WO2024119731A1 - 一种木糖醇晶体的制备***及制备方法 - Google Patents

一种木糖醇晶体的制备***及制备方法 Download PDF

Info

Publication number
WO2024119731A1
WO2024119731A1 PCT/CN2023/096364 CN2023096364W WO2024119731A1 WO 2024119731 A1 WO2024119731 A1 WO 2024119731A1 CN 2023096364 W CN2023096364 W CN 2023096364W WO 2024119731 A1 WO2024119731 A1 WO 2024119731A1
Authority
WO
WIPO (PCT)
Prior art keywords
xylitol
tank
mother liquor
centrifuge
crystal
Prior art date
Application number
PCT/CN2023/096364
Other languages
English (en)
French (fr)
Inventor
吴强
李勉
杨武龙
万富安
徐伟冬
秦淑芳
岳航
王伟佳
Original Assignee
浙江华康药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华康药业股份有限公司 filed Critical 浙江华康药业股份有限公司
Publication of WO2024119731A1 publication Critical patent/WO2024119731A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention belongs to the technical field of xylitol preparation, and particularly relates to a xylitol crystal preparation system and a preparation method.
  • the existing xylitol production process uses corn cobs as raw materials, and prepares xylitol crystals through steps such as hydrolysis, hydrogenation, decolorization, ion exchange, concentration, crystallization, centrifugation and drying.
  • the crystallization process is the key to determining the quality and yield of xylitol products, and plays a decisive role in the morphology, purity, bulk density, particle size distribution and agglomeration properties of the crystal products.
  • the driving force of the xylitol crystallization process mainly comes from the thermodynamic non-equilibrium characteristics of the crystallization system.
  • the thermodynamic properties of crystallization such as solubility, metastable zone and induction period have a great influence on the selection of crystallization methods and crystallization yield.
  • the commonly used crystallization methods in industry are evaporation crystallization and cooling crystallization.
  • evaporation crystallization and cooling crystallization have been well applied.
  • the patent with publication number CN102731252A discloses a method for crystallizing xylitol or maltitol.
  • the technical problem to be solved by the present invention is to provide a system and method for preparing xylitol crystals, which can improve the particle size of xylitol crystal products and extend the agglomeration period of xylitol crystal products.
  • the present invention is implemented in this way, providing a preparation system of xylitol crystals, comprising a blending tank, a decolorizing tank, an ion exchange column, a nanofiltration system, a first evaporator, a first crystallization kettle, a first centrifuge, a hot air drying tank and a first fluidized drying bed which are sequentially connected through pipelines, and also comprising a primary mother liquor storage tank, a second evaporator, a second crystallization kettle, a second centrifuge, a second fluidized drying bed and a two-crystal sugar dissolving tank which are sequentially connected through pipelines, and also comprising a secondary mother liquor storage tank, a third evaporator, a third crystallization kettle, a third centrifuge, a third fluidized drying bed and a three-crystal sugar dissolving tank which are sequentially connected through pipelines, wherein the first centrifuge The solid material discharge port of the centrifuge is connected with the feed port of the hot air drying
  • the preparation system further comprises a liquid xylitol storage tank, and a discharge port of the third centrifuge is connected to a feed port of the liquid xylitol storage tank through a pipeline.
  • the present invention is implemented in this way. It also provides a method for preparing xylitol crystals.
  • the method uses the xylitol crystal preparation system as described above. The method comprises the following steps:
  • Step 1 In the blending tank 1, the xylitol hydrogenated liquid raw material and the disaccharide solution are blended in a certain ratio, and then sequentially subjected to decolorization treatment in a decolorization tank, impurity removal treatment in an ion exchange column, filtration treatment in a nanofiltration system, and evaporation and concentration treatment in a first evaporator to obtain a xylitol concentrate.
  • the xylitol concentrate is required to have a refractive index of 78-82%, a temperature of 90-100° C., and a conductivity of ⁇ 20 ⁇ s/cm.
  • Step 2 the xylitol concentrated liquid enters the first crystallization kettle through the pipeline, firstly, a certain amount of initial xylitol concentrated liquid is introduced into the first crystallization kettle, the vacuum degree of the first crystallization kettle is controlled to be -0.095MPa, and the temperature is kept constant at 65°C, and when crystals just begin to precipitate in the first crystallization kettle, an appropriate amount of xylitol seed crystals are added to stimulate crystallization, and at the same time, a certain amount of xylitol concentrated liquid is added to the first crystallization kettle, and crystallization is carried out while stirring for 7-12 hours; at the end of the crystallization, steam is introduced to raise the system temperature to 66-68°C and then maintained for a certain time to obtain xylitol sugar paste; in this step, the ratio of initial feed liquid to supplementary feed liquid is 1:0.8-1.5, the stirring speed is set to variable frequency stirring, the timing of adding xylitol seed crystals is set to
  • Step 3 subjecting the xylitol massecuite obtained in step 2 to separation treatment in a first centrifuge to obtain crystalline xylitol and a primary mother liquor respectively, the primary mother liquor enters a primary mother liquor storage tank through a pipeline for temporary storage, the crystalline xylitol is dried in a hot air drying tank and dried by cold air in a first fluidized drying bed to obtain a xylitol crystal product; the primary mother liquor is sequentially concentrated in a second evaporator, crystallized in a second crystallization kettle, and centrifuged in a second centrifuge to obtain discrystal sugar and a secondary mother liquor respectively, the secondary mother liquor enters a secondary mother liquor storage tank through a pipeline for temporary storage; the discrystal sugar enters a discrystal sugar dissolving tank for dissolution treatment after being dried in the second fluidized drying bed, purified water is input to dissolve the discrystal sugar to obtain a discrystal sugar dissolved solution, the discrystal sugar dissolved solution enters
  • Step 4 The secondary mother liquor obtained in step 2 is sequentially concentrated by a third evaporator, crystallized by a third crystallizer, and centrifuged by a third centrifuge to obtain tricrystalline sugar and tertiary mother liquor, respectively.
  • the tricrystalline sugar is dried by a third fluidized drying bed and then enters a tricrystalline sugar dissolving tank for dissolution. Purified water is input to dissolve the tricrystalline sugar to obtain a tricrystalline sugar dissolved solution.
  • the tricrystalline sugar dissolved solution enters a primary mother liquor storage tank through a pipeline and is blended with the primary mother liquor and then recycled and reused.
  • the tertiary mother liquor is stored in the form of liquid xylitol.
  • the preparation system and preparation method of the xylitol crystals of the present invention have the following characteristics: xylitol crystals with larger particle size and more concentrated particle size distribution can be prepared, wherein, in the prepared xylitol crystals, the proportion of xylitol particles above 30 mesh can be increased by more than 30%; at the same time, the results of small package samples show that the agglomeration period of the xylitol crystal product is increased from 45 days to more than 100 days.
  • FIG1 is a schematic diagram of the principle of a preferred embodiment of a system for preparing xylitol crystals of the utility model
  • FIG. 2 is a schematic diagram of the particle size distribution of xylitol crystals prepared in various examples and comparative examples.
