WO2024041331A1 - 电动车辆的充电***和电动车辆 - Google Patents

电动车辆的充电***和电动车辆 Download PDF

Info

Publication number
WO2024041331A1
WO2024041331A1 PCT/CN2023/110551 CN2023110551W WO2024041331A1 WO 2024041331 A1 WO2024041331 A1 WO 2024041331A1 CN 2023110551 W CN2023110551 W CN 2023110551W WO 2024041331 A1 WO2024041331 A1 WO 2024041331A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
circuit
contactor
charging circuit
power battery
Prior art date
Application number
PCT/CN2023/110551
Other languages
English (en)
French (fr)
Inventor
凌和平
闫磊
李申
袁帅
常东博
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024041331A1 publication Critical patent/WO2024041331A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer

Definitions

  • the present disclosure relates to the technical field of electric vehicles, and in particular, to a charging system and an electric vehicle for an electric vehicle.
  • high-power DC charging technology or battery replacement technology is mainly used in related technologies.
  • the cost of battery replacement technology is high, and high-power DC charging technology is not popular because high-voltage platform high-power charging facilities are not popular, so the charging speed of electric vehicles with high-power DC charging technology still limits the output voltage and power of DC charging equipment.
  • one purpose of the present disclosure is to propose a charging system for an electric vehicle that charges the power battery of the charging vehicle through dual charging circuits and controls the boost circuit according to the voltage of the external power supply to improve the performance of the electric vehicle.
  • the charging speed meets the high-power charging of electric vehicles and is compatible with national standard DC charging piles on the market, ensuring that electric vehicles can be charged and improving user experience.
  • a second object of the present disclosure is to propose another charging system for electric vehicles.
  • a third object of the present disclosure is to provide an electric vehicle.
  • a first embodiment of the present disclosure provides a charging system for an electric vehicle.
  • the charging system includes a first charging circuit and a second charging circuit, wherein the first end of the first charging circuit is connected to the third charging circuit.
  • a charging port, the first end of the second charging circuit is connected to the second charging port; the second end of the first charging circuit and the second end of the second charging circuit are both connected to the power battery of the electric vehicle;
  • a boost circuit is provided in the first charging circuit, the first charging circuit is configured as a boost charging circuit, and the second charging circuit is configured as a direct charging circuit.
  • the charging system of the embodiment of the present disclosure includes two charging circuits, and one of the charging circuits is configured as a boost charging circuit, and the other charging circuit is configured as a DC charging circuit.
  • the power battery of the charging vehicle is charged through the dual charging circuits. Charging, and controlling the boost circuit according to the voltage of the external power supply to increase the charging speed of electric vehicles, meet the high-power charging of electric vehicles, and be compatible with national standard DC charging piles on the market to ensure that electric vehicles can complete charging and improve user experience.
  • a second embodiment of the present disclosure provides a charging system for an electric vehicle.
  • the charging system includes: a first charging circuit and a second charging circuit, wherein the first end of the first charging circuit is connected to a first charging port, the first end of the second charging circuit is connected to the second charging port; the second end of the first charging circuit and the second end of the second charging circuit are both connected to the power battery of the electric vehicle ;
  • the first charging circuit is provided with a boost circuit, the first charging circuit is configured to boost charging the power battery, and the input voltage at the first end of the first charging circuit is less than the first
  • the output voltage of the second terminal of the charging circuit, the input voltage of the first terminal of the second charging circuit and the output voltage of the second terminal of the second charging circuit are the same.
  • the charging system of the embodiment of the present disclosure includes two charging circuits, and one of the charging circuits is configured as a boost charging circuit, that is, the input voltage at the input end of the boost charging circuit is less than the output voltage at its output end, and the other charging circuit is configured as DC charging circuit, that is, the input voltage at the input end of the DC charging circuit is equal to the output voltage at its output end.
  • the power battery of the charging vehicle is charged through dual charging circuits, and the boost circuit is controlled according to the voltage of the external power supply to improve the efficiency of electric vehicles.
  • the charging speed meets the high-power charging of electric vehicles and is compatible with national standard DC charging piles on the market, ensuring that electric vehicles can be charged and improving user experience.
  • both the first charging port and the second charging port are DC charging ports.
  • the electric vehicle includes a motor and a motor inverter
  • the boost circuit includes at least one phase winding of the motor winding and at least one corresponding one of the three-phase bridge arms of the motor inverter. Phase bridge arm.
  • the boost circuit when the boost circuit includes a three-phase winding in the motor winding and the three-phase bridge arm, one end of the first phase winding, one end of the second phase winding in the motor winding and One end of the third phase winding is connected together to form a neutral point, the other end of the first phase winding is connected to the middle node of the first phase arm of the three-phase bridge arm, and the second phase winding The other end is connected to the middle node of the second phase bridge arm among the three-phase bridge arms, and the other end of the third phase winding is connected to the middle node of the third phase bridge arm among the three-phase bridge arms.
  • a first capacitor is connected in parallel between the positive terminal and the negative terminal of the busbar of the phase bridge arm.
  • the first charging circuit further includes a first contactor, a second capacitor, and a second contactor.
  • One end of the first contactor is connected to one end of the second capacitor.
  • the first contactor The other end of the second capacitor is connected to the neutral point, one end of the second capacitor is connected to the positive electrode of the first charging port, and the other end of the second capacitor is connected to the first charging port through the second contactor.
  • the negative terminal of a charging port is a first contactor, a second capacitor, and a second contactor.
  • the boost circuit includes a first inductor, a first switch tube, a second switch tube and a third capacitor.
  • the first switch tube and the second switch tube are connected in series and have a first node.
  • the first node is connected to the first inductor
  • the third capacitor is connected in parallel to the first switch tube and the second switch tube connected in series.
  • the first charging circuit further includes a first contactor, a second capacitor and a second contactor, one end of the first contactor is connected to the positive electrode of the first charging port, and the first The other end of the contactor is connected to the first inductor, one end of the second capacitor is connected to the other end of the first contactor and the first inductor respectively, and the other end of the second capacitor passes through the The second contactor is connected to the negative electrode of the first charging port.
  • the second charging circuit includes a third contactor and a fourth contactor, one end of the third contactor is connected to the positive electrode of the second charging port, and the other end of the third contactor Connected to the positive terminal of the power battery, one end of the fourth contactor is connected to the negative terminal of the second charging port, and the other end of the fourth contactor is connected to the negative terminal of the boost circuit. to the negative terminal of the power battery.
  • the second end of the first charging circuit and the second end of the second charging circuit are connected together to form a bus terminal, and the bus terminal is connected to the power battery.
  • the bus terminal includes a positive bus terminal and a negative bus terminal.
  • a battery positive contactor and a first precharge unit are provided between the positive bus terminal and the positive terminal of the power battery.
  • the first precharge unit is connected in parallel with the battery positive contactor, and a battery negative contactor is provided between the negative bus terminal and the negative terminal of the power battery.
  • the second charging loop further includes a second inductor for suppressing charging circulation, and the second inductor is connected in series with the third contactor.
  • the second charging circuit further includes a second pre-charging unit, and the second pre-charging unit is connected in parallel with the third contactor.
  • the voltage difference between the output voltage boosted by the boost circuit of the first charging circuit and the output voltage directly connected to the second charging circuit is within a preset voltage threshold range.
  • the charging system further includes a control unit configured to control the first charging circuit and the second charging circuit to pass the first charging circuit and/or the second charging circuit.
  • the second charging circuit charges the power battery.
  • the voltage boost circuit is a buck-boost circuit
  • the control unit is further configured to control the voltage-boost and buck circuit to charge the power battery through the first charging circuit.
  • the voltage provided by the power battery is stepped down so that the voltage of the first charging port meets the needs of the external charging equipment.
  • a third embodiment of the present disclosure provides an electric vehicle, which includes the charging system described in the above embodiment.
  • the electric vehicle in the embodiment of the present disclosure includes the charging system in the above embodiment, which can charge the power battery of the charging vehicle through dual charging circuits and control the boost circuit according to the voltage of the external power supply to improve the charging of the electric vehicle.
