WO2024119932A1 - 预充电路及其控制方法、电池管理***、电动汽车 - Google Patents

预充电路及其控制方法、电池管理***、电动汽车 Download PDF

Info

Publication number
WO2024119932A1
WO2024119932A1 PCT/CN2023/117722 CN2023117722W WO2024119932A1 WO 2024119932 A1 WO2024119932 A1 WO 2024119932A1 CN 2023117722 W CN2023117722 W CN 2023117722W WO 2024119932 A1 WO2024119932 A1 WO 2024119932A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
switch
signal
capacitor
charge
Prior art date
Application number
PCT/CN2023/117722
Other languages
English (en)
French (fr)
Inventor
欧阳文斌
熊本波
Original Assignee
欣旺达动力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欣旺达动力科技股份有限公司 filed Critical 欣旺达动力科技股份有限公司
Publication of WO2024119932A1 publication Critical patent/WO2024119932A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of charging technology, and in particular to a pre-charging circuit and a control method thereof, a battery management system, and an electric vehicle.
  • a passive pre-charging scheme is generally adopted, that is, a pre-charging resistor is set in the charging circuit, and the bus capacitor is pre-charged through the current limiting effect of the pre-charging resistor.
  • the pre-charging resistor will generate more heat, which will affect the service life of the pre-charging resistor itself on the one hand, and may cause thermal failure of the pre-charging resistor and cause fire on the other hand.
  • the heat dissipated by the pre-charging resistor will also cause damage to the components around it, affecting the safety performance of the battery system; it will also increase the power consumption of the battery system, and the energy-saving performance of the battery system is poor.
  • the present application aims to solve at least one of the technical problems existing in the related art.
  • the present application proposes a pre-charging circuit and a control method thereof, a battery management system, and an electric vehicle, which can improve the pre-charging efficiency, reduce the heat generated during the pre-charging process, reduce the power consumption of the battery system, and improve the safety and energy saving of the battery system.
  • an embodiment of the present application provides a pre-charging circuit, comprising: a capacitor; a power battery, wherein the positive electrode of the power battery is connected to the first end of the capacitor; a pre-charging inductor, wherein the first end of the pre-charging inductor is connected to the first end of the capacitor, and the second end of the pre-charging inductor is connected to the second end of the capacitor; a pre-charging switch, which is connected in series between the negative electrode of the power battery and the first end of the pre-charging inductor; a switch control module, wherein the input end of the switch control module is connected to the negative electrode of the power battery, and the output end of the switch control module is connected to the pre-charging switch, and is used to obtain a circuit signal in the pre-charging circuit, compare the circuit signal with a reference signal, and obtain a voltage value comparison result.
  • the on and off of the pre-charge switch is controlled according to the voltage value comparison result and the clock signal.
  • the switch control module compares the circuit signal with the reference signal to obtain a voltage comparison result, and controls the on and off of the pre-charging switch according to the voltage comparison result and the clock signal.
  • a first current loop is formed to pre-charge the capacitor by releasing energy from the power battery;
  • a second current loop is formed to pre-charge the capacitor by releasing energy from the pre-charging inductor.
  • the on and off of the pre-charging switch is controlled by the voltage comparison result and the clock signal, and the first current loop and the second current loop are switched by the pre-charging switch, so that the first current loop and the second current loop are alternately pre-charged for the capacitor until the voltage value at both ends of the capacitor is the same as the voltage value at both ends of the power battery.
  • the pre-charging safety can be ensured while improving the pre-charging efficiency; and by eliminating the use of the pre-charging resistor, the heat generated during the pre-charging process is reduced, the power consumption of the battery system is reduced, and the safety and energy saving of the battery system are improved; the integration of the pre-charging circuit is improved, which is beneficial to the layout of the battery management system.
  • the switch control module includes: a signal detection and amplification module, which is connected in series between the negative electrode of the power battery and the pre-charging switch, and is used to obtain the circuit signal, amplify the circuit signal and output an amplified signal; a comparator, wherein the non-inverting input terminal of the comparator is connected to the output terminal of the signal detection and amplification module, and the inverting input terminal of the comparator is connected to a reference signal source, and is used to receive and compare the amplified signal with the reference signal, and output a voltage value comparison result; an OR-NOT logic module, wherein the two logic input terminals of the OR-NOT logic module are respectively connected to the output terminal of the comparator and the output terminal of the clock generation module, and the output terminal of the OR-NOT logic module is connected to the pre-charging switch, and is used to control the on and off of the pre-charging switch according to the voltage value comparison result and the clock signal.
  • a signal detection and amplification module which is connected in series between
  • the pre-charging circuit further includes: a battery pack main negative switch connected between the negative electrode of the power battery and the second end of the capacitor.
  • the pre-charging circuit further includes: a first freewheeling protection module connected between the first end of the pre-charging inductor and the first end of the capacitor, the first freewheeling protection module being used for freewheeling a first current flowing from the first end of the pre-charging inductor to the first end of the capacitor.
  • the pre-charging circuit further includes: a second freewheeling protection module connected between the pre-charging switch and the first end of the pre-charging inductor, the second freewheeling protection module being used for freewheeling a second current flowing from the first end of the pre-charging inductor to the pre-charging switch.
  • the signal detection and amplification module includes a current detection resistor and a signal amplifier, the current detection resistor is connected in series between the negative electrode of the power battery and the pre-charging switch, and the signal amplifier is connected in parallel with the current detection resistor.
  • an embodiment of the present application provides a control method for a pre-charging circuit, which is applied to the pre-charging circuit described in the first aspect, and the method includes: obtaining a circuit signal in the pre-charging circuit; comparing the circuit signal and a reference signal to obtain a voltage value comparison result; controlling the on and off of a pre-charging switch according to the voltage value comparison result and a clock signal, wherein, when the voltage value comparison result is that the voltage value of the circuit signal is less than the voltage threshold of the reference signal and the clock signal is at a low level, the pre-charging switch is controlled to be turned on to form a first current loop in which the power battery releases energy to pre-charge the capacitor; when the voltage value comparison result is that the voltage value of the circuit signal is greater than the voltage threshold of the reference signal, the pre-charging switch is controlled to be turned off to form a second current loop in which the pre-charging inductor releases energy to pre-charge the capacitor.
  • the pre-charging switch when the voltage value comparison result is that the voltage value of the circuit signal is less than the voltage threshold of the reference signal and the clock signal is at a low level, the pre-charging switch is controlled to be turned on to form a first current loop in which the power battery releases energy to pre-charge the capacitor; when the voltage value comparison result is that the voltage value of the circuit signal is greater than the voltage threshold of the reference signal, the pre-charging switch is controlled to be turned off to form a second current loop in which the pre-charging induction releases energy to pre-charge the capacitor.
  • the on-off of the pre-charging switch is controlled by the voltage value comparison result and the clock signal, and the first current loop and the second current loop are switched by the pre-charging switch, so that the first current loop and the second current loop alternately pre-charge the capacitor until the voltage value at both ends of the capacitor is the same as the voltage value at both ends of the power battery, that is, through the scheme of the embodiment of the present application, the pre-charging efficiency can be improved while ensuring the safety of pre-charging; and by eliminating the use of the pre-charging resistor, the heat generated during the pre-charging process is reduced, the power consumption of the battery system is reduced, and the safety and energy saving of the battery system are improved; the integration of the pre-charging circuit is improved, which is beneficial to the layout of the battery management system.
  • the pre-charging circuit also includes: a main negative switch of the battery pack connected between the negative electrode of the power battery and the second end of the capacitor, and the method also includes: when the voltage value across the capacitor is equal to the voltage value of the power battery, closing the main negative switch of the battery pack to complete the active pre-charging process.
  • an embodiment of the present application provides a battery management system, including: a pre-charging circuit as described in the first aspect.
  • an embodiment of the present application provides an electric vehicle, comprising: a battery management system as described in the third aspect.
  • FIG1 is a schematic diagram of a pre-charging circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a pre-charging circuit according to another embodiment of the present invention.
  • FIG3 is a schematic diagram of a specific structure of a pre-charging circuit provided in some other embodiments of the present application.
