulfonate and the balance water;
  • the formulation RA is composed of the following raw materials in parts by weight: 30-80 parts of a 60wt% isopentanol polyoxyethylene ether aqueous solution TWS, 0.1-2 parts of a biomass derived fiber and thickener mixture BFT, and 0.01-0.1 parts of an air entraining agent.
  • tailings are any one or more of gold ore, tungsten ore, iron ore, copper ore, antimony ore, lead-zinc ore or limestone ore.
  • the metal smelting slag is any one or more of the water-splashed tank slag from steel smelting, copper smelting, lead-zinc smelting, tungsten smelting, and manganese smelting.
  • organic fluorinated calcium sulfonate is any one or both of calcium trifluoromethanesulfonate and calcium perfluorobutylsulfonate.
  • the preparation method of the biomass-derived fiber and thickener mixture BFT is as follows: 10 parts by weight of plant waste residue are ball-milled for 5 to 20 minutes, and then Disperse with water, add 1-5 parts of 27wt% hydrogen peroxide and stir for 10-20min; then add 5-10 parts of caustic soda flakes and stir for 10-30min at 30-50°C; finally add 5-15 parts of sodium sulfite and stir by air bubbling for 30-60min.
  • the plant waste residue is composed of waste residue from a reed processing plant and waste residue from a bamboo processing plant in a mass ratio of (1-3):(9-7).
  • the air entraining agent is a composite of K12 (i.e. sodium dodecyl sulfate) and saponin in a mass ratio of (1-10):(10-1).
  • the tailings-derived self-molding material provided by the present invention can be applied to all-tailings-based molding materials SSHPM and concrete.
  • the tailings-derived self-molding material is applied to concrete to replace slag powder, reduce cement dosage by 10-20%, improve concrete workability and promote mid- to late-stage strength growth of concrete.
  • the whole tailings-based molding material SSHPM is composed of the following raw materials in weight percentage: 50-80% whole tailings, 0-20% artificial sand, 10-20% artificial colored sand, 10-35% cement, 1-15% whole tailings modified micro powder TMP and 0.5-3% blending agent RA.
  • the whole tailings is one or more of gold, tungsten, iron, copper, antimony, lead-zinc, limestone and other mineral tailings.
  • the application method of the full tailings-based molding material SSHPM provided by the present invention is: by weight, 20 parts of the full tailings-based molding material SSHPM are mixed and stirred evenly with 1 to 5 parts of water to prepare a floor or prefabricated product that is convenient for real-time construction.
  • the present invention has used the whole tailings and artificial sand of gold, tungsten, iron, copper, antimony, lead, zinc, limestone and other mines to complete the preparation, application demonstration and performance evaluation of whole tailings modified micro powder and whole tailings-based molding materials in batches, specifically including:
  • the whole tailings modified fine powder contains 10-50% of water-splashed slag from steel smelting, copper smelting, lead-zinc smelting, tungsten smelting, and manganese smelting.
  • its activity index is between 65-90%. It can replace 10-30% of cement when used in the production of self-forming materials.
  • the water-resistance grade of the full tailings-based molding material after hardening and molding shall not be lower than P6 after 28 days of standard curing.
  • the present invention uses calcium citrate and organic fluorine-based calcium sulfonate as modifiers to transform several typical whole tailings and smelting water-splashed tank slag into micropowders with certain hydration and cementation activity (i.e. whole tailings modified micropowder TMP), which can reduce cement usage and save costs.
  • the present invention uses smelting water-splashed tank slag as a wear-resistant component to replace corundum, "turning waste into treasure", improving the hardness of the material after hardening and molding, and obtaining excellent mechanical properties while lowering the cost.
  • the whole tailings-based molding material of the present invention and its application directly uses whole tailings containing fine sand particles and micropowder as the main raw material.
  • the raw material is cheap and easy to obtain, and the screening process is eliminated, thereby reducing the energy consumption and pollution of the pre-treatment of tailings resources.
  • the present invention adopts waste residues from processing reeds and bamboos with strong renewable capacity, and prepares a fiber and thickener mixture through an emission-free one-pot process.
  • the mixture contains long bamboo fibers, short reed fibers, and thickening components derived from lignin and hemicellulose.
  • the mixture is then compounded with polyether and a composite air-entraining agent to obtain an eco-friendly formulation.
  • the toughness, water retention and workability of the molding materials can be improved.
  • the mixture is more environmentally friendly, more cost-effective, and has better compression and flexural properties than using an epoxy resin binder and a leveling agent system.
  • the present invention uses a huge amount of whole tailings from mineral processing, and can also be matched with artificial sand, cement, natural colored sand, smelting water slag, blending agents, etc. to produce a self-forming material with adjustable plasticity, which can meet the needs of diversified application scenarios. It can be used in indoor (including underground space), outdoor (including underwater) and other scenes, and can also produce high-strength prefabricated products, which is extremely Dadi improves the resource utilization rate of all tailings and reduces costs.