  • the speed meets the high-power charging of electric vehicles and is compatible with national standard DC charging piles on the market, ensuring that electric vehicles can be charged and improving user experience.
  • Figure 1 is a schematic diagram of a charging system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a charging system according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a charging system according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a charging system according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a charging system according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a charging system according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a charging system according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a charging system according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a charging system according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a charging system according to another embodiment of the present disclosure.
  • FIG. 11 is a structural block diagram of an electric vehicle according to an embodiment of the present disclosure.
  • dual-gun charging is currently mostly used in commercial vehicles, such as buses and heavy-duty trucks.
  • Most dual-gun charging is a dual DC battery pack charging solution.
  • domestic DC charging facilities mainly include 500V and 750V.
  • the charging system in this disclosure can control the boost circuit according to the voltage of the external power supply, and is compatible with the national standard DC charging piles on the market to ensure that electric vehicles can complete charging, so as to increase the charging speed of electric vehicles and meet the high power of electric vehicles. Charge and improve user experience.
  • FIG. 1 is a schematic diagram of a charging system according to an embodiment of the present disclosure.
  • the present disclosure proposes a first charging system 10 for an electric vehicle.
  • the charging system 10 includes a first charging circuit 11 and a second charging circuit 12 , wherein the first end of the first charging circuit 11 is connected to the second charging circuit 11 .
  • a charging port 1, the first end of the second charging circuit 12 is connected to the second charging port 2; the second end of the first charging circuit 11 and the second end of the second charging circuit 12 are both connected to the power battery of the electric vehicle 3;
  • the first charging circuit 11 is provided with a boost circuit 111, the first charging circuit 11 is configured as a boost charging circuit, and the second charging circuit 12 is configured as a direct charging circuit.
  • the charging system 10 of the electric vehicle in the present disclosure includes a first charging circuit 11 and a second charging circuit 12 , and the first end of the first charging circuit 11 is connected to the first charging port 1 and passes through the first charging port 1 .
  • a charging port 1 is connected to an external DC charging pile.
  • the first end of the second charging circuit 12 is connected to the second charging port 2 and is connected to the external DC charging pile through the second charging port 2 .
  • the second end of the first charging circuit 11 and the second end of the second charging circuit 12 are both connected to the power battery 3 of the electric vehicle, so that the external DC charging pile passes through the first end of the first charging circuit 11 and the second charging circuit
  • the first end of 12 flows into the charging system 10 of the electric vehicle. After being processed by the charging system 10, the electric battery 3 is charged from the second end of the first charging circuit 11 and the second end of the second charging circuit 12.
  • the first charging circuit 11 in the charging system 10 is provided with a boost circuit 111.
  • the power from the external DC charging pile enters the first charging circuit 11 from the first charging port 1.
  • the boost circuit 111 in the first charging circuit 11 can The external direct current is boosted, and then the boosted external direct current is provided to the power battery 3 to charge the power battery 3 .
  • the electric energy from the external DC charging pile can also enter the second charging circuit 12 from the second charging port 2.
  • the second charging circuit 12 directly delivers the power provided by the external DC charging pile to the power battery 3 to charge the power battery 3.
  • the charging pile can be connected to the first charging port 1 to boost the voltage through the boost circuit 111 in the first charging circuit 11 Then the power battery 3 is charged. If the voltage of the power supply provided by the external DC charging pile is high enough, the second charging port 2 can be directly connected to charge the power battery 3 through the second charging circuit 12 . It can be understood that when the power supply voltage that the external DC charging pile can provide is less than the full charging voltage of the power battery 3, it means that the voltage of the power supply that the external DC charging pile can provide is lower. When the external DC charging pile can provide When the power supply voltage is greater than or equal to the full charging voltage of power battery 3, it means that the voltage of the power supply provided by the external DC charging pile is high enough.
  • the boost circuit in this embodiment can be adaptively adjusted according to the input voltage and output voltage to ensure that the power battery 3 can be charged.
  • the charging system of the electric vehicle in the embodiment of the present disclosure can charge the power battery of the charging vehicle through dual charging circuits, and control the boost circuit according to the voltage of the external power supply, so as to increase the charging speed of the electric vehicle and meet the requirements of the electric vehicle.
  • the present disclosure proposes a second charging system for electric vehicles.
  • the charging system in this embodiment can refer to the charging system 10 shown in FIG. 1 .
  • the charging system 10 includes a first charging circuit 11 and a second charging circuit. 12.
  • the first end of the first charging circuit 11 is connected to the first charging port 1, and the first end of the second charging circuit 12 is connected to the second charging port 2; the second end of the first charging circuit 11 and the second charging circuit
  • the second ends of 12 are connected to the power battery 3 of the electric vehicle;
  • a boost circuit 111 is provided in the first charging circuit 11, and the first charging circuit 11 is configured to boost and charge the power battery 3.
  • the input voltage of the first terminal is smaller than the output voltage of the second terminal of the first charging circuit 11
  • the input voltage of the first terminal of the second charging circuit 12 is the same as the output voltage of the second terminal of the second charging circuit 12 .
  • the connection method of the first charging circuit 11 , the second charging circuit 12 , the first charging port 1 , the second charging port 2 , the power battery 3 and the boost circuit 111 in this embodiment can refer to the above-mentioned information.
  • the first charging circuit 11 in this embodiment is provided with a voltage boosting circuit 11, so that the external power supply connected from the first charging port 1 can complete the voltage boosting when passing through the voltage boosting circuit 11, and thus can Boost charging of the power battery 3 is suitable for situations where the power supply voltage provided by the charging pile is small, and by adjusting the boost circuit 11, the charging system 10 in this embodiment can be adapted to charging with a variety of different supply voltages.
  • the external power source is input from the first end of the first charging circuit 11. After over-boosting, the voltage is output from the second terminal of the first charging circuit 11 . It can be understood that the input voltage at the first terminal of the first charging circuit 11 is smaller than the output voltage at the second terminal of the first charging circuit 11 .
  • the second charging port 2 in this embodiment can be connected to an external power supply with a higher voltage to charge the power battery 3 directly through the first end of the second charging circuit 12 to the second end of the second charging circuit 12. Need to boost.
  • the input voltage at the first terminal of the second charging circuit 12 is equal to the input voltage at the second terminal of the second charging circuit 12 .
  • the charging system of the electric vehicle in the embodiment of the present disclosure can charge the power battery of the charging vehicle through dual charging circuits, and control the boost circuit according to the voltage of the external power supply, so as to increase the charging speed of the electric vehicle and meet the requirements of the electric vehicle.
  • both the first charging port 1 and the second charging port 2 are DC charging ports.
  • the electric vehicle includes a motor and a motor inverter.
  • the boost circuit 111 includes at least one phase winding of the motor winding and at least one corresponding one of the three-phase bridge arms of the motor inverter. Phase bridge arm.
  • the electric vehicle in this embodiment includes a motor and a motor inverter.
  • the motor inverter generally includes at least a three-phase bridge arm. Referring to Figure 2, this embodiment combines at least one phase winding in the motor winding with At least one of the three-phase bridge arms of the motor inverter is used as a boost circuit 111 to reuse the motor windings and the motor inverter, which can effectively reduce the design cost of the electric vehicle.
  • the three-phase winding in the motor winding and the three-phase bridge arm in the motor inverter are used as the boost circuit 111 as an example for description.
  • the switching tube corresponding to the lower arm of the three-phase bridge arm can be controlled by the same pulse signal
  • the switching tube corresponding to the upper arm of the three-phase bridge arm can also be controlled by the same pulse signal.
  • the pulse signals between the upper arm and the lower arm can be opposite, that is, when the pulse signal of the lower arm is high level, the corresponding pulse signal of the upper arm is low level, and the pulse signal of the lower arm is low level.
  • the pulse signal corresponding to the upper arm is high level.