  • FIG4 is a truth table of a NOR logic module provided by an embodiment of the present application.
  • FIG5 is a flow chart of a method for controlling a pre-charging circuit according to an embodiment of the present application.
  • Figure numerals power battery 100, capacitor Cx, pre-charge inductor L, pre-charge switch 200, switch control module 300, signal detection and amplification module 310, current detection resistor 311, signal amplifier 312, comparator 320, reference signal source 330, NOR logic module 340, clock generation module 350, battery pack main positive switch K1, battery pack main negative switch K2, first freewheeling protection module 400, first diode D1, second short-circuit protection unit 410, third short-circuit protection unit 420, second freewheeling protection module 500, second diode D2, first short-circuit protection unit 600, drive module 700, active disconnection protection module 800.
  • “several” means one or more, “more” means more than two, “greater than”, “less than”, “exceed”, etc. are understood to exclude the number itself, and “above”, “below”, “within”, etc. are understood to include the number itself. If there is a description of "first” or “second”, it is only used for the purpose of distinguishing technical features, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features or implicitly indicating the order of the indicated technical features.
  • the present application proposes a pre-charging circuit and a control method thereof, a battery management system, and an electric vehicle, which can control the on and off of a pre-charging switch through a voltage value comparison result and a clock signal, and switch the first current loop and the second current loop through the pre-charging switch, so that the first current loop and the second current loop alternately pre-charge the capacitor until the voltage value at both ends of the capacitor is the same as the voltage value at both ends of the power battery.
  • the pre-charging efficiency can be improved while ensuring the safety of pre-charging; and by eliminating the use of pre-charging resistance, the heat generated during the pre-charging process is reduced, the power consumption of the battery system is reduced, and the safety and energy saving of the battery system are improved; the integration of the pre-charging circuit is improved, which is beneficial to the layout of the battery management system.
  • the present embodiment provides a pre-charging circuit, including: a capacitor Cx, a power battery 100, a pre-charging inductor L, a pre-charging switch 200, and a switch control module 300.
  • the positive electrode of the power battery 100 is connected to the first end of the capacitor Cx; the first end of the pre-charging inductor L is connected to the first end of the capacitor Cx, and the second end of the pre-charging inductor L is connected to the capacitor Cx.
  • the second end of Cx is connected; the pre-charging switch 200 is connected in series between the negative electrode of the power battery 100 and the first end of the pre-charging inductor L; the input end of the switch control module 300 is connected to the negative electrode of the power battery 100, and the output end of the switch control module 300 is connected to the pre-charging switch 200.
  • the switch control module 300 is used to obtain the circuit signal in the pre-charging circuit, compare the circuit signal with the reference signal to obtain a voltage value comparison result, and control the on and off of the pre-charging switch according to the voltage value comparison result and the clock signal.
  • the switch control module 300 compares the circuit signal with the reference signal to obtain a voltage value comparison result, and controls the on and off of the pre-charging switch 200 according to the voltage value comparison result and the clock signal.
  • a first current loop is formed in which the power battery 100 releases energy to pre-charge the capacitor Cx;
  • a second current loop is formed in which the pre-charging inductor L releases energy to pre-charge the capacitor Cx.
  • the on and off of the pre-charging switch 200 is controlled by the voltage value comparison result and the clock signal, and the first current loop and the second current loop are switched by the pre-charging switch 200, so that the first current loop and the second current loop alternately pre-charge the capacitor Cx until the voltage value across the capacitor Cx is the same as the voltage value across the power battery 100.
  • the pre-charging efficiency can be improved while ensuring the safety of pre-charging; and by eliminating the use of the pre-charging resistor, the heat generated during the pre-charging process is reduced, the power consumption of the battery system is reduced, and the safety and energy saving of the battery system are improved; the integration of the pre-charging circuit is improved, which is beneficial to the layout of the battery management system.
  • the switch control module 300 includes: a signal detection and amplification module 310, a comparator 320, a reference signal source 330, a non-OR logic module 340 and a clock generation module 350.
  • the signal detection and amplification module 310 is connected in series between the negative electrode of the power battery 100 and the pre-charging switch 200, and is used to obtain the circuit signal, amplify the circuit signal and output the amplified signal;
  • the in-phase input terminal of the comparator 320 is connected to the output terminal of the signal detection and amplification module 310, and the inverting input terminal of the comparator 320 is connected to the reference signal source 330, and is used to receive and compare the amplified signal with the reference signal, and output the voltage value comparison result;
  • the two logic input terminals of the non-OR logic module 340 are respectively connected to the output terminal of the comparator 320 and the output terminal of the clock generation module 350, and the output terminal of the non-OR logic module 340 is connected to the pre-charging switch 200, and is used to control the on and off of the pre-charging switch 200 according to the voltage value comparison result and the clock signal.
  • the pre-charging circuit further includes: a battery pack main positive switch K1 and a battery pack main negative switch K2.
  • the battery pack main positive switch K1 is connected between the positive electrode of the power battery 100 and the first end of the capacitor Cx
  • the battery pack main negative switch K2 is connected between the negative electrode of the power battery 100 and the second end of the capacitor Cx.
  • the signal detection and amplification module 310 obtains the circuit signal in the pre-charging circuit, amplifies the circuit signal and outputs the amplified signal, and outputs the amplified signal to the non-inverting input terminal of the comparator 320.
  • the inverting input terminal of the comparator 320 is connected to the reference signal source 330, wherein the reference signal source 330 is used to output a reference signal to the comparator 320, and the voltage value of the reference signal It is the maximum voltage threshold allowed to pass in the precharge circuit.
  • the comparator 320 compares the voltage thresholds of the amplified signal and the reference signal, and outputs the voltage value comparison result to the NOR logic module 340. Specifically, when the output voltage value comparison result is that the voltage value of the amplified signal is less than the voltage threshold, the comparator 320 outputs a low level (logical value is 0) to the NOR logic module 340. When the voltage value comparison result is that the voltage value of the amplified signal is greater than the voltage threshold, the comparator 320 outputs a high level (logical value is 1) to the NOR logic module 340.
  • the OR logic module 340 controls the on and off of the pre-charge switch 200 according to the voltage value comparison result and the clock signal.
  • the OR logic module 340 when the low level output by the comparator 320 is received (that is, the voltage value comparison result is that the voltage value of the amplified signal is less than the voltage threshold) and the clock signal is low, the OR logic module 340 outputs a high level (logical value is 1), and the high level signal controls the pre-charge switch 200 to close and conduct, forming a first current loop in which the power battery 100 releases energy to pre-charge the capacitor Cx; when the high level output by the comparator 320 is received (that is, the voltage value comparison result is that the voltage value of the amplified signal is greater than the voltage threshold), regardless of whether the clock signal outputs a high level or a low level, the OR logic module 340 outputs a low level (logical value is 0), and the low level signal controls the pre-charge switch 200 to open, forming a second current loop in which the pre-charge inductor L releases energy to pre-charge the capacitor Cx.
  • the on and off of the pre-charging switch 200 is controlled by the voltage value comparison result and the clock signal, and the first current loop and the second current loop are switched by the pre-charging switch 200, so that the first current loop and the second current loop alternately pre-charge the capacitor Cx until the voltage value across the capacitor Cx is the same as the voltage value across the power battery 100.
  • the pre-charging efficiency can be improved while ensuring the safety of pre-charging; and by eliminating the use of pre-charging resistors, the heat generated during the pre-charging process is reduced, the power consumption of the battery system is reduced, and the safety and energy saving of the battery system are improved; the integration of the pre-charging circuit is improved, which is beneficial to the layout of the battery management system.
  • the main positive switch K1 of the battery pack is a main positive relay of the battery pack.
  • the main positive switch K1 of the battery pack can be controlled by the battery management system, and the main positive switch K1 of the battery pack can be closed under the control of the battery management system to conduct the circuit between the positive electrode of the power battery 100 and the first end of the capacitor Cx.
  • FIGS. 1 and 2 do not constitute limitations on the embodiments of the present application and may include more or fewer components than shown in the diagrams, or combinations of certain components, or different arrangements of components.
