WO2024116924A1 - 半導体装置、および、半導体装置の製造方法 - Google Patents

半導体装置、および、半導体装置の製造方法 Download PDF

Info

Publication number
WO2024116924A1
WO2024116924A1 PCT/JP2023/041573 JP2023041573W WO2024116924A1 WO 2024116924 A1 WO2024116924 A1 WO 2024116924A1 JP 2023041573 W JP2023041573 W JP 2023041573W WO 2024116924 A1 WO2024116924 A1 WO 2024116924A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
conductive member
main surface
die pad
thickness direction
Prior art date
Application number
PCT/JP2023/041573
Other languages
English (en)
French (fr)
Inventor
幸太 伊勢
謙吾 柏木
泰紀 高田
卓郎 中原
弘匡 河野
翔吾 白石
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024116924A1 publication Critical patent/WO2024116924A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor

Definitions

  • This disclosure relates to a semiconductor device and a method for manufacturing a semiconductor device.
  • Patent Document 1 discloses an example of a conventional semiconductor device.
  • the semiconductor device disclosed in this document comprises a semiconductor element, a conductive plate, a drive pad, a conductive member, and a sealing resin.
  • the semiconductor element is mounted on the conductive main surface of the conductive plate.
  • a main surface side drive electrode formed on the element main surface of the semiconductor element and the drive pad are connected by a conductive member.
  • the sealing resin seals the conductive plate, part of the drive pad, the semiconductor element, and the conductive member.
  • the semiconductor element is bonded to the conductive principal surface via a conductive bonding material such as solder.
  • the conductive member is also bonded to the principal surface drive electrode via a conductive bonding material such as solder. Therefore, two layers of conductive bonding material are interposed between the conductive principal surface and the conductive member. Because the shape of the conductive bonding material layers is not constant, the height position of the conductive member relative to the conductive principal surface (position in the thickness direction of the conductive plate) is not constant.
  • An object of the present disclosure is to provide a semiconductor device that is an improvement over conventional semiconductor devices.
  • an object of the present disclosure is to provide a semiconductor device that can control the height position of a conductive member relative to the main surface of a die pad, and a method for manufacturing the semiconductor device.
  • the semiconductor device provided by the first aspect of the present disclosure comprises a first lead including a die pad having a die pad main surface facing one side in the thickness direction, a semiconductor element having an element main surface facing one side in the thickness direction and a first electrode arranged on the element main surface and mounted on the die pad main surface, a sealing resin covering at least a portion of the die pad and the semiconductor element, a conductive member conductively joined to the first electrode, and a positioning member including an insulating material and in contact with the conductive member and the die pad main surface.
  • the method for manufacturing a semiconductor device includes the steps of placing a conductive member on a bonding member disposed on a first electrode of a semiconductor element disposed on a main surface of a die pad such that the positioning member is in contact with the conductive member and the main surface of the die pad, solidifying the bonding member by heating, and forming an encapsulating resin that covers the semiconductor element.
  • the above configuration allows the height position of the conductive member relative to the main surface of the die pad in a semiconductor device to be controlled.
  • FIG. 1 is a plan view showing a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. 2 is a bottom view of the semiconductor device shown in FIG.
  • FIG. 3 is a plan view (through the sealing resin) of the semiconductor device shown in FIG.
  • FIG. 4 is a right side view of the semiconductor device shown in FIG.
  • FIG. 5 is a left side view of the semiconductor device shown in FIG.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a cross-sectional view showing a process of an example of a method for manufacturing the semiconductor device shown in FIG. FIG.
  • FIG. 10 is a cross-sectional view showing a process of an example of a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 11 is a cross-sectional view showing a process of an example of a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 12 is a cross-sectional view showing a process of an example of a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 13 is a cross-sectional view showing a process of an example of a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 14 is an enlarged cross-sectional view showing a semiconductor device according to a first modification of the first embodiment.
  • FIG. 15 is an enlarged cross-sectional view showing a semiconductor device according to a second modification of the first embodiment.
  • FIG. 16 is an enlarged cross-sectional view showing a semiconductor device according to a third modification of the first embodiment.
  • FIG. 17 is a plan view (through a sealing resin) showing a semiconductor device according to a fourth modification of the first embodiment.
  • FIG. 18 is a plan view (through a sealing resin) showing a semiconductor device according to a fifth modification of the first embodiment.
  • FIG. 19 is a plan view (through a sealing resin) showing a semiconductor device according to a sixth modified example of the first embodiment.
  • FIG. 20 is a cross-sectional view taken along line XX-XX in FIG.
  • FIG. 21 is a cross-sectional view showing a semiconductor device according to a seventh modification of the first embodiment.
  • FIG. 22 is a cross-sectional view showing a semiconductor device according to a second embodiment of the present disclosure.
  • FIG. 23 is a cross-sectional view showing a semiconductor device according to a third embodiment of the present disclosure.
  • FIG. 24 is a cross-sectional view showing a step of an example of a method for manufacturing the semiconductor device shown in FIG. 25 is a cross-sectional view showing a step of an example of a method for manufacturing the semiconductor device shown in FIG. 26 is a cross-sectional view showing a step of an example of a method for manufacturing the semiconductor device shown in FIG.
  • FIG. 27 is an enlarged cross-sectional view showing a semiconductor device according to a first modification of the third embodiment.
  • FIG. 28 is an enlarged cross-sectional view showing a semiconductor device according to a second modification of the third embodiment.
  • FIG. 29 is a cross-sectional view showing a semiconductor device according to a fourth embodiment of the present disclosure.
  • FIG. 30 is a cross-sectional view showing a semiconductor device according to a fifth embodiment of the present disclosure.
  • FIG. 31 is a cross-sectional view showing a semiconductor device according to the sixth embodiment of the present disclosure.
  • an object A is formed on an object B" and “an object A is formed on an object B” include “an object A is formed directly on an object B” and “an object A is formed on an object B with another object interposed between the object A and the object B” unless otherwise specified.
  • an object A is disposed on an object B” and “an object A is disposed on an object B” include “an object A is disposed directly on an object B” and “an object A is disposed on an object B with another object interposed between the object A and the object B" unless otherwise specified.
  • an object A is located on an object B includes “an object A is located on an object B in contact with an object B” and “an object A is located on an object B with another object interposed between the object A and the object B” unless otherwise specified.
  • an object A overlaps an object B when viewed in a certain direction includes “an object A overlaps the entirety of an object B” and “an object A overlaps a part of an object B.”
  • the semiconductor device A10 includes a plurality of leads 1A, 1B, and 1C, a semiconductor element 2, an insulating portion 3, a metal laminate portion 4, a conductive member 5, a position defining member 8, conductive bonding materials 61, 62, and 63, and a sealing resin 7.
  • FIG. 1 is a plan view showing semiconductor device A10.
  • FIG. 2 is a bottom view showing semiconductor device A10.
  • FIG. 3 is a plan view showing semiconductor device A10.
  • FIG. 4 is a right side view showing semiconductor device A10.
  • FIG. 5 is a left side view showing semiconductor device A10.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 3.
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 3.
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 3. Note that FIG. 3 is a view seen through sealing resin 7 for ease of understanding.
  • the thickness direction of the semiconductor element 2 is referred to as the "thickness direction z.”
  • One direction perpendicular to the thickness direction z is referred to as the "first direction x.”
  • a direction perpendicular to both the thickness direction z and the first direction x is referred to as the "second direction y.”
  • the semiconductor device A10 is rectangular (or approximately rectangular) when viewed in the thickness direction z. There are no particular limitations on the size of the semiconductor device A10.
  • Leads 1A, 1B, and 1C are formed, for example, by punching or bending a metal plate (lead frame). There are no particular limitations on the material that makes up Leads 1A, 1B, and 1C, and they may be made of, for example, copper (Cu) or nickel (Ni), or an alloy of these. There are no particular limitations on the thickness of Leads 1A, 1B, and 1C, and they may be, for example, 0.1 mm to 0.3 mm.
  • lead 1A is spaced apart from lead 1B and lead 1C on one side in the first direction x.
  • Lead 1B and lead 1C are aligned in the second direction y.
  • Leads 1A to 1C are spaced apart from each other when viewed in the thickness direction z.
  • Lead 1A is the largest and lead 1C is the smallest in size when viewed in the thickness direction z.
  • the lead 1A has a die pad 12 and a plurality of (four in this embodiment) first terminal portions 13.
  • the die pad 12 is rectangular when viewed in the thickness direction z, for example.
  • the die pad 12 has a main surface 121 and a back surface 122.
  • the main surface 121 faces one side in the thickness direction z
  • the back surface 122 faces the opposite side to the main surface 121 (the other side in the thickness direction z).
  • the semiconductor element 2 is mounted on the main surface 121.
  • the back surface 122 is exposed from the sealing resin 7.
  • the back surface 122 is a portion that is joined by a joining material such as solder when the semiconductor device A10 is mounted on a circuit board (not shown).
  • the multiple first terminal portions 13 are located on one side in the first direction x (the right side in FIG. 6) with respect to the die pad 12. Each of the multiple first terminal portions 13 is connected to one side in the first direction x of the die pad 12 and extends to that side in the first direction x. The multiple first terminal portions 13 are arranged at intervals in the second direction y. Each of the multiple first terminal portions 13 has a back surface mounting portion 131.
  • the back surface mounting portion 131 faces the other side in the thickness direction z (the lower side in FIG. 6).
  • the back surface mounting portion 131 is exposed from the sealing resin 7.
  • the back surface mounting portion 131 is a portion that is joined by a joining material such as solder when the semiconductor device A10 is mounted on a circuit board (not shown).
  • lead 1B has a pad portion 14, a plurality of (three in this embodiment) second terminal portions 15, and a plurality of (three in this embodiment) bent portions 16.
  • Pad portion 14 is located on one side in the thickness direction z (upper side in Figure 6) of the plurality of second terminal portions 15.
  • Pad portion 14 is also located inward in the first direction x of the plurality of second terminal portions 15.
  • the second terminal portions 15 are located on the other side of the first direction x (left side in FIG. 6) with respect to the die pad 12 of the lead 1A. Each of the second terminal portions 15 extends to the other side of the first direction x. The second terminal portions 15 are arranged at intervals in the second direction y. Each of the second terminal portions 15 has a back surface mounting portion 151. The back surface mounting portion 151 faces the other side of the thickness direction z (lower side in FIG. 6). The back surface mounting portion 151 is exposed from the sealing resin 7. The back surface mounting portion 151 is a portion that is joined by a joining material such as solder when the semiconductor device A10 is mounted on a circuit board (not shown). The bent portions 16 connect the pad portion 14 and the second terminal portions 15 separately, and are bent when viewed in the second direction y.
  • lead 1C has a pad portion 17, a second terminal portion 18, and a bent portion 19.
  • Pad portion 17 is located on one side of second terminal portion 18 in the thickness direction z (upper side in Figure 7). Pad portion 17 is also located inward in the first direction x with respect to second terminal portion 18.