  • the switch tube in the lower arm is turned on and the switch tube in the upper arm is turned off, the external power supply connected to the first charging port 1 can charge the motor winding, and in the next pulse signal, the upper arm The switch tube in the motor is turned on and the switch tube in the lower arm is turned off. At this time, the external power supply and the power supply in the motor winding can charge the power battery 3 at the same time, thereby completing the boost charging of the power battery 3.
  • the boost circuit 111 when the boost circuit 111 includes a three-phase winding and a three-phase bridge arm in the motor winding, one end of the first phase winding L1 and the second end of the second phase winding L2 in the motor winding One end is connected to one end of the third-phase winding L3 to form the neutral point P.
  • the other end of the first-phase winding L1 is connected to the middle node of the first-phase bridge arm in the three-phase bridge arm.
  • the second-phase winding L2 The other end is connected to the middle node of the second-phase bridge arm in the three-phase bridge arm.
  • the other end of the third-phase winding L3 is connected to the middle node of the third-phase bridge arm in the three-phase bridge arm.
  • the first capacitor C1 is connected in parallel with the negative terminal.
  • the positive pole of the first charging port 1 is connected to the motor winding through the neutral point P, and then connected to the positive terminal of the busbar of the three-phase bridge arm through the upper arm of the three-phase bridge arm, and
  • the first charging port 1 is connected to the lower arm of the three-phase bridge arm and serves as the negative terminal of the busbar of the three-phase bridge arm.
  • a first capacitor C1 is connected in parallel between the positive terminal of the busbar and the negative terminal of the busbar of the three-phase bridge arm. Prevent overcharging and reduce the impact of transient voltage on the power battery and switching tube.
  • the first charging circuit 11 also includes a first contactor K1, a second capacitor C2 and a second contactor K2.
  • One end of the first contactor K1 is connected to the second capacitor C2.
  • One end is connected, the other end of the first contactor K1 is connected to the neutral point P, one end of the second capacitor C2 is connected to the positive electrode of the first charging port 1, and the other end of the second capacitor C2 is connected to the second contactor K2 through the second contactor K2.
  • One negative terminal of charging port 1 One negative terminal of charging port 1.
  • a first contactor K1 and a second contactor K2 are provided, and a second capacitor C2 is provided between the positive electrode and the negative electrode of the first charging port 1 , the second capacitor C2 can filter the external power input from the first charging port 1.
  • a first contactor K1 is provided between the positive electrode of the first charging port 1 and the neutral point P.
  • the negative electrode of the first charging port 1 A second contactor K2 is provided between the capacitor 2 and the second capacitor 2.
  • the external charging gun can be connected to the first charger through the first charging port 1. After the electrical circuit 11 confirms that the charging gun is connected to the first charging port 1 correctly, the first contactor K1 and the second contactor K2 are controlled to close, so that the external power supply can charge the power battery 3 through the first charging circuit 11 .
  • the boost circuit 111 includes a first inductor L1, a first switch T1, a second switch T2 and a third capacitor C3.
  • the first switch T1 and the second switch T2 It is connected in series and has a first node P1.
  • the first node P1 is connected to the first inductor L1.
  • the third capacitor C3 is connected in parallel with the first switching tube T1 and the second switching tube T2 connected in series.
  • the boost circuit 111 in this embodiment includes a first inductor L1, a first switching transistor T1, a second switching transistor T2 and a third capacitor C3.
  • the positive electrode of the first charging port 1 and the first inductor One end of L1 is connected, and the other end of the first inductor L1 is connected to the first node P1.
  • the first node P1 is determined by the first switching tube T1 and the second switching tube T2.
  • the first switching tube T1 and the second switching tube T2 are connected in series, and the two ends directly connecting the first switching tube T1 and the second switching tube T2 have the first node P1, and the other two ends of the first switching tube T1 and the second switching tube T2 are connected through the third capacitor C3 connect.
  • the control signals of the first switching tube T1 and the second switching tube T2 are controlled to control the first switching tube T1 and the second switching tube T2 to alternately conduct.
  • the first charging port 1 is connected
  • the second switch transistor T2 can be controlled to be turned on first.
  • the external power supply passes through the first inductor L1 and then forms a loop through the second switch transistor T2 to complete charging of the first inductor L1.
  • the first switching tube T1 is controlled to be turned on and the second switching tube is turned off, so that the external power supply and the power supply on the first inductor L1 can pass through the first switching tube T1 together to supply the power battery with 3 liters. pressure charging.
  • the first charging port 1 When the first charging port 1 is connected to an external power supply, if the external power supply voltage is high enough, the first switching tube T1 and the second switching tube T2 can no longer be controlled, and the external power supply can pass through the first inductor L1 and the switching tube T1.
  • the diode directly charges the power battery 3.
  • the first charging circuit 11 also includes a first contactor K1, a second capacitor C2 and a second contactor K2.
  • One end of the first contactor K1 is connected to the first charging port.
  • the positive electrode of 1 the other end of the first contactor K1 is connected to the first inductor L1
  • one end of the second capacitor C2 is connected to the other end of the first contactor K1 and the first inductor L1 respectively, and the other end of the second capacitor C2 passes through
  • the second contactor K2 is connected to the negative electrode of the first charging port 1 .
  • this embodiment is provided with a first contactor K1 and a second contactor K2, and a second capacitor C2 is provided between the positive electrode and the negative electrode of the first charging port 1,
  • the second capacitor C2 can filter the external power input from the first charging port 1.
  • a first contactor K1 is provided between the positive electrode of the first charging port 1 and the first inductor L1.
  • the negative electrode of the first charging port 1 is connected to the first contactor K1.
  • a second contactor K2 is provided between the second capacitors 2.
  • the first contactor K1 and the second contactor K2 are controlled to be closed so that the external power supply can charge the power battery 3 through the first charging circuit 11 .
  • the second charging circuit 12 includes a third contactor K3 and a fourth contactor K4.
  • One end of the third contactor K3 is connected to the positive electrode of the second charging port 2, and the third contactor K3 is connected to the positive electrode of the second charging port 2.
  • the other end of the contactor K3 is connected to the positive terminal of the power battery 3
  • one end of the fourth contactor K4 is connected to the negative terminal of the second charging port 2
  • the other end of the fourth contactor K4 is connected to the negative terminal of the boost circuit 111. Connect to the negative terminal of power battery 3.
  • the second charging circuit 12 in this embodiment is a DC charging circuit, and the external power supply can directly charge the power battery 3 after being connected to the charging system of the electric vehicle through the second charging port 2 .
  • a contactor is provided in each of the positive and negative electrodes of the second charging circuit 12 to more conveniently control the charging process of the second charging port 2 .
  • the voltage of the external power supply can be judged first, and when it is determined that the external power supply can directly charge the power battery 3, the third contactor K3 and the fourth contactor are controlled. K4 is closed, thereby allowing the external power supply to charge the power battery 3 directly.
  • one of the third contactor K3 and the fourth contactor K4 in this embodiment may be in a closed state all the time, or adhesion may occur when one of the third contactor K3 and the fourth contactor K4 fails. , then control the external state by controlling the state of the other Whether the external power supply charges the power battery 3 to improve fault tolerance.
  • the third contactor K3 and the fourth contactor K4 are not faulty, the third contactor K3 and the fourth contactor K4 can also be controlled at the same time.
  • the second charging circuit 12 further includes a second inductor L2 for suppressing the charging circulation current, and the second inductor L2 is connected in series with the third contactor K3.
  • this embodiment provides a second inductor L2 in the second charging circuit 12.
  • the circulating current phenomenon is mainly caused by the voltage difference, so the second charging circuit 12 A second inductor L2 is set at the positive electrode, that is, the second inductor L2 is connected in series with the third contactor K3 to charge the second inductor L2 through an external power supply, thereby completing the increase in the voltage of the positive electrode of the second charging circuit 12 to suppress the second charging circuit. 12Charging circulation occurs.
  • the second charging circuit 12 further includes a second precharge unit 122 .
  • a second precharge unit 122 is provided in the second charging circuit 12 so that when the second charging circuit 12 is used to charge the power battery 3, the second precharging unit 122 can be used to complete the charging process first. Precharge, and then perform normal charging after precharging is completed.
  • the second pre-charging unit 122 in this embodiment can be connected in parallel with any contactor in the second charging circuit 12.
  • the second pre-charging unit 122 and The third contactor K3 is connected in parallel.
  • the second precharging unit 122 includes a resistor R2 and a contactor KR2 connected in series. That is to say, when the second charging circuit 12 is used to charge the power battery 3, the contactor KR2 and the fourth contactor K4 are first controlled. closed to form a charging circuit. Specifically, the fourth contactor K4 can be controlled to close first and then the contactor KR2 can be controlled to close. After the second charging circuit 12 completes precharging, the third contactor K3 can be controlled to close, and the contact The device KR2 is disconnected, so that the second charging circuit 12 can operate normally to charge the power battery 3.