  • the two logic input terminals of the NOR logic module 340 are respectively connected to the output terminal of the comparator 320 and the output terminal of the clock generation module 350, and the output terminal of the NOR logic module 340 is connected to the pre-charge switch 200.
  • the output terminal of the comparator 320 outputs a logic value (1 or 0) representing the voltage value comparison result
  • the clock generation module 350 is used to output a clock signal, which periodically switches between a high level and a low level (i.e., switches between 1 and 0); after the logic operation of the NOR logic module 340, the NOR logic module 340 outputs a level signal with a logic value of 1 or 0 to control the pre-charge.
  • the switch 200 is turned on and off.
  • FIG4 is a truth table of the NOR logic module provided by an embodiment of the present application;
  • A represents the level value of the clock signal output by the clock generation module 350,
  • B represents the logic value representing the voltage value comparison result output by the output terminal of the comparator 320, and
  • Y represents the logic value output by the NOR logic module 340.
  • the NOR logic module 340 controls the pre-charge switch 200 to be turned on, and when the voltage value of the amplified signal is less than the voltage threshold and the clock signal outputs a high level, the NOR logic module 340 controls the pre-charge switch 200 to be turned off.
  • the periodic clock signal makes the pre-charge switch 200 on and off periodic, the average current of each switching cycle is the same, the inductor current ripple is the same, and the capacitor voltage increases linearly, which is beneficial to improve the stability of the system.
  • the non-logic module 340 controls the pre-charge switch 200 to disconnect, ensuring that the current loop in the active pre-charge circuit is less than the preset maximum pre-charge current, so as to reduce the heat generated during the pre-charge process, reduce the power consumption of the battery system, and improve the safety and energy saving of the battery system.
  • the clock generation module 350 fixedly outputs a clock signal with a certain frequency, and the frequency of the clock signal is between 10 kHz and 60 kHz.
  • the pre-charge switch 200 uses a metal oxide semiconductor field effect transistor, i.e., a MOS tube.
  • the drain of the MOS tube is connected to the first end of the pre-charge inductor L, the source of the MOS tube is connected to the negative electrode of the power battery 100 through the signal detection and amplification module 310, and the gate of the MOS tube is connected to the output end of the NOR logic module 340 through the driving module 700.
  • the pre-charge switch 200 is turned on or off under the control of the NOR logic module 340. When the pre-charge switch 200 is turned on, a first current loop is formed in which the power battery 100 releases energy to pre-charge the capacitor Cx.
  • the current on the first current loop has a first flow direction, which is from the positive electrode of the power battery 100 to the capacitor Cx, the pre-charge inductor L, the pre-charge switch 200, the signal detection and amplification module 310, and the negative electrode of the power battery 100 in sequence; when the pre-charge switch 200 is turned off, a second current loop is formed in which the pre-charge inductor L releases energy to pre-charge the capacitor Cx.
  • the current on the second current loop has a second flow direction, which is from the first end of the pre-charge inductor L to the capacitor Cx and the second end of the pre-charge inductor L in sequence.
  • the first current loop and the second current loop are switched on and off by the pre-charge switch 200, so that the first current loop and the second current loop alternately pre-charge the capacitor Cx until the voltage value at both ends of the capacitor Cx is the same as the voltage value at both ends of the power battery 100. It can be understood that the voltage value output at both ends of the power battery 100 is Vbat.
  • the first current loop is a current loop in which the power battery 100 pre-charges the capacitor Cx when the pre-charging switch 200 is turned on during the pre-charging process. In the process of pre-charging the capacitor Cx, the pre-charging inductor L is also charged. able.
  • the second current loop is a current loop formed by the self-inductance effect of the inductor when the pre-charge switch 200 is disconnected during the pre-charge process, and is an energy release loop formed by the energy release of the pre-charge inductor L.
  • the inductance value of the pre-charge inductor L should be reasonably determined. When the inductance value of the pre-charge inductor L is too small, it is easy to cause the inductor to saturate due to switch delay, resulting in overcurrent and burning of the device; when the inductance value of the pre-charge inductor L is too large, the volume of the pre-charge inductor L is large, increasing the occupied space and production cost of the pre-charge circuit. This application does not impose specific restrictions on the inductance value of the pre-charge inductor L, and the inductance value can be designed according to actual conditions.
  • the pre-charge protection circuit also includes a first short-circuit protection unit 600 connected in series between the second end of the pre-charge inductor L and the second end of the capacitor Cx.
  • the first short-circuit protection unit 600 is used to disconnect the line in time to protect the circuit and components when the circuit is short-circuited.
  • the pre-charging circuit further includes: a battery pack main negative switch K2 connected between the negative electrode of the power battery 100 and the second end of the capacitor Cx.
  • the battery pack main negative switch K2 is a battery pack main negative relay.
  • the battery pack main negative switch K2 is controlled by the battery management system, and the battery pack main negative switch K2 can be closed under the control of the battery management system to conduct the circuit between the negative electrode of the power battery 100 and the second end of the capacitor Cx.
  • the battery pack main negative switch K2 is closed under the control of the battery management system to complete the active pre-charging process and form a complete charging path for the power battery 100.
  • the pre-charge circuit further includes: a first freewheeling protection module 400 connected between the first end of the pre-charge inductor L and the first end of the capacitor Cx, and the first freewheeling protection module 400 is used to freewheel the first current flowing from the first end of the pre-charge inductor L to the first end of the capacitor Cx.
  • the first freewheeling protection module 400 includes a first diode D1, a second short-circuit protection unit 410 and a third short-circuit protection unit 420, the anode of the first diode D1 is connected to the first end of the pre-charge inductor L, and the cathode of the first diode D1 is connected to the first end of the capacitor Cx through the second short-circuit protection unit 410 and the third short-circuit protection unit 420 connected in series.
  • the second short-circuit protection unit 410 and the third short-circuit protection unit 420 are both used to disconnect the circuit in time to protect the circuit and components in the event of a short circuit in the circuit.
  • the pre-charging circuit also includes: an active disconnection protection module 800 connected between the power battery 100 and the main positive switch K1 of the battery pack.
  • the active disconnection protection module 800 is used to actively disconnect the circuit when the current is too large, thereby protecting the power battery 100 and further improving the safety of the pre-charging circuit.
  • the active disconnection protection module 800 uses an active disconnection protection fuse.
  • the pre-charging circuit further includes: a pre-charging switch 200 connected to the The second freewheeling protection module 500 between the first end of the pre-charge inductor L and the pre-charge switch 200 is used to freewheel the second current flowing from the first end of the pre-charge inductor L to the pre-charge switch 200.
  • the second freewheeling protection module 500 includes a second diode D2, the anode of the second diode D2 is connected to the first end of the pre-charge inductor L, and the cathode of the second diode D2 is connected to the pre-charge switch 200.
  • the direction in which the current flows from the first end of the pre-charge inductor L to the pre-charge switch 200 is the conduction direction of the second diode D2, and the second diode D2 is used to freewheel the current of the first current loop.
  • the signal detection and amplification module 310 includes a current detection resistor 311 and a signal amplifier 312, the current detection resistor 311 is connected in series between the negative electrode of the power battery 100 and the pre-charge switch 200, and the signal amplifier 312 is connected in parallel with the current detection resistor 311.
  • the pre-charging circuit further includes: a driving module 700 connected between the NOR logic module 340 and the pre-charging switch 200. Specifically, the driving module 700 is used to drive the pre-charging switch 200 to turn on or off under the control of the NOR logic module 340.
  • Figure 5 is a flow chart of a control method for a pre-charging circuit provided in an embodiment of the present application.
  • the control method for a pre-charging circuit is applied to the pre-charging circuit shown in Figure 1.
  • the control method for a pre-charging circuit in an embodiment of the present application includes but is not limited to steps S510 to S530.
  • Step S510 Acquire a circuit signal in the pre-charging circuit.
  • Step S520 Compare the circuit signal and the reference signal to obtain a voltage comparison result.
  • Step S530 Control the on and off of the pre-charge switch according to the voltage value comparison result and the clock signal, wherein, when the voltage value comparison result is that the voltage value of the circuit signal is less than the voltage threshold of the reference signal and the clock signal is at a low level, the pre-charge switch is controlled to be turned on to form a first current loop for pre-charging the capacitor by releasing energy from the power battery; when the voltage value comparison result is that the voltage value of the circuit signal is greater than the voltage threshold of the reference signal, the pre-charge switch is controlled to be turned off to form a second current loop for pre-charging the capacitor by releasing energy from the pre-charge inductor.