  • the second terminal portion 18 is located on the other side of the first direction x (left side in FIG. 7) with respect to the die pad 12 of the lead 1A.
  • the second terminal portion 18 extends to the other side of the first direction x.
  • the second terminal portions 15 of the lead 1B and the second terminal portion 18 of the lead 1C are arranged at intervals in the second direction y.
  • the second terminal portion 18 has a back surface mounting portion 181.
  • the back surface mounting portion 181 faces the other side of the thickness direction z (lower side in FIG. 7).
  • the back surface mounting portion 181 is exposed from the sealing resin 7.
  • the back surface mounting portion 181 is a portion that is joined by a joining material such as solder when the semiconductor device A10 is mounted on a circuit board (not shown).
  • the bent portion 19 connects the pad portion 17 and the second terminal portion 18, and has a bent shape when viewed in the second direction y.
  • the semiconductor element 2 is an element that exerts the electrical function of the semiconductor device A10. There are no particular limitations on the type of semiconductor element 2, and in this embodiment, the semiconductor element 2 is configured as a transistor.
  • the semiconductor element 2 is mounted on the main surface 121 of the die pad 12. As shown in Figures 3 and 6 to 8, the semiconductor element 2 has an element body 20, a first electrode 21, a second electrode 22, and a third electrode 23.
  • the element body 20 is rectangular when viewed in the thickness direction z.
  • the element body 20 has an element principal surface 201 and an element rear surface 202.
  • the element principal surface 201 and the element rear surface 202 face opposite each other in the thickness direction z.
  • the element principal surface 201 faces the same side as the principal surface 121 of the die pad 12 in the thickness direction z (one side in the thickness direction z). Therefore, the element rear surface 202 faces the principal surface 121.
  • the first electrode 21 and the third electrode 23 are disposed on the main surface 201 of the element.
  • the second electrode 22 is disposed on the rear surface 202 of the element.
  • the first electrode 21, the second electrode 22, and the third electrode 23 are made of materials such as copper or aluminum (Al), or an alloy thereof.
  • the first electrode 21 is a source electrode
  • the second electrode 22 is a drain electrode
  • the third electrode 23 is a gate electrode.
  • the first electrode 21 covers most of the element principal surface 201. Specifically, the first electrode 21 is disposed in a region of the rectangular element principal surface 201 excluding the periphery and one corner (the lower right corner in FIG. 3). The first electrode 21 has a first electrode pad portion 212. The first electrode pad portion 212 is located inside the insulating portion 3 when viewed in the thickness direction z. The third electrode 23 is disposed in one corner (the lower right corner in FIG. 3) of the element principal surface 201. The second electrode 22 covers the entire surface (or almost the entire surface) of the element back surface 202.
  • the second electrode 22 is bonded to the main surface 121 of the die pad 12 via a conductive bonding material 62.
  • the conductive bonding material 62 electrically connects the die pad 12 and the second electrode 22.
  • the conductive bonding material 62 is, for example, solder.
  • the semiconductor device A10 includes a wire 65.
  • the wire 65 is conductively joined to the third electrode 23 and the pad portion 17 of the lead 1C.
  • the wire 65 conductively connects the third electrode 23 and the lead 1C.
  • the insulating portion 3 is disposed across the first electrode 21 and the element main surface 201.
  • the insulating portion 3 is annular and overlaps with the outer periphery of the first electrode 21 when viewed in the thickness direction z.
  • the outer edge of the insulating portion 3 is located near the outer periphery of the element main surface 201 when viewed in the thickness direction z.
  • the region located inside the inner edge of the insulating portion 3 when viewed in the thickness direction z is the first electrode pad portion 212.
  • the insulating portion 3 is configured, for example, by laminating a plurality of insulating layers.
  • the insulating portion 3 is configured, for example, by laminating an upper insulating layer made of a resin material on a lower insulating layer made of a nitride.
  • nitrides that constitute the lower insulating layer include SiN, SiON, and SiO 2.
  • resin materials that constitute the upper insulating layer include polyimide resin.
  • the metal laminate 4 is disposed across the first electrode 21 and the insulating section 3, and has a configuration in which, for example, multiple metal layers are laminated.
  • the metal laminate 4 has a configuration in which, for example, a metal layer containing titanium (Ti), a metal layer containing nickel, and a metal layer containing silver (Ag) are laminated in this order.
  • the semiconductor device of the present disclosure may have a configuration that does not include the insulating section 3 and the metal laminate 4.
  • the conductive member 5 is conductively joined to the first electrode 21 of the semiconductor element 2 and the lead 1B.
  • the conductive member 5 is made of a metal plate material of a profile strip with a thickness that varies in parts.
  • the metal is copper or a copper alloy.
  • the conductive member 5 is a metal plate material that has been bent and punched.
  • the conductive member 5 has an element-side joint 51, a lead-side joint 52, and an intermediate portion 53.
  • the element-side joint 51 is a portion where the thickness (dimension in the thickness direction z) of the profile strip is large, and the shape viewed in the thickness direction z is an elongated rectangle that is long in the second direction y.
  • the element-side joint 51 is conductively joined to the first electrode pad portion 212 of the first electrode 21 via a conductive bonding material 61.
  • the conductive bonding material 61 conductively connects the element-side joint 51 (conductive member 5) and the first electrode pad portion 212.
  • the conductive bonding material 61 is, for example, solder.
  • the element side bonding portion 51 has a main surface 511, a back surface 512, and an end surface 513.
  • the main surface 511 and the back surface 512 face opposite each other in the thickness direction z.
  • the main surface 511 faces the same side as the main surface 121 of the die pad 12 in the thickness direction z (one side in the thickness direction z).
  • the main surface 511 is exposed from the sealing resin 7.
  • the back surface 512 faces the same side as the back surface 122 of the die pad 12 in the thickness direction z (the other side in the thickness direction z).
  • the back surface 512 is bonded to the first electrode pad portion 212 of the semiconductor element 2.
  • the end surface 513 is connected to the main surface 511 and the back surface 512, and is sandwiched between the main surface 511 and the back surface 512 in the thickness direction z.
  • the end surface 513 faces one side in the first direction x.
  • the position defining member 8 is joined to the end surface 513.
  • the shape of the element-side joint 51 is not limited.
  • the lead-side joint 52 is conductively joined to the pad 14 of the lead 1B via a conductive adhesive 63.
  • the conductive adhesive 63 conductively connects the lead-side joint 52 (conductive member 5) and the pad 14 (lead 1B).
  • the conductive adhesive 63 is, for example, solder.
  • the lead-side joint 52 is appropriately bent when viewed in the second direction y, and has a convex portion located on the other side in the thickness direction z (lower side in the figure) than the surrounding area. When the pad 14 and the lead-side joint 52 are joined, the convex portion is pressed against the pad 14, and a sufficient amount of conductive adhesive 63 is present around the convex portion. This allows the electrical continuity between the lead-side joint 52 and the pad 14 to be properly maintained.
  • the intermediate portion 53 is located between the element side joint portion 51 and the lead side joint portion 52 in the first direction x.
  • the intermediate portion 53 is connected to both the element side joint portion 51 and the lead side joint portion 52.
  • the positioning member 8 is made of an insulating material and is in contact with the conductive member 5 and the main surface 121 of the die pad 12.
  • the positioning member 8 is made of, for example, a synthetic resin. The type of synthetic resin is not limited.
  • the positioning member 8 is disposed on the opposite side of the semiconductor element 2 from the lead 1B in the first direction x.
  • the positioning member 8 is L-shaped when viewed in the second direction y, and includes a first part 81 and a second part 82.
  • the second part 82 is plate-shaped extending in the first direction x, and an end face 82a facing the other side in the first direction x is in contact with and joined to the end face 513 of the element-side joint 51.
  • the positioning member 8 in contact with the end face 513 of the element-side joint 51 may be formed by injecting molten resin material into a mold and solidifying it.
  • the first portion 81 is a plate extending in the thickness direction z, and one end of the first portion 81 in the thickness direction z is connected to one end of the second portion 82 in the first direction x.
  • the end face 81a of the first portion 81 facing the other side in the thickness direction z is in contact with the main surface 121 of the die pad 12.
  • the positioning member 8 and the conductive member 5 are first joined and fixed together. Then, the conductive member 5 is placed so that the end face 81a of the first portion 81 is in contact with the main surface 121 of the die pad 12, and the conductive bonding materials 61 to 63 are solidified. As a result, the end face 81a of the first portion 81 is fixed in contact with the main surface 121 of the die pad 12.
  • the material of the positioning member 8 is not limited to synthetic resin, but may be any insulating material. Furthermore, the shape and arrangement of the positioning member 8 are not limited.
  • the sealing resin 7 covers the semiconductor element 2, the insulating portion 3, the metal laminate portion 4, the positioning member 8, the conductive member 5, and parts of the leads 1A, 1B, and 1C.
  • the sealing resin 7 is made of, for example, a black epoxy resin.
  • the sealing resin 7 has a resin main surface 71, a resin back surface 72, and resin side surfaces 73 to 76.
  • the resin main surface 71 and the resin back surface 72 face opposite sides in the thickness direction z.
  • the resin main surface 71 faces one side in the thickness direction z, and faces the same side as the element main surface 201 and the main surface 121.
  • the resin main surface 71 exposes the main surface 511 of the element side bonding portion 51 of the conductive member 5.
  • the resin back surface 72 faces the other side in the thickness direction z, and faces the same side as the element back surface 202 and the back surface 122.
  • the back surface 122 of the die pad 12, the back surface mounting portion 131 of each first terminal portion 13, the back surface mounting portion 151 of each second terminal portion 15, and the back surface mounting portion 181 of the second terminal portion 18 are exposed from the resin back surface 72.
  • Each of the resin side surfaces 73 to 76 is connected to the resin main surface 71 and the resin back surface 72, and is sandwiched between the resin main surface 71 and the resin back surface 72 in the thickness direction z.
  • the resin side surface 73 and the resin side surface 74 face opposite each other in the first direction x.
  • the resin side surface 73 faces one side of the first direction x, and the resin side surface 74 faces the other side of the first direction x.
  • the resin side surface 75 and the resin side surface 76 face opposite each other in the second direction y.
  • the resin side surface 75 faces one side of the second direction y, and the resin side surface 76 faces the other side of the second direction y. As shown in FIG.
  • each of the multiple first terminal portions 13 protrudes from the resin side surface 73.
  • a portion of each of the multiple second terminal portions 15 and the second terminal portion 18 protrudes from the resin side surface 74.
  • the resin side surfaces 73 to 76 are each slightly inclined with respect to the thickness direction z.
  • the shapes of the sealing resin 7 shown in Figures 1, 2, and 4 to 8 are examples. The shape of the sealing resin 7 is not limited to the illustrated shapes.
  • FIG. 9 is a cross-sectional view showing one step of the method for manufacturing the semiconductor device A10, and is a cross-sectional view similar to the cross-sectional view shown in Figure 6.