  • the boost circuit 111 in the first charging circuit 11 includes a motor winding and a three-phase bridge arm of the motor inverter, and each phase bridge arm is It is controlled to complete the voltage boost through the charging and discharging process of the motor winding, and the first charging circuit 11 is provided with a first contactor K1, a second contactor K2 and a second capacitor C2 to pass the first contactor K1 and the second contact
  • the device K2 controls the external power supply to be connected to the first charging circuit 11 and performs filtering processing through the second capacitor C2 to better charge the power battery 3.
  • a third contactor K3 and a fourth contactor K4 are provided in the second charging circuit 12 , and the third contactor K3 is connected in series with the second inductor L2 to suppress charging circulation current in the second charging circuit 12 through the second inductor L2 .
  • a second pre-charging unit 122 is also provided in parallel on the third contactor K3 to pre-charge through the second pre-charging unit 122 and then perform normal charging after the pre-charging is completed to prevent damage caused by voltage transients during charging. circuit devices.
  • the second end of the first charging circuit 11 and the second end of the second charging circuit 12 are commonly connected to form a bus terminal, and the bus terminal is connected to the power battery 3 .
  • the output terminals of the first charging circuit 11 and the second charging circuit 12 are connected together and then connected to the power battery 3, so that the first charging circuit 11 and the second charging circuit 12 can operate at the same time.
  • Performing confluence processing to charge the power battery 3 increases the charging speed, and can operate normally even when only one of the first charging circuit 11 and the second charging circuit 12 outputs current to charge the power battery 3 .
  • the bus terminal includes a positive bus terminal and a negative bus terminal, and a battery positive contactor K+ and a first precharge unit 121 are provided between the positive bus terminal and the positive terminal of the power battery 3.
  • the first precharge unit 121 is connected in parallel with the battery positive contactor K+, and a battery negative contactor K- is provided between the negative bus terminal and the negative terminal of the power battery.
  • the positive electrode of the first charging port 1 is connected to the positive input terminal of the first charging circuit 11
  • the positive electrode of the second charging port 2 is connected to the positive input terminal of the second charging circuit 12
  • the positive output terminal of the first charging circuit 11 It is connected to the positive output end of the second charging circuit 12 and serves as the positive converging end
  • the negative electrode of the first charging port 1 is connected to the negative input end of the first charging circuit 11, and the negative electrode of the second charging port 2 is connected to the second charging circuit 12.
  • the negative input terminal is connected, and the negative output terminal of the first charging circuit 11 and the negative output terminal of the second charging circuit 12 are connected to a bus as a negative bus terminal.
  • the positive terminal is connected to the positive terminal of the power battery 3, and a battery positive contactor K+ is provided between the positive terminal and the positive terminal of the power battery 3; the negative terminal is connected to the negative terminal of the power battery 3, and the negative terminal is connected to the positive terminal of the power battery 3.
  • a battery negative contactor K- is provided between the terminal and the negative terminal of the power battery 3.
  • a first precharge unit 121 is also provided in parallel with the battery positive contactor K+.
  • the first precharge unit 121 By providing the first precharge unit 121, it is possible to avoid the impact of the instantaneous high voltage generated when the main circuit of the power battery 3 is connected on the power battery 3. This in turn causes damage to the power battery 3, thereby extending the service life of the power battery 3.
  • the first precharging unit 121 when using the first charging circuit 11 and the second charging circuit 12 to charge the power battery 3, the first precharging unit 121 can be used to complete precharging first, and then normal charging can be performed after the precharging is completed.
  • the first precharge unit 121 in this embodiment can be connected in parallel with either the battery positive contactor K+ or the battery negative contactor K-. In this embodiment, as shown in Figure 8, The first precharge unit 121 is connected in parallel with the battery positive contactor K+.
  • the first pre-charging unit 121 includes a resistor R1 and a contactor KR1 connected in series. That is to say, when charging the power battery 3 using the first charging circuit 11 and/or the second charging circuit 12, it can be controlled first Contactor KR1 and battery negative contactor K- are closed to form a charging circuit. Specifically, the battery negative contactor K- can be controlled to close first and then contactor KR1 can be controlled to close. After precharging is completed, the battery positive contactor can be controlled. K+ is closed, and the control contactor KR1 is opened to charge the power battery 3.
  • the voltage difference between the output voltage boosted by the boost circuit 111 of the first charging circuit 11 and the directly connected output voltage of the second charging circuit 12 is within the preset voltage threshold range.
  • the charging voltage range of the power battery 3 is 500-600 volts.
  • the input voltage of the first charging circuit 11 is boosted by the boost circuit 111 to a voltage of 500 volts. -600 volts, and the input voltage of the second charging circuit 12 is directly between 500-600 volts, so that the voltage difference between the output voltage of the first charging circuit 11 and the output voltage of the second charging circuit 12 is within the predetermined value.
  • Set the voltage threshold range to ensure that the power battery 3 can be charged normally. It should be noted that the preset voltage threshold range in this embodiment can be determined based on information such as specifications and parameters of the power battery.
  • the charging system 10 further includes a control unit 13 configured to control the first charging circuit 11 and the second charging circuit 12 to pass the first charging circuit 11 and the second charging circuit 12 . /Or the second charging circuit 12 charges the power battery 3 .
  • control unit 13 in this embodiment can be a vehicle-mounted controller that integrates DC charging kinetic energy, and can be one or more controllers.
  • the control unit 13 should include two independent sets of DC charging control and guidance circuits.
  • the electronic network interacts with the charging pile via CAN (Controller Area Network) signals to complete the control of the first charging circuit 11 and the second charging circuit 12 at each stage of DC charging.
  • the control unit 13 can be a power battery manager. If it is another controller, it can be set to interact with the power battery manager through signals, such as charging gun connection signals, charging confirmation signals, and high-voltage main circuits. Power on and off requests, insulation detection command requests, etc.
  • the power battery manager can monitor the status of the power battery cells during the DC charging process, including but not limited to the cell voltage, temperature, and maximum allowable charging current. When the power battery charging conditions are not met, the control unit is requested. 13 Terminate DC charging control.
  • the voltage boost circuit is a buck-boost circuit
  • the control unit 13 is also configured to control the voltage-boost circuit 111 before charging the power battery 3 through the first charging circuit 11 .
  • the voltage provided by the power battery 3 is stepped down so that the voltage of the first charging port 1 meets the needs of the external charging equipment.
  • the circuit provided in the first charging circuit 11 in this embodiment is a buck-boost circuit 111.
  • the buck-boost circuit 111 can control the external power supply connected to the first charging port 1 to charge the power battery 3.
  • the power in the power battery 3 can also be provided to external devices. Before the power battery 3 is charged, the remaining power in the power battery 3 can be exhausted to better record the charging information of the power battery 3 and other operations.
  • the control unit 13 can control the buck-boost circuit 111 to be in a buck mode. The current in the power battery 3 is bucked after passing through the buck-boost circuit 111 and then flows to the external device through the first charging port 1 to Meet the needs of external equipment.
  • the charging system of the electric vehicle in the embodiment of the present disclosure charges the power battery of the charging vehicle through dual charging circuits, and controls the boost circuit according to the voltage of the external power supply to increase the charging speed of the electric vehicle and meet the needs of electric vehicles.
  • the high-power charging of vehicles is compatible with national standard DC charging piles on the market, ensuring that electric vehicles can be charged and improving user experience.
  • FIG. 11 is a structural block diagram of an electric vehicle according to an embodiment of the present disclosure.
  • the present disclosure proposes an electric vehicle 100 , which includes the charging system 10 in the above embodiment.
  • the electric vehicle in the embodiment of the present disclosure can charge the power battery of the charging vehicle through the dual charging circuit through the charging system in the above embodiment, and control the boost circuit according to the voltage of the external power supply to improve the performance of the electric vehicle.
  • the charging speed meets the high-power charging of electric vehicles and is compatible with national standard DC charging piles on the market, ensuring that electric vehicles can be charged and improving user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动车辆的充电***和电动车辆,其中,电动车辆的充电***包括第一充电回路和第二充电回路,其中,第一充电回路的第一端连接第一充电口,第二充电回路的第一端连接第二充电口;第一充电回路的第二端和第二充电回路的第二端均连接到电动车辆的动力电池;第一充电回路中设有升压电路,第一充电回路被配置为升压充电回路,第二充电回路被配置为直连充电回路。在实际应用中,能够提高电动车辆的充电速度,满足电动车辆的大功率充电,并兼容市面上国标直流充电桩。