  • a preferred embodiment of the system for preparing xylitol crystals of the utility model comprises a blending tank 1, a decolorizing tank 2, an ion exchange column 3, a nanofiltration system 4, a first evaporator 5, a first crystallization kettle 6, a first centrifuge 7, a hot air drying tank 8 and a first fluidized drying bed 9 which are sequentially connected through pipelines, a primary mother liquor storage tank 10, a second evaporator 11, a second crystallization kettle 12, a second centrifuge 13, a second fluidized drying bed 14 and a two-crystal sugar dissolving tank 15 which are sequentially connected through pipelines, and a secondary mother liquor storage tank 16, a third evaporator 17, a third crystallization kettle 18, a third centrifuge 19, a third fluidized drying bed 20 and a three-crystal sugar dissolving tank 21 which are sequentially connected through pipelines.
  • the direction indicated by the arrow in the figure is a schematic diagram of the flow direction of the materials in the system
  • the solid material discharge port of the first centrifuge 7 is connected to the feed port of the hot air drying tank 8 through a pipeline, and the liquid material discharge port of the first centrifuge 7 is connected to a feed port of the primary mother liquid storage tank 10 through a pipeline.
  • the solid material discharge port of the second centrifuge 13 is connected to the feed port of the second fluidized drying bed 14 through a pipeline, and the liquid material discharge port of the second centrifuge 13 is connected to the feed port of the secondary mother liquid storage tank 16 through a pipeline.
  • the two-crystal sugar dissolving tank 15 is provided with a water inlet for purified water, and the two-crystal sugar dissolving tank 15 is also provided with a discharge port connected to a feed port of the blending tank 1 through a pipeline.
  • the three-crystal sugar dissolving tank 21 is also provided with a water inlet for purified water, and the three-crystal sugar dissolving tank 21 is also provided with a discharge port connected to a feed port of the primary mother liquid storage tank 10 through a pipeline.
  • a feeding pipe for hydrogenated liquid is also provided on the blending tank 1 , which stores xylitol hydrogenated liquid raw material for preparing xylitol crystals.
  • the blending tank 1 is used to evenly mix the xylitol hydrogenated liquid raw material with the disaccharide solution delivered from the disaccharide dissolving tank 15 .
  • the output from the discharge port of the first fluidized drying bed 9 is the prepared xylitol crystals.
  • the preparation system further comprises a liquid xylitol storage tank 22 , and a discharge port of the third centrifuge 19 is connected to a feed port of the liquid xylitol storage tank 22 via a pipeline.
  • the present invention further discloses a method for preparing xylitol crystals.
  • the method uses the aforementioned xylitol crystal preparation system, and the method comprises the following steps:
  • Step 1 In the blending tank 1, the xylitol hydrogenated liquid raw material and the disaccharide solution are blended in a certain ratio, and then sequentially subjected to decolorization treatment in the decolorization tank 2, impurity removal treatment in the ion exchange column 3, filtration treatment in the nanofiltration system 4, and evaporation and concentration treatment in the first evaporator 5 to obtain a xylitol concentrate.
  • the xylitol concentrate is required to have a refractive index of 78-82%, a temperature of 90-100°C, and a conductivity of ⁇ 20 ⁇ s/cm.
  • Step 2 the xylitol concentrated liquid enters the first crystallization kettle 6 through the pipeline, firstly, a certain amount of initial xylitol concentrated liquid is introduced into the first crystallization kettle 6, the vacuum degree of the first crystallization kettle 6 is controlled to be -0.095MPa, and the temperature is kept constant at 65°C, and when crystals just begin to precipitate in the first crystallization kettle 6, an appropriate amount of xylitol seed crystals are added to stimulate crystallization, and at the same time, a certain amount of xylitol concentrated liquid is added to the first crystallization kettle 6, and crystallization is carried out while stirring for 7-12 hours; at the end of crystallization, steam is introduced to raise the system temperature to 66-68°C and then maintained for a certain time to obtain xylitol sugar paste; in this step, the ratio of initial feed liquid to supplementary feed liquid is 1:0.8-1.5, the stirring speed is set to variable frequency stirring, the timing of adding xylitol seed crystals is set
  • Step 3 After the xylitol massecuite obtained in step 2 is separated and treated by the first centrifuge 7, crystalline xylitol and primary mother liquor are obtained respectively.
  • the primary mother liquor enters the primary mother liquor storage tank 10 through a pipeline for temporary storage.
  • the crystalline xylitol is dried by the hot air drying tank 8 and the cold air drying by the first fluidized drying bed 9 to obtain a xylitol crystal product.
  • the primary mother liquor is concentrated by the second evaporator 11, crystallized by the second crystallization kettle 12, and centrifuged by the second centrifuge 13 in sequence to obtain disintegrated sugar and secondary mother liquor respectively.
  • the secondary mother liquor enters the secondary mother liquor storage tank 16 through a pipeline for temporary storage.
  • the disintegrated sugar After the disintegrated sugar is dried by the second fluidized drying bed 14, it enters the disintegrated sugar dissolving tank 15 for dissolution treatment. Purified water is input to dissolve the disintegrated sugar to obtain a disintegrated sugar dissolved solution. The disintegrated sugar dissolved solution enters the blending tank 1 through a pipeline to be mixed and blended with the xylitol hydrogenated liquid raw material.
  • Step 4 The secondary mother liquor obtained in step 2 is sequentially subjected to concentration treatment in the third evaporator 17, crystallization treatment in the third crystallizer 18, and centrifugation treatment in the third centrifuge 19 to obtain three-crystal sugar and three-crystal mother liquor respectively.
  • the three-crystal sugar is dried in the third fluidized drying bed 20, it enters the three-crystal sugar dissolving tank 21 for dissolution treatment, and purified water is input to dissolve the three-crystal sugar to obtain a three-crystal sugar dissolved solution.
  • the three-crystal sugar dissolved solution enters the primary mother liquor storage tank 10 through a pipeline and is blended with the primary mother liquor for recycling and reuse, and the tertiary mother liquor is stored in the form of liquid xylitol.
  • step 1 the nanofiltration membrane size of the nanofiltration system 4 is 300-800 Da.
  • the first crystallization kettle 6 is a vacuum evaporation crystallization kettle, and the speed of the variable frequency stirring process is gradually reduced from 90 rpm to 10rpm, the window size of the first crystallization kettle 6 is 1 cm 2 , and the number of xylitol crystal particles in the window is observed using a 10 ⁇ 10 microscope.
  • Xylitol seed crystals are added to stimulate the system to crystallize, and the seed crystal addition ratio is 0.0004-0.0008%, and the seed crystal particle size is 80-100 mesh.
  • step 2 after the xylitol massecuite is separated by the first centrifuge 7, it is sprayed with an ethanol solution with a concentration of 80-100% for 5-10 seconds to remove the moisture in the crystalline xylitol to the greatest extent.
  • step three the hot air temperature of the hot air drying tank 8 is selected to be 75-85°C.
  • the xylitol crystal preparation system of the present invention is further described below through specific examples.
  • Step 11 the xylitol hydrogenated liquid and the disaccharide solution are blended in a certain ratio, and then sequentially subjected to activated carbon decolorization treatment in the decolorization tank 2, ion exchange treatment in the ion exchange column 3, 400Da nanofiltration membrane system 4 and first evaporator 5 to obtain a xylitol concentrate with a refractive index of 79%, a temperature of 95°C and a conductivity of 1.958 ⁇ s/cm.