  • the mine tailings-derived molding material of the present invention is made of cheap, widely available raw materials, does not contain volatile organic compounds, has low cost, is green and environmentally friendly, is simple to prepare, has a wide range of applications, and has high added value.
  • the prepared full tailings-based molding material can completely replace epoxy flooring, concrete corundum flooring, cement self-leveling and other products.
  • the present invention uses tailings-derived molding materials to prepare tailings-based molding materials or concrete, which can be used simply by mixing with water.
  • the whole process production process is simple, does not require high temperature pressurization, does not require multi-layer construction and subsequent surface polishing treatment, and the obtained floor or prefabricated product has no cracks on the surface, high surface hardness and scratch resistance.
  • the self-forming system produced by the mine tailings derivative system and production process adopted in the present invention has outstanding advantages: strong plasticity, and rapid leveling and screeding forming can be completed by simple pouring combined with roller pushing and pulling; when applied to special-shaped component molds, it can also be quickly and densely filled into various parts of the structure; the mechanical properties such as flexural and compressive strength after forming are better than traditional floor and prefabricated products, especially environmental protection and low carbon, which meets the country's overall requirements for high-value resource utilization of solid waste, carbon emission reduction, and development of high-performance green building materials.
  • the flexural and compressive strengths are 6.3MPa and 27.1MPa respectively after 28 days of standard curing; the surface Mohs hardness is 5.5; the impermeability grade is P6 after 28 days of standard curing.
  • the flexural and compressive strengths are 6.9MPa and 35.2MPa respectively after 28 days of standard curing; the surface Mohs hardness is 6.7; and the impermeability grade is P8 after 28 days of standard curing.
  • the flexural and compressive strengths are 9.1MPa and 63.9MPa respectively after 28 days of standard curing; the surface Mohs hardness is 7.8; the anti-seepage grade after 28 days of standard curing is P10.
  • the flexural and compressive strengths are 7.7MPa and 56.1MPa respectively after 28 days of standard curing; the surface Mohs hardness is 7.3; and the impermeability grade is P10 after 28 days of standard curing.
  • the above mixture was molded and demolded for 24 hours before standard curing.
  • the compressive strengths after 7 days, 28 days and 56 days were measured to be 47.5 MPa, 61.6 MPa and 67.3 MPa respectively; the flexural strength after 28 days was 10.5 MPa.
  • the modified micro-powder of the whole tailings of the relevant beneficiation when used in high-grade concrete, it can achieve the function similar to that of slag micro-powder in inhibiting early hydration (the strength at 7 days is lower than 100% of the design strength) and promoting reasonable growth of strength in the later period (the strength growth from 7 to 28 days is not less than 10MPa, and the strength growth from 28 days to 56 days is between 10 and 15% of the design strength).
  • the modified micro-powder of the whole tailings of the beneficiation has abundant raw materials, is cheap and easy to obtain, has a simple processing technology and strong consistency controllability. It is a new type of environmentally friendly cementitious material with great potential to replace slag micro-powder in high-grade concrete, reduce the amount of cement in concrete, and thus reduce carbon emissions.
  • the above mixture was molded and demoulded for 24 hours and then subjected to standard curing.
  • the compressive strengths at 1 day and 56 days are 31.2 MPa, 44.7 MPa and 48.9 MPa respectively; the flexural strength at 28 days is 8.9 MPa.