  • the conductive member 5 is formed by, for example, bending and punching a deformed metal plate. There are no limitations on the method for forming the conductive member 5.
  • the positioning member 8 is formed by, for example, injection molding using a mold. There are no limitations on the method for forming the positioning member 8.
  • the positioning member 8 is joined to the conductive member 5 by thermocompression bonding. Specifically, the positioning member 8 and the conductive member 5 are heated and, at an appropriate temperature, pressure is applied to bring the end face 82a into close contact with the end face 513, thereby joining the positioning member 8 by inducing plastic deformation in the positioning member 8. This fixes the positioning member 8 and the conductive member 5 together.
  • the conductive member 5 may be placed in a mold, and molten resin material may be injected and solidified to form the positioning member 8 that contacts the end face 513 of the conductive member 5.
  • the lead frame 100 is a plate-shaped material that becomes leads 1A, 1B, and 1C.
  • the lead frame 100 is formed by subjecting a metal plate to processes such as punching and bending. There are no limitations on the method for forming the lead frame 100. A description of the manufacturing method for the semiconductor element 2 is omitted.
  • solder paste 60 is applied to the portion of the main surface 101 of the lead frame 100 that will become the main surface 121 of the die pad 12, and the semiconductor element 2 is placed on the solder paste 60.
  • solder paste 60 is applied onto the first electrode 21 of the semiconductor element 2 and onto the surface of the portion of the lead frame 100 that will become the pad portion 14 of lead 1B.
  • the conductive member 5 is placed on the solder paste 60.
  • the element side joint 51 of the conductive member 5 is placed on the solder paste 60 applied to the first electrode 21, and the lead side joint 52 of the conductive member 5 is placed on the solder paste 60 applied to the portion that will become the pad portion 14 of the lead frame 100.
  • the conductive member 5 is placed so that the end face 81a of the integral positioning member 8 is in contact with the portion of the main surface 101 of the lead frame 100 that will become the main surface 121 of the die pad 12.
  • a reflow process is performed.
  • the reflow process melts the solder paste 60, and the molten solder solidifies by subsequent cooling.
  • the semiconductor element 2 is bonded to the portion of the lead frame 100 that will become the die pad 12 by the conductive bonding material 62.
  • the element side bonding portion 51 of the conductive member 5 is bonded to the first electrode 21 by the conductive bonding material 61, and the lead side bonding portion 52 is bonded to the portion of the lead frame 100 that will become the pad portion 14 by the conductive bonding material 63.
  • wire bonding of wire 65 is performed.
  • molding is performed to form sealing resin 7 that covers semiconductor element 2, insulating portion 3, metal laminate portion 4, and positioning member 8, as well as conductive member 5 and a portion of lead frame 100.
  • lead frame 100 is appropriately cut to separate leads 1A, 1B, and 1C from one another.
  • the semiconductor device A10 includes a positioning member 8.
  • the positioning member 8 is fixed integrally with the conductive member 5 by bonding the end face 82a of the second portion 82 to the end face 513 of the element-side bonding portion 51.
  • the conductive member 5 is fixed in a state in which the end face 81a of the integrated positioning member 8 is in contact with the main surface 121 of the die pad 12.
  • the height position (position in the thickness direction z) of the conductive member 5 relative to the main surface 121 is determined to a position according to the dimension in the thickness direction z of the positioning member 8.
  • the height position of the conductive member 5 relative to the main surface 121 is controlled to a constant position regardless of the thickness dimension (dimension in the thickness direction z) of the conductive bonding materials 61, 62.
  • the semiconductor device A10 can suppress the formation of the sealing resin 7 on the main surface 511 of the element-side bonding portion 51.
  • the positioning member 8 has a first portion 81 extending in the thickness direction z and a second portion 82 extending in the first direction x. Therefore, the positioning member 8 can contact the end face 82a of the second portion 82 with the end face 513 of the element-side bonding portion 51, while contacting the end face 81a of the first portion 81 with the main surface 121 of the die pad 12.
  • the positioning member 8 is disposed on the opposite side of the semiconductor element 2 from the lead 1B in the first direction x.
  • the lead side joint 52 of the conductive member 5 is joined to the pad portion 14 of the lead 1B.
  • the height position of the conductive member 5 is determined by the positioning member 8 on one side of the semiconductor element 2 in the first direction x, and by the lead side joint 52 on the other side of the semiconductor element 2. Since the height position of the semiconductor device A10 is determined on both sides of the semiconductor element 2 in the first direction x, the height position of the conductive member 5 can be controlled more reliably compared to a case in which the positioning positions of the positioning members 8 are different.
  • the main surface 511 of the element-side joint 51 of the conductive member 5 is exposed from the resin main surface 71. This allows the semiconductor device A10 to dissipate heat generated by the semiconductor element 2 from the main surface 511 of the conductive member 5. Furthermore, the back surface 122 of the die pad 12 is exposed from the resin back surface 72. This allows the semiconductor device A10 to dissipate heat generated by the semiconductor element 2 from the back surface 122 of the die pad 12. Therefore, the semiconductor device A10 can dissipate heat from both sides in the thickness direction z, and therefore has a higher heat dissipation effect than when heat is dissipated only from one side or only from the other side in the thickness direction z.
  • FIGS. 14 to 21 show modified examples of the semiconductor device A10 according to the first embodiment.
  • elements that are the same as or similar to those in the above embodiment are given the same reference numerals as in the above embodiment, and duplicated explanations will be omitted.
  • FIG. 14 is a diagram for explaining a semiconductor device A11 according to a first modified example of the first embodiment.
  • FIG. 14 is an enlarged cross-sectional view of the semiconductor device A11, and is a partially enlarged view of the view corresponding to FIG. 6.
  • the end face 513 is provided with an uneven portion 513a.
  • the uneven portion 513a has a plurality of recesses that are recessed toward the other side of the first direction x.
  • the uneven portion 513a is arranged in a portion of the end face 513 with which the position defining member 8 contacts.
  • FIG. 15 is a diagram for explaining a semiconductor device A12 according to a second modified example of the first embodiment.
  • FIG. 15 is an enlarged cross-sectional view of the semiconductor device A12, and is a partially enlarged view of the view corresponding to FIG. 6.
  • the end face 513 is provided with a recess 513b.
  • the recess 513b is a recess that is recessed on the other side in the first direction x. When viewed in the first direction x, the shape of the recess 513b matches (or approximately matches) the shape of the end face 82a of the position defining member 8.
  • FIG. 16 is a diagram for explaining a semiconductor device A13 according to a third modified example of the first embodiment.
  • FIG. 16 is an enlarged cross-sectional view of the semiconductor device A13, and is a partially enlarged view of a view corresponding to FIG. 6.
  • the first part 81 and the second part 82 of the positioning member 8 according to this modified example are made of, for example, ceramics.
  • the positioning member 8 further includes a bonding member 83.
  • the bonding member 83 is, for example, an adhesive film such as DAF (Die Attach Film).
  • the bonding member 83 may be other bonding members.
  • the bonding member 83 may or may not be conductive.
  • the positioning member 8 is bonded to the end surface 513 of the element-side bonding portion 51 of the conductive member 5 by the bonding member 83.
  • the material of the positioning member 8 may be an insulating material other than synthetic resin, and the bonding method between the positioning member 8 and the conductive member 5 is not limited.
  • FIG. 17 is a diagram for explaining a semiconductor device A14 according to a fourth modified example of the first embodiment.
  • FIG. 17 is a plan view (through the sealing resin 7) of the semiconductor device A14, and corresponds to FIG. 3.
  • the semiconductor device A14 according to this modified example includes two positioning members 8. One positioning member 8 is bonded to one side of the end face 513 of the element-side bonding portion 51 of the conductive member 5 in the second direction y, and the other positioning member 8 is bonded to the other side of the end face 513 in the second direction y.
  • the conductive member 5 can be more effectively prevented from being displaced due to rotation around the central axis extending in the thickness direction z when bonded to the semiconductor element 2, compared to the case where only one positioning member 8 is provided.
  • FIG. 18 is a diagram for explaining a semiconductor device A15 according to a fifth modified example of the first embodiment.
  • FIG. 18 is a plan view (through the sealing resin 7) of the semiconductor device A15, and corresponds to FIG. 3.
  • the element-side bonding portion 51 has a side surface 514 and a side surface 515.
  • the side surface 514 and the side surface 515 are connected to the main surface 511 and the back surface 512, respectively, and are sandwiched between the main surface 511 and the back surface 512 in the thickness direction z.
  • the side surface 514 is a surface facing one side in the second direction y
  • the side surface 515 is a surface facing the other side in the second direction y.
  • the semiconductor device A15 according to this modified example has two position defining members 8.
  • One position defining member 8 is bonded to the side surface 514, and the other position defining member 8 is bonded to the side surface 515.
  • the conductive member 5 can be more effectively prevented from being misaligned due to rotation around the central axis extending in the thickness direction z when bonded to the semiconductor element 2, compared to the case where there is only one position defining member 8.
  • FIG. 19 and 20 are diagrams for explaining a semiconductor device A16 according to a sixth modified example of the first embodiment.
  • FIG. 19 is a plan view (through the sealing resin 7) of the semiconductor device A16, and corresponds to FIG. 3.
  • FIG. 20 is a cross-sectional view taken along the line XX-XX in FIG. 19.
  • the semiconductor device A16 according to this modified example includes two position defining members 8. One of the position defining members 8 is bonded to an end face 513 of the element-side bonding portion 51, as in the semiconductor device A10. The other of the position defining members 8 is bonded to an end face 523 of the lead-side bonding portion 52 facing the other side in the first direction x.
  • the other of the position defining members 8 is in contact with the main surface 141 of the pad portion 14 of the lead 1B facing one side in the thickness direction z, rather than the main surface 121 of the die pad 12.
  • the other of the position defining members 8 may be in contact with another surface of the lead 1B (for example, the surface of the second terminal portion 15 facing one side in the thickness direction z).
  • the conductive member 5 can be more effectively prevented from being misaligned due to rotation about the central axis extending in the thickness direction z when bonded to the semiconductor element 2, compared to when there is only one position defining member 8.
  • the height position of the conductive member 5 is also defined by the position defining member 8 on the other side of the semiconductor element 2 in the first direction x. Therefore, in the semiconductor device A16, the height position of the conductive member 5 can be more accurately defined, compared to when the other side of the semiconductor element 2 in the first direction x is defined only by the lead-side bonding portion 52.
  • FIG. 21 is a diagram for explaining a semiconductor device A17 according to a seventh modified example of the first embodiment.
  • FIG. 21 is a cross-sectional view of the semiconductor device A17, and corresponds to FIG. 6.
  • the element-side bonding portion 51 has an end surface 516.
  • the end surface 516 is connected to the main surface 511 and the back surface 512, and is sandwiched between the main surface 511 and the back surface 512 in the thickness direction z.