  • step S510 to step S530 in the pre-charging circuit, when the voltage comparison result is that the voltage value of the circuit signal is less than the voltage threshold and the clock signal is at a low level, the pre-charging switch 200 is controlled to be turned on, so as to form a pre-charging circuit composed of the power battery 100.
  • the first current loop is used to pre-charge the capacitor Cx; when the voltage value comparison result shows that the voltage value of the circuit signal is greater than the voltage threshold, the pre-charge switch 200 is controlled to be disconnected, forming a second current loop for pre-charging the capacitor Cx by the pre-charge inductor L.
  • the on-off of the pre-charge switch 200 is controlled by the voltage value comparison result and the clock signal, and the first current loop and the second current loop are switched by the pre-charge switch 200, so that the first current loop and the second current loop alternately pre-charge the capacitor Cx until the voltage value at both ends of the capacitor Cx is the same as the voltage value at both ends of the power battery 100. That is to say, the scheme of the embodiment of the present application can improve the pre-charging efficiency, reduce the heat generated during the pre-charging process, reduce the power consumption of the battery system, and improve the safety and energy saving of the battery system.
  • the pre-charging circuit further includes: a battery pack main negative switch K2 connected between the negative electrode of the power battery 100 and the second end of the capacitor Cx, and the method further includes: when the voltage value across the capacitor Cx is equal to the voltage value of the power battery 100, the battery pack main negative switch K2 is closed to complete the active pre-charging process. Specifically, when the voltage value across the capacitor Cx is equal to the voltage value of the power battery 100, the battery pack main negative switch K2 and the battery pack main positive switch K1 are closed to form a complete charging path for the power battery 100.
  • step S520: comparing the circuit signal and the reference signal to obtain a voltage value comparison result includes: acquiring the circuit signal; amplifying the circuit signal and outputting an amplified signal; comparing the amplified signal with the reference signal, and outputting a voltage value comparison result; controlling the on and off of the pre-charge switch according to the voltage value comparison result and the clock signal.
  • an embodiment of the present application provides a battery management system, including: a pre-charging circuit as shown in Figure 1.
  • the battery management system includes a control unit, which is used to control the closing and opening of the main negative switch K2 of the battery pack and the main positive switch K1 of the battery pack.
  • the pre-charging circuit controls the on and off of the pre-charging switch 200 through the voltage value comparison result and the clock signal, and switches the first current loop and the second current loop through the pre-charging switch 200, so that the first current loop and the second current loop alternately pre-charge the capacitor Cx until the voltage value across the capacitor Cx is the same as the voltage value across the power battery 100.
  • the pre-charging efficiency is improved; and by eliminating the use of pre-charging resistance, the heat generated during the pre-charging process is reduced, the power consumption of the battery system is reduced, and the safety and energy saving of the battery system are improved; the integration of the pre-charging circuit is improved, which is beneficial to the layout of the battery management system.
  • an embodiment of the present application provides an electric vehicle, including: a battery management system.
  • the battery management system includes a pre-charging circuit as shown in Figure 1.
  • the electric vehicle also includes a main controller. Specifically, when the electric vehicle needs the battery management system to work, the main controller of the electric vehicle sends a command to close the main positive switch K1 of the battery pack to the battery management system, that is, a command to close P+Relay. After the main positive switch K1 of the battery pack is closed, the pre-charging circuit works to pre-charge the capacitor Cx.
  • the signal detection and amplification module 310 obtains the circuit signal, amplifies the circuit signal to obtain an amplified signal, and outputs the amplified signal to the in-phase input terminal of the comparator 320; the comparator 320 compares the voltage value of the amplified signal with the reference signal. The voltage threshold of the reference signal is determined, and the voltage value comparison result is output to the NOR logic module 340; the NOR logic module 340 controls the on and off of the pre-charge switch 200 according to the voltage value comparison result and the clock signal.
  • the pre-charge switch 200 When the voltage value comparison result shows that the voltage value of the amplified signal is less than the voltage threshold and the clock signal is at a low level, the pre-charge switch 200 is controlled to be turned on, forming a first current loop for pre-charging the capacitor Cx by releasing energy from the power battery 100; when the voltage value comparison result shows that the voltage value of the amplified signal is greater than the voltage threshold, the pre-charge switch 200 is controlled to be turned off, forming a second current loop for pre-charging the capacitor Cx by releasing energy from the pre-charge inductor L.
  • the on and off of the pre-charge switch 200 is controlled by the voltage value comparison result and the clock signal, and the first current loop and the second current loop are switched by the pre-charge switch 200, so that the first current loop and the second current loop alternately pre-charge the capacitor Cx until the voltage value at both ends of the capacitor Cx is the same as the voltage value at both ends of the power battery 100, and the pre-charging process of the capacitor Cx is completed.
  • the main controller of the electric vehicle sends a closing command for the main negative switch K2 of the battery pack to the battery management system, so as to close the main negative switch K2 of the battery pack and form a complete charging path for the power battery 100.
  • the first current loop and the second current loop alternately pre-charge the capacitor Cx, which improves the pre-charging efficiency while ensuring the safety of pre-charging; by eliminating the use of pre-charging resistors, the heat generated during the pre-charging process is reduced, the power consumption of the battery system is reduced, and the safety and energy saving of the battery system are improved; the integration of the pre-charging circuit is improved, which is conducive to the battery management system and the electric vehicle to achieve a simpler vehicle assembly.
  • the main controller of the electric vehicle when the electric vehicle needs the battery management system to work, the main controller of the electric vehicle sends a battery pack main positive switch closing command to the battery management system.
  • the battery management system closes the battery pack main positive switch K1 according to the battery pack main positive switch closing command, and the pre-charging circuit pre-charges the capacitor Cx.
  • the precharging step is further described in conjunction with the truth table of the NOR logic module 340 shown in FIG. 4 and the precharging circuit structure diagram shown in FIG. 3 .
  • the comparator 320 compares the voltage amplified by the signal detection and amplification module 310 with the output voltage of the reference signal source 330 and outputs a low level.
  • the clock generation module 350 outputs a clock signal of a fixed frequency, and the clock signal is input into the NOR logic module 340 together with the signal output by the comparator 320.
  • the output of the clock generation module 350 is 0 and the output of the comparator 320 is 0, the output of the NOR logic module 340 is 1; when the output of the NOR logic module 340 is 1, the pre-charge switch 200 is controlled to be closed, and the inductor current of the pre-charge inductor L increases, and the output voltage of the signal detection amplifier module 310 also increases.
  • the current loop in the pre-charge circuit is the first current loop for the power battery 100 to release energy to pre-charge the capacitor Cx.
  • the OR logic module 340 outputs 0.
  • the pre-charge switch 200 is controlled to be disconnected, and the inductor current of the pre-charge inductor L is The output voltage of the signal detection and amplification module 310 decreases, and the current loop in the pre-charging circuit becomes 0.
  • the current loop in the pre-charging circuit is a second current loop that pre-charges the capacitor Cx by releasing energy from the pre-charging inductor L.
  • the pre-charge switch 200 is still controlled to be disconnected, the inductor current of the pre-charge inductor L decreases, the output voltage of the signal detection amplifier module 310 becomes 0, and the current loop in the pre-charge circuit is still the second current loop in which the pre-charge inductor L releases energy to pre-charge the capacitor Cx.
  • the NOR logic module 340 outputs 1, and the pre-charging switch 200 is controlled to be closed and turned on, the inductor current of the pre-charging inductor L increases, and the output voltage of the signal detection amplifier module 310 also increases.
  • the current loop in the pre-charging circuit is switched to the first current loop in which the power battery 100 releases energy to pre-charge the capacitor Cx; by controlling the on and off of the pre-charging switch 200, the first current loop and the second current loop alternately charge the capacitor Cx until the voltage of the capacitor Cx reaches the output voltage value Vbat of the power battery.
  • the electric vehicle sends a battery pack main negative switch closing command to the battery management system.
  • the battery management system closes and turns on the battery pack main negative switch K2 according to the battery pack main negative switch closing command, forming a complete path for charging the power battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种预充电路,该电路包括:电容器Cx;动力电池(100),动力电池(100)的正极与电容器Cx的第一端连接;预充电感L,预充电感L的第一端与电容器Cx的第一端连接,预充电感L的第二端与电容器Cx的第二端连接;预充开关(200),串联连接于动力电池(100)的负极与预充电感L的第一端之间;开关控制模块(300),开关控制模块(300)的输入端与动力电池(100)的负极连接,开关控制模块(300)的输出端与预充开关(200)连接,用于获取预充电路中的电路信号,对电路信号和参考信号进行比较处理得到电压值比较结果,根据电压值比较结果和时钟信号控制预充开关(200)的通断。该预充电路能够提高预充电效率、电池***的安全性和节能性。还涉及一种预充电路的控制方法、一种电池管理***、以及一种电动汽车。