  • the modified micro-powder of the whole tailings of the beneficiation has abundant raw materials, is cheap and easy to obtain, has a simple processing technology and strong consistency controllability. It is a new environmentally friendly cementitious material with great potential to replace slag micro-powder and fly ash in medium and low grade concrete, reduce the amount of cement in concrete, and thus reduce carbon emissions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

一种矿尾砂衍生自成型材料及其应用,该矿尾砂衍生自成型材料包括全尾砂改性微粉和调配剂;全尾砂改性微粉是由全尾砂、金属冶炼渣和改性剂混磨而成;改性剂包括柠檬酸钙、有机氟基磺酸钙和水;调配剂是由60wt%异戊烯醇聚氧乙烯醚水溶液、生物质衍生纤维与增稠剂混合物和K12/皂甙复合引气剂组成;且矿尾砂衍生自成型材料可用于制备全尾砂基成型材料和混凝土。

Description

一种矿尾砂衍生自成型材料及其应用 技术领域
本发明属于工业固废资源化与建筑材料技术领域,尤其涉及一种矿尾砂衍生自成型材料,及其在矿尾砂基成型材料与混凝土中的应用。
背景技术
由于全尾砂的繁琐的筛分与收集处理过程耗能费时、粉尘污染大,并受制于其功能与运距,导致全尾砂产品的市场需求量不大,我国每年在相关工业与民用领域的资源化应用总量还不足每年矿尾砂新增量的20%,离国家要求的选矿尾砂资源化利用率达到60%甚至更高还有很大差距,亟待开发直接使用不需筛分的全尾砂的新产品与技术,实现选矿全尾砂的规模化与高值化应用。
以大型地面比如地下车库为例,近些年一直是环氧地坪漆为主导的形式,以环氧树脂粘结剂、胺类固化剂、有机溶剂和有机色料为主要成分,成本高且消耗大量化石资源,挥发性有机物导致空气污染严重、不耐水、易刮擦磨损、易起皮脱落,环境不友好与耐久性差导致环氧地坪已被珠三角和长三角发达地区禁止在室内应用;在混凝土地面初凝开始时通过打磨碾压金刚砂进入地面表层,获得耐水耐油、硬度高、无污染的无机地坪,但金刚砂与混凝土界面无胶结性能、混凝土初凝时间很难把控导致混凝土金刚砂地坪会出现大量龟裂纹,随着使用年限的延长,裂纹扩大导致碎裂脱落起粉,金刚砂价格高、打磨碾压金刚砂过程需要大量人工,因此混凝土/金刚砂无机地坪应用非常有限;近几年又出现了填充极细硅砂颗粒、使用树脂与流平剂的水泥自流平地坪,虽然流平与人工找平性能有优势,但同样因为需使用树脂与流平剂等挥发性有机物,耐久性、环保性需要进一步提升,依赖高用量水泥提高强度导致其价格较高,造成单位面积应用成本偏高。因此,就建筑领域地面所需而言,市场需要开发耐久性优异、具备成 本竞争力、施工方便、环保友好、兼具美观与防护功能的新型自成型地坪材料。
发明内容
本发明的目的是提供一种矿尾砂衍生自成型材料,以解决目前应用全尾砂生产高值资源化产品和技术缺乏的问题,同时不含挥发性有机物、成本低、绿色环保、配制简单、应用广泛、产品附加值高,可满足室内外地坪与预制件对于环保自流平、自密实新高性价比产品的巨大需求。
为了实现本发明的目的,本发明提供了一种矿尾砂衍生自成型材料,其特征在于,包括全尾砂改性微粉TMP和调配剂;
所述全尾砂改性微粉TMP的制备方法为:以重量份数计,将500~900份全尾砂、100~500份金属冶炼渣和外掺量为0.05~0.5%的改性剂AP混磨20~60min,即可;
所述改性剂AP是由以下重量百分数的原料组成:15~30%柠檬酸钙、1~20%有机氟基磺酸钙和余量水;
所述调配剂RA是由以下重量份数的原料组成:30~80份60wt%异戊烯醇聚氧乙烯醚水溶液TWS、0.1~2份生物质衍生纤维与增稠剂混合物BFT和0.01~0.1份引气剂组成。
进一步的,所述全尾砂为金矿、钨矿、铁矿、铜矿、锑矿、铅锌矿或石灰石矿中的任意一种或几种。
进一步的,所述金属冶炼渣为钢铁冶炼、铜冶炼、铅锌冶炼、钨冶炼、锰冶炼水泼闷罐渣中的任意一种或几种。
进一步的,所述有机氟基磺酸钙为三氟甲基磺酸钙、全氟丁基磺酸钙中的任意一种或两种。
进一步的,所述生物质衍生纤维与增稠剂混合物BFT的制备方法为:以重量份数计,取10份植物废渣,球磨5~20min,然后用60 份水分散,加入1~5份的27wt%双氧水搅拌10~20min;再在30~50℃条件下加入5~10份片碱搅拌10~30min;最后加入5~15份亚硫酸钠空气鼓泡搅拌30~60min,即可。