  • the end surface 516 is a surface facing the other side of the first direction x, and is a surface to which the intermediate portion 53 is connected.
  • the semiconductor device A17 according to this modified example has two position defining members 8.
  • One of the position defining members 8 is bonded to the end surface 513 of the element-side bonding portion 51, similar to the semiconductor device A10.
  • the other position defining member 8 is bonded to the end surface 516 of the element-side bonding portion 51.
  • the conductive member 5 can be more effectively prevented from being misaligned due to rotation around the central axis extending in the thickness direction z when bonded to the semiconductor element 2, compared to the case where there is only one position defining member 8.
  • the height position of the conductive member 5 on the other side in the first direction x is also determined by the position determining member 8. Therefore, in the semiconductor device A17, the height position of the conductive member 5 can be determined more accurately compared to the case where the other side in the first direction x is determined only by the lead-side joint portion 52.
  • the position determining members 8 are not limited to contacting the main surface 121 of the die pad 12, but may contact other parts of the leads 1B, 1C or lead 1A. Note that in the first embodiment, the various parts of the above modified examples may be combined in any desired manner.
  • FIGS. 22 to 31 show other embodiments of the present disclosure.
  • elements that are the same as or similar to those in the above embodiment are given the same reference numerals as those in the above embodiment.
  • Second embodiment: 22 is a diagram for explaining a semiconductor device A20 according to a second embodiment of the present disclosure.
  • FIG. 22 is a cross-sectional view showing the semiconductor device A20, and corresponds to FIG. 6.
  • the semiconductor device A20 of this embodiment differs from the first embodiment in that it does not include a position defining member 8.
  • the configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that the parts of the first embodiment and the modified examples may be combined in any manner.
  • the semiconductor device A20 does not include a positioning member 8.
  • the positioning member 8 is removed during the manufacturing process.
  • the manufacturing method of the semiconductor device A20 is the same as that of the semiconductor device A10 of the first embodiment up to the process of placing the conductive member 5 on the solder paste 60 (see FIG. 12) and solidifying the solder paste 60 by a reflow process (see FIG. 13).
  • the manufacturing method of the semiconductor device A20 then includes a process of removing the positioning member 8 before wire bonding of the wire 65.
  • the positioning member 8 is made of a thermoplastic resin. Examples of thermoplastic resins include polyethylene and polypropylene. In the process of removing the positioning member 8, the positioning member 8 is dissolved and removed by an organic solvent. The positioning member 8 may be removed by other methods.
  • the semiconductor device A20 includes a positioning member 8 when the conductive member 5 is bonded to the first electrode 21 and the pad portion 14. Therefore, in the semiconductor device A20, the height position of the conductive member 5 relative to the main surface 121 is controlled to a constant position, similar to the semiconductor device A10. Furthermore, by adopting a configuration common to the semiconductor device A10, the semiconductor device A20 achieves the same effect as the semiconductor device A10. Furthermore, according to this embodiment, the semiconductor device A20 does not include a positioning member 8 in the finished product. Therefore, in the semiconductor device A20, no voids are formed at the boundary between the positioning member 8 and the sealing resin 7. As a result, the semiconductor device A20 can prevent the occurrence of cracks due to voids at the boundary between the positioning member 8 and the sealing resin 7.
  • the position defining member 8 is made of a thermoplastic resin, but this is not limited to the above.
  • the position defining member 8 may be made of a water-soluble resin.
  • water-soluble resins include polyethylene oxide, polyvinyl alcohol, resol-type phenolic resin, methylolated urea resin, methylolated melamine resin, polyacrylamide, and carboxymethyl cellulose.
  • the position defining member 8 is dissolved and removed by water.
  • FIG. 23 to 26 are diagrams for explaining a semiconductor device A30 according to a third embodiment of the present disclosure.
  • FIG. 23 is a cross-sectional view showing the semiconductor device A30, and corresponds to FIG. 6.
  • FIGS. 24 to 26 are cross-sectional views showing one step of an example of a manufacturing method for the semiconductor device A30.
  • the semiconductor device A30 of this embodiment differs from the first embodiment in the shapes of the position definition member 8 and the conductive member 5.
  • the configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that the respective parts of the first and second embodiments and the respective modified examples may be combined in any desired manner.
  • the conductive member 5 further includes a protrusion 54.
  • the protrusion 54 protrudes from the end face 513 of the element-side joint 51 to one side in the first direction x.
  • the protrusion 54 includes a second back surface 542 that faces the same side in the thickness direction z as the back surface 512 (the other side in the thickness direction z).
  • the positioning member 8 does not include a second portion 82, and is composed of only a plate-like first portion 81 extending in the thickness direction z.
  • the end surface 81a of the positioning member 8 facing the other side in the thickness direction z is in contact with and bonded to the main surface 121 of the die pad 12.
  • the bonding method is not limited, but examples include thermocompression bonding in which the positioning member 8 and the die pad 12 (lead frame 100) are heated and pressure is applied to bond them together.
  • the positioning member 8 in contact with the main surface 121 of the die pad 12 may be molded by injecting a molten resin material into a mold and solidifying it.
  • the end surface 81b of the positioning member 8 facing one side in the thickness direction z is in contact with the second back surface 542 of the protruding portion 54 of the conductive member 5.
  • the positioning member 8 is in contact with the main surface 121 of the die pad 12 and the second back surface 542 of the conductive member 5.
  • FIG. 24 is a cross-sectional view showing one step of the method for manufacturing the semiconductor device A20, and is a cross-sectional view similar to the cross-sectional view shown in Figure 6.
  • the lead frame 100 and positioning member 8 shown in FIG. 24 are prepared.
  • the positioning member 8 is bonded by thermocompression to the portion of the main surface 101 of the lead frame 100 that will become the main surface 121 of the die pad 12. This fixes the positioning member 8 and the die pad 12 (lead frame 100) together.
  • the positioning member 8 in contact with the main surface 101 of the lead frame 100 may be formed by placing the lead frame 100 in a mold and injecting and solidifying molten resin material.
  • a conductive member 5 and a semiconductor element 2 are prepared separately.
  • solder paste 60 is applied to the portion of the main surface 101 of the lead frame 100 that will become the main surface 121 of the die pad 12, and the semiconductor element 2 is placed on the solder paste 60.
  • solder paste 60 is applied onto the first electrode 21 of the semiconductor element 2 and onto the surface of the portion of the lead frame 100 that will become the pad portion 14 of lead 1B.
  • the conductive member 5 is placed on the solder paste 60.
  • the element side joint 51 of the conductive member 5 is placed on the solder paste 60 applied to the first electrode 21, and the lead side joint 52 of the conductive member 5 is placed on the solder paste 60 applied to the portion that will become the pad portion 14 of the lead frame 100.
  • the conductive member 5 is placed so that the second back surface 542 of the protrusion 54 is in contact with the end surface 81b of the positioning member 8 that is integral with the lead frame 100. Subsequent processing is the same as in the first embodiment.
  • the semiconductor device A30 includes a positioning member 8.
  • the end surface 81a of the positioning member 8 is in contact with and bonded to the main surface 121 of the die pad 12, and is fixed integrally with the die pad 12.
  • the conductive member 5 is fixed in a state in which the second back surface 542 of the protruding portion 54 is in contact with the end surface 81b of the positioning member 8, which is integral with the die pad 12 (lead frame 100).
  • the height position (position in the thickness direction z) of the conductive member 5 relative to the main surface 121 is determined to a position according to the dimension in the thickness direction z of the positioning member 8.
  • the height position of the conductive member 5 relative to the main surface 121 is controlled to a constant position regardless of the thickness dimension (dimension in the thickness direction z) of the conductive bonding materials 61, 62.
  • the positioning member 8 extends in the thickness direction z. Therefore, the positioning member 8 can contact the end surface 81a with the main surface 121 of the die pad 12 while contacting the end surface 81b with the second back surface 542 of the protruding portion 54.
  • the semiconductor device A30 has a common configuration with the semiconductor device A10, and thus achieves the same effects as the semiconductor device A10.
  • the position determining member 8 is fixed integrally with the die pad 12
  • the end face 81b of the position determining member 8 may first be joined to the second back surface 542 of the protruding portion 54 to fix the position determining member 8 and the conductive member 5 together.
  • the conductive member 5 may not include the protruding portion 54, and the element-side joint portion 51 may extend to one side of the semiconductor element 2 in the first direction x, with the position determining member 8 contacting the back surface 512.
  • FIG. 27 is a diagram for explaining a semiconductor device A31 according to a first modified example of the third embodiment.
  • FIG. 27 is an enlarged cross-sectional view of the semiconductor device A31, and is a partially enlarged view of the diagram corresponding to FIG. 6.
  • the second back surface 542 is provided with a recess 542b.
  • the recess 542b is a recess recessed on one side in the thickness direction z. When viewed in the thickness direction z, the shape of the recess 542b coincides (or approximately coincides) with the shape of the end face 81b of the position defining member 8.
  • the conductive member 5 is placed such that the one end of the position defining member 8 in the thickness direction z is fitted into the recess 542b. This makes it easier to align the conductive member 5 on the xy plane (the plane perpendicular to the thickness direction z) when placing it. In addition, when the conductive member 5 is bonded to the semiconductor element 2, positional deviation due to rotation around the central axis extending in the thickness direction z can be further suppressed.
  • FIG. 28 is a diagram for explaining a semiconductor device A32 according to a second modified example of the third embodiment.
  • FIG. 28 is an enlarged cross-sectional view of the semiconductor device A32, and is a partially enlarged view of the view corresponding to FIG. 6.
  • the first part 81 of the position defining member 8 according to this modified example is made of, for example, ceramics.
  • the position defining member 8 further includes a bonding member 83.
  • the bonding member 83 is, for example, an adhesive film such as DAF.
  • the bonding member 83 is not limited as long as it is a bonding member whose dimension in the thickness direction z does not change. In addition, the bonding member 83 may or may not be conductive.
  • the bonding member 83 is disposed on an end surface 81a facing the main surface 121 of the die pad 12.
  • the position defining member 8 is bonded to the main surface 121 of the die pad 12 by the bonding member 83.
  • the material of the position defining member 8 may be an insulating material other than synthetic resin, and the bonding method between the position defining member 8 and the conductive member 5 is not limited.
  • FIG. 29 is a diagram for explaining a semiconductor device A40 according to a fourth embodiment of the present disclosure.
  • FIG. 29 is a cross-sectional view showing the semiconductor device A40, and is a diagram corresponding to FIG. 6.
  • the semiconductor device A40 of this embodiment differs from the first embodiment in that it includes a heat-conducting member 9 exposed from the resin main surface 71 of the sealing resin 7.
  • the configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that the respective parts of the above-mentioned first to third embodiments and each modified example may be combined in any desired manner.
  • the semiconductor device A40 further includes a heat-conducting member 9.
  • the heat-conducting member 9 includes an insulating plate 9a and two metal layers 9b.