Description

电动车辆的充电***和电动车辆
相关申请的交叉引用
本公开要求于2022年08月24日提交的申请号为202222241840.X,名称为“电动车辆的充电***和电动车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电动车辆技术领域,尤其涉及一种电动车辆的充电***和电动车辆。
背景技术
随着新能源汽车的飞速发展,电动汽车在汽车市场的占比逐年增加,但续驶里程焦虑一直是新能源车辆生产厂家亟待解决的问题。
为解决此问题,相关技术中主要采用大功率直流充电技术或电池更换技术。但是,电池更换技术成本较高,而大功率直流充电技术又由于高电压平台大功率充电设施并未普及,使得具备大功率直流充电技术的电动车辆充电速度仍掣肘直流充电设备输出电压及功率。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出一种电动车辆的充电***,通过双充电回路对充电车辆的动力电池进行充电,并根据外接电源的电压大小对升压电路进行控制,以提高电动车辆的充电速度,满足电动车辆的大功率充电,并能够兼容市面上国标直流充电桩,保证电动车辆能够完成充电,提高用户体验。
本公开的第二个目的在于提出另一种电动车辆的充电***。
本公开的第三个目的在于提出一种电动车辆。
为达上述目的,本公开第一方面实施例提出了一种电动车辆的充电***,该充电***包括第一充电回路和第二充电回路,其中,所述第一充电回路的第一端连接第一充电口,所述第二充电回路的第一端连接第二充电口;所述第一充电回路的第二端和第二充电回路的第二端均连接到所述电动车辆的动力电池;所述第一充电回路中设有升压电路,所述第一充电回路被配置为升压充电回路,所述第二充电回路被配置为直连充电回路。
本公开实施例的充电***包括有两个充电回路,且其中的一个充电回路被配置为升压充电回路,另一个充电回路被配置为直流充电回路,通过双充电回路对充电车辆的动力电池进行充电,并根据外接电源的电压大小对升压电路进行控制,以提高电动车辆的充电速度,满足电动车辆的大功率充电,并能够兼容市面上国标直流充电桩,保证电动车辆能够完成充电,提高用户体验。
为达上述目的,本公开第二方面实施例提出了一种电动车辆的充电***,该充电***包括:第一充电回路和第二充电回路,其中,所述第一充电回路的第一端连接第一充电口,所述第二充电回路的第一端连接第二充电口;所述第一充电回路的第二端和第二充电回路的第二端均连接到所述电动车辆的动力电池;所述第一充电回路中设有升压电路,所述第一充电回路被配置为对所述动力电池升压充电,所述第一充电回路的第一端的输入电压小于所述第一充电回路的第二端的输出电压,所述第二充电回路的第一端的输入电压和所述第二充电回路的第二端的输出电压相同。
本公开实施例的充电***包括两个充电回路,且其中的一个充电回路被配置为升压充电回路,即升压充电回路输入端的输入电压小于其输出端的输出电压,另一个充电回路被配置为直流充电回路,即直流充电回路输入端的输入电压等于其输出端的输出电压,通过双充电回路对充电车辆的动力电池进行充电,并根据外接电源的电压大小对升压电路进行控制,以提高电动车辆的充电速度,满足电动车辆的大功率充电,并能够兼容市面上国标直流充电桩,保证电动车辆能够完成充电,提高用户体验。
在一些示例中,所述第一充电口和第二充电口均为直流充电口。
在一些示例中,所述电动车辆包括电机和电机逆变器,所述升压电路包括所述电机绕组中的至少一相绕组和所述电机逆变器的三相桥臂中对应的至少一相桥臂。
在一些示例中,在所述升压电路包括所述电机绕组中的三相绕组和所述三相桥臂时,所述电机绕组中的第一相绕组的一端、第二相绕组的一端和第三相绕组的一端连接到一起,以构成中性点,所述第一相绕组的另一端与所述三相桥臂中第一相桥臂的中间节点相连,所述第二相绕组的另一端与所述三相桥臂中第二相桥臂的中间节点相连,所述第三相绕组的另一端与所述三相桥臂中第三相桥臂的中间节点相连,所述三相桥臂的母线正极端与负极端之间并联第一电容。
在一些示例中,所述第一充电回路还包括第一接触器、第二电容和第二接触器,所述第一接触器的一端与所述第二电容的一端相连,所述第一接触器的另一端与所述中性点相连,所述第二电容的一端连接到所述第一充电口的正极,所述第二电容的另一端通过所述第二接触器连接到所述第一充电口的负极。
在一些示例中,所述升压电路包括第一电感、第一开关管、第二开关管和第三电容,所述第一开关管与所述第二开关管串联连接,且具有第一节点,所述第一节点与所述第一电感相连,所述第三电容与串联连接的第一开关管和第二开关管并联连接。
在一些示例中,所述第一充电回路还包括第一接触器、第二电容和第二接触器,所述第一接触器的一端连接到所述第一充电口的正极,所述第一接触器的另一端与所述第一电感相连,所述第二电容的一端分别与所述第一接触器的另一端和所述第一电感相连,所述第二电容的另一端通过所述第二接触器连接到所述第一充电口的负极。
在一些示例中,所述第二充电回路包括第三接触器和第四接触器,所述第三接触器的一端连接到所述第二充电口的正极,所述第三接触器的另一端连接到所述动力电池的正极端,所述第四接触器的一端连接到所述第二充电口的负极,所述第四接触器的另一端与所述升压电路的负极端相连后连接到所述动力电池的负极端。
在一些示例中,所述第一充电回路的第二端和所述第二充电回路的第二端共接形成汇流端,所述汇流端与所述动力电池连接。
在一些示例中,所述汇流端包括正极汇流端和负极汇流端,所述正极汇流端与所述动力电池的正极端之间设有电池正极接触器和第一预充单元,所述第一预充单元与所述电池正极接触器并联,所述负极汇流端和所述动力电池的负极端之间设有电池负极接触器。
在一些示例中,所述第二充电回路还包括用于抑制充电环流的第二电感,所述第二电感与所述第三接触器串联。
在一些示例中,所述第二充电回路还包括第二预充单元,所述第二预充单元与所述第三接触器并联。
在一些示例中,所述第一充电回路通过所述升压电路升压后的输出电压与所述第二充电回路直连的输出电压之间的压差处于预设电压阈值范围内。
在一些示例中,充电***还包括控制单元,所述控制单元被配置为对所述第一充电回路和所述第二充电回路进行控制,以通过所述第一充电回路和/或所述第二充电回路对所述动力电池进行充电。
在一些示例中,所述升压电路为升降压电路,所述控制单元还被配置为在通过所述第一充电回路对所述动力电池进行充电之前,控制所述升降压电路对所述动力电池提供的电压进行降压,以使所述第一充电口的电压满足外部充电设备的需求。
为达上述目的,本公开第三方面实施例提出了一种电动车辆,该电动车辆包括上述实施例所述的充电***。
本公开实施例的电动车辆包括上述实施例中的充电***,能够通过双充电回路对充电车辆的动力电池进行充电,并根据外接电源的电压大小对升压电路进行控制,以提高电动车辆的充电速度,满足电动车辆的大功率充电,并能够兼容市面上国标直流充电桩,保证电动车辆能够完成充电,提高用户体验。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1是根据本公开一个实施例的充电***示意图;
图2是根据本公开另一个实施例的充电***示意图;
图3是根据本公开另一个实施例的充电***示意图;
图4是根据本公开另一个实施例的充电***示意图;
图5是根据本公开另一个实施例的充电***示意图;
图6是根据本公开另一个实施例的充电***示意图;
图7是根据本公开另一个实施例的充电***示意图;
图8是根据本公开另一个实施例的充电***示意图;
图9是根据本公开另一个实施例的充电***示意图;
图10是根据本公开另一个实施例的充电***示意图;
图11是根据本公开实施例的电动车辆的结构框图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
首先需要说明的是,双枪充电目前多应用于商用车,如大巴车、重卡类车型,大部分的双枪充电为双直流电池包充电方案,当前国内直流充电设施中,主要有500V和750V两种充电电压规格,但由于国内外各个厂家对于动力电池技术线路的不同,因此存在部分动力电池额定电压高于500V电动汽车从而无法使用500V电压平台直流充电桩充电的情况。本公开中的充电***能够根据外接电源的电压大小对升压电路进行控制,并兼容市面上国标直流充电桩,保证电动车辆能够完成充电,以提高电动车辆的充电速度,满足电动车辆的大功率充电,提高用户体验。
下面参考附图描述本公开实施例的电动车辆的充电***和电动车辆。
图1是根据本公开一个实施例的充电***示意图。
如图1所示,本公开提出了第一种电动车辆的充电***10,该充电***10包括第一充电回路11和第二充电回路12,其中,第一充电回路11的第一端连接第一充电口1,第二充电回路12的第一端连接第二充电口2;第一充电回路11的第二端和第二充电回路12的第二端均连接到电动车辆的动力电池 3;第一充电回路11中设有升压电路111,第一充电回路11被配置为升压充电回路,第二充电回路12被配置为直连充电回路。
具体地,参见图1,本公开中电动车辆的充电***10包括第一充电回路11和第二充电回路12,并且,第一充电回路11的第一端与第一充电口1连接并通过第一充电口1与外部直流充电桩连接,第二充电回路12的第一端与第二充电口2连接并通过第二充电口2与外部直流充电桩连接。第一充电回路11的第二端和第二充电回路12的第二端均与电动车辆的动力电池3连接,以,外部直流充电桩通过第一充电回路11的第一端和第二充电回路12的第一端流入电动车辆的充电***10,经过充电***10处理之后,从第一充电回路11的第二端和第二充电回路12的第二端向电动电池3充电。