  • Step 12 firstly, 10 tons of xylitol concentrate are introduced into the first crystallization kettle 6, and further concentrated at -0.095 MPa, until the system temperature drops to about 65°C, and 20 fine crystals are observed in the window of the first crystallization kettle 6, then 0.0005% of xylitol seed crystals are added to stimulate crystallization, and at the same time, 10 tons of xylitol concentrate are added to the crystallization tank, and the system temperature is maintained at -0.095 MPa and 65°C, and the crystallization is carried out by frequency conversion stirring at an initial speed of 90 rpm. After crystallization for 7 hours, steam is introduced to raise the system temperature to 67°C, and then 67°C is maintained to continue crystallization for 0.5 hours to obtain xylitol sugar paste.
  • Step 13 the obtained xylitol massecuite is separated and treated by the first centrifuge 7 to obtain 8.7 tons of crystalline xylitol and 10.5 tons of primary mother liquor.
  • the crystalline xylitol is dried by hot air at 80°C in the hot air drying tank 8 and cold air dried by the first fluidized drying bed 9 to obtain a xylitol crystal product.
  • the primary mother liquor is further crystallized at -0.095MPa and 65°C in the second crystallization kettle 12 after being concentrated by the second evaporator 11, and then centrifuged by the second centrifuge 13 to obtain discrystal sugar and secondary mother liquor respectively.
  • the discrystal sugar After the discrystal sugar is dried by the second fluidized drying bed 14, it enters the discrystal sugar dissolving tank 15 and is dissolved into a discrystal sugar dissolving solution, which is then transported to the blending tank 1 for blending with the xylitol hydrogenated liquid.
  • the secondary mother liquor is concentrated by the third evaporator 17, crystallized by the third crystallization kettle 18, and centrifuged by the third centrifuge 19 to obtain tricrystal sugar and tertiary mother liquor respectively.
  • the tertiary mother liquor is stored in the liquid xylitol storage tank 22.
  • the three-crystal sugar After the three-crystal sugar is dried in the third fluidized drying bed 20, it enters the three-crystal sugar dissolving tank 21 for dissolution to obtain a three-crystal sugar dissolved solution.
  • the three-crystal sugar dissolved solution enters the primary mother liquor storage tank 10 through a pipeline and is blended with the primary mother liquor for recycling.
  • the prepared xylitol crystal product was sieved to obtain a particle size distribution of the xylitol crystal product as shown in Table 1 below.
  • the agglomeration period of the small package sample of xylitol crystals prepared in Example 1 was actually measured to be 105 days.
  • Step 21 the xylitol hydrogenated liquid and the disaccharide solution are blended in a certain ratio, and then sequentially subjected to activated carbon decolorization treatment in the decolorization tank 2, ion exchange treatment in the ion exchange column 3, 400Da nanofiltration membrane system 4 and first evaporator 5 to obtain a xylitol concentrate with a refractive index of 80%, a temperature of 95°C and a conductivity of 1.744 ⁇ s/cm.
  • Step 22 firstly, 10 tons of xylitol concentrate are introduced into the first crystallization kettle 6, and further concentrated at -0.095 MPa, until the system temperature drops to about 65°C, and 25 fine crystals are observed in the window of the first crystallization kettle 6, then 0.0005% of xylitol seed crystals are added to stimulate crystallization, and at the same time, 10 tons of xylitol concentrate are added to the crystallization tank, and the system temperature is maintained at -0.095 MPa and 65°C, and crystallization is performed at an initial speed of 90 rpm with variable frequency stirring. After crystallization for 8 hours, steam is introduced to raise the system temperature to 66.5°C, and then 66.5°C is maintained to continue crystallization for 0.8 hours to obtain xylitol sugar paste.
  • Step 23 the obtained xylitol massecuite is separated and treated by the first centrifuge 7 to obtain 8.6 tons of crystalline xylitol and 10.6 tons of primary mother liquor.
  • the crystalline xylitol is dried by hot air at 80°C in the hot air drying tank 8 and cold air dried by the first fluidized drying bed 9 to obtain a xylitol crystal product.
  • the primary mother liquor is further crystallized at -0.095MPa and 65°C in the second crystallization kettle 12 after being concentrated by the second evaporator 11, and then centrifuged by the second centrifuge 13 to obtain discrystal sugar and secondary mother liquor respectively.
  • the discrystal sugar After the discrystal sugar is dried by the second fluidized drying bed 14, it enters the discrystal sugar dissolving tank 15 and is dissolved into a discrystal sugar dissolving solution, which is then transported to the blending tank 1 for blending with the xylitol hydrogenated liquid.
  • the secondary mother liquor is concentrated by the third evaporator 17, crystallized by the third crystallization kettle 18, and centrifuged by the third centrifuge 19 to obtain tricrystal sugar and tertiary mother liquor respectively.
  • the tertiary mother liquor is stored in the liquid xylitol storage tank 22.
  • the tricrystalline sugar After the drying treatment in the third fluidized drying bed 20, the tricrystalline sugar enters the tricrystalline sugar dissolving tank 21 for dissolution treatment to obtain a tricrystalline sugar dissolved solution.
  • the tricrystalline sugar dissolved solution enters the primary mother liquor storage tank 10 through a pipeline and is blended with the primary mother liquor for recycling and reuse.
  • the prepared xylitol crystal product was sieved to obtain a particle size distribution of the xylitol crystal product as shown in Table 2 below.
  • the agglomeration period of the small package sample of xylitol crystals prepared in Example 2 was actually measured to be 112 days.
  • the comparative example of the utility model comprises the following steps:
  • Step 31 directly blending the xylitol hydrogenated liquid with the first centrifuged mother liquor in a certain ratio, and then sequentially subjecting it to activated carbon decolorization, ion exchange and triple-effect evaporation to obtain a product with a refractive index of 80.5%, a temperature of 95°C and a conductivity of 2.063 ⁇ s/cm Xylitol concentrate.
  • step 32 7 tons of xylitol concentrate are first introduced into the crystallization tank, and further concentrated at -0.095 MPa.
  • a large number of fine crystals >50
  • 0.0005% of xylitol seed crystals are added to stimulate crystallization.
  • 13 tons of xylitol concentrate are added to the crystallization tank.
  • the system temperature is maintained at -0.095 MPa and 65°C.
  • the crystallization is stirred at a constant speed of 90 rpm for 8 hours to obtain xylitol syrup.
  • Step 33 separating the obtained xylitol massecuite by high-speed centrifuge to obtain 8.8 tons of xylitol crystals and 10.2 tons of primary centrifugal mother liquor, and drying the xylitol crystals by hot air drying at 88° C. and cold air drying to obtain a xylitol product; the primary centrifugal mother liquor is directly recycled for the hydrogenated liquid blending step.
  • the prepared xylitol crystal product was sieved to obtain a particle size distribution of the xylitol crystal product as shown in Table 3 below.
  • the agglomeration period of the small package sample of xylitol crystals prepared in the comparative example was actually measured to be 45 days.
  • Example 1 and Example 2 obtained xylitol crystal products with larger particles and narrower particle size distribution by reducing the recycling of xylitol mother liquor, adding a nanofiltration system to remove low molecular weight impurities, optimizing the crystallization process, and using alcohol washing in the centrifugal process, and the agglomeration cycle of the xylitol crystal products was significantly improved.
  • the comparative data are shown in Table 4 and Figure 2.
  • the xylitol crystal product of Example 1 is 40% higher than that of the comparative example, and the xylitol crystal product of Example 2 is 36% higher than that of the comparative example.
  • the agglomeration period of the xylitol crystal products of Examples 1 and 2 is significantly higher than that of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