  • the insulating plate 9a is plate-shaped and has a rectangular shape, for example, when viewed in the thickness direction z.
  • the insulating plate 9a is made of a ceramic material with excellent thermal conductivity, and in this embodiment, the material is, for example, aluminum nitride (AlN).
  • AlN aluminum nitride
  • the shape and material of the insulating plate 9a are not limited.
  • the two metal layers 9b are disposed on the surface of the heat-conducting member 9 facing the thickness direction z. Each metal layer 9b has the same shape and size as the insulating plate 9a when viewed in the thickness direction z.
  • each metal layer 9b is not particularly limited, and may be, for example, copper (Cu), silver (Ag), gold (Au), or an alloy containing these. In this embodiment, the case of copper (Cu) will be described.
  • the heat-conducting member 9 is a so-called DBC (Direct Bonded Copper) substrate.
  • the DBC substrate is a substrate in which copper foil is bonded to both sides of a ceramic plate.
  • the heat conductive member 9 has a principal surface 91 and a rear surface 92.
  • the principal surface 91 and the rear surface 92 face opposite each other in the thickness direction z.
  • the principal surface 91 faces one side in the thickness direction z, and the rear surface 92 faces the opposite side to the principal surface 91 (the other side in the thickness direction z).
  • the rear surface 92 of the heat conductive member 9 is joined to the principal surface 511 of the element side joint 51 of the conductive member 5.
  • the principal surface 91 of the heat conductive member 9 is exposed from the sealing resin 7.
  • the heat-conducting member 9 is not limited to a DBC substrate.
  • the heat-conducting member 9 may be a so-called DPC (Direct Plated Copper) substrate in which copper plating is formed on both sides of a ceramic plate.
  • the heat-conducting member 9 may also be a plating layer made of copper, for example, or a thermally conductive material such as TIM (Thermal Interface Material).
  • the semiconductor device A40 also includes a positioning member 8. Therefore, in the semiconductor device A40, like the semiconductor device A10, the height position of the conductive member 5 relative to the main surface 121 is controlled to a constant position. Furthermore, according to this embodiment, the main surface 91 of the heat conductive member 9 is exposed from the sealing resin 7. This allows the semiconductor device A40 to dissipate heat generated by the semiconductor element 2 from the main surface 91 of the heat conductive member 9 via the conductive member 5. Furthermore, by sharing a configuration in common with the semiconductor device A10, the semiconductor device A40 achieves the same effects as the semiconductor device A10.
  • FIG. 30 is a diagram for explaining a semiconductor device A50 according to a fifth embodiment of the present disclosure.
  • FIG. 30 is a cross-sectional view showing the semiconductor device A50, and corresponds to FIG. 6.
  • the semiconductor device A50 of this embodiment differs from the first embodiment in that the conductive member 5 is covered with the sealing resin 7 and is not exposed from the resin main surface 71.
  • the configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that the parts of the first to fourth embodiments and the modified examples may be combined in any desired manner.
  • the semiconductor device A50 has the conductive member 5 entirely covered with the sealing resin 7, and the main surface 511 of the element-side bonding portion 51 is not exposed from the resin main surface 71 of the sealing resin 7. Furthermore, the semiconductor device A50 does not have the heat-conducting member 9 that the semiconductor device A40 has.
  • the semiconductor device A50 also includes a positioning member 8. Therefore, in the semiconductor device A50, like the semiconductor device A10, the height position of the conductive member 5 relative to the main surface 121 is controlled to a constant position. Furthermore, by sharing a common configuration with the semiconductor device A10, the semiconductor device A50 achieves the same effects as the semiconductor device A10.
  • FIG. 31 is a diagram for explaining a semiconductor device A60 according to a sixth embodiment of the present disclosure.
  • FIG. 31 is a cross-sectional view showing the semiconductor device A60, and is a diagram corresponding to FIG. 6.
  • the semiconductor device A60 of this embodiment differs from the first embodiment in that the lead-side bonding portion 52 is directly bonded to the pad portion 14.
  • the configuration and operation of other parts of this embodiment are similar to those of the first embodiment. Note that the parts of the above first to fifth embodiments and each modified example may be combined in any desired manner.
  • the lead-side joint 52 is directly conductively joined to the pad 14 of the lead 1B without the conductive bonding material 63.
  • the lead-side joint 52 and the pad 14 are ultrasonically bonded together, and a solid-state bonding interface 59 is formed between the lead-side joint 52 and the pad 14.
  • the solid-state bonding interface 59 is an interface that is generated when the lead-side joint 52 and the pad 14 are solid-state bonded together by the ultrasonic vibrations and pressure applied in the ultrasonic bonding. Note that the lead-side joint 52 and the pad 14 only need to be directly bonded together, and may also be bonded by other methods (such as laser welding).
  • the semiconductor device A60 also includes a positioning member 8.
  • the semiconductor device A60 the height position of the conductive member 5 relative to the main surface 121 is controlled to a constant position, similar to the semiconductor device A10.
  • the semiconductor device A60 achieves the same effects as the semiconductor device A10.
  • the lead side bonding portion 52 is directly bonded to the pad portion 14. Therefore, the height position of the lead side bonding portion 52 is more accurately determined compared to the case where a conductive bonding material 63 is interposed between the lead side bonding portion 52 and the pad portion 14.
  • the semiconductor device A60 can control the height position of the conductive member 5 relative to the main surface 121 to a more accurate position.
  • the semiconductor device and the method for manufacturing the semiconductor device according to the present disclosure are not limited to the above-mentioned embodiment.
  • the specific configuration of each part of the semiconductor device according to the present disclosure and the specific processing of each step of the method for manufacturing the semiconductor device according to the present disclosure can be freely designed in various ways.
  • a first lead (1A) including a die pad (12) having a die pad main surface (121) facing one side in a thickness direction (z); a semiconductor element (2) having an element main surface (201) facing one side in the thickness direction and a first electrode (21) disposed on the element main surface and mounted on the die pad main surface; a sealing resin (7) that covers at least a portion of the die pad and the semiconductor element; A conductive member (5) conductively joined to the first electrode;
  • the semiconductor device (A1) comprises a position defining member (8) made of an insulating material and in contact with the conductive member and the main surface of the die pad.
  • the conductive member includes a conductive member end surface (513) facing one side in a first direction (x) perpendicular to the thickness direction,
  • the semiconductor device described in Appendix 1 wherein the position determination member has a first portion (81) in contact with the main surface of the die pad and extending in the thickness direction, and a second portion (82) in contact with an end surface of the conductive member and extending in the first direction.
  • Supplementary Note 3. (Third embodiment, FIG. 23)
  • the conductive member includes a conductive member back surface (542) facing the other side in the thickness direction, 2.
  • the semiconductor device according to claim 1, wherein the position defining member is in contact with a main surface of the die pad and a rear surface of the conductive member and extends in the thickness direction. Supplementary Note 4.
  • the semiconductor device according to claim 1 wherein the position defining member comprises a film-like bonding member (83) arranged in a portion facing the main surface of the die pad. Appendix 5.
  • the position defining member includes a synthetic resin.
  • the semiconductor device according to claim 1, wherein the position defining member includes ceramics.
  • Appendix 7. The semiconductor device further includes a second lead (1B) arranged at a distance from the first lead on the other side in a first direction perpendicular to the thickness direction, the conductive member is conductively joined to the second lead, 7.
  • Supplementary Note 8. (Fourth to seventh modified examples of the first embodiment, FIGS. 17 to 21) 8.
  • Supplementary Note 9. (First modified example of the first embodiment, FIG. 14)
  • the conductive member has a conductive member main surface (511) facing one side in the thickness direction, 10.
  • Supplementary Note 11 (Fourth embodiment, FIG. 29)
  • the heat conductive member (9) is further provided, the heat conductive member being joined to the conductive member.
  • the conductive member has a conductive member main surface facing one side in the thickness direction, 10.
  • the semiconductor device according to claim 1, wherein the heat-conducting member is joined to a main surface of the conductive member and is exposed from the sealing resin.
  • the die pad further includes a die pad back surface (122) facing the other side in the thickness direction, 12.