进一步的,所述植物废渣是由质量比为(1~3):(9~7)的芦苇加工厂废渣屑和竹子加工厂废渣屑组成。
进一步的,所述引气剂是由质量比为(1~10):(10~1)的K12(即十二烷基硫酸钠)和皂甙复合而成。
本发明提供的矿尾砂衍生自成型材料可应用于全尾砂基成型材料SSHPM和混凝土中。矿尾砂衍生自成型材料应用于混凝土中,起到替代矿渣微粉、降低水泥用量10~20%的作用,提升混凝土和易性并促进混凝土中后期强度增长。
进一步的,所述全尾砂基成型材料SSHPM是由以下重量百分数的原料组成:50~80%全尾砂、0~20%人工砂、10~20%人工彩砂、10~35%水泥、1~15%全尾砂改性微粉TMP和0.5~3%调配剂RA。优选的,所述全尾砂为金矿、钨矿、铁矿、铜矿、锑矿、铅锌矿、石灰石矿等矿尾砂中的一种或者几种。
本发明的提供的全尾砂基成型材料SSHPM的应用方法为:以重量份数计,将20份全尾砂基成型材料SSHPM与1~5份水混合搅拌均匀,制成方便实时施工的地坪或者预制件产品。
本发明已采用金矿、钨矿、铁矿、铜矿、锑矿、铅锌矿、石灰石矿等全尾砂与人工砂批量化完成全尾砂改性微粉、全尾砂基成型材料的制备、应用示范以及性能评测,具体包括:
(1)全尾砂改性微粉中包含10~50%的钢铁冶炼、铜冶炼、铅锌冶炼、钨冶炼、锰冶炼水泼闷罐渣,参照《混凝土用复合掺合料》JG/T486-2015标准测试其活性指数介于65-90%之间,应用于自成型材料生产时可替代10~30%水泥。
(2)参照《水泥胶砂强度检验方法》GB/T 17671-1999和《混凝土强度检验评定标准》GB/T 50107-2010,全尾砂基成型材料硬化成型后经28天标准养护其抗折与抗压强度分别在5~15MPa、20~90MPa之间可调,表面莫氏硬度5~8之间可调。
(3)参照《建筑砂浆基本性能试验方法标准》JGJ/T70-2009与《混凝土质量控制标准》GB50164-2011,全尾砂基成型材料硬化成型后经28天标准养护其抗渗等级不低于P6。
本发明取得了以下有益效果:
1、本发明采用柠檬酸钙和有机氟基磺酸钙作为改性剂,将几种典型的选矿全尾砂与冶炼水泼闷罐渣改造为具备一定水化胶结活性的微粉(即全尾砂改性微粉TMP),可降低水泥用量,节约成本。本发明采用冶炼水泼闷罐渣作为耐磨组分替代金刚砂,“变废为宝”,提升了硬化成型后的材料硬度,获得优异力学性能的同时成本更低。
2、本发明及其应用的全尾砂基成型材料直接使用包含细砂颗粒与微粉的全尾砂为主要原料,原料廉价易得,免去筛分环节,降低尾砂资源化前处理能耗与污染。
3、本发明采用可再生能力强的芦苇、竹子加工废弃渣屑,经无排放一锅法制备纤维与增稠剂混合物,该混合物包含竹子长纤维与芦苇中短纤维以及木质素和半纤维素衍生的增稠组分;再与聚醚和复合引气剂复配制得生态友好调配剂,加入成型材料的生产中,可提升其韧性与保水和易性,比使用环氧树脂粘结剂与流平剂体系更环保、成本更优、抗压抗折性能更好。
4、本发明使用存量巨大的选矿全尾砂,还可搭配人工砂,与水泥、天然彩砂、冶炼水泼闷罐渣、调配剂等共同生产一种塑性可调的自成型材料,满足多样化应用场景需求,既可用于室内(包括地下空间)、室外(包括水下)等场景,还可以生产高强度预制件产品,极 大地提高全尾砂的资源化利用率,降低了成本。
5、本发明的矿尾砂衍生自成型材料,选用廉价、广泛易得的原料,不含挥发性有机物、成本低、绿色环保、配制简单、应用广泛、产品附加值高,其配制的全尾砂基成型材料可实现对环氧地坪、混凝土金刚砂地坪、水泥自流平等产品的全替代。
6、本发明使用矿尾砂衍生自成型材料制备全尾砂基成型材料或混凝土,只需简单与水调制即可使用,全流程生产工艺简单,不需要高温加压,不需要多层施工与后续表面打磨处理,并且制得的地坪或者预制件产品表面无裂纹、表面硬度高耐刮擦。
7、本发明采用矿尾砂衍生体系与制作工艺所生产的自成型体系,具备突出的优点:可塑型性强,通过简单的倾倒结合滚筒推拉即可完成快速流平与找平成型;应用于异形构件模具时,同样可快速密实填充至结构各部位;成型后的抗折抗压等机械力学性能优于传统地坪与预制件产品,特别是环保、低碳,符合国家对固废高值资源化、碳减排、发展高性能绿色建材的总体要求。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合具体实施例对本发明的矿尾砂衍生自成型材料予以说明。
实施例1
全尾砂改性微粉TMP的制备:
称取35份柠檬酸钙、8份三氟甲基磺酸钙与7份全氟丁基磺酸钙中,加入50份水超声搅拌分散制得改性剂AP。称取300份金矿全 尾砂、200份锑矿全尾砂、100份钢铁冶炼水泼闷罐渣,加入前述原料总质量的0.05%的AP,在球磨机中混磨20分钟,得到全尾砂改性微粉TMP。经检测得:45微米筛余8.5%,28天活性指数81%;不加入AP的TMP-O磨细至45微米筛余8.5%,28天活性指数为69%,活性偏低,不作后续应用。