本发明涉及一种木糖醇晶体的制备***及制备方法,制备***包括勾兑罐、脱色罐、离子交换柱、纳滤***、第一蒸发器、第一结晶釜、第一离心机、热风干燥罐、第一流化干燥床、一次母液储罐、第二蒸发器、第二结晶釜、第二离心机、第二流化干燥床、二晶糖溶解罐、二次母液储罐、第三蒸发器、第三结晶釜、第三离心机、第三流化干燥床和三晶糖溶解罐,第一离心机还与一次母液储罐连通,第二离心机还与二次母液储罐连通,二晶糖溶解罐与勾兑罐连通,三晶糖溶解罐与一次母液储罐连通,勾兑罐存储有制备木糖醇晶体所用的木糖醇氢化液原料,第一流化干燥床的出料口的输出物为已制备的木糖醇晶体。本发明提升木糖醇晶体的粒度,延长木糖醇晶体的结块周期。

Description

一种木糖醇晶体的制备***及制备方法 技术领域
本发明属于木糖醇制备技术领域,特别涉及一种木糖醇晶体的制备***及制备方法。
背景技术
现有木糖醇生产工艺是以玉米芯为原料,经过水解、加氢、脱色、离子交换、浓缩、结晶、离心及干燥等步骤制备得到木糖醇晶体;其中结晶工序是决定木糖醇产品质量和收率的关键,对晶体产品的形貌、纯度、堆密度、粒度分布以及结块性能等均起着决定的作用。
木糖醇结晶过程的推力主要来自于结晶***在热力学上的非平衡特性,溶解度、介稳区以及诱导期等结晶热力学性质对结晶方式的选择和结晶收率具有较大的影响。目前工业上常用的结晶方式有蒸发结晶和降温结晶,对于木糖醇的结晶过程,由于其溶解度较大,蒸发结晶和降温结晶均得到了很好的应用。
然而,不论是蒸发结晶还是降温结晶,由于工艺操作参数的不合理,或者是根据经验加入晶种,对晶种的加入时机缺乏理论和事实依据,导致木糖醇结晶工序耗时长、二次成核现象严重、细粉占比较高,并且不同批次间产品差异较大,结晶过程不稳定,最终导致木糖醇产品容易发生结块。例如,公开号CN1736970A的专利公开了木糖醇精制结晶方法,通过优化结晶过程转速、晶种量、晶种粒度、降温速率等因素,虽然得到了粒度集中可调的木糖醇晶体,但实际生产上无法做到3~6%晶种添加量,这就限制了该工艺在生产上的应用。又如,公开号CN102731252A的专利公开了一种木糖醇或麦芽糖醇的结晶方法,通过在结晶过程中加入少量抗结块剂,虽然有效缓解了晶体结块现象,但抗结块剂的加入是否会对产品品质产生影响尚不清晰,并且相关标准中也不允许采用添加抗结块剂的方法。
因此,从工业化可实施角度出发,通过优化结晶工艺参数,减少二次成核现象、控制产品粒度分布,成为避免或者缓解木糖醇晶体结块的重要措施之一。
发明内容
本发明所要解决的技术问题在于,提供一种木糖醇晶体的制备***及制备方法,能够提升木糖醇晶体产品的粒度,延长木糖醇晶体产品的结块周期。
本发明是这样实现的,提供一种木糖醇晶体的制备***,包括依次通过管路连通的勾兑罐、脱色罐、离子交换柱、纳滤***、第一蒸发器、第一结晶釜、第一离心机、热风干燥罐和第一流化干燥床,还包括依次通过管路连通的一次母液储罐、第二蒸发器、第二结晶釜、第二离心机、第二流化干燥床和二晶糖溶解罐,还包括依次通过管路连通的二次母液储罐、第三蒸发器、第三结晶釜、第三离心机、第三流化干燥床和三晶糖溶解罐,其中,第一离心 机的固体物出料口通过管路与热风干燥罐的进料口连通,第一离心机的液体物出料口通过管路与一次母液储罐的一个进料口连通,第二离心机的固体物出料口通过管路与第二流化干燥床的进料口连通,第二离心机的液体物出料口通过管路与二次母液储罐的进料口连通,二晶糖溶解罐设有纯化水的进水口,二晶糖溶解罐还设有出料口通过管路与勾兑罐的一个进料口连通,三晶糖溶解罐也设有纯化水的进水口,三晶糖溶解罐还设有出料口通过管路与一次母液储罐的一个进料口连通,在勾兑罐上还设置氢化液的进料管,勾兑罐存储有制备木糖醇晶体所用的木糖醇氢化液原料,勾兑罐用于将木糖醇氢化液原料与二晶糖溶解罐输送来的二晶糖溶液混合均匀,第一流化干燥床的出料口的输出物为已制备的木糖醇晶体。
进一步地,所述制备***还包括液体木糖醇储罐,所述第三离心机的一个出料口通过管路与液体木糖醇储罐的一个进料口连通。
本发明是这样实现的,还提供一种木糖醇晶体的制备方法,所述制备方法使用所述如前所述的木糖醇晶体的制备***,所述制备方法包括如下步骤:
步骤一、在勾兑罐1中,将木糖醇氢化液原料与二晶糖溶液按照一定的比例进行勾兑,然后依次经过脱色罐的脱色处理、离子交换柱的除杂处理、纳滤***的过滤处理以及第一蒸发器的蒸发浓缩处理,得到木糖醇浓缩液,该步骤中木糖醇浓缩液要求折光为78~82%、温度为90~100℃、电导率<20μs/cm。
步骤二、木糖醇浓缩液通过管路进入第一结晶釜,先向第一结晶釜中通入一定量初始木糖醇浓缩液,控制第一结晶釜的真空度-0.095MPa、温度65℃保持恒定,至第一结晶釜中刚刚开始析出晶体时加入适量木糖醇晶种刺激起晶,同时再向第一结晶釜中补加一定量木糖醇浓缩液,边搅拌边结晶7~12h;在结晶末期,通入蒸汽升高体系温度至66~68℃后维持一定时间,得到木糖醇糖膏;该步骤中,初始料液与补加料液的比例为1:0.8~1.5,搅拌转速设为变频搅拌,木糖醇晶种加入时机设置为从第一结晶釜视窗中观察到颗粒数<50,结晶末期升温后维持时间为0.5~2.0h。
步骤三、将步骤二中得到的木糖醇糖膏经第一离心机的分离处理后分别得到晶体木糖醇和一次母液,一次母液通过管路进入一次母液储罐暂存,晶体木糖醇经热风干燥罐的干燥处理、第一流化干燥床的冷风干燥处理后得到木糖醇晶体产品;一次母液则依次经过第二蒸发器的浓缩处理、第二结晶釜的结晶处理、第二离心机的离心处理后,分别得到二晶糖和二次母液,二次母液通过管路进入二次母液储罐暂存;二晶糖经过第二流化干燥床的干燥处理后再进入二晶糖溶解罐进行溶解处理,输入纯化水溶解二晶糖得到二晶糖溶解溶液,二晶糖溶解溶液通过管路进入勾兑罐与木糖醇氢化液原料进行混合勾兑。