  • Appendix 13
  • Figure 12 placing the conductive member on a bonding member (60) disposed on a first electrode of a semiconductor element disposed on a main surface of the die pad such that a position defining member is in contact with the conductive member and a main surface of the die pad; solidifying the joining member by heating; forming a sealing resin to cover the semiconductor element;
  • a method for manufacturing a semiconductor device comprising the steps of: Appendix 14. ( Figure 9) 14. The method for manufacturing a semiconductor device according to claim 13, further comprising the step of preparing the conductive member and the position defining member fixed together before the step of placing the conductive member. Appendix 15. ( Figure 24) 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

半導体装置は、第1リード、半導体素子、封止樹脂、導通部材、および規定部材を備える。前記第1リードは、厚さ方向の一方側を向くダイパッド主面を有するダイパッドを含む。前記半導体素子は、前記ダイパッド主面に搭載されており、前記厚さ方向の一方側を向く素子主面、および、前記素子主面に配置された第1電極を有する。前記封止樹脂は、前記ダイパッドの少なくとも一部、および、前記半導体素子を覆う。前記導通部材は、前記第1電極に導通接合されている。前記規定部材は、絶縁材料を含み、かつ、前記導通部材および前記ダイパッド主面に接している。

Description

半導体装置、および、半導体装置の製造方法
 本開示は、半導体装置、および、半導体装置の製造方法に関する。
 半導体素子を備えた半導体装置は、様々な構成が提案されている。特許文献1には、従来の半導体装置の一例が開示されている。同文献に開示された半導体装置は、半導体素子、導電板、駆動パッド、導電部材、および封止樹脂を備えている。半導体素子は、導電板の導電主面に搭載されている。半導体素子の素子主面に形成された主面側駆動電極と、駆動パッドとは、導電部材によって接続されている。封止樹脂は、導電板および駆動パッドの一部と、半導体素子および導電部材とを封止している。
 半導体素子は、はんだなどの導電性接合材を介して、導電主面に接合されている。また、導電部材は、はんだなどの導電性接合材を介して、主面側駆動電極に接合されている。したがって、導電主面と導電部材との間には、2層の導電性接合材の層が介在している。導電性接合材の層の形状は一定していないので、導電主面に対する導電部材の高さ位置(導電板の厚さ方向の位置)が一定していない。
特開2021-158180号公報
 本開示は、従来より改良が施された半導体装置を提供することを一の課題とする。特に本開示は、上記した事情に鑑み、ダイパッド主面に対する導通部材の高さ位置を制御できる半導体装置、および、当該半導体装置の製造方法を提供することを一の課題とする。
 本開示の第1の側面によって提供される半導体装置は、厚さ方向の一方側を向くダイパッド主面を有するダイパッドを含む第1リードと、前記厚さ方向の一方側を向く素子主面、および、前記素子主面に配置された第1電極を有し、かつ、前記ダイパッド主面に搭載された半導体素子と、前記ダイパッドの少なくとも一部、および、前記半導体素子を覆う封止樹脂と、前記第1電極に導通接合されている導通部材と、絶縁材料を含み、かつ、前記導通部材および前記ダイパッド主面に接している位置規定部材と、を備えている。
 本開示の第2の側面によって提供される半導体装置の製造方法は、位置規定部材が導通部材およびダイパッドのダイパッド主面に接した状態になるように、前記ダイパッド主面上に配置された半導体素子の第1電極に配置された接合部材上に、前記導通部材を載置する工程と、加熱によって、前記接合部材を固化させる工程と、前記半導体素子を覆う封止樹脂を形成する工程と、を備えている。
 上記構成によれば、半導体装置において、ダイパッド主面に対する導通部材の高さ位置を制御できる。
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。
図1は、本開示の第1実施形態に係る半導体装置を示す平面図である。 図2は、図1に示す半導体装置の底面図である。 図3は、図1に示す半導体装置の平面図(封止樹脂を透過)である。 図4は、図1に示す半導体装置の右側面図である。 図5は、図1に示す半導体装置の左側面図である。 図6は、図3のVI-VI線に沿う断面図である。 図7は、図3のVII-VII線に沿う断面図である。 図8は、図3のVIII-VIII線に沿う断面図である。 図9は、図1に示す半導体装置の製造方法の一例の一工程を示す断面図である。 図10は、図1に示す半導体装置の製造方法の一例の一工程を示す断面図である。 図11は、図1に示す半導体装置の製造方法の一例の一工程を示す断面図である。 図12は、図1に示す半導体装置の製造方法の一例の一工程を示す断面図である。 図13は、図1に示す半導体装置の製造方法の一例の一工程を示す断面図である。 図14は、第1実施形態の第1変形例に係る半導体装置を示す拡大断面図である。 図15は、第1実施形態の第2変形例に係る半導体装置を示す拡大断面図である。 図16は、第1実施形態の第3変形例に係る半導体装置を示す拡大断面図である。 図17は、第1実施形態の第4変形例に係る半導体装置を示す平面図(封止樹脂を透過)である。 図18は、第1実施形態の第5変形例に係る半導体装置を示す平面図(封止樹脂を透過)である。 図19は、第1実施形態の第6変形例に係る半導体装置を示す平面図(封止樹脂を透過)である。 図20は、図19のXX-XX線に沿う断面図である。 図21は、第1実施形態の第7変形例に係る半導体装置を示す断面図である。 図22は、本開示の第2実施形態に係る半導体装置を示す断面図である。 図23は、本開示の第3実施形態に係る半導体装置を示す断面図である。 図24は、図23に示す半導体装置の製造方法の一例の一工程を示す断面図である。 図25は、図23に示す半導体装置の製造方法の一例の一工程を示す断面図である。 図26は、図23に示す半導体装置の製造方法の一例の一工程を示す断面図である。 図27は、第3実施形態の第1変形例に係る半導体装置を示す拡大断面図である。 図28は、第3実施形態の第2変形例に係る半導体装置を示す拡大断面図である。 図29は、本開示の第4実施形態に係る半導体装置を示す断面図である。 図30は、本開示の第5実施形態に係る半導体装置を示す断面図である。 図31は、本開示の第6実施形態に係る半導体装置を示す断面図である。
 以下、本開示の好ましい実施の形態につき、図面を参照して具体的に説明する。
 本開示における「第1」、「第2」、「第3」等の用語は、単にラベルとして用いたものであり、必ずしもそれらの対象物に順列を付することを意図していない。
 本開示において、「ある物Aがある物Bに形成されている」および「ある物Aがある物B上に形成されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接形成されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに形成されていること」を含む。同様に、「ある物Aがある物Bに配置されている」および「ある物Aがある物B上に配置されている」とは、特段の断りのない限り、「ある物Aがある物Bに直接配置されていること」、および、「ある物Aとある物Bとの間に他の物を介在させつつ、ある物Aがある物Bに配置されていること」を含む。同様に、「ある物Aがある物B上に位置している」とは、特段の断りのない限り、「ある物Aがある物Bに接して、ある物Aがある物B上に位置していること」、および、「ある物Aとある物Bとの間に他の物が介在しつつ、ある物Aがある物B上に位置していること」を含む。また、「ある物Aがある物Bにある方向に見て重なる」とは、特段の断りのない限り、「ある物Aがある物Bのすべてに重なること」、および、「ある物Aがある物Bの一部に重なること」を含む。
 第1実施形態:
 図1~図8に基づき、本開示の第1実施形態に係る半導体装置A10について説明する。半導体装置A10は、複数のリード1A,1B,1C、半導体素子2、絶縁部3、金属積層部4、導通部材5、位置規定部材8、導電性接合材61,62,63、および封止樹脂7を備える。
 図1は、半導体装置A10を示す平面図である。図2は、半導体装置A10を示す底面図である。図3は、半導体装置A10を示す平面図である。図4は、半導体装置A10を示す右側面図である。図5は、半導体装置A10を示す左側面図である。図6は、図3のVI-VI線に沿う断面図である。図7は、図3のVII-VII線に沿う断面図である。図8は、図3のVIII-VIII線に沿う断面図である。なお、図3は、理解の便宜上、封止樹脂7を透過している。
 半導体装置A10の説明においては、半導体素子2の厚さ方向を「厚さ方向z」と呼ぶ。厚さ方向zに対して直交する1つの方向を「第1方向x」と呼ぶ。厚さ方向zおよび第1方向xの双方に対して直交する方向を「第2方向y」と呼ぶ。図1および図2に示すように、半導体装置A10は、厚さ方向zに見て矩形状(あるいは略矩形状)である。半導体装置A10の大きさは特に限定されない。
 リード1A、リード1Bおよびリード1Cは、たとえば、金属板(リードフレーム)に打ち抜き加工や折り曲げ加工等を施すことにより形成されている。リード1A、リード1Bおよびリード1Cの構成材料は特に限定されず、たとえば銅(Cu)およびニッケル(Ni)のいずれか、またはこれらの合金などからなる。リード1A、リード1Bおよびリード1Cの厚さは、特に限定されず、たとえば0.1mm~0.3mmである。
 図3に示すように、リード1Aは、リード1Bおよびリード1Cに対して、第1方向xの一方側に離間して配置されている。リード1Bおよびリード1Cは、第2方向yに並べられている。リード1A~1Cは、厚さ方向zに見て、互いに離間して配置されている。厚さ方向z視におけるサイズは、リード1Aが最大であり、リード1Cが最小である。
 図3、図6~図8に示すように、リード1Aは、ダイパッド12および複数(本実施形態では4つ)の第1端子部13を有する。ダイパッド12は、たとえば厚さ方向zに見て矩形状である。ダイパッド12は、主面121および裏面122を有する。主面121は、厚さ方向zの一方側を向いており、裏面122は主面121とは反対側(厚さ方向zの他方側)を向く。主面121には、半導体素子2が搭載されている。図2、図6等に示すように、裏面122は、封止樹脂7から露出している。裏面122は、半導体装置A10を図示しない回路基板に実装する際に、はんだなどの接合材によって接合される部位である。
 複数の第1端子部13は、ダイパッド12に対して第1方向xの一方側(図6における右側)に位置する。複数の第1端子部13は、各々、ダイパッド12の第1方向xの一方側につながり、第1方向xの一方側に延びている。複数の第1端子部13は、第2方向yに間隔を隔てて配置されている。複数の第1端子部13は、各々、裏面実装部131を有する。裏面実装部131は、厚さ方向zの他方側(図6における下側)を向く。裏面実装部131は、封止樹脂7から露出している。裏面実装部131は、半導体装置A10を図示しない回路基板に実装する際に、はんだなどの接合材によって接合される部位である。
 図3および図6に示すように、リード1Bは、パッド部14、複数(本実施形態では3つ)の第2端子部15および複数(本実施形態では3つ)の屈曲部16を有する。パッド部14は、複数の第2端子部15に対して、厚さ方向zの一方側(図6における上側)に位置している。また、パッド部14は、複数の第2端子部15に対して第1方向xの内方に位置している。