调配剂RA的制备:
按质量比1:9取芦苇与竹子加工厂废弃渣屑10份,球磨20分钟,用60份水分散,加入5份27%浓度的双氧水搅拌10分钟,再在50℃条件下加入10份片碱搅拌30分钟,最后加入15份亚硫酸钠空气鼓泡搅拌60分钟,即得到生物质衍生纤维与增稠剂混合物BFT。配制质量浓度为60%的异戊烯醇聚氧乙烯醚水溶液TWS,取60份TWS、0.1份BFT、0.1份K12/皂甙复合引气剂(K12和皂甙的质量比为10:1),混合均匀,即得调配剂RA。
红色全尾砂基成型材料SSHPM的制备:
以质量百分含量计,将金矿与锑矿全尾砂、人工砂、鸡血红天然彩砂、P.O42.5水泥、上述制备的TMP和RA球磨混合60分钟,即制得含金矿全尾砂30%、锑矿全尾砂20%、人工砂20%、鸡血红彩砂10%、水泥15%、TMP含量4%、RA含量1%的红色全尾砂基成型材料SSHPM。
应用及性能检测:
取上述制备的20份SSHPM与5份水混合搅拌均匀,即成为可应用于地面与预制件的成品。入模硬化成型后经28天标准养护其抗折与抗压强度分别为6.3MPa、27.1MPa;表面莫氏硬度5.5;28天标准养护其抗渗等级为P6。
实施例2
全尾砂改性微粉TMP的制备:
称取15份柠檬酸钙、5份三氟甲基磺酸钙与15份全氟丁基磺酸 钙中,加入65份水超声搅拌分散制得改性剂AP。称取900份钨矿全尾砂、500份铜冶炼水泼闷罐渣,加入前述原料总质量的0.5%的AP,在立磨机中混磨60分钟得到全尾砂改性微粉TMP。经检测得:45微米筛余6.4%,28天活性指数85%。
调配剂RA的制备:
按质量比2:8取芦苇与竹子加工厂废弃渣屑10份,球磨17分钟,用60份水分散,加入4份27%浓度的双氧水搅拌17分钟,再在50℃条件下加入8份片碱搅拌26分钟,最后加入13份亚硫酸钠空气鼓泡搅拌50分钟即得到生物质衍生纤维与增稠剂混合物BFT。配制质量浓度为60%的异戊烯醇聚氧乙烯醚水溶液TWS,取80份TWS、2份BFT、0.01份K12/皂甙复合引气剂(K12和皂甙的质量比为8:2),混合均匀,即得到调配剂RA。同时制备调配剂RA-:BFT和K12/皂甙复合引气剂的配方及用量与前述RA相同,不加入TWS。
黄色全尾砂基成型材料SSHPM的制备:
以质量百分含量计,将钨矿全尾砂、柠檬黄彩砂、P.O 42.5水泥和上述制备的TMP分别与RA和RA-立磨混合50分钟,即制得含钨矿全尾砂60%、柠檬黄彩砂5%、水泥25%、TMP含量7%、RA含量3%的黄色全尾砂基成型材料SSHPM和SSHPM-。
应用及性能检测:
取上述制备的20份SSHPM与2份水混合搅拌均匀,即成为可应用于地面与预制件的成品。入模硬化成型后,经28天标准养护其抗折与抗压强度分别为6.9MPa、35.2MPa;表面莫氏硬度6.7;28天标准养护其抗渗等级为P8。
然而,不包含TWS的SSHPM-在应用时,料子渣、散,和易性差,未入模作后续测试。
实施例3
全尾砂改性微粉TMP的制备:
称取30份柠檬酸钙、10份三氟甲基磺酸钙与5份全氟丁基磺酸钙中,加入55份水超声搅拌分散制得改性剂AP。称取700份铜矿全尾砂、300份铜冶炼与200份钢铁冶炼水泼闷罐渣,加入前述原料总质量的0.3%的AP,在立磨机中混磨50分钟得到全尾砂改性微粉TMP。经检测得:45微米筛余11.6%,28天活性指数90%。
调配剂RA的制备:
按质量比4:6取芦苇与竹子加工厂废弃渣屑10份,球磨15分钟,用60份水分散,加入3份27%浓度的双氧水搅拌15分钟,再在50℃条件下加入6份片碱搅拌20分钟,最后加入10份亚硫酸钠空气鼓泡搅拌40分钟,即得到生物质衍生纤维与增稠剂混合物BFT。配制质量浓度为60%的异戊烯醇聚氧乙烯醚水溶液TWS,取50份TWS、0.5份BFT、0.05份K12/皂甙复合引气剂(K12和皂甙的质量比为6:4),混合均匀,即得到调配剂RA。同时制备对比调配剂RA:不加入BFT,而TWS与K12/皂甙复合引气剂的配法及用量与前述RA相同。
绿色全尾砂基成型材料SSHPM的制备:
以质量百分含量计,将铜矿全尾砂、墨绿色彩砂、P.I52.5水泥和上述制备的TMP分别与RA和RA-立磨混合40分钟,即制得含铜矿全尾砂50%、墨绿色彩砂10%、水泥30%、TMP含量6%、RA含量4%的绿色全尾砂基成型材料SSHPM和SSHPM-。
应用及其性能检测:
分别取上述制备的20份SSHPM和SSHPM-与1.5份水混合搅拌均匀,即成为可应用于地面与预制件的成品。入模硬化成型后,经28天标准养护其抗折与抗压强度分别为9.1MPa、63.9MPa;表面莫氏硬度7.8;28天标准养护其抗渗等级为P10。