步骤四、将步骤二中得到的二次母液则依次经过第三蒸发器的浓缩处理、第三结晶釜的结晶处理、第三离心机的离心处理后,分别得到三晶糖和三次母液,三晶糖经过第三流化干燥床的干燥处理后再进入三晶糖溶解罐进行溶解处理,输入纯化水溶解三晶糖得到三晶糖溶解溶液,三晶糖溶解溶液通过管路进入一次母液储罐与一次母液勾兑后回收再利用,三次母液则以液体木糖醇形式储存。
与现有技术相比,本发明的木糖醇晶体的制备***及制备方法具有以下特点:能够制备出粒径更大、粒度分布更加集中的木糖醇晶体,其中,在所制备的木糖醇晶体中,30目上木糖醇颗粒占比能够提高30%以上;同时小包装留样结果表明木糖醇晶体产品结块周期从45天提升至100天以上。
附图说明
图1为本实用新型木糖醇晶体的制备***一较佳实施例的原理示意图;
图2为各实施例与对比例制备的木糖醇晶体的粒度分布示意图。
具体实施方式
为了使本实用新型所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
请参照图1所示,本实用新型木糖醇晶体的制备***的较佳实施例,包括依次通过管路连通的勾兑罐1、脱色罐2、离子交换柱3、纳滤***4、第一蒸发器5、第一结晶釜6、第一离心机7、热风干燥罐8和第一流化干燥床9,还包括依次通过管路连通的一次母液储罐10、第二蒸发器11、第二结晶釜12、第二离心机13、第二流化干燥床14和二晶糖溶解罐15,还包括依次通过管路连通的二次母液储罐16、第三蒸发器17、第三结晶釜18、第三离心机19、第三流化干燥床20和三晶糖溶解罐21。图中的箭头所示方向为***中物料的流动方向示意。
其中,第一离心机7的固体物出料口通过管路与热风干燥罐8的进料口连通,第一离心机7的液体物出料口通过管路与一次母液储罐10的一个进料口连通。第二离心机13的固体物出料口通过管路与第二流化干燥床14的进料口连通,第二离心机13的液体物出料口通过管路与二次母液储罐16的进料口连通。二晶糖溶解罐15设有纯化水的进水口,二晶糖溶解罐15还设有出料口通过管路与勾兑罐1的一个进料口连通。三晶糖溶解罐21也设有纯化水的进水口,三晶糖溶解罐21还设有出料口通过管路与一次母液储罐10的一个进料口连通。在勾兑罐1上还设置氢化液的进料管,勾兑罐1存储有制备木糖醇晶体所用的木糖醇氢化液原料,勾兑罐1用于将木糖醇氢化液原料与二晶糖溶解罐15输送来的二晶糖溶液混合均匀。 第一流化干燥床9的出料口的输出物为已制备的木糖醇晶体。
所述制备***还包括液体木糖醇储罐22,所述第三离心机19的一个出料口通过管路与液体木糖醇储罐22的一个进料口连通。
请再参照图1所示,本实用新型还公开一种木糖醇晶体的制备方法,所述制备方法使用所述如前所述的木糖醇晶体的制备***,所述制备方法包括如下步骤:
步骤一、在勾兑罐1中,将木糖醇氢化液原料与二晶糖溶液按照一定的比例进行勾兑,然后依次经过脱色罐2的脱色处理、离子交换柱3的除杂处理、纳滤***4的过滤处理以及第一蒸发器5的蒸发浓缩处理,得到木糖醇浓缩液。该步骤中木糖醇浓缩液要求折光为78~82%、温度为90~100℃、电导率<20μs/cm。
步骤二、木糖醇浓缩液通过管路进入第一结晶釜6,先向第一结晶釜6中通入一定量初始木糖醇浓缩液,控制第一结晶釜6的真空度-0.095MPa、温度65℃保持恒定,至第一结晶釜6中刚刚开始析出晶体时加入适量木糖醇晶种刺激起晶,同时再向第一结晶釜6中补加一定量木糖醇浓缩液,边搅拌边结晶7~12h;在结晶末期,通入蒸汽升高体系温度至66~68℃后维持一定时间,得到木糖醇糖膏;该步骤中,初始料液与补加料液的比例为1:0.8~1.5,搅拌转速设为变频搅拌,木糖醇晶种加入时机设置为从第一结晶釜6视窗中观察到颗粒数<50,结晶末期升温后维持时间为0.5~2.0h。
步骤三、将步骤二中得到的木糖醇糖膏经第一离心机7的分离处理后分别得到晶体木糖醇和一次母液,一次母液通过管路进入一次母液储罐10暂存,晶体木糖醇经热风干燥罐8的干燥处理、第一流化干燥床9的冷风干燥处理后得到木糖醇晶体产品。一次母液则依次经过第二蒸发器11的浓缩处理、第二结晶釜12的结晶处理、第二离心机13的离心处理后,分别得到二晶糖和二次母液,二次母液通过管路进入二次母液储罐16暂存。二晶糖经过第二流化干燥床14的干燥处理后再进入二晶糖溶解罐15进行溶解处理,输入纯化水溶解二晶糖得到二晶糖溶解溶液,二晶糖溶解溶液通过管路进入勾兑罐1与木糖醇氢化液原料进行混合勾兑。
步骤四、将步骤二中得到的二次母液则依次经过第三蒸发器17的浓缩处理、第三结晶釜18的结晶处理、第三离心机19的离心处理后,分别得到三晶糖和三次母液。三晶糖经过第三流化干燥床20的干燥处理后再进入三晶糖溶解罐21进行溶解处理,输入纯化水溶解三晶糖得到三晶糖溶解溶液,三晶糖溶解溶液通过管路进入一次母液储罐10与一次母液勾兑后回收再利用,三次母液则以液体木糖醇形式储存。
在步骤一中,纳滤***4的纳滤膜大小为300~800Da。
在步骤二中,第一结晶釜6为真空蒸发结晶釜,变频搅拌过程转速从90rpm逐渐降低至 10rpm,第一结晶釜6的视窗大小为1cm2,采用10×10倍显微镜观察视窗中木糖醇晶体的颗粒数,木糖醇晶种加入用于刺激体系起晶,晶种添加比例为0.0004~0.0008%、晶种粒度为80~100目。
在步骤二中,木糖醇糖膏经第一离心机7分离后,采用80~100%浓度乙醇溶液喷洗5~10s,以最大程度除去晶体木糖醇中的水分。
在步骤三中,热风干燥罐8的热风温度选择75~85℃。
下面通过具体实施例进一步说明本实用新型的木糖醇晶体的制备***。
实施例1
本实用新型的第一个木糖醇晶体的制备方法的实施例,包括如下步骤:
步骤11,将木糖醇氢化液与二晶糖溶液按照一定的比例进行勾兑,然后依次经过脱色罐2的活性炭脱色处理、离子交换柱3的离子交换处理、400Da纳滤膜***4以及第一蒸发器5处理后,得到折光为79%、温度为95℃、电导率为1.958μs/cm的木糖醇浓缩液。
步骤12,先向第一结晶釜6中通入10吨木糖醇浓缩液,于-0.095MPa下进一步浓缩,至体系降温至65℃左右时,观察到第一结晶釜6的视窗中出现20颗细小晶粒时,此时加入0.0005%的木糖醇晶种刺激起晶,同时再向结晶罐中补加10吨木糖醇浓缩液,维持体系-0.095MPa、65℃温度恒定,以90rpm初始转速变频搅拌结晶。结晶7h后通入蒸汽升高体系温度至67℃,然后维持67℃继续结晶0.5h,得到木糖醇糖膏。
步骤13,将得到的木糖醇糖膏经第一离心机7的分离处理,得到8.7吨晶体木糖醇和10.5吨一次母液,晶体木糖醇经热风干燥罐8的80℃热风干燥、第一流化干燥床9的冷风干燥后得到木糖醇晶体产品。一次母液经第二蒸发器11的浓缩处理后进一步在第二结晶釜12的-0.095MPa、65℃下结晶处理,再经过第二离心机13的离心处理,分别得到二晶糖和二次母液。二晶糖经过第二流化干燥床14的干燥处理后进入二晶糖溶解罐15中溶解成二晶糖溶解溶液后输送到勾兑罐1用于与木糖醇氢化液勾兑。二次母液则依次经过第三蒸发器17的浓缩处理、第三结晶釜18的结晶处理、第三离心机19的离心处理后,分别得到三晶糖和三次母液。三次母液储存在液体木糖醇储罐22中。三晶糖经过第三流化干燥床20的干燥处理后再进入三晶糖溶解罐21进行溶解处理,得到三晶糖溶解溶液,三晶糖溶解溶液通过管路进入一次母液储罐10与一次母液勾兑后回收再利用。
将制备得到的木糖醇晶体产品进行筛分,得到木糖醇晶体产品的粒度分布如下表1所示。
表1实施例1制备得到的木糖醇晶体产品的粒度分布表
实施例1制备得到的木糖醇晶体的小包装样品的结块周期实际测定为105天。
实施例2
本实用新型的第二个木糖醇晶体的制备方法的实施例,包括如下步骤:
步骤21,将木糖醇氢化液与二晶糖溶液按照一定的比例进行勾兑,然后依次经过脱色罐2的活性炭脱色处理、离子交换柱3的离子交换处理、400Da纳滤膜***4以及第一蒸发器5处理后,得到折光为80%、温度为95℃、电导率为1.744μs/cm的木糖醇浓缩液。
步骤22,先向第一结晶釜6中通入10吨木糖醇浓缩液,于-0.095MPa下进一步浓缩,至体系降温至65℃左右时,观察到第一结晶釜6的视窗中出现25颗细小晶粒时,此时加入0.0005%的木糖醇晶种刺激起晶,同时再向结晶罐中补加10吨木糖醇浓缩液,维持体系-0.095MPa、65℃温度恒定,以90rpm初始转速变频搅拌结晶。结晶8h后通入蒸汽升高体系温度至66.5℃,然后维持66.5℃继续结晶0.8h,得到木糖醇糖膏。
步骤23,将得到的木糖醇糖膏经第一离心机7的分离处理,得到8.6吨晶体木糖醇和10.6吨一次母液,晶体木糖醇经热风干燥罐8的80℃热风干燥、第一流化干燥床9的冷风干燥后得到木糖醇晶体产品。一次母液经第二蒸发器11的浓缩处理后进一步在第二结晶釜12的-0.095MPa、65℃下结晶处理,再经过第二离心机13的离心处理,分别得到二晶糖和二次母液。二晶糖经过第二流化干燥床14的干燥处理后进入二晶糖溶解罐15中溶解成二晶糖溶解溶液后输送到勾兑罐1用于与木糖醇氢化液勾兑。二次母液则依次经过第三蒸发器17的浓缩处理、第三结晶釜18的结晶处理、第三离心机19的离心处理后,分别得到三晶糖和三次母液。三次母液储存在液体木糖醇储罐22中。三晶糖经过第三流化干燥床20的干燥处理后再进入三晶糖溶解罐21进行溶解处理,得到三晶糖溶解溶液,三晶糖溶解溶液通过管路进入一次母液储罐10与一次母液勾兑后回收再利用。
将制备得到的木糖醇晶体产品进行筛分,得到木糖醇晶体产品的粒度分布如下表2所示。
表2实施例2制备得到的木糖醇晶体产品的粒度分布表
实施例2制备得到的木糖醇晶体的小包装样品的结块周期实际测定为112天。
为了更好的描述本实用新型带来的有益效果,下面结合对比例作进一步说明。
对比例
本实用新型的对比例包括如下步骤:
步骤31,将木糖醇氢化液与一次离心母液按照一定的比例直接勾兑,然后依次经过活性炭脱色、离子交换以及三效蒸发,得到折光为80.5%、温度为95℃、电导率为2.063μs/cm的 木糖醇浓缩液。
步骤就32,先向结晶罐中通入7吨木糖醇浓缩液,于-0.095MPa下进一步浓缩,至体系降温至65℃左右时,观察到结晶罐视窗中有大量细小晶粒(>50)出现时,此时加入0.0005%的木糖醇晶种刺激起晶,同时再向结晶罐中补加13吨木糖醇浓缩液,维持体系-0.095MPa、65℃温度恒定,以90rpm恒速搅拌结晶8h,得到木糖醇糖膏。
步骤33,将得到的木糖醇糖膏经高速离心机分离,得到8.8吨木糖醇晶体和10.2吨一次离心母液,木糖醇晶体经88℃热风干燥、冷风干燥后得到木糖醇产品;一次离心母液直接回套用于氢化液勾兑步骤。
将制备得到的木糖醇晶体产品进行筛分,得到木糖醇晶体产品的粒度分布如下表3所示。
表3对比例制备得到的木糖醇晶体产品的粒度分布表
对比例制备得到的木糖醇晶体的小包装样品的结块周期实际测定为45天。
与对比例相比,实施例1和实施例2通过减少木糖醇母液的回套、增加纳滤***除低分子量杂质、优化结晶工艺、离心过程采用醇洗等方法,得到了颗粒更大、粒度分布更窄的木糖醇晶体产品,并且木糖醇晶体产品的结块周期得到了明显的改善。对比数据如表4和图2所示。
表4各实施例与对比例的木糖醇晶体产品的检测数据对比表
从上表可以得出,在30目上的占比的对比项目中,实施例1的木糖醇晶体产品比对比例的高出40%,实施例2的木糖醇晶体产品比对比例的高出36%。另外,实施例1和实施例2的木糖醇晶体产品的结块周期明显高于对比例的。
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。