 複数の第2端子部15は、リード1Aのダイパッド12に対して第1方向xの他方側(図6における左側)に位置する。複数の第2端子部15は、各々、第1方向xの他方側に延びている。複数の第2端子部15は、第2方向yに間隔を隔てて配置されている。複数の第2端子部15は、各々、裏面実装部151を有する。裏面実装部151は、厚さ方向zの他方側(図6における下側)を向く。裏面実装部151は、封止樹脂7から露出している。裏面実装部151は、半導体装置A10を図示しない回路基板に実装する際に、はんだなどの接合材によって接合される部位である。複数の屈曲部16は、パッド部14と複数の第2端子部15とを各別につないでおり、第2方向yに見て屈曲形状である。
 図3および図7に示すように、リード1Cは、パッド部17、第2端子部18および屈曲部19を有する。パッド部17は、第2端子部18に対して、厚さ方向zの一方側(図7における上側)に位置している。また、パッド部17は、第2端子部18に対して第1方向xの内方に位置している。
 第2端子部18は、リード1Aのダイパッド12に対して第1方向xの他方側(図7における左側)に位置する。第2端子部18は、第1方向xの他方側に延びている。リード1Bの複数の第2端子部15およびリード1Cの第2端子部18は、第2方向yに間隔を隔てて配置されている。第2端子部18は、裏面実装部181を有する。裏面実装部181は、厚さ方向zの他方側(図7における下側)を向く。裏面実装部181は、封止樹脂7から露出している。裏面実装部181は、半導体装置A10を図示しない回路基板に実装する際に、はんだなどの接合材によって接合される部位である。屈曲部19は、パッド部17と第2端子部18とをつないでおり、第2方向yに見て屈曲形状である。
 半導体素子2は、半導体装置A10の電気的機能を発揮する要素である。半導体素子2の種類は特に限定されず、本実施形態においては、半導体素子2は、トランジスタとして構成されている。半導体素子2は、ダイパッド12の主面121に搭載されている。図3、図6~図8に示すように、半導体素子2は、素子本体20、第1電極21、第2電極22および第3電極23を有する。
 素子本体20は、厚さ方向zに見て矩形状である。素子本体20は、素子主面201および素子裏面202を有する。素子主面201および素子裏面202は、厚さ方向zにおいて互いに反対側を向く。素子主面201は、厚さ方向zにおいてダイパッド12の主面121と同じ側(厚さ方向zの一方側)を向く。このため、素子裏面202は、主面121に対向している。
 第1電極21および第3電極23は、素子主面201上に配置されている。第2電極22は、素子裏面202上に配置されている。第1電極21、第2電極22および第3電極23の構成材料は、たとえば銅およびアルミニウム(Al)のいずれか、またはこれらの合金などからなる。本実施形態においては、第1電極21はソース電極であり、第2電極22はドレイン電極であり、第3電極23はゲート電極である。
 本実施形態において、第1電極21は、素子主面201の大半を覆っている。具体的には、第1電極21は、矩形状の素子主面201のうち、周縁部および1つの隅部(図3において右下の隅部)を除いた領域に配置されている。第1電極21は、第1電極パッド部212を有する。第1電極パッド部212は、厚さ方向zに見て絶縁部3の内側に位置する。第3電極23は、素子主面201の1つの隅部(図3において右下の隅部)に配置されている。第2電極22は、素子裏面202の全面(あるいは略全面)を覆っている。
 第2電極22は、導電性接合材62を介して、ダイパッド12の主面121に接合されている。導電性接合材62は、ダイパッド12と第2電極22とを導通接続する。導電性接合材62は、たとえばはんだである。
 半導体装置A10は、ワイヤ65を備える。ワイヤ65は、第3電極23とリード1Cのパッド部17とに導通接合されている。ワイヤ65は、第3電極23とリード1Cとを導通接続する。
 図3、図6~図8に示すように、絶縁部3は、第1電極21上および素子主面201上に跨って配置されている。絶縁部3は、厚さ方向zに見て第1電極21の外周縁と重なる環状をなしている。絶縁部3の外端縁は、厚さ方向zに見て素子主面201の外周縁の近傍に位置する。第1電極21において、厚さ方向zに見て絶縁部3の内端縁の内側に位置する領域が第1電極パッド部212とされる。絶縁部3は、たとえば複数の絶縁層が積層形成された構成である。絶縁部3は、たとえば窒化物からなる下側の絶縁層に、樹脂材料からなる上側の絶縁層が積層された構成とされる。下側絶縁層を構成する窒化物としては、たとえばSiN、SiONやSiO2が挙げられる。上側絶縁層を構成する樹脂材料としては、たとえばポリイミド樹脂が挙げられる。
 図3、図6~図8に示すように、金属積層部4は、第1電極21上および絶縁部3上に跨って配置されており、たとえば複数の金属層が積層された構成を有する。金属積層部4は、たとえば、チタン(Ti)を含む金属層、ニッケルを含む金属層、および銀(Ag)を含む金属層がこの順に積層された構成である。なお、本実施形態と異なり、本開示の半導体装置は、絶縁部3および金属積層部4を具備しない構成でもよい。
 図3および図6に示すように、導通部材5は、半導体素子2の第1電極21と、リード1Bと、に導通接合されている。導通部材5は、金属製の部分的に厚さが異なる異形条の板材により構成される。当該金属は、銅または銅合金である。導通部材5は、屈曲加工および打ち抜き加工がなされた金属製の板材である。本実施形態において、導通部材5は、素子側接合部51、リード側接合部52、および中間部53を有する。素子側接合部51は、異形条の厚さ(厚さ方向zの寸法)が大きい部分であり、厚さ方向zに見た形状が第2方向yに長い長矩形状である。素子側接合部51は、導電性接合材61を介して、第1電極21の第1電極パッド部212に導通接合されている。導電性接合材61は、素子側接合部51(導通部材5)と第1電極パッド部212とを導通接続する。導電性接合材61は、たとえばはんだである。
 素子側接合部51は、主面511、裏面512、および端面513を備えている。主面511および裏面512は、厚さ方向zにおいて互いに反対側を向く。主面511は、厚さ方向zにおいてダイパッド12の主面121と同じ側(厚さ方向zの一方側)を向く。図1、図6~図8に示すように、主面511は、封止樹脂7から露出している。裏面512は、厚さ方向zにおいてダイパッド12の裏面122と同じ側(厚さ方向zの他方側)を向く。図6~図8に示すように、裏面512は、半導体素子2の第1電極パッド部212に接合されている。これにより、導通部材5は、半導体素子2が発する熱を、主面511から放熱できる。端面513は、主面511および裏面512につながるとともに、厚さ方向zにおいて主面511と裏面512とに挟まれている。端面513は、第1方向xの一方側を向く面である。端面513には、位置規定部材8が接合されている。なお、素子側接合部51の形状は限定されない。
 リード側接合部52は、導電性接合材63を介してリード1Bのパッド部14に導通接合されている。導電性接合材63は、リード側接合部52(導通部材5)とパッド部14(リード1B)とを導通接続する。導電性接合材63は、たとえばはんだである。図6に示すように、リード側接合部52は、第2方向yに見て適宜屈曲しており、周囲よりも厚さ方向zの他方側(図中下側)に位置する凸部を有する。パッド部14とリード側接合部52との接合時には、当該凸部がパッド部14に押し付けられつつ、前記凸部の周囲には十分な量の導電性接合材63が存在する。これにより、リード側接合部52とパッド部14との導通が適切に維持される。
 中間部53は、第1方向xにおいて素子側接合部51およびリード側接合部52の間に位置する。中間部53は、素子側接合部51およびリード側接合部52の双方につながっている。
 位置規定部材8は、絶縁材料からなり、かつ、導通部材5およびダイパッド12の主面121に接している。位置規定部材8は、たとえば合成樹脂からなる。なお、合成樹脂の種類は限定されない。位置規定部材8は、第1方向xにおいて半導体素子2に対してリード1Bとは反対側に配置されている。
 図6に示すように、位置規定部材8は、第2方向yに見てL字形状であり、第1部81および第2部82を備えている。第2部82は、第1方向xに延びる板状であり、第1方向xの他方側を向く端面82aが、素子側接合部51の端面513に接して接合されている。接合方法は限定されないが、たとえば、位置規定部材8および導通部材5を加熱し圧力を加えて密着させる熱圧着があげられる。なお、金型に溶融した樹脂材料を注入して固化させることで、素子側接合部51の端面513に接する位置規定部材8を成形してもよい。
 第1部81は、厚さ方向zに延びる板状であり、厚さ方向zの一方側の端部が、第2部82の第1方向xの一方側の端部につながっている。第1部81の厚さ方向zの他方側を向く端面81aは、ダイパッド12の主面121に接している。本実施形態では、後述する製造方法に示すように、位置規定部材8と導通部材5とが先に接合されて一体に固定される。そして、第1部81の端面81aがダイパッド12の主面121に接した状態になるように導通部材5が載置され、導電性接合材61~63が固化される。これにより、第1部81の端面81aがダイパッド12の主面121に接した状態で固定される。
 なお、位置規定部材8の材料は、合成樹脂に限定されず、絶縁材料であれば限定されない。また、位置規定部材8の形状および配置位置は限定されない。
 封止樹脂7は、半導体素子2、絶縁部3、金属積層部4、および位置規定部材8と、導通部材5、リード1A、リード1B、およびリード1Cの一部ずつと、を覆っている。封止樹脂7は、たとえば黒色のエポキシ樹脂からなる。
 図1、図2、図4~図8に示すように、封止樹脂7は、樹脂主面71、樹脂裏面72および樹脂側面73~76を有する。樹脂主面71および樹脂裏面72は、厚さ方向zにおいて反対側を向いている。樹脂主面71は、厚さ方向zの一方側を向いており、素子主面201および主面121と同じ側を向く。図1に示すように、樹脂主面71からは、導通部材5の素子側接合部51の主面511が露出している。樹脂裏面72は、厚さ方向zの他方側を向いており、素子裏面202および裏面122と同じ側を向く。図2に示すように、樹脂裏面72からは、ダイパッド12の裏面122、各第1端子部13の裏面実装部131、各第2端子部15の裏面実装部151、および第2端子部18の裏面実装部181が露出している。
 樹脂側面73~76の各々は、樹脂主面71および樹脂裏面72につながるとともに、厚さ方向zにおいて樹脂主面71と樹脂裏面72とに挟まれている。樹脂側面73および樹脂側面74は、第1方向xにおいて互いに反対側を向く。樹脂側面73は第1方向xの一方側を向いており、樹脂側面74は第1方向xの他方側を向いている。樹脂側面75および樹脂側面76は、第2方向yにおいて互いに反対側を向く。樹脂側面75は第2方向yの一方側を向いており、樹脂側面76は第2方向yの他方側を向いている。図1に示すように、樹脂側面73から、複数の第1端子部13の各々の一部が突出している。また、樹脂側面74から、複数の第2端子部15、および第2端子部18の各々の一部が突出している。図示した例では、樹脂側面73~76は、各々、厚さ方向zに対して若干傾斜している。なお、図1、図2、図4~図8に示す封止樹脂7の形状は一例である。封止樹脂7の形状は、例示された形状に限定されない。
 次に、半導体装置A10の製造方法の一例について、図9~図13を参照しつつ、以下に説明する。図9~図13はそれぞれ、半導体装置A10の製造方法の一工程を示す断面図であって、図6に示す断面図と同様の断面図である。
 まず、図9に示す導通部材5および位置規定部材8を準備する。導通部材5は、異形条の金属板にたとえば屈曲加工および打ち抜き加工を行うことで形成される。なお、導通部材5の形成方法は限定されない。位置規定部材8は、たとえば金型を用いた射出成形により形成される。なお、位置規定部材8の形成方法は限定されない。
 次に、図9に示すように、位置規定部材8を導通部材5に熱圧着により接合する。具体的には、位置規定部材8および導通部材5を加熱し、適切な温度で、圧力を加えて端面82aを端面513に密着させ、位置規定部材8に塑性変形を起こさせることで接合する。これにより、位置規定部材8および導通部材5が一体に固定される。なお、金型に導通部材5を配置し、溶融した樹脂材料を注入して固化させることで、導通部材5の端面513に接する位置規定部材8を成形してもよい。
 また、別途、リードフレーム100および半導体素子2を準備する。リードフレーム100は、リード1A、リード1Bおよびリード1Cとなる板状の材料である。リードフレーム100は、金属板に打ち抜き加工や折り曲げ加工等を施すことで形成される。なお、リードフレーム100の形成方法は限定されない。半導体素子2の製造方法については省略する。