Description

预充电路及其控制方法、电池管理***、电动汽车
相关申请的交叉引用
本申请基于申请号为202211579870.X、申请日为2022年12月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及充电技术领域,特别涉及一种预充电路及其控制方法、电池管理***、电动汽车。
背景技术
随着新能源电动汽车的蓬勃发展,各大厂商越发重视电动汽车电池***的安全性能与节能性能,与此同时,越来越多的措施用于提升电动汽车电池***的***性能、可靠性,电池充电技术是其中重要的一项。在传统的电池***中,一般采用被动预充方案,即在充电电路中设置预充电阻,通过预充电阻的限流作用对母线电容进行预充电。但采用这种方案进行预充电时,预充电阻会产生较多热量,一方面影响预充电阻自身的使用寿命,另一方面可能引起预充电阻热失效而导致起火。此外,预充电阻耗散的热量也会对其周围的元器件产生危害,影响电池***安全性能;并且还会提高电池***的功耗,电池***的节能性能不佳。
发明内容
本申请旨在至少解决相关技术中存在的技术问题之一。为此,本申请提出一种预充电路及其控制方法、电池管理***、电动汽车,能够提高预充电效率,并减小预充过程中的发热量,降低电池***的功耗,提高电池***的安全性和节能性。
第一方面,本申请实施例提供了一种预充电路,包括:电容器;动力电池,所述动力电池的正极与所述电容器的第一端连接;预充电感,所述预充电感的第一端与所述电容器的第一端连接,所述预充电感的第二端与所述电容器的第二端连接;预充开关,串联连接于所述动力电池的负极与所述预充电感的第一端之间;开关控制模块,所述开关控制模块的输入端与所述动力电池的负极连接,所述开关控制模块的输出端与所述预充开关连接,用于获取所述预充电路中的电路信号,对所述电路信号和参考信号进行比较处理得到电压值比较结果, 根据所述电压值比较结果和时钟信号控制所述预充开关的通断。
根据本申请第一方面提供的预充电路,至少具有如下有益效果:预充电路中,开关控制模块在获取预充电路中的电路信号之后,对电路信号和参考信号进行比较处理得到电压值比较结果,根据电压值比较结果和时钟信号控制预充开关的通断,在预充开关导通的情况下,形成由动力电池释能对电容器进行预充电的第一电流回路;在预充开关断开的情况下,形成由预充电感释能对电容器进行预充电的第二电流回路。根据本申请实施例的方案,通过电压值比较结果和时钟信号控制预充开关的通断,通过预充开关切换第一电流回路和第二电流回路,令第一电流回路和第二电流回路交替为电容器预充电,直至电容器两端的电压值与动力电池两端的电压值相同,通过本申请实施例的方案,能够在保障预充电安全的同时,提高预充电效率;并且通过取消使用预充电阻,减小了预充过程中的发热量,降低了电池***的功耗,提高了电池***的安全性和节能性;提高了预充电路的集成度,有利于电池管理***的布置。
根据本申请的一些实施例,所述开关控制模块包括:信号检测放大模块,串联连接于所述动力电池的负极与所述预充开关之间,用于获取所述电路信号,对所述电路信号进行放大处理输出放大信号;比较器,所述比较器的同相输入端与所述信号检测放大模块的输出端连接,所述比较器的反相输入端与参考信号源连接,用于接收并比较所述放大信号与所述参考信号,输出电压值比较结果;或非逻辑模块,所述或非逻辑模块的两个逻辑输入端分别与所述比较器的输出端、时钟发生模块的输出端连接,所述或非逻辑模块的输出端与所述预充开关连接,用于根据所述电压值比较结果和时钟信号控制所述预充开关的通断。
根据本申请的一些实施例,预充电路还包括:连接于所述动力电池的负极和所述电容器的第二端之间的电池包主负开关。
根据本申请的一些实施例,预充电路还包括:连接于所述预充电感的第一端与所述电容器的第一端之间的第一续流保护模块,所述第一续流保护模块用于续流从所述预充电感的第一端流向所述电容器的第一端的第一电流。
根据本申请的一些实施例,预充电路还包括:连接于预充开关与所述预充电感的第一端之间的第二续流保护模块,所述第二续流保护模块用于续流从所述预充电感的第一端流向所述预充开关的第二电流。
根据本申请的一些实施例,所述信号检测放大模块包括电流检测电阻和信号放大器,所述电流检测电阻串联连接于所述动力电池的负极与所述预充开关之间,所述信号放大器与所述电流检测电阻并联。
第二方面,本申请实施例提供了一种预充电路的控制方法,应用于第一方面所述的预充电路,所述方法包括:获取所述预充电路中的电路信号;对所述电路信号和参考信号进行比较处理得到电压值比较结果;根据电压值比较结果和时钟信号控制预充开关的通断,其中,在所述电压值比较结果为所述电路信号的电压值小于所述参考信号的电压阈值且时钟信号为低电平的情况下,控制所述预充开关导通,形成由动力电池释能对电容器进行预充电的第一电流回路;在所述电压值比较结果为所述电路信号的电压值大于所述参考信号的电压阈值的情况下,控制所述预充开关断开,形成由预充电感释能对电容器进行预充电的第二电流回路。
根据本申请第二方面提供的预充电路的控制方法,至少具有如下有益效果:在电压值比较结果为电路信号的电压值小于所述参考信号的电压阈值且时钟信号为低电平的情况下,控制预充开关导通,形成由动力电池释能对电容器进行预充电的第一电流回路;在电压值比较结果为电路信号的电压值大于所述参考信号的电压阈值的情况下,控制预充开关断开,形成由预充电感释能对电容器进行预充电的第二电流回路。根据本申请实施例的方案,通过电压值比较结果和时钟信号控制预充开关的通断,通过预充开关切换第一电流回路和第二电流回路,令第一电流回路和第二电流回路交替为电容器预充电,直至电容器两端的电压值与动力电池两端的电压值相同,即是说:通过本申请实施例的方案,能够在保障预充电安全的同时,提高预充电效率;并且通过取消使用预充电阻,减小了预充过程中的发热量,降低了电池***的功耗,提高了电池***的安全性和节能性;提高了预充电路的集成度,有利于电池管理***的布置。
根据本申请的一些实施例,所述预充电路还包括:连接于所述动力电池的负极和所述电容器的第二端之间的电池包主负开关,所述方法还包括:在电容器两端的电压值与动力电池的电压值相等的情况下,闭合所述电池包主负开关,完成主动预充处理。
第三方面,本申请实施例提供了一种电池管理***,包括:如第一方面所述的预充电路。
第四方面,本申请实施例提供了一种电动汽车,包括:如第三方面所述的电池管理***。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的附加方面和优点结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例提供的预充电路的结构示意图;
图2是本申请另一实施例提供的预充电路的结构示意图
图3为本申请另一些实施例提供的预充电路的具体结构示意图;
图4为本申请一个实施例提供的或非逻辑模块的真值表;
图5为本申请一个实施例提供的预充电路的控制方法的方法流程图;
附图标记:动力电池100、电容器Cx、预充电感L、预充开关200、开关控制模块300、信号检测放大模块310、电流检测电阻311、信号放大器312、比较器320、参考信号源330、或非逻辑模块340、时钟发生模块350、电池包主正开关K1、电池包主负开关K2、第一续流保护模块400、第一二级管D1、第二短路保护单元410、第三短路保护单元420、第二续流保护模块500、第二二级管D2、第一短路保护单元600、驱动模块700、主动断开保护模块800。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
本申请提出一种预充电路及其控制方法、电池管理***、电动汽车,能够通过电压值比较结果和时钟信号控制预充开关的通断,通过预充开关切换第一电流回路和第二电流回路,令第一电流回路和第二电流回路交替为电容器预充电,直至电容器两端的电压值与动力电池两端的电压值相同,通过本申请实施例的方案,能够在保障预充电安全的同时,提高预充电效率;并且通过取消使用预充电阻,减小了预充过程中的发热量,降低了电池***的功耗,提高了电池***的安全性和节能性;提高了预充电路的集成度,有利于电池管理***的布置。
下面结合附图,对本申请实施例作进一步阐述。
如图1所示,本申请实施例提供了一种预充电路,包括:电容器Cx、动力电池100、预充电感L、预充开关200和开关控制模块300。其中,动力电池100的正极与电容器Cx的第一端连接;预充电感L的第一端与电容器Cx的第一端连接,预充电感L的第二端与电容器 Cx的第二端连接;预充开关200串联连接于动力电池100的负极与预充电感L的第一端之间;开关控制模块300的输入端与动力电池100的负极连接,开关控制模块300的输出端与预充开关200连接,开关控制模块300用于获取预充电路中的电路信号,对电路信号和参考信号进行比较处理得到电压值比较结果,根据电压值比较结果和时钟信号控制预充开关的通断。
在如图1所示的预充电路中,开关控制模块300在获取预充电路中的电路信号之后,对电路信号和参考信号进行比较处理得到电压值比较结果,根据电压值比较结果和时钟信号控制预充开关200的通断,在预充开关200导通的情况下,形成由动力电池100释能对电容器Cx进行预充电的第一电流回路;在预充开关200断开的情况下,形成由预充电感L释能对电容器Cx进行预充电的第二电流回路。根据本申请实施例的方案,通过电压值比较结果和时钟信号控制预充开关200的通断,通过预充开关200切换第一电流回路和第二电流回路,令第一电流回路和第二电流回路交替为电容器Cx预充电,直至电容器Cx两端的电压值与动力电池100两端的电压值相同,通过本申请实施例的方案,能够在保障预充电安全的同时,提高预充电效率;并且通过取消使用预充电阻,减小了预充过程中的发热量,降低了电池***的功耗,提高了电池***的安全性和节能性;提高了预充电路的集成度,有利于电池管理***的布置。