Claims (7)

  1. 一种木糖醇晶体的制备***,其特征在于,包括依次通过管路连通的勾兑罐、脱色罐、离子交换柱、纳滤***、第一蒸发器、第一结晶釜、第一离心机、热风干燥罐和第一流化干燥床,还包括依次通过管路连通的一次母液储罐、第二蒸发器、第二结晶釜、第二离心机、第二流化干燥床和二晶糖溶解罐,还包括依次通过管路连通的二次母液储罐、第三蒸发器、第三结晶釜、第三离心机、第三流化干燥床和三晶糖溶解罐,其中,第一离心机的固体物出料口通过管路与热风干燥罐的进料口连通,第一离心机的液体物出料口通过管路与一次母液储罐的一个进料口连通,第二离心机的固体物出料口通过管路与第二流化干燥床的进料口连通,第二离心机的液体物出料口通过管路与二次母液储罐的进料口连通,二晶糖溶解罐设有纯化水的进水口,二晶糖溶解罐还设有出料口通过管路与勾兑罐的一个进料口连通,三晶糖溶解罐也设有纯化水的进水口,三晶糖溶解罐还设有出料口通过管路与一次母液储罐的一个进料口连通,在勾兑罐上还设置氢化液的进料管,勾兑罐存储有制备木糖醇晶体所用的木糖醇氢化液原料,勾兑罐用于将木糖醇氢化液原料与二晶糖溶解罐输送来的二晶糖溶液混合均匀,第一流化干燥床的出料口的输出物为已制备的木糖醇晶体。
  2. 如权利要求1所述的木糖醇晶体的制备***,其特征在于,所述制备***还包括液体木糖醇储罐,所述第三离心机的一个出料口通过管路与液体木糖醇储罐的一个进料口连通。
  3. 一种木糖醇晶体的制备方法,其特征在于,所述制备方法使用所述如权利要求1或2所述的木糖醇晶体的制备***,所述制备方法包括如下步骤:
    步骤一、在勾兑罐1中,将木糖醇氢化液原料与二晶糖溶液按照一定的比例进行勾兑,然后依次经过脱色罐的脱色处理、离子交换柱的除杂处理、纳滤***的过滤处理以及第一蒸发器的蒸发浓缩处理,得到木糖醇浓缩液,该步骤中木糖醇浓缩液要求折光为78~82%、温度为90~100℃、电导率<20μs/cm;
    步骤二、木糖醇浓缩液通过管路进入第一结晶釜,先向第一结晶釜中通入一定量初始木糖醇浓缩液,控制第一结晶釜的真空度-0.095MPa、温度65℃保持恒定,至第一结晶釜中刚刚开始析出晶体时加入适量木糖醇晶种刺激起晶,同时再向第一结晶釜中补加一定量木糖醇浓缩液,边搅拌边结晶7~12h;在结晶末期,通入蒸汽升高体系温度至66~68℃后维持一定时间,得到木糖醇糖膏;该步骤中,初始料液与补加料液的比例为1:0.8~1.5,搅拌转速设为变频搅拌,木糖醇晶种加入时机设置为从第一结晶釜视窗中观察到颗粒数<50,结晶末期升温后维持时间为0.5~2.0h;
    步骤三、将步骤二中得到的木糖醇糖膏经第一离心机的分离处理后分别得到晶体木糖醇和一次母液,一次母液通过管路进入一次母液储罐暂存,晶体木糖醇经热风干燥罐的干燥处理、第一流化干燥床的冷风干燥处理后得到木糖醇晶体产品;一次母液则依次经过第二蒸发 器的浓缩处理、第二结晶釜的结晶处理、第二离心机的离心处理后,分别得到二晶糖和二次母液,二次母液通过管路进入二次母液储罐暂存;二晶糖经过第二流化干燥床的干燥处理后再进入二晶糖溶解罐进行溶解处理,输入纯化水溶解二晶糖得到二晶糖溶解溶液,二晶糖溶解溶液通过管路进入勾兑罐与木糖醇氢化液原料进行混合勾兑;
    步骤四、将步骤二中得到的二次母液则依次经过第三蒸发器的浓缩处理、第三结晶釜的结晶处理、第三离心机的离心处理后,分别得到三晶糖和三次母液,三晶糖经过第三流化干燥床的干燥处理后再进入三晶糖溶解罐进行溶解处理,输入纯化水溶解三晶糖得到三晶糖溶解溶液,三晶糖溶解溶液通过管路进入一次母液储罐与一次母液勾兑后回收再利用,三次母液则以液体木糖醇形式储存。
  4. 如权利要求3所述的木糖醇晶体的制备方法,其特征在于,在步骤一中,纳滤***的纳滤膜大小为300~800Da。
  5. 如权利要求1所述的木糖醇晶体的制备***及制备方法,其特征在于,在步骤二中,第一结晶釜为真空蒸发结晶釜,变频搅拌过程转速从90rpm逐渐降低至10rpm,第一结晶釜的视窗大小为1cm2,采用10×10倍显微镜观察视窗中木糖醇晶体的颗粒数,木糖醇晶种加入用于刺激体系起晶,晶种添加比例为0.0004~0.0008%、晶种粒度为80~100目。
  6. 如权利要求1所述的木糖醇晶体的制备方法,其特征在于,在步骤二中,木糖醇糖膏经第一离心机分离后,采用80~100%浓度乙醇溶液喷洗5~10s,以最大程度除去晶体木糖醇中的水分。
  7. 如权利要求1所述的木糖醇晶体的制备方法,其特征在于,在步骤三中,热风干燥罐的热风温度选择75~85℃。
PCT/CN2023/096364 2022-12-07 2023-05-25 一种木糖醇晶体的制备***及制备方法 WO2024119731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211567511.2A CN115784843A (zh) 2022-12-07 2022-12-07 一种木糖醇晶体的制备***及制备方法
CN202211567511.2 2022-12-07