其中,充电***10中的第一充电回路11设置有升压电路111,外部直流充电桩的电能从第一充电口1进入第一充电回路11,第一充电回路11中的升压电路111能够对外部直流电进行升压处理,再将升压处理后的外部直流电提供给动力电池3,以向动力电池3充电。外部直流充电桩的电能还可以从第二充电口2进入第二充电回路12,第二充电回路12直接将外部直流充电桩所提供的电源输送给动力电池3,以向动力电池3充电。
需要说明的是,当外部直流充电桩所能提供的电源中电压较低时,则可以将充电桩接入第一充电口1,以通过第一充电回路11中的升压电路111进行升压后再向动力电池3充电,而如果外部直流充电桩所能提供的电源中电压足够高,则可以直接接入第二充电口2,以通过第二充电回路12向动力电池3充电。可以理解的是,当外部直流充电桩所能提供的电源电压小于动力电池3的满充电压时,则表示外部直流充电桩所能提供的电源中电压较低,当外部直流充电桩所能提供的电源电压大于等于动力电池3的满充电压时,则表示外部直流充电桩所能提供的电源中电压足够高。
需要说明的是,如果外部直流充电桩所能提供的电源电压足够高(高于动力电池3的电压),当其接入第一充电回路11时,也可以进行直连充电。
并且,本实施例中的升压电路是可以根据输入电压和输出电压进行适应性调节的,以保证动力电池3能够完成充电。
本公开实施例电动车俩的充电***能够通过双充电回路对充电车辆的动力电池进行充电,并根据外接电源的电压大小对升压电路进行控制,以提高电动车辆的充电速度,满足电动车辆的大功率充电,并能够兼容市面上国标直流充电桩,保证电动车辆能够完成充电,提高用户体验。
进一步地,本公开提出了第二种电动车辆的充电***,本实施例中的充电***可以参见附图1所示的充电***10,该充电***10包括第一充电回路11和第二充电回路12,其中,第一充电回路11的第一端连接第一充电口1,第二充电回路12的第一端连接第二充电口2;第一充电回路11的第二端和第二充电回路12的第二端均连接到电动车辆的动力电池3;第一充电回路11中设有升压电路111,第一充电回路11被配置为对动力电池3升压充电,第一充电回路11的第一端的输入电压小于第一充电回路11的第二端的输出电压,第二充电回路12的第一端的输入电压和第二充电回路12的第二端的输出电压相同。
具体地,参见图1,本实施例中第一充电回路11、第二充电回路12、第一充电口1、第二充电口2、动力电池3和升压电路111的连接方式可以参见上述关于第一种电动车辆的充电***的描述。需要说明的是,本实施例中的第一充电回路11中设置有升压电路11,从而使得从第一充电口1接入的外部电源在经过升压电路11时能够完成升压,进而能够对动力电池3进行升压充电,适用于充电桩所能提供的电源电压较小的情况,并且通过调节升压电路11,能够使本实施例中的充电***10适应多种供电电压不同的充电桩,提高充电***10的兼容性。本实施例中外部电源从第一充电回路11的第一端输入,经 过升压之后从第一充电回路11的第二端输出,可以理解的是,第一充电回路11第一端的输入电压小于第一充电回路11第二端的输出电压。本实施例中的第二充电口2可以接入电压较高的外部电源,以直接通过第二充电回路12的第一端流向第二充电回路12的第二端对动力电池3进行充电,不需要进行升压。其中,第二充电回路12第一端的输入电压与第二充电回路12第二端的输入电压相等。
本公开实施例电动车俩的充电***能够通过双充电回路对充电车辆的动力电池进行充电,并根据外接电源的电压大小对升压电路进行控制,以提高电动车辆的充电速度,满足电动车辆的大功率充电,并能够兼容市面上国标直流充电桩,保证电动车辆能够完成充电,提高用户体验。
在一些实施例中,第一充电口1和第二充电口2均为直流充电口。
在一些实施例中,电动车辆包括电机和电机逆变器,如图2所示,升压电路111包括电机绕组中的至少一相绕组和电机逆变器的三相桥臂中对应的至少一相桥臂。
需要说明的是,本实施例中的电动车辆包括有电机和电机逆变器,电机逆变器一般至少包括三相桥臂,参见图2,本实施例将电机绕组中的至少一相绕组和电机逆变器的三相桥臂中对应的至少一相桥臂作为升压电路111,以实现对电机绕组和电机逆变器的复用,可以有效降低电动车辆的设计成本。
具体地,以电机绕组中的三相绕组和电机逆变器中的三相桥臂都作为升压电路111为例进行描述,通过控制三相桥臂中各个开关管的导通与关闭,以对电机绕组进行充放电控制,从而达到升压效果。更具体地,三相桥臂中的下桥臂所对应的开关管可以采用相同的脉冲信号进行控制,三相桥臂中的上桥臂所对应的开关管也可以采用相同的脉冲信号进行控制,并且,上桥臂和下桥臂之间的脉冲信号可以是相反的,即当下桥臂的脉冲信号为高电平时,上桥臂对应的脉冲信号为低电平,当下桥臂的脉冲信号为低电平时,上桥臂对应的脉冲信号为高电平。其中,当下桥臂中的开关管导通且上桥臂中的开关管关断时,与第一充电口1连接的外部电源能够对电机绕组进行充电,并在下一个脉冲信号中,上桥臂中的开关管导通且下桥臂中的开关管关断,这时候外部电源以及电机绕组中的电源能够同时对动力电池3进行充电,从而完成对动力电池3的升压充电。
在该实施例中,如图2所示,在升压电路111包括电机绕组中的三相绕组和三相桥臂时,电机绕组中的第一相绕组L1的一端、第二相绕组L2的一端和第三相绕组L3的一端连接到一起,以构成中性点P,第一相绕组L1的另一端与三相桥臂中第一相桥臂的中间节点相连,第二相绕组L2的另一端与三相桥臂中第二相桥臂的中间节点相连,第三相绕组L3的另一端与三相桥臂中第三相桥臂的中间节点相连,三相桥臂的母线正极端与负极端之间并联第一电容C1。
具体地,参见图2,本实施例中第一充电口1的正极通过中性点P与电机绕组连接,再通过三相桥臂的上桥臂连接到三相桥臂的母线正极端,而第一充电口1则与三相桥臂的下桥臂连接并作为三相桥臂的母线负极端,在三相桥臂的母线正极端和母线负极端之间并联有第一电容C1,能够防止过充,同时降低瞬时电压动力电池与开关管的影响。
在一些实施例中,参见图1和图3,第一充电回路11还包括第一接触器K1、第二电容C2和第二接触器K2,第一接触器K1的一端与第二电容C2的一端相连,第一接触器K1的另一端与中性点P相连,第二电容C2的一端连接到第一充电口1的正极,第二电容C2的另一端通过第二接触器K2连接到第一充电口1的负极。
具体地,在该实施例中,为了提高对充电过程的控制,设置了第一接触器K1和第二接触器K2,以及在第一充电口1的正极与负极之间设置了第二电容C2,第二电容C2能够对第一充电口1输入的外部电源进行滤波处理,在第一充电口1的正极与中性点P之间设置有第一接触器K1,第一充电口1的负极与第二电容2之间设置有第二接触器K2,本实施例可以在外部的充电枪通过第一充电口1接入第一充 电回路11并确认充电枪与第一充电口1连接无误之后,控制第一接触器K1和第二接触器K2闭合,以使外部电源能够通过第一充电回路11对动力电池3进行充电。
在一些实施例中,如图4所示,升压电路111包括第一电感L1、第一开关管T1、第二开关管T2和第三电容C3,第一开关管T1与第二开关管T2串联连接,且具有第一节点P1,第一节点P1与第一电感L1相连,第三电容C3与串联连接的第一开关管T1和第二开关管T2并联连接。
具体地,参见图4,本实施例中的升压电路111包括第一电感L1、第一开关管T1、第二开关管T2和第三电容C3,第一充电口1的正极与第一电感L1的一端连接,并且第一电感L1的另一端与第一节点P1连接,第一节点P1由第一开关管T1和第二开关管T2确定,具体第一开关管T1和第二开关管T2串联连接,并将第一开关管T1和第二开关管T2直接连接的两端中具有第一节点P1,而第一开关管T1和第二开关管T2其他的两端则通过第三电容C3连接。
其中,通过控制第一开关管T1和第二开关管T2的控制信号以控制第一开关管T1和第二开关管T2交替导通,具体地,参见图4,在第一充电口1接入外部电源之后,则可以先控制第二开关管T2导通,外部电源经过第一电感L1,再通过第二开关管T2形成回路,以完成对第一电感L1的充电。在第一电感L1充电完成之后,控制第一开关管T1导通而第二开关管关闭,使得外部电源和第一电感L1上的电源能够一起通过第一开关管T1,以给动力电池3升压充电。
当第一充电口1接入外部电源后,如果外部电源电压足够高时,可以不再控制第一开关管T1和第二开关管T2,外部电源可以经过第一电感L1与开关管T1中的二极管给动力电池3直连充电。
在该实施例中,参见图1和图5,第一充电回路11还包括第一接触器K1、第二电容C2和第二接触器K2,第一接触器K1的一端连接到第一充电口1的正极,第一接触器K1的另一端与第一电感L1相连,第二电容C2的一端分别与第一接触器K1的另一端和第一电感L1相连,第二电容C2的另一端通过第二接触器K2连接到第一充电口1的负极。
具体地,为了提高对电动车辆充电过程的控制,本实施例设置了第一接触器K1和第二接触器K2,以及在第一充电口1的正极与负极之间设置了第二电容C2,第二电容C2能够对第一充电口1输入的外部电源进行滤波处理,在第一充电口1的正极与第一电感L1之间设置有第一接触器K1,第一充电口1的负极与第二电容2之间设置有第二接触器K2,本实施例可以在外部的充电枪通过第一充电口1接入第一充电回路11并确认充电枪与第一充电口1连接无误之后,控制第一接触器K1和第二接触器K2闭合,以使外部电源能够通过第一充电回路11对动力电池3进行充电。
在一些实施例中,参见图1和图6,第二充电回路12包括第三接触器K3和第四接触器K4,第三接触器K3的一端连接到第二充电口2的正极,第三接触器K3的另一端连接到动力电池3的正极端,第四接触器K4的一端连接到第二充电口2的负极,第四接触器K4的另一端与升压电路111的负极端相连后连接到动力电池3的负极端。