基于SSHPM-的自成型料泌水率明显(超过5%),不符合工程应 用要求,未入模作进一步测试。
实施例4
全尾砂改性微粉TMP的制备:
称取20份柠檬酸钙、12份三氟甲基磺酸钙与8份全氟丁基磺酸钙中,加入60份水超声搅拌分散制得改性剂AP。称取600份铁矿全尾砂、300份石灰石矿尾矿屑、200份钢铁冶炼水泼闷罐渣,加入前述原料总质量的0.2%的AP,在立磨机中混磨45分钟,得到全尾砂改性微粉TMP。经检测得:45微米筛余10.2%,28天活性指数76%。
调配剂RA的制备:
按质量比7:3取芦苇与竹子加工厂废弃渣屑10份,球磨10分钟,用60份水分散,加入2份27%浓度的双氧水搅拌12分钟,再在50℃条件下加入5份片碱搅拌15分钟,最后加入8份亚硫酸钠空气鼓泡搅拌30分钟,即得到生物质衍生纤维与增稠剂混合物BFT。配制质量浓度为60%的异戊烯醇聚氧乙烯醚水溶液TWS,取45份TWS、0.3份BFT、0.03份K12/皂甙复合引气剂(K12和皂甙的质量比为6:4),混合均匀,即得到调配剂RA。
绿色全尾砂基青成型材料SSHPM的制备:
以质量百分含量计,将铁矿全尾砂、宝石绿彩砂、P.I 52.5水泥、上述制备的TMP和RA立磨混合30分钟,即制得含铜矿全尾砂60%、宝石绿彩砂5%、水泥30%、TMP含量4%、RA含量1%的绿色全尾砂基青成型材料SSHPM。
应用及其性能检测:
取上述制备的20份SSHPM与3份水混合搅拌均匀,即成为可应用于地面与预制件的成品。入模硬化成型后,经28天标准养护其抗折与抗压强度分别为7.7MPa、56.1MPa;表面莫氏硬度7.3;28天标准养护其抗渗等级为P10。
实施例5
C50泵送混凝土生产:
称取实例1中制备的90份TMP、2份RA,然后与400份P.O 42.5水泥、700份细度模数2.9的花岗岩机制砂、1100份5-20连续级配花岗岩碎石、158份水、6份聚羧酸减水剂一起预拌2分钟,出机得混料。该混料2小时的坍落度/扩展度分别为245/680mm、235/655mm,倒坍时间12s,无抓底和泌水现象。
将上述混料入模成型,24小时脱模后标准养护,测得7天、28天、56天抗压强度分别为47.5MPa、61.6MPa、67.3MPa;28天抗折强度为10.5MPa。
从上述的实验结果表明,相关选矿全尾砂改性微粉在高标号混凝土中应用时,实现了类似于矿渣微粉抑制早期水化过快(7天强度低于设计强度的100%),促进后期强度合理增长(7到28天强度增长不低于10MPa、28天到56天强度增长介于设计强度的10~15%之间)的功能。相比于矿渣微粉,选矿全尾砂改性微粉的原材料丰富、廉价易得、加工工艺简单且一致性调控性强,是极具潜力在高标号混凝土中应用替代矿渣微粉、降低混凝土中水泥用量从而降低碳排放的新型环保胶凝材料。
实施例6
C35水下泵送混凝土生产:
称取实例3中制备的80份TMP、3份RA,然后与300份P.O 42.5水泥、730份细度模数2.7的石灰石机制砂、1050份5-25连续级配石灰石碎石、160份水、10份聚羧酸减水剂一起预拌2分钟,出机得混料。该混料2小时的坍落度/扩展度分别为230/620mm、225/610mm,无抓底、泌水、露石现象。
将上述混料入模成型,24小时脱模后标准养护,测得7天、28 天、56天抗压强度分别为31.2MPa、44.7MPa、48.9MPa;28天抗折强度为8.9MPa。
从上述的实验结果表明,表明相关选矿全尾砂改性微粉在水下混凝土中应用时,实现了类似于矿渣微粉与粉煤灰抑制早期水化过快(7天强度低于设计强度的100%),促进后期强度合理增长(7到28天强度增长不低于10MPa、28天到56天强度增长介于设计强度的10~15%之间)的功能,并使水下混凝土在较长时间具备出色的流动性、包裹性、保水性,凝结时间有效延长。相比于矿渣微粉和粉煤灰,选矿全尾砂改性微粉的原材料丰富、廉价易得、加工工艺简单且一致性调控性强,是极具潜力在中低标号混凝土中应用替代矿渣微粉与粉煤灰、降低混凝土中水泥用量从而降低碳排放的新型环保胶凝材料。
以上所述实施例的各技术特征可以进行任意组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (8)

  1. 一种矿尾砂衍生自成型材料,其特征在于,包括全尾砂改性微粉和调配剂;
    所述全尾砂改性微粉的制备方法为:以重量份数计,将500~900份全尾砂、100~500份金属冶炼渣和外掺量为0.05~0.5%的改性剂混磨20~60min,即可;
    所述改性剂是由以下重量百分数的原料组成:15~30%柠檬酸钙、1~20%有机氟基磺酸钙和余量水;
    所述调配剂是由以下重量份数的原料组成:30~80份60wt%异戊烯醇聚氧乙烯醚水溶液、0.1~2份生物质衍生纤维与增稠剂混合物和0.01~0.1份引气剂组成。