如图2所示,根据本申请的一些实施例,开关控制模块300包括:信号检测放大模块310、比较器320、参考信号源330、或非逻辑模块340和时钟发生模块350。其中,信号检测放大模块310串联连接于动力电池100的负极与预充开关200之间,用于获取电路信号,对电路信号进行放大处理输出放大信号;比较器320的同相输入端与信号检测放大模块310的输出端连接,比较器320的反相输入端与参考信号源330连接,用于接收并比较放大信号与参考信号,输出电压值比较结果;或非逻辑模块340的两个逻辑输入端分别与比较器320的输出端、时钟发生模块350的输出端连接,或非逻辑模块340的输出端与预充开关200连接,用于根据电压值比较结果和时钟信号控制预充开关200的通断。
在一些实施例中,预充电路还包括:电池包主正开关K1和电池包主负开关K2。电池包主正开关K1连接于动力电池100的正极和电容器Cx的第一端之间,电池包主负开关K2连接于动力电池100的负极和电容器Cx的第二端之间。
根据本申请实施例提供的如图2所示的预充电路,在电池包主正开关K1闭合的情况下,首先,信号检测放大模块310获取预充电路中的电路信号,对电路信号进行放大处理输出放大信号,并将放大信号输出至比较器320的同相输入端。比较器320的反相输入端与参考信号源330连接,其中,参考信号源330用于输出参考信号至比较器320,参考信号的电压值 是预充电路中允许通过的最大的电压阈值。接着,比较器320在接收到放大信号和参考信号后,比较放大信号与参考信号的电压阈值,并输出电压值比较结果至或非逻辑模块340,具体地,在输出电压值比较结果为放大信号的电压值小于电压阈值的情况下,比较器320向或非逻辑模块340输出低电平(逻辑值为0),在电压值比较结果为放大信号的电压值大于电压阈值的情况下,比较器320向或非逻辑模块340输出高电平(逻辑值为1)。而后,在或非逻辑模块340接收比较器320输出的电平信号,即接收电压值比较结果后,或非逻辑模块340根据电压值比较结果和时钟信号控制预充开关200的通断,具体地,在接收到比较器320输出的低电平(即电压值比较结果为放大信号的电压值小于电压阈值)且时钟信号为低电平的情况下,或非逻辑模块340输出高电平(逻辑值为1),高电平信号控制预充开关200闭合导通,形成由动力电池100释能对电容器Cx进行预充电的第一电流回路;在接收到比较器320输出的高电平(即电压值比较结果为放大信号的电压值大于电压阈值)的情况下,无论时钟信号输出高电平还是低电平,或非逻辑模块340输出的均是低电平(逻辑值为0),低电平信号控制预充开关200断开,形成由预充电感L释能对电容器Cx进行预充电的第二电流回路。根据本申请实施例的方案,通过电压值比较结果和时钟信号控制预充开关200的通断,通过预充开关200切换第一电流回路和第二电流回路,令第一电流回路和第二电流回路交替为电容器Cx预充电,直至电容器Cx两端的电压值与动力电池100两端的电压值相同。即是说,通过本申请实施例的方案,能够在保障预充电安全的同时,提高预充电效率;并且通过取消使用预充电阻,减小了预充过程中的发热量,降低了电池***的功耗,提高了电池***的安全性和节能性;提高了预充电路的集成度,有利于电池管理***的布置。
具体地,电池包主正开关K1为电池包主正继电器。电池包主正开关K1可以由电池管理***进行控制,电池包主正开关K1能够在电池管理***的控制下闭合,以导通动力电池100的正极与电容器Cx第一端之间的电路。
本领域技术人员可以理解的是,图1和图2中示出的预充电路的结构示意图并不构成对本申请实施例的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
需要说明的是,或非逻辑模块340的两个逻辑输入端分别与比较器320的输出端、时钟发生模块350的输出端连接,或非逻辑模块340的输出端与预充开关200连接。比较器320输出端输出表示电压值比较结果的逻辑值(取值为1或0),时钟发生模块350用于输出时钟信号,时钟信号周期性地在高电平与低电平之间变换(即在1和0之间变换);经过或非逻辑模块340的逻辑运算后,或非逻辑模块340输出逻辑值为1或0的电平信号,控制预充 开关200的通断。
具体地,如图4所示,图4是本申请一个实施例提供的或非逻辑模块的真值表;用A表示时钟发生模块350输出的时钟信号的电平值,A=1表示时钟发生模块350输出高电平,A=0表示时钟发生模块350输出低电平,用B表示比较器320输出端输出的表示电压值比较结果的逻辑值,用Y表示或非逻辑模块340输出的逻辑值。当且仅当A=0,B=0时,Y=1;当B=1时,无论A=0或A=1,Y恒等于0。即是说,在放大信号的电压值小于电压阈值、时钟信号输出低电平的情况下,或非逻辑模块340控制预充开关200导通,在放大信号的电压值小于电压阈值、时钟信号输出高电平的情况下,或非逻辑模块340控制预充开关200断开。在放大信号的电压值小于电压阈值的情况下,具有周期性的时钟信号使得预充开关200的通断具有周期性,每次开关周期的平均电流相同,电感电流纹波相同,电容电压线性增加,有利于提高***稳定性。此外,在放大信号的电压值大于电压阈值的情况下,无论时钟信号输出高电平还是低电平,或非逻辑模块340都控制预充开关200断开,确保主动预充电路中的电流回路小于预设的最大预充电流,以减小预充过程中的发热量,降低电池***的功耗,提高电池***的安全性和节能性。
需要说明的是,时钟发生模块350固定输出具有一定频率的时钟信号,时钟信号的频率取值在10kHz与60kHz之间。
参照图2和图3,具体地,预充开关200采用金属氧化物半导体场效应晶体管,即MOS管。MOS管的漏极与预充电感L的第一端连接,MOS管的源极通过信号检测放大模块310与动力电池100的负极连接,MOS管的栅极通过驱动模块700与或非逻辑模块340的输出端连接。预充开关200在或非逻辑模块340的控制下导通或断开,预充开关200导通时,形成由动力电池100释能对电容器Cx进行预充电的第一电流回路,第一电流回路上的电流具有第一流向,第一流向为从动力电池100的正极依次流向电容器Cx、预充电感L、预充开关200、信号检测放大模块310、动力电池100的负极;预充开关200断开时,形成由预充电感L释能对电容器Cx进行预充电的第二电流回路,第二电流回路上电流具有第二流向,第二流向为从预充电感L的第一端依次流经电容器Cx、预充电感L的第二端。通过预充开关200的通断切换第一电流回路和第二电流回路,令第一电流回路和第二电流回路交替为电容器Cx预充电,直至电容器Cx两端的电压值与动力电池100两端的电压值相同。可以理解的是,动力电池100两端输出的电压值为Vbat。
需要说明的是,第一电流回路是预充过程中预充开关200导通时,由动力电池100对电容器Cx进行预充电的电流回路,在对电容器Cx进行预充电的过程中,预充电感L也会被充 能。
需要说明的是,第二电流回路是预充过程中预充开关200断开时,由电感自感效应形成的一个电流回路,是预充电感L释能所形成的释能回路。对于预充电感L的电感值应当合理确定,当预充电感L的电感值过小时,容易因为开关延迟导致电感饱和,导致器件过流烧毁;当预充电感L的电感值过大时,则预充电感L的体积较大,增大预充电路的占用空间与制作成本,本申请对预充电感L的电感值不做具体的限制,电感值可以根据实际的情况进行设计。
参照图3,根据本申请的一些实施例,预充保护电路还包括串联于预充电感L的第二端和电容器Cx的第二端之间的第一短路保护单元600,第一短路保护单元600用于在电路短路的情况下,及时断开线路以保护电路和元器件。
参照图2至图3,根据本申请的一些实施例,预充电路还包括:连接于动力电池100的负极和电容器Cx的第二端之间的电池包主负开关K2。具体地,电池包主负开关K2为电池包主负继电器。电池包主负开关K2由电池管理***进行控制,电池包主负开关K2能够在电池管理***的控制下闭合,以导通动力电池100的负极与电容器Cx第二端之间的电路。在电容器Cx两端的电压值与动力电池100的电压值相等的情况下,电池包主负开关K2在电池管理***的控制下闭合,完成主动预充处理,形成动力电池100充电的完整通路。
参照图2至图3,根据本申请的一些实施例,预充电路还包括:连接于预充电感L的第一端与电容器Cx的第一端之间的第一续流保护模块400,第一续流保护模块400用于续流从预充电感L的第一端流向电容器Cx的第一端的第一电流。具体地,第一续流保护模块400包括第一二级管D1,第二短路保护单元410和第三短路保护单元420,第一二级管D1的阳极与预充电感L的第一端连接,第一二级管D1的阴极通过串联的第二短路保护单元410和第三短路保护单元420与电容器Cx的第一端连接。第二短路保护单元410和第三短路保护单元420均用于在电路短路的情况下,及时断开线路以保护电路和元器件。电流由预充电感L的第一端流向电容器Cx的第一端的方向是第一二级管D1的导通方向,第一二级管D1用于续流第二电流回路的电流。此外,预充电路还包括:连接于动力电池100和电池包主正开关K1之间的主动断开保护模块800,主动断开保护模块800用于在电流过大时主动断开电路,起到保护动力电池100的作用,进一步提高了预充电路的安全性。具体地,主动断开保护模块800采用主动断开保护保险丝。