具体地,本实施例中的第二充电回路12为直流充电回路,外部电源在通过第二充电口2接入电动车辆的充电***之后,可以直接给动力电池3充电。本实施例在第二充电回路12的正极和负极中各设置一个接触器,以更方便的控制第二充电口2的充电过程。在外部电源接入第二充电口2之后,可以先对外部电源的电压大小进行判断,并在确定外部电源能够直接给动力电池3进行充电时,则控制第三接触器K3和第四接触器K4闭合,进而使得外部电源能够直接给动力电池3充电。
可以理解的是,本实施例的第三接触器K3和第四接触器K4中的一个可以一直处于闭合状态,或者在第三接触器K3和第四接触器K4中的一个发生故障而发生粘连时,则通过控制另一个的状态来控制外 部电源是否给动力电池3充电,以提高容错性。当然,在第三接触器K3和第四接触器K4没有故障的时候,也可以同时对第三接触器K3和第四接触器K4进行控制。
在该实施例中,如图1和图6所示,第二充电回路12还包括用于抑制充电环流的第二电感L2,第二电感L2与第三接触器K3串联。
具体地,第二充电回路12在对动力电池3进行充电的过程中,可能产生环流现象,这种环流的存在使得动力电池能量会被浪费,同时还缩短了电池的实际使用寿命。为了抑制第二充电回路12中的环流现象,本实施例在第二充电回路12中设置了第二电感L2,需要说明的是,环流现象的产生主要由于电压差,从而第二充电回路12的正极设置了第二电感L2,即第二电感L2与第三接触器K3串联,以通过外部电源对第二电感L2进行充电,完成提高第二充电回路12正极的电压,以抑制第二充电回路12发生充电环流。
在该实施例中,如图1和图6所示,第二充电回路12还包括第二预充单元122。
具体地,为了防止在K3、K4闭合瞬间,防止K3与K4烧结,以及为了避免动力电池3在开始充电时的瞬时高压对动力电池3产生冲击进而对动力电池3造成损坏,从而可以提高动力电池3的使用寿命,本实施例在第二充电回路12中设置了第二预充单元122,以在利用第二充电回路12对动力电池3进行充电时,能够先利用第二预充单元122完成预充,在预充完成后再进行正常充电。
可以理解的是,本实施例中的第二预充单元122能够与第二充电回路12中任一个接触器进行并联,在该实施例中,如图6所示,第二预充单元122与第三接触器K3并联。
具体地,第二预充单元122包括串联的电阻R2和接触器KR2,也就是说,在利用第二充电回路12对动力电池3进行充电的时候,先控制接触器KR2和第四接触器K4闭合以形成充电回路,其中,具体可以先控制第四接触器K4闭合之后再控制接触器KR2闭合,在第二充电回路12完成预充之后,则可以控制第三接触器K3闭合,以及控制接触器KR2断开,以使第二充电回路12正常工作对动力电池3进行充电。
更具体地,在一些实施例中,如图1和图7所示,第一充电回路11中的升压电路111包括电机绕组和电机逆变器的三相桥臂,对各相桥臂进行控制以通过电机绕组的充电放电过程完成升压,并且第一充电回路11中设置有第一接触器K1、第二接触器K2和第二电容C2,以通过第一接触器K1和第二接触器K2控制外部电源接入第一充电回路11,并通过第二电容C2进行滤波处理,以更好的对动力电池3进行充电。在第二充电回路12中设置有第三接触器K3和第四接触器K4,并且第三接触器K3与第二电感L2串联,以通过第二电感L2抑制第二充电回路12发生充电环流。在第三接触器K3上还并联设置有第二预充单元122,以通过第二预充单元122先预充,待预充完成后再进行正常充电,以防止在充电时电压瞬变而损坏电路器件。
在一些实施例中,如图1和图8所示,第一充电回路11的第二端和第二充电回路12的第二端共接形成汇流端,汇流端与动力电池3连接。
具体地,参见图8,第一充电回路11和第二充电回路12的输出端连接到一起,再与动力电池3连接,以使第一充电回路11和第二充电回路12在同时工作时能够进行汇流处理再对动力电池3进行充电,提高充电速度,并在第一充电回路11和第二充电回路12中只有一个充电回路输出电流对动力电池3进行充电时也可以正常工作。
在该实施例中,如图8所示,汇流端包括正极汇流端和负极汇流端,正极汇流端与动力电池3的正极端之间设有电池正极接触器K+和第一预充单元121,第一预充单元121与电池正极接触器K+并联,负极汇流端和动力电池的负极端之间设有电池负极接触器K-。
具体地,第一充电口1的正极与第一充电回路11的正极输入端连接,第二充电口2的正极与第二充电回路12的正极输入端连接,第一充电回路11的正极输出端和第二充电回路12的正极输出端连接汇流,作为正极汇流端;第一充电口1的负极与第一充电回路11的负极输入端连接,第二充电口2的负极与第二充电回路12的负极输入端连接,第一充电回路11的负极输出端和第二充电回路12的负极输出端连接汇流,作为负极汇流端。正极汇流端与动力电池3的正极端连接,并且在正极汇流端与动力电池3的正极端之间设置有电池正极接触器K+;负极汇流端与动力电池3的负极端连接,并且在负极汇流端与动力电池3的负极端之间设置有电池负极接触器K-。
本实施例在电池正极接触器K+上还并联设置有第一预充单元121,通过设置第一预充单元121能够避免在动力电池3主回路接通时产生的瞬时高压对动力电池3产生冲击进而对动力电池3造成损坏,从而可以提高动力电池3的使用寿命。本实施例在利用第一充电回路11和第二充电回路12对动力电池3进行充电时,都能够先利用第一预充单元121完成预充,在预充完成后再进行正常充电。
可以理解的是,本实施例中的第一预充单元121能够与电池正极接触器K+或电池负极接触器K-中任一个接触器进行并联,在该实施例中,如图8所示,第一预充单元121与电池正极接触器K+并联。
具体地,第一预充单元121包括串联的电阻R1和接触器KR1,也就是说,在利用第一充电回路11和/或第二充电回路12对动力电池3进行充电的时候,可以先控制接触器KR1和电池负极接触器K-闭合以形成充电回路,其中,具体可以先控制电池负极接触器K-闭合之后再控制接触器KR1闭合,在完成预充之后,则可以控制电池正极接触器K+闭合,以及控制接触器KR1断开,以对动力电池3进行充电。
在一些实施例中,第一充电回路11通过升压电路111升压后的输出电压与第二充电回路12直连的输出电压之间的压差处于预设电压阈值范围内。
具体地,举例而言,动力电池3的充电电压范围为500-600伏,为了保证动力电池3能够正常充电,第一充电回路11的输入电压经过升压电路111升压处理后的电压在500-600伏之间,第二充电回路12的输入电压则直接在500-600伏之间,以使第一充电回路11的输出电压和第二充电回路12的输出电压之间的压差在预设电压阈值范围内,保证动力电池3能够被正常充电。需要说明的是,本实施例中的预设电压阈值范围可以根据动力电池的规格参数等信息进行确定。
在一些实施例中,如图9所示,充电***10还包括控制单元13,控制单元13被配置为对第一充电回路11和第二充电回路12进行控制,以通过第一充电回路11和/或第二充电回路12对动力电池3进行充电。
具体地,本实施例中的控制单元13可以为集成直流充电动能的车载控制器,可以为一个或多个控制器,控制单元13中应包含两组独立的直流充电控制导引电路,通过充电子网与充电桩进行CAN(Controller Area Network,控制器局域网络)信号交互,以完成直流充电各个阶段对于第一充电回路11和第二充电回路12的控制。在一些实施例中,控制单元13可以为动力电池管理器,如果为其他控制器,则可以将其设置为与动力电池管理器进行信号交互,如充电枪连接信号、充电确认信号、高压主回路上下电请求、绝缘检测命令请求等。并且,动力电池管理器在直流充电过程中可以监测动力电池电芯状态,包括但不限于电芯单体电压、温度、最大允许充电电流,在动力电池充电条件不满足的时候,则请求控制单元13终止直流充电控制。
在一些实施例中,如图10所示,升压电路为升降压电路,控制单元13还被配置为在通过第一充电回路11对动力电池3进行充电之前,控制升降压电路111对动力电池3提供的电压进行降压,以使第一充电口1的电压满足外部充电设备的需求。
具体地,参见图10,本实施例设置在第一充电回路11中的电路为升降压电路111,通过升降压电路111能够控制与第一充电口1连接的外部电源向动力电池3充电,也可以将动力电池3中的电源提供给外部设备。在动力电池3进行充电之前,可以将动力电池3中残留的电源耗尽,以能够更好的记录动力电池3的充电信息等操作。更具体地,控制单元13可以控制升降压电路111处于降压模式,动力电池3中的电流在经过升降压电路111之后被降压处理,然后通过第一充电口1流向外部设备,以满足外部设备的需求。
综上,本公开实施例中电动车辆的充电***通过双充电回路对充电车辆的动力电池进行充电,并根据外接电源的电压大小对升压电路进行控制,以提高电动车辆的充电速度,满足电动车辆的大功率充电,并能够兼容市面上国标直流充电桩,保证电动车辆能够完成充电,提高用户体验。
图11是根据本公开实施例的电动车辆的结构框图。
进一步地,如图11所示,本公开提出了一种电动车辆100,该电动车辆100包括上述实施例中的充电***10。
本公开实施例中的电动车辆通过上述实施例中的充电***,能够通过双充电回路对充电车辆的动力电池进行充电,并根据外接电源的电压大小对升压电路进行控制,以提高电动车辆的充电速度,满足电动车辆的大功率充电,并能够兼容市面上国标直流充电桩,保证电动车辆能够完成充电,提高用户体验。
另外,本公开实施例的电动车辆的其他构成及作用对本领域的技术人员来说是已知的,为减少冗余,此处不做赘述。