Publications (1)

Publication Number Publication Date
WO2024119731A1 true WO2024119731A1 (zh) 2024-06-13

Family

ID=85418956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096364 WO2024119731A1 (zh) 2022-12-07 2023-05-25 一种木糖醇晶体的制备***及制备方法

Country Status (2)

Country Link
CN (1) CN115784843A (zh)
WO (1) WO2024119731A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784843A (zh) * 2022-12-07 2023-03-14 浙江华康药业股份有限公司 一种木糖醇晶体的制备***及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1736970A (zh) 2005-07-25 2006-02-22 天津大学 木糖醇精制结晶方法
US20090007903A1 (en) * 2005-07-08 2009-01-08 Roquette Freres Method for Producing a Powder Containing Xylitol Crystal Particles with Another Polyol
CN101628853A (zh) * 2008-07-17 2010-01-20 山东福田药业有限公司 木糖醇真空结晶分离方法
CN102731252A (zh) 2012-06-28 2012-10-17 浙江华康药业股份有限公司 一种木糖醇或麦芽糖醇的结晶方法
CN108837550A (zh) * 2018-06-20 2018-11-20 安阳市豫鑫木糖醇科技有限公司 一种木糖醇真空连续结晶方法和***
CN111777493A (zh) * 2020-08-29 2020-10-16 浙江华康药业股份有限公司 一种木糖醇母液利用***及方法
CN213475846U (zh) * 2020-08-29 2021-06-18 浙江华康药业股份有限公司 一种木糖醇母液利用***
CN114163306A (zh) * 2021-12-27 2022-03-11 河南豫鑫糖醇有限公司 一种用于提高木糖醇结晶收率的方法
CN115784843A (zh) * 2022-12-07 2023-03-14 浙江华康药业股份有限公司 一种木糖醇晶体的制备***及制备方法
CN218910200U (zh) * 2022-12-07 2023-04-25 浙江华康药业股份有限公司 一种木糖醇晶体的制备***

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090007903A1 (en) * 2005-07-08 2009-01-08 Roquette Freres Method for Producing a Powder Containing Xylitol Crystal Particles with Another Polyol
CN1736970A (zh) 2005-07-25 2006-02-22 天津大学 木糖醇精制结晶方法
CN101628853A (zh) * 2008-07-17 2010-01-20 山东福田药业有限公司 木糖醇真空结晶分离方法
CN102731252A (zh) 2012-06-28 2012-10-17 浙江华康药业股份有限公司 一种木糖醇或麦芽糖醇的结晶方法
CN108837550A (zh) * 2018-06-20 2018-11-20 安阳市豫鑫木糖醇科技有限公司 一种木糖醇真空连续结晶方法和***
CN111777493A (zh) * 2020-08-29 2020-10-16 浙江华康药业股份有限公司 一种木糖醇母液利用***及方法
CN213475846U (zh) * 2020-08-29 2021-06-18 浙江华康药业股份有限公司 一种木糖醇母液利用***
CN114163306A (zh) * 2021-12-27 2022-03-11 河南豫鑫糖醇有限公司 一种用于提高木糖醇结晶收率的方法
CN115784843A (zh) * 2022-12-07 2023-03-14 浙江华康药业股份有限公司 一种木糖醇晶体的制备***及制备方法
CN218910200U (zh) * 2022-12-07 2023-04-25 浙江华康药业股份有限公司 一种木糖醇晶体的制备***

Also Published As

Publication number Publication date
CN115784843A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN102329212B (zh) 长链二元酸的精制方法
WO2024119731A1 (zh) 一种木糖醇晶体的制备***及制备方法
CN111138502B (zh) 大颗粒三氯蔗糖的结晶工艺
CN104743581B (zh) 一种高纯氯化钾的制备工艺
KR20230016665A (ko) 감압하에서 알룰로스의 결정화
CN218910200U (zh) 一种木糖醇晶体的制备***
CN114163306B (zh) 一种用于提高木糖醇结晶收率的方法
CN112250722B (zh) 一种乳糖醇晶体的生产工艺
CN110003295B (zh) 一种硫氰酸红霉素的制备方法
CN113248551B (zh) 一种利用木糖母液色谱提取液制备精制木糖的***及方法
WO2024124812A1 (zh) 一种高纯度***糖晶体的制备方法
WO2024093156A1 (zh) 一种头孢他啶连续制备方法
CN107188798A (zh) 一种可控制粒度的枸橼酸钠的精制工艺及实现装置
CN113845423B (zh) 一种均一片形结构的药用辅料硬脂富马酸钠及其制备方法
CN112250613B (zh) 一种乙基咔唑连续冷却重结晶的制备工艺及装置***
CN111808999B (zh) 一种蔗糖晶种及其制备方法
CN111518119B (zh) 一种阿莫西林连续结晶工艺
CN103709007A (zh) 一种赤藓糖醇的冷却耦合溶析结晶精制方法
CN108863763B (zh) 一种防止枸橼酸凝结的制备方法及生产装置
CN112142803A (zh) 一种无水乳糖醇及其制备方法
CN110577560A (zh) 一种药用蔗糖微波重结晶的方法
CN116947940A (zh) 一种制备结晶麦芽糖醇的方法
CN111675610B (zh) 一种制备高纯度、不结块细颗粒枸橼酸晶体的精制方法
CN115650259B (zh) 大颗粒碳酸氢钠的制备方法及装置
CN116444586A (zh) 一种d-塔格糖的精制方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023892782

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023892782

Country of ref document: EP

Effective date: 20240531