    所述生物质衍生纤维与增稠剂混合物的制备方法为:以重量份数计,取10份植物废渣,球磨5~20min,然后用60份水分散,加入1~5份的27wt%双氧水搅拌10~20min;再在30~50℃条件下加入5~10份片碱搅拌10~30min;最后加入5~15份亚硫酸钠空气鼓泡搅拌30~60min,即可。
    所述植物废渣是由质量比为(1~3):(9~7)的芦苇加工厂废渣屑和竹子加工厂废渣屑组成。
  2. 根据权利要求1所述的矿尾砂衍生自成型材料,其特征在于,所述全尾砂为金矿、钨矿、铁矿、铜矿、锑矿、铅锌矿或石灰石矿中的任意一种或几种。
  3. 根据权利要求1所述的矿尾砂衍生自成型材料,其特征在于,所述金属冶炼渣为钢铁冶炼、铜冶炼、铅锌冶炼、钨冶炼、锰冶炼水泼闷罐渣中的任意一种或几种。
  4. 根据权利要求1所述的矿尾砂衍生自成型材料,其特征在于,所述有机氟基磺酸钙为三氟甲基磺酸钙、全氟丁基磺酸钙中的任意一 种或两种。
  5. 根据权利要求1所述的矿尾砂衍生自成型材料,其特征在于,所述引气剂是由质量比为(1~10):(10~1)的K12和皂甙复合而成。
  6. 一种如权利要求1-5任一项所述的矿尾砂衍生自成型材料的应用,其特征在于,应用于全尾砂基成型材料和混凝土。
  7. 根据权利要求6所述的矿尾砂衍生自成型材料的应用,其特征在于,所述全尾砂基成型材料是由以下重量百分数的原料组成:50~80%全尾砂、0~20%人工砂、10~20%人工彩砂、10~35%水泥、1~15%全尾砂改性微粉和0.5~3%调配剂。
  8. 根据权利要求7所述的矿尾砂衍生自成型材料的应用,其特征在于,将20份全尾砂基成型材料与1~5份水混合搅拌均匀,制成方便实时施工的地坪或者预制件产品。
PCT/CN2023/128191 2022-12-06 2023-10-31 一种矿尾砂衍生自成型材料及其应用 WO2024120065A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211557223.9 2022-12-06
CN202211557223.9A CN115557727B (zh) 2022-12-06 2022-12-06 一种矿尾砂衍生自成型材料及其应用

Publications (1)

Publication Number Publication Date
WO2024120065A1 true WO2024120065A1 (zh) 2024-06-13

Family

ID=84769796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128191 WO2024120065A1 (zh) 2022-12-06 2023-10-31 一种矿尾砂衍生自成型材料及其应用

Country Status (2)

Country Link
CN (1) CN115557727B (zh)
WO (1) WO2024120065A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557727B (zh) * 2022-12-06 2023-03-14 湖南大学 一种矿尾砂衍生自成型材料及其应用
CN116217166A (zh) * 2023-02-21 2023-06-06 湘潭大学 一种利用改性金矿尾砂作为集料制备混凝土砌块的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141051A1 (en) * 2013-03-14 2014-09-18 The Catholic University Of America High-strength geopolymer composite cellular concrete
CN110423079A (zh) * 2019-08-26 2019-11-08 中冶南方都市环保工程技术股份有限公司 一种铁尾矿水硬性道路基层材料及其制备方法
CN110590222A (zh) * 2019-10-12 2019-12-20 长沙矿山研究院有限责任公司 一种低密度高强度全尾砂料浆的充填方法
CN113800859A (zh) * 2021-10-22 2021-12-17 山东安实绿色开采技术发展有限公司 一种全尾砂胶结充填专用胶固粉及其制备方法
CN115259732A (zh) * 2021-04-30 2022-11-01 广东清大同科环保技术有限公司 一种尾矿制备的建筑材料