Claims (17)

  1. 一种电动车辆的充电***,包括:第一充电回路和第二充电回路,其中,
    所述第一充电回路的第一端连接第一充电口,所述第二充电回路的第一端连接第二充电口;
    所述第一充电回路的第二端和第二充电回路的第二端均连接到所述电动车辆的动力电池;
    所述第一充电回路中设有升压电路,所述第一充电回路被配置为升压充电回路,所述第二充电回路被配置为直连充电回路。
  2. 一种电动车辆的充电***,包括:第一充电回路和第二充电回路,其中,
    所述第一充电回路的第一端连接第一充电口,所述第二充电回路的第一端连接第二充电口;
    所述第一充电回路的第二端和第二充电回路的第二端均连接到所述电动车辆的动力电池;
    所述第一充电回路中设有升压电路,所述第一充电回路被配置为对所述动力电池升压充电,所述第一充电回路的第一端的输入电压小于所述第一充电回路的第二端的输出电压,所述第二充电回路的第一端的输入电压和所述第二充电回路的第二端的输出电压相同。
  3. 根据权利要求1或2所述的充电***,其中,所述第一充电口和第二充电口均为直流充电口。
  4. 根据权利要求1-3中任一项所述的充电***,其中,所述电动车辆包括电机和电机逆变器,所述升压电路包括所述电机绕组中的至少一相绕组和所述电机逆变器的三相桥臂中对应的至少一相桥臂。
  5. 根据权利要求4所述的充电***,其中,在所述升压电路包括所述电机绕组中的三相绕组和所述三相桥臂时,所述电机绕组中的第一相绕组的一端、第二相绕组的一端和第三相绕组的一端连接到一起,以构成中性点,所述第一相绕组的另一端与所述三相桥臂中第一相桥臂的中间节点相连,所述第二相绕组的另一端与所述三相桥臂中第二相桥臂的中间节点相连,所述第三相绕组的另一端与所述三相桥臂中第三相桥臂的中间节点相连,所述三相桥臂的母线正极端与负极端之间并联第一电容。
  6. 根据权利要求5所述的充电***,其中,所述第一充电回路还包括第一接触器、第二电容和第二接触器,所述第一接触器的一端与所述第二电容的一端相连,所述第一接触器的另一端与所述中性点相连,所述第二电容的一端连接到所述第一充电口的正极,所述第二电容的另一端通过所述第二接触器连接到所述第一充电口的负极。
  7. 根据权利要求1-6中任一项所述的充电***,其中,所述升压电路包括第一电感、第一开关管、第二开关管和第三电容,所述第一开关管与所述第二开关管串联连接,且具有第一节点,所述第一节点与所述第一电感相连,所述第三电容与串联连接的第一开关管和第二开关管并联连接。
  8. 根据权利要求7所述的充电***,其中,所述第一充电回路还包括第一接触器、第二电容和第二接触器,所述第一接触器的一端连接到所述第一充电口的正极,所述第一接触器的另一端与所述第一电感相连,所述第二电容的一端分别与所述第一接触器的另一端和所述第一电感相连,所述第二电容的另一端通过所述第二接触器连接到所述第一充电口的负极。
  9. 根据权利要求1-8中任一项所述的充电***,其中,所述第二充电回路包括第三接触器和第四接触器,所述第三接触器的一端连接到所述第二充电口的正极,所述第三接触器的另一端连接到所述动力电池的正极端,所述第四接触器的一端连接到所述第二充电口的负极,所述第四接触器的另一端与所述升压电路的负极端相连后连接到所述动力电池的负极端。
  10. 根据权利要求1-9中任一项所述的充电***,其中,所述第一充电回路的第二端和所述第二充电回路的第二端共接形成汇流端,所述汇流端与所述动力电池连接。
  11. 根据权利要求10所述的充电***,其中,所述汇流端包括正极汇流端和负极汇流端,所述正极汇流端与所述动力电池的正极端之间设有电池正极接触器和第一预充单元,所述第一预充单元与所述电池正极接触器并联,所述负极汇流端和所述动力电池的负极端之间设有电池负极接触器。
  12. 根据权利要求9-11中任一项所述的充电***,其中,所述第二充电回路还包括用于抑制充电环流的第二电感,所述第二电感与所述第三接触器串联。
  13. 根据权利要求9-12中任一项所述的充电***,其中,所述第二充电回路还包括第二预充单元,所述第二预充单元与所述第三接触器并联。
  14. 根据权利要求1-13中任一项所述的充电***,其中,所述第一充电回路通过所述升压电路升压后的输出电压与所述第二充电回路直连的输出电压之间的压差处于预设电压阈值范围内。
  15. 根据权利要求1-14中任一项所述的充电***,还包括控制单元,所述控制单元被配置为对所述第一充电回路和所述第二充电回路进行控制,以通过所述第一充电回路和/或所述第二充电回路对所述动力电池进行充电。
  16. 根据权利要求15所述的充电***,其中,所述升压电路为升降压电路,所述控制单元还被配置为在通过所述第一充电回路对所述动力电池进行充电之前,控制所述升降压电路对所述动力电池提供的电压进行降压,以使所述第一充电口的电压满足外部充电设备的需求。
  17. 一种电动车辆,包括根据权利要求1-16中任一项所述的充电***。
PCT/CN2023/110551 2022-08-24 2023-08-01 电动车辆的充电***和电动车辆 WO2024041331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222241840.XU CN217994170U (zh) 2022-08-24 2022-08-24 电动车辆的充电***和电动车辆
CN202222241840.X 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024041331A1 true WO2024041331A1 (zh) 2024-02-29

Family

ID=84325742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/110551 WO2024041331A1 (zh) 2022-08-24 2023-08-01 电动车辆的充电***和电动车辆

Country Status (2)

Country Link
CN (1) CN217994170U (zh)
WO (1) WO2024041331A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217994170U (zh) * 2022-08-24 2022-12-09 比亚迪股份有限公司 电动车辆的充电***和电动车辆
CN116533779B (zh) * 2023-05-31 2024-04-16 广州小鹏汽车科技有限公司 充电电路的控制方法、充电电路、电动车辆和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE168507T1 (de) * 1994-09-08 1998-08-15 Tagawasyouji Co Ltd Batteriesystem und verwendung in einem schrittschaltwerk
US20070211502A1 (en) * 2006-03-07 2007-09-13 Kunihiro Komiya Voltage step-up circuit and electric appliance therewith
CN112510787A (zh) * 2020-12-11 2021-03-16 湖南西瑞尔新材料科技有限公司 一种基于金属空气电池的升压电源及金属空气电池
CN112769181A (zh) * 2020-12-30 2021-05-07 广州奥鹏能源科技有限公司 一种蓄电设备的双向充电电路、装置及控制方法
CN113022344A (zh) * 2021-04-30 2021-06-25 重庆长安新能源汽车科技有限公司 一种基于双电机的动力电池充电***及电动汽车
CN114583791A (zh) * 2022-03-17 2022-06-03 威睿电动汽车技术(宁波)有限公司 充电控制方法、装置、***及存储介质
CN217994170U (zh) * 2022-08-24 2022-12-09 比亚迪股份有限公司 电动车辆的充电***和电动车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE168507T1 (de) * 1994-09-08 1998-08-15 Tagawasyouji Co Ltd Batteriesystem und verwendung in einem schrittschaltwerk
US20070211502A1 (en) * 2006-03-07 2007-09-13 Kunihiro Komiya Voltage step-up circuit and electric appliance therewith
CN112510787A (zh) * 2020-12-11 2021-03-16 湖南西瑞尔新材料科技有限公司 一种基于金属空气电池的升压电源及金属空气电池
CN112769181A (zh) * 2020-12-30 2021-05-07 广州奥鹏能源科技有限公司 一种蓄电设备的双向充电电路、装置及控制方法
CN113022344A (zh) * 2021-04-30 2021-06-25 重庆长安新能源汽车科技有限公司 一种基于双电机的动力电池充电***及电动汽车
CN114583791A (zh) * 2022-03-17 2022-06-03 威睿电动汽车技术(宁波)有限公司 充电控制方法、装置、***及存储介质
CN217994170U (zh) * 2022-08-24 2022-12-09 比亚迪股份有限公司 电动车辆的充电***和电动车辆

Also Published As

Publication number Publication date
CN217994170U (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
WO2024041331A1 (zh) 电动车辆的充电***和电动车辆
CN103119822B (zh) 蓄电***以及蓄电***的控制方法
US20200055412A1 (en) Circuit and charging method for an electrical energy storage system
CN103457312A (zh) 用于车辆的充电控制器
CN202628356U (zh) 一种车辆发动机的辅助启动装置
CN105871026A (zh) 一种电动汽车预充电装置及其预充电方法
CN103227610B (zh) 电机控制电路和汽车
CN102691607A (zh) 一种车辆发动机的辅助启动装置
WO2023030031A1 (zh) 车辆、能量转换装置及其充电方法
CN217607526U (zh) 一种动力电池充电切换***、动力车辆
CN116247763A (zh) 一种用于液流电池0v启动的储能变流器电路及控制方法
CN109962660B (zh) 驱动电路、电动汽车驱动***及驱动方法
CN114312634A (zh) 一种多功能的电源分配***和方法
CN220410304U (zh) 充电电路、***及车辆
CN110641316A (zh) 动力电池充电控制电路及充电控制方法、电动汽车
CN209608359U (zh) 电车储能***
CN116142015A (zh) 一种动力电池充电***及其低温充电控制策略
CN116176340A (zh) 兼容高低压直流充电桩的充电***及其控制方法、装置
CN214355557U (zh) 一种电动汽车快充电路
CN114914976A (zh) 宽电压充电异口bms拓扑、电池簇及其储能***及控制方法
CN114454720A (zh) 列车供电控制装置、***以及方法
CN112319251A (zh) 一种电动汽车快充电路以及控制方法
CN114301273A (zh) 兼容单相两相三相电的缓启动电路及控制方法
CN113394834A (zh) 预充电***、车辆以及预充电控制方法
CN113859004B (zh) 一种能量转换装置及其车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856421

Country of ref document: EP

Kind code of ref document: A1