可以理解的是,可以根据实际需求在预充电路中设置多个短路保护单元,本申请对此不作具体的限制。
参照图2和图3,根据本申请的一些实施例,预充电路还包括:连接于预充开关200与 预充电感L的第一端之间的第二续流保护模块500,第二续流保护模块500用于续流从预充电感L的第一端流向预充开关200的第二电流。第二续流保护模块500包括第二二级管D2,第二二级管D2的阳极与预充电感L的第一端连接,第二二级管D2的阴极与预充开关200连接。电流由预充电感L的第一端流向预充开关200的方向是第二二级管D2的导通方向,第二二级管D2用于续流第一电流回路的电流。
参照图2和图3,根据本申请的一些实施例,信号检测放大模块310包括电流检测电阻311和信号放大器312,电流检测电阻311串联连接于动力电池100的负极与预充开关200之间,信号放大器312与电流检测电阻311并联。在电池包主正开关K1闭合时,第一电流回路上具有电流信号I,经过信号检测放大模块310的检测并放大该电流信号得到放大信号,放大信号的电压为V=I*R*G,其中,R为电流检测电阻311的阻值,G为信号放大器312的放大倍数。比较器320对放大信号的电压值与参考信号源330输出的参考电压的电压阈值Vref进行比较后输出电压值比较结果,因此,通过将电压阈值Vref和信号放大器312的放大系数G设置在电路中时,允许通过的最大电感电流为Imax=Vref/(R*G)。可以理解的是,本申请对信号放大器312的放大系数G和电流检测电阻311的阻值R不做具体的限制,可以根据实际的电路设计要求确定。
参照图2和图3,根据本申请的一些实施例,预充电路还包括:连接于或非逻辑模块340与预充开关200之间的驱动模块700。具体地,驱动模块700用于在或非逻辑模块340的控制下,驱动预充开关200导通或断开。
参照图5,图5是本申请一个实施例提供的预充电路的控制方法的流程示意图,该预充电路的控制方法应用于图1所示的预充电路,本申请实施例的预充电路的控制方法包括但不限于步骤S510至步骤S530。
步骤S510:获取预充电路中的电路信号。
步骤S520:对电路信号和参考信号进行比较处理得到电压值比较结果。
步骤S530:根据电压值比较结果和时钟信号控制预充开关的通断,其中,在电压值比较结果为电路信号的电压值小于参考信号的电压阈值且时钟信号为低电平的情况下,控制预充开关导通,形成由动力电池释能对电容器进行预充电的第一电流回路;在电压值比较结果为电路信号的电压值大于参考信号的电压阈值的情况下,控制预充开关断开,形成由预充电感释能对电容器进行预充电的第二电流回路。
通过步骤S510至步骤S530,在预充电路中,在电压值比较结果为电路信号的电压值小于电压阈值且时钟信号为低电平的情况下,通过控制预充开关200导通,形成由动力电池100 释能对电容器Cx进行预充电的第一电流回路;在电压值比较结果为电路信号的电压值大于电压阈值的情况下,通过控制预充开关200断开,形成由预充电感L释能对电容器Cx进行预充电的第二电流回路。根据本申请实施例的方案,通过电压值比较结果和时钟信号控制预充开关200的通断,通过预充开关200切换第一电流回路和第二电流回路,令第一电流回路和第二电流回路交替为电容器Cx预充电,直至电容器Cx两端的电压值与动力电池100两端的电压值相同,即是说:通过本申请实施例的方案,能够提高预充电效率,并减小预充过程中的发热量,降低电池***的功耗,提高电池***的安全性和节能性。
根据本申请的一些实施例,预充电路还包括:连接于动力电池100的负极和电容器Cx的第二端之间的电池包主负开关K2,方法还包括:在电容器Cx两端的电压值与动力电池100的电压值相等的情况下,闭合电池包主负开关K2,完成主动预充处理。具体地,在电容器Cx两端的电压值与动力电池100的电压值相等的情况下,闭合电池包主负开关K2和电池包主正开关K1,形成动力电池100充电的完整通路。
根据本申请的一些实施例,步骤S520:对电路信号和参考信号进行比较处理得到电压值比较结果包括:获取电路信号;对电路信号进行放大处理输出放大信号;比较放大信号与参考信号,输出电压值比较结果;根据电压值比较结果和时钟信号控制预充开关的通断。
另外,本申请实施例提供了一种电池管理***,包括:如图1所示的预充电路。可以理解的是,电池管理***包括控制单元,控制单元用于控制电池包主负开关K2和电池包主正开关K1的闭合和断开。具体地,电池管理***工作时,预充电路通过电压值比较结果和时钟信号控制预充开关200的通断,通过预充开关200切换第一电流回路和第二电流回路,令第一电流回路和第二电流回路交替为电容器Cx预充电,直至电容器Cx两端的电压值与动力电池100两端的电压值相同,通过本申请实施例的方案,在保障预充电安全的同时,提高预充电效率;并且通过取消使用预充电阻,减小了预充过程中的发热量,降低了电池***的功耗,提高了电池***的安全性和节能性;提高了预充电路的集成度,有利于电池管理***的布置。
另外,本申请实施例提供了一种电动汽车,包括:电池管理***。其中,电池管理***包括如图1所示的预充电路。可以理解的是,电动汽车还包括主控制器。具体地,当电动汽车需要电池管理***工作时,则电动汽车的主控制器向电池管理***发送电池包主正开关K1闭合命令,即闭合P+Relay的命令,在电池包主正开关K1闭合后,预充电路工作对电容器Cx进行预充电。信号检测放大模块310获取电路信号,对电路信号进行放大处理得到放大信号,并将放大信号输出至比较器320的同相输入端;比较器320比较放大信号的电压值与参 考信号的电压阈值,并输出电压值比较结果至或非逻辑模块340;或非逻辑模块340根据电压值比较结果和时钟信号控制预充开关200的通断,在电压值比较结果为放大信号的电压值小于电压阈值且时钟信号为低电平的情况下,控制预充开关200导通,形成由动力电池100释能对电容器Cx进行预充电的第一电流回路;在电压值比较结果为放大信号的电压值大于电压阈值的情况下,控制预充开关200断开,形成由预充电感L释能对电容器Cx进行预充电的第二电流回路。根据本申请实施例的方案,通过电压值比较结果和时钟信号控制预充开关200的通断,通过预充开关200切换第一电流回路和第二电流回路,令第一电流回路和第二电流回路交替为电容器Cx预充电,直至电容器Cx两端的电压值与动力电池100两端的电压值相同,对电容器Cx的预充电处理完成。完成对电容器Cx的预充电处理之后,电动汽车的主控制器向电池管理***发送电池包主负开关K2闭合命令,以闭合电池包主负开关K2,形成动力电池100充电的完整通路。通过本申请实施例的方案,第一电流回路和第二电流回路交替为电容器Cx预充电,在保障预充电安全的同时,提高预充电效率;通过取消使用预充电阻,减小了预充过程中的发热量,降低了电池***的功耗,提高了电池***的安全性和节能性;提高了预充电路的集成度,有利于电池管理***和电动汽车实现更简洁的整车装配。
在一实施例中,当电动汽车需要电池管理***工作时,电动汽车的主控制器向电池管理***发送电池包主正开关闭合命令,电池管理***根据电池包主正开关闭合命令闭合电池包主正开关K1,预充电路对电容器Cx进行预充电。
接下来,结合图4所示的或非逻辑模块340的真值表以及图3所示的预充电路结构图进一步说明预充电步骤。
首先,在电池包主正开关K1闭合时,预充电路中电流I=0,经信号检测放大模块310的检测放大后的电压为0。所以,比较器320对信号检测放大模块310放大后的电压与参考信号源330的输出电压进行比较后输出低电平。
其次,时钟发生模块350固定输出一定频率的时钟信号,时钟信号与比较器320输出的信号一起输入或非逻辑模块340,当时钟发生模块350输出为0,比较器320输出为0时,或非逻辑模块340输出为1;当或非逻辑模块340输出为1时,控制预充开关200闭合,预充电感L的电感电流增加,则信号检测放大模块310的输出电压也增加,预充电路中的电流回路为动力电池100释能对电容器Cx进行预充电的第一电流回路。
而后,当信号检测放大模块310输出电压增加到大于参考信号源330的输出电压时,比较器320输出高电平,无论时钟发生模块350输出高电平还是低电平,或非逻辑模块340都输出0,当或非逻辑模块340输出为0时,控制预充开关200断开,预充电感L的电感电流 减小,信号检测放大模块310输出电压变为0,预充电路中的电流回路为由预充电感L释能对电容器Cx进行预充电的第二电流回路。
再而,当时钟发生模块350输出为1,比较器320输出为0时,或非逻辑模块340输出为0,控制预充开关200依然断开,预充电感L的电感电流减小,信号检测放大模块310输出电压变为0,预充电路中的电流回路仍为由预充电感L释能对电容器Cx进行预充电的第二电流回路。
随后,当经过2/T时间后,当时钟发生模块350输出为0,比较器320输出为0时,或非逻辑模块340输出为1,控制预充开关200闭合导通,预充电感L的电感电流增加,信号检测放大模块310输出电压也增加,预充电路中的电流回路切换为动力电池100释能对电容器Cx进行预充电的第一电流回路;通过控制预充开关200的通断,第一电流回路和第二电流回路交替为电容器Cx充电,直至电容器Cx电压达到动力电池的输出电压值Vbat。
最后,电容器Cx的电压达到Vbat后,表示预充完成,此时电动汽车向电池管理***发送电池包主负开关闭合命令,电池管理***根据电池包主负开关闭合命令闭合导通电池包主负开关K2,形成动力电池充电的一个完整的通路。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请所限定的范围内。