CN115557727A (zh) * 2022-12-06 2023-01-03 湖南大学 一种矿尾砂衍生自成型材料及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049115A1 (en) * 1997-04-24 1998-11-05 Sungeric International Inc. High pulp density, fast setting and high early strength backfill method and material
CN103664048B (zh) * 2013-12-03 2015-09-30 杨峰 一种砂浆增强剂
CN110228990A (zh) * 2019-07-08 2019-09-13 山东大学 一种全固废高流态似膏体充填材料的制备方法
CN113292260A (zh) * 2021-05-28 2021-08-24 中国矿业大学(北京) 一种高强度矿山充填固废互协复合胶凝剂及其制备方法、使用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141051A1 (en) * 2013-03-14 2014-09-18 The Catholic University Of America High-strength geopolymer composite cellular concrete
CN110423079A (zh) * 2019-08-26 2019-11-08 中冶南方都市环保工程技术股份有限公司 一种铁尾矿水硬性道路基层材料及其制备方法
CN110590222A (zh) * 2019-10-12 2019-12-20 长沙矿山研究院有限责任公司 一种低密度高强度全尾砂料浆的充填方法
CN115259732A (zh) * 2021-04-30 2022-11-01 广东清大同科环保技术有限公司 一种尾矿制备的建筑材料
CN113800859A (zh) * 2021-10-22 2021-12-17 山东安实绿色开采技术发展有限公司 一种全尾砂胶结充填专用胶固粉及其制备方法
CN115557727A (zh) * 2022-12-06 2023-01-03 湖南大学 一种矿尾砂衍生自成型材料及其应用

Also Published As

Publication number Publication date
CN115557727A (zh) 2023-01-03
CN115557727B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN107235684B (zh) 一种再生细骨料超高性能混凝土及其使用方法
CN108017345A (zh) 一种超高性能水泥基修补材料及其制备方法
WO2024120065A1 (zh) 一种矿尾砂衍生自成型材料及其应用
CN102718423B (zh) 活化低等粉煤灰复合材料制备方法
CN111732395B (zh) 一种废旧混凝土基再生干粉砌筑砂浆及其制备方法
CN110540374A (zh) 一种铅锌尾矿—冶炼渣复合水泥及其制备方法
CN113372029B (zh) 一种低碳型超硫酸盐水泥及其制备方法,以及水泥砂浆
CN112159176A (zh) 一种掺入废玻璃的耐磨自流平水泥砂浆及其制备方法
CN114634338A (zh) 一种沙漠风积沙高延性水泥基复合材料及其制备方法
CN110655375A (zh) 内墙抹灰砂浆材料、其制备方法及应用
CN111003966B (zh) 一种抗硫酸盐低碱硅酸盐水泥增强剂及其应用
CN101279832A (zh) 一种混合粗集料的复合矿物掺合料混凝土
CN115893912A (zh) 一种低碳型地聚物砂浆修复材料及其制备方法
CN111253130A (zh) 一种高强耐热自修复混凝土及其制备方法
CN114573282A (zh) 一种竹材增强地聚物复合板及其制备方法
CN1258653A (zh) 复合硅酸盐水泥
NL2027168B1 (en) Steel slag powder-ferromanganese ore slag powder composite admixture and preparation process thereof
CN101838128B (zh) 绿色环保水泥基复合材料
CN109650771A (zh) 一种减缩抗裂增强剂、c50机制砂混凝土及制备方法
CN108689644A (zh) 一种速凝高强度混凝土及其制备方法
CN110698218A (zh) 一种固废免烧陶砂和超高性能混凝土及其制备方法和应用
CN115745519A (zh) 一种基于膨胀土和工业固废的泡沫轻质土及其制备方法
CN117209222A (zh) 一种建筑3d打印材料的制备方法
CN108249862B (zh) 一种高硬度建筑材料及制备方法
CN101774221B (zh) 掺矿渣微粉生产钢筋混凝土轻质新型墙体材料的方法