Claims (17)

  1. 一种预充电路,包括:
    电容器;
    动力电池,所述动力电池的正极与所述电容器的第一端连接;
    预充电感,所述预充电感的第一端与所述电容器的第一端连接,所述预充电感的第二端与所述电容器的第二端连接;
    预充开关,串联连接于所述动力电池的负极与所述预充电感的第一端之间;
    开关控制模块,所述开关控制模块的输入端与所述动力电池的负极连接,所述开关控制模块的输出端与所述预充开关连接,用于获取所述预充电路中的电路信号,对所述电路信号和参考信号进行比较处理得到电压值比较结果,根据所述电压值比较结果和时钟信号控制所述预充开关的通断。
  2. 根据权利要求1所述的预充电路,其中,所述开关控制模块包括:
    信号检测放大模块,串联连接于所述动力电池的负极与所述预充开关之间,用于获取所述电路信号,对所述电路信号进行放大处理输出放大信号;
    比较器,所述比较器的同相输入端与所述信号检测放大模块的输出端连接,所述比较器的反相输入端与参考信号源连接,用于接收并比较所述放大信号与所述参考信号,输出电压值比较结果;
    或非逻辑模块,所述或非逻辑模块的两个逻辑输入端分别与所述比较器的输出端、时钟发生模块的输出端连接,所述或非逻辑模块的输出端与所述预充开关连接,用于根据所述电压值比较结果和时钟信号控制所述预充开关的通断。
  3. 根据权利要求1所述的预充电路,还包括:连接于所述动力电池的正极和所述电容器的第一端之间的电池包主正开关。
  4. 根据权利要求1所述的预充电路,还包括:连接于所述动力电池的负极和所述电容器的第二端之间的电池包主负开关。
  5. 根据权利要求3所述的预充电路,还包括:连接于所述动力电池和所述电池包主正开关之间的主动断开保护模块,所述主动断开保护模块用于在电流过大时主动断开电路。
  6. 根据权利要求5所述的预充电路,其中,所述主动断开保护模块为主动断开保护保险丝。
  7. 根据权利要求1所述的预充电路,还包括:连接于所述预充电感的第一端与所述电容 器的第一端之间的第一续流保护模块,所述第一续流保护模块用于续流从所述预充电感的第一端流向所述电容器的第一端的第一电流。
  8. 根据权利要求7所述的预充电路,还包括:连接于预充开关与所述预充电感的第一端之间的第二续流保护模块,所述第二续流保护模块用于续流从所述预充电感的第一端流向所述预充开关的第二电流。
  9. 根据权利要求2所述的预充电路,其中,所述信号检测放大模块包括电流检测电阻和信号放大器,所述电流检测电阻串联连接于所述动力电池的负极与所述预充开关之间,所述信号放大器与所述电流检测电阻并联。
  10. 根据权利要求1所述的预充电路,其中,所述预充开关为金属氧化物半导体场效应晶体管。
  11. 根据权利要求7所述的预充电路,其中,所述第一续流保护模块包括:
    第一二级管;
    第二短路保护单元;和
    第三短路保护单元;
    所述第一二级管的阳极与所述预充电感的第一端连接,所述第一二级管的阴极通过串联的所述第二短路保护单元和所述第三短路保护单元与所述电容器的第一端连接。
  12. 根据权利要求8所述的预充电路,其中,所述第二续流保护模块包括:
    第二二级管;
    所述第二二级管的阳极与所述预充电感的第一端连接,所述第二二级管的阴极与所述预充开关连接。
  13. 根据权利要求2所述的预充电路,还包括:连接于所述或非逻辑模块与所述预充开关之间的驱动模块,所述驱动模块用于在所述或非逻辑模块的控制下,驱动所述预充开关导通或断开。
  14. 一种预充电路的控制方法,其中,应用于权利要求1所述的预充电路,所述方法包括:
    获取所述预充电路中的电路信号;
    对所述电路信号和参考信号进行比较处理得到电压值比较结果;
    根据电压值比较结果和时钟信号控制预充开关的通断,其中,在所述电压值比较结果为所述电路信号的电压值小于所述参考信号的电压阈值且时钟信号为低电平的情况下,控制所述预充开关导通,形成由动力电池释能对电容器进行预充电的第一电流回路;在所述电压值 比较结果为所述电路信号的电压值大于所述参考信号的电压阈值的情况下,控制所述预充开关断开,形成由预充电感释能对电容器进行预充电的第二电流回路。
  15. 根据权利要求14所述的预充电路的控制方法,其中,所述预充电路还包括:连接于所述动力电池的负极和所述电容器的第二端之间的电池包主负开关,所述方法还包括:
    在电容器两端的电压值与动力电池的电压值相等的情况下,闭合所述电池包主负开关,完成主动预充处理。
  16. 一种电池管理***,包括:如权利要求1至13任意一项所述的预充电路。
  17. 一种电动汽车,包括:如权利要求16所述的电池管理***。
PCT/CN2023/117722 2022-12-09 2023-09-08 预充电路及其控制方法、电池管理***、电动汽车 WO2024119932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211579870.XA CN115771429A (zh) 2022-12-09 2022-12-09 预充电路及其控制方法、电池管理***、电动汽车
CN202211579870.X 2022-12-09

Publications (1)

Publication Number Publication Date
WO2024119932A1 true WO2024119932A1 (zh) 2024-06-13

Family

ID=85391785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117722 WO2024119932A1 (zh) 2022-12-09 2023-09-08 预充电路及其控制方法、电池管理***、电动汽车

Country Status (2)

Country Link
CN (1) CN115771429A (zh)
WO (1) WO2024119932A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115771429A (zh) * 2022-12-09 2023-03-10 欣旺达电动汽车电池有限公司 预充电路及其控制方法、电池管理***、电动汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480150A (zh) * 2010-11-29 2012-05-30 株式会社东芝 充电控制装置以及充电控制***
CN206432703U (zh) * 2016-11-30 2017-08-22 比亚迪股份有限公司 过充过放保护电路、保护装置、电池管理***及电动汽车
CN108539839A (zh) * 2018-05-02 2018-09-14 深圳市博德科创新能源技术有限公司 电机控制器的预充装置
CN110789368A (zh) * 2019-11-12 2020-02-14 奇瑞汽车股份有限公司 电动汽车预充电路及其控制方法
CN110962679A (zh) * 2018-12-04 2020-04-07 宁德时代新能源科技股份有限公司 预充电路与预充方法
CN115771429A (zh) * 2022-12-09 2023-03-10 欣旺达电动汽车电池有限公司 预充电路及其控制方法、电池管理***、电动汽车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102480150A (zh) * 2010-11-29 2012-05-30 株式会社东芝 充电控制装置以及充电控制***
CN206432703U (zh) * 2016-11-30 2017-08-22 比亚迪股份有限公司 过充过放保护电路、保护装置、电池管理***及电动汽车
CN108539839A (zh) * 2018-05-02 2018-09-14 深圳市博德科创新能源技术有限公司 电机控制器的预充装置
CN110962679A (zh) * 2018-12-04 2020-04-07 宁德时代新能源科技股份有限公司 预充电路与预充方法
US20210184486A1 (en) * 2018-12-04 2021-06-17 Contemporary Amperex Technology Co., Limited Pre-charging circuit and pre-charging method
CN110789368A (zh) * 2019-11-12 2020-02-14 奇瑞汽车股份有限公司 电动汽车预充电路及其控制方法
CN115771429A (zh) * 2022-12-09 2023-03-10 欣旺达电动汽车电池有限公司 预充电路及其控制方法、电池管理***、电动汽车

Also Published As

Publication number Publication date
CN115771429A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
US20210249883A1 (en) Supercapacitor based energy storage device
WO2024119932A1 (zh) 预充电路及其控制方法、电池管理***、电动汽车
US20220385096A1 (en) Battery control circuit, battery, and related electronic device
CA2986553A1 (en) Power supply control apparatus and method thereof
WO2021244649A1 (zh) 能量转换装置及其安全控制方法
WO2024041331A1 (zh) 电动车辆的充电***和电动车辆
WO2021254533A1 (zh) 双向dc/dc变换器及储能***
CN110571883A (zh) 锂电池充电限流***
CN102497009A (zh) 一种不间断电源的母线软启动电路及方法
CN111627735A (zh) 混合开关装置的控制方法、装置、设备和介质
CN211239354U (zh) 储能设备的主回路控制电路
CN116142015A (zh) 一种动力电池充电***及其低温充电控制策略
CN115001121B (zh) 一种用于高效储能***的限流电路、控制方法及***
CN216086233U (zh) 超级电容充放电电路及***
WO2023070553A1 (zh) 动力电池的加热方法和加热***
CN219351317U (zh) 预充电路及电池***
CN113346589A (zh) 具有双向调压充放电功能的电池管理***及管理方法
CN116014855A (zh) 预充电路及电池***
CN110829818A (zh) 供电电路、供电电路的控制方法、装置及空调器
CN219164266U (zh) 充电电路、电池***和终端
CN112952924A (zh) 一种电池管理装置以及一种电器装置
CN211296555U (zh) 一种用于大功率车载电源的预充电线路
CN216290262U (zh) 一种新能源车动力电池的充放电控制电路
CN215071620U (zh) 一种大功率升压dc/dc保护电路及其变换器
CN214626474U (zh) 一种智能门锁的电源输入保护电路