 次に、図10に示すように、リードフレーム100の主面101のうちダイパッド12の主面121になる部分に、はんだペースト60を塗布し、はんだペースト60上に半導体素子2を載置する。
 次に、図11に示すように、半導体素子2の第1電極21上と、リードフレーム100のうちリード1Bのパッド部14になる部分の表面とに、はんだペースト60を塗布する。
 次に、図12に示すように、はんだペースト60上に、導通部材5を載置する。このとき、第1電極21上に塗布されたはんだペースト60上には、導通部材5の素子側接合部51が配置され、リードフレーム100のパッド部14になる部分に塗布されたはんだペースト60上には、導通部材5のリード側接合部52が配置される。また、導通部材5は、一体となっている位置規定部材8の端面81aが、リードフレーム100の主面101のうちダイパッド12の主面121になる部分に接した状態になるように、載置される。
 次に、リフロー処理を行う。リフロー処理により、はんだペースト60が溶融し、その後の冷却により溶融したはんだが固化する。これにより、図13に示すように、半導体素子2が導電性接合材62によってリードフレーム100のダイパッド12になる部分に接合される。また、導通部材5の素子側接合部51が導電性接合材61によって第1電極21に接合され、リード側接合部52が導電性接合材63によってリードフレーム100のパッド部14になる部分に接合される。
 次に、ワイヤ65のワイヤボンディングを行う。次に、モールド成形により、半導体素子2、絶縁部3、金属積層部4、および位置規定部材8と、導通部材5およびリードフレーム100の一部ずつと、を覆う封止樹脂7を形成する。次に、リードフレーム100を適宜切断し、リード1A、リード1B、およびリード1Cを互いに分離させる。以上の工程を経ることで、図1~図8に示す半導体装置A10が製造される。
 次に、本実施形態の作用について説明する。
 本実施形態によると、半導体装置A10は、位置規定部材8を備えている。位置規定部材8は、第2部82の端面82aが素子側接合部51の端面513に接して接合されて、導通部材5と一体に固定されている。そして、導通部材5は、一体となっている位置規定部材8の端面81aがダイパッド12の主面121に接した状態で固定されている。これにより、主面121に対する導通部材5の高さ位置(厚さ方向zの位置)は、位置規定部材8の厚さ方向zの寸法に応じた位置に規定される。したがって、半導体装置A10は、主面121に対する導通部材5の高さ位置が、導電性接合材61,62の厚さ寸法(厚さ方向zの寸法)に関係なく、一定の位置に制御される。導通部材5の高さ位置が適切に制御されることで、半導体装置A10は、素子側接合部51の主面511上に封止樹脂7が形成されることを抑制できる。
 また、本実施形態によると、位置規定部材8は、厚さ方向zに延びる第1部81および第1方向xに延びる第2部82を備えている。したがって、位置規定部材8は、第2部82の端面82aを素子側接合部51の端面513に接しつつ、第1部81の端面81aをダイパッド12の主面121に接することができる。
 また、本実施形態によると、位置規定部材8は、第1方向xにおいて半導体素子2に対してリード1Bとは反対側に配置されている。導通部材5のリード側接合部52は、リード1Bのパッド部14に接合されている。これにより、導通部材5の高さ位置は、第1方向xにおいて、半導体素子2の一方側で位置規定部材8によって規定され、半導体素子2の他方側でリード側接合部52によって規定される。半導体装置A10は、半導体素子2の第1方向xにおける両側で高さ位置が規定されるので、位置規定部材8の配置位置が異なる場合と比較して、導通部材5の高さ位置をより確実に制御できる。
 また、本実施形態によると、導通部材5の素子側接合部51の主面511は、樹脂主面71から露出している。これにより、半導体装置A10は、半導体素子2が発する熱を、導通部材5の主面511から放熱できる。また、ダイパッド12の裏面122は、樹脂裏面72から露出している。これにより、半導体装置A10は、半導体素子2が発する熱を、ダイパッド12の裏面122から放熱できる。したがって、半導体装置A10は、厚さ方向zの両側から放熱できるので、厚さ方向zの一方側からのみ、または、他方側からのみ放熱する場合と比較して、放熱効果が高い。
 図14~図21は、第1実施形態に係る半導体装置A10の変形例を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付して、重複する説明を省略する。
 第1実施形態の第1変形例:
 図14は、第1実施形態の第1変形例に係る半導体装置A11を説明するための図である。図14は、半導体装置A11の拡大断面図であり、図6に対応する図の部分拡大図である。本変形例に係る導通部材5の素子側接合部51は、端面513が凹凸部513aを備えている。凹凸部513aには、第1方向xの他方側に凹む複数の凹部が配置されている。凹凸部513aは、端面513のうち位置規定部材8が接する部分に配置されている。位置規定部材8を素子側接合部51の端面513に接合したときに、凹凸部513aの複数の凹部に位置規定部材8の一部が入りこむ。アンカー効果により、位置規定部材8と導通部材5との接合強度が大きくなる。
 第1実施形態の第2変形例:
 図15は、第1実施形態の第2変形例に係る半導体装置A12を説明するための図である。図15は、半導体装置A12の拡大断面図であり、図6に対応する図の部分拡大図である。本変形例に係る導通部材5の素子側接合部51は、端面513が凹部513bを備えている。凹部513bは、第1方向xの他方側に凹む凹部である。第1方向xに見て、凹部513bの形状は、位置規定部材8の端面82aの形状と一致(あるいは略一致)する。位置規定部材8を素子側接合部51の端面513に接合する際、第2部82の第1方向xの他方側端部が、凹部513bに嵌め込まれるようにして接合される。これにより、位置規定部材8と導通部材5との接合強度が大きくなる。
 第1実施形態の第3変形例:
 図16は、第1実施形態の第3変形例に係る半導体装置A13を説明するための図である。図16は、半導体装置A13の拡大断面図であり、図6に対応する図の部分拡大図である。本変形例に係る位置規定部材8の第1部81および第2部82は、たとえばセラミックスからなる。位置規定部材8は、接合部材83をさらに備えている。接合部材83は、たとえばDAF(Die Attach Film)などの接着フィルムである。なお、接合部材83は、その他の接合部材であってもよい。また、接合部材83は、導電性があってもよいし、なくてもよい。位置規定部材8は、接合部材83によって、導通部材5の素子側接合部51の端面513に接合されている。このように、位置規定部材8の材料は合成樹脂以外の絶縁材料であってもよく、また、位置規定部材8と導通部材5との接合方法も限定されない。
 第1実施形態の第4変形例:
 図17は、第1実施形態の第4変形例に係る半導体装置A14を説明するための図である。図17は、半導体装置A14の平面図(封止樹脂7を透過)であり、図3に対応する図である。本変形例に係る半導体装置A14は、2個の位置規定部材8を備えている。一方の位置規定部材8は、導通部材5の素子側接合部51の端面513の第2方向yの一方側寄りに接合され、他方の位置規定部材8は、端面513の第2方向yの他方側寄りに接合されている。これにより、導通部材5は、位置規定部材8が1個だけの場合と比較して、半導体素子2への接合時に、厚さ方向zに延びる中心軸まわりの回転による位置ずれをより抑制できる。
 第1実施形態の第5変形例:
 図18は、第1実施形態の第5変形例に係る半導体装置A15を説明するための図である。図18は、半導体装置A15の平面図(封止樹脂7を透過)であり、図3に対応する図である。素子側接合部51は、側面514および側面515を備えている。側面514および側面515はそれぞれ、主面511および裏面512につながるとともに、厚さ方向zにおいて主面511と裏面512とに挟まれている。側面514は第2方向yの一方側を向く面であり、側面515は第2方向yの他方側を向く面である。本変形例に係る半導体装置A15は、2個の位置規定部材8を備えている。一方の位置規定部材8は側面514に接合され、他方の位置規定部材8は側面515に接合されている。これにより、導通部材5は、位置規定部材8が1個だけの場合と比較して、半導体素子2への接合時に、厚さ方向zに延びる中心軸まわりの回転による位置ずれをより抑制できる。
 第1実施形態の第6変形例:
 図19および図20は、第1実施形態の第6変形例に係る半導体装置A16を説明するための図である。図19は、半導体装置A16の平面図(封止樹脂7を透過)であり、図3に対応する図である。図20は、図19のXX-XX線に沿う断面図である。本変形例に係る半導体装置A16は、2個の位置規定部材8を備えている。一方の位置規定部材8は、半導体装置A10と同様、素子側接合部51の端面513に接合されている。他方の位置規定部材8は、リード側接合部52の第1方向xの他方側を向く端面523に接合されている。また、他方の位置規定部材8は、ダイパッド12の主面121ではなく、リード1Bのパッド部14の厚さ方向zの一方側を向く主面141に接している。なお、他方の位置規定部材8は、リード1Bの他の面(たとえば第2端子部15の厚さ方向zの一方側を向く面)に接してもよい。これにより、導通部材5は、位置規定部材8が1個だけの場合と比較して、半導体素子2への接合時に、厚さ方向zに延びる中心軸まわりの回転による位置ずれをより抑制できる。また、導通部材5の高さ位置は、第1方向xにおける半導体素子2の他方側でも位置規定部材8によって規定される。したがって、半導体装置A16は、半導体素子2の第1方向xの他方側がリード側接合部52のみによって規定される場合と比較して、導通部材5の高さ位置をより正確に規定できる。
 第1実施形態の第7変形例:
 図21は、第1実施形態の第7変形例に係る半導体装置A17を説明するための図である。図21は、半導体装置A17の断面図であり、図6に対応する図である。素子側接合部51は、端面516を備えている。端面516は、主面511および裏面512につながるとともに、厚さ方向zにおいて主面511と裏面512とに挟まれている。端面516は、第1方向xの他方側を向く面であり、中間部53がつながっている面である。本変形例に係る半導体装置A17は、2個の位置規定部材8を備えている。一方の位置規定部材8は、半導体装置A10と同様、素子側接合部51の端面513に接合されている。他方の位置規定部材8は、素子側接合部51の端面516に接合されている。これにより、導通部材5は、位置規定部材8が1個だけの場合と比較して、半導体素子2への接合時に、厚さ方向zに延びる中心軸まわりの回転による位置ずれをより抑制できる。また、導通部材5の高さ位置は、第1方向xの他方側でも位置規定部材8によって規定される。したがって、半導体装置A17は、第1方向xの他方側がリード側接合部52のみによって規定される場合と比較して、導通部材5の高さ位置をより正確に規定できる。
 第4~7変形例から理解されるように、導通部材5に接合される位置規定部材8の数は限定されないし、位置規定部材8の接合位置も限定されない。また、位置規定部材8は、ダイパッド12の主面121に接する場合に限定されず、リード1B,1Cまたはリード1Aの他の部位に接してもよい。なお、第1実施形態において、上記の各変形例の各部が任意に組み合わせられてもよい。
 図22~図31は、本開示の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。
 第2実施形態:
 図22は、本開示の第2実施形態に係る半導体装置A20を説明するための図である。図22は、半導体装置A20を示す断面図であり、図6に対応する図である。本実施形態の半導体装置A20は、位置規定部材8を備えていない点で、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1実施形態および各変形例の各部が任意に組み合わせられてもよい。
 本実施形態では、半導体装置A20は、位置規定部材8を備えていない。位置規定部材8は、製造工程の途中で除去される。半導体装置A20の製造方法は、はんだペースト60上に導通部材5を載置し(図12参照)、リフロー処理によりはんだペースト60を固化させる(図13参照)工程までは、第1実施形態の半導体装置A10と同様である。半導体装置A20の製造方法は、この後、ワイヤ65のワイヤボンディングを行う前に、位置規定部材8を除去する工程を備えている。本実施形態では、位置規定部材8は、熱可塑樹脂からなる。熱可塑樹脂の例としては、ポリエチレン、ポリプロピレンなどがあげられる。位置規定部材8を除去する工程では、位置規定部材8は、有機溶剤によって溶解されて除去される。なお、位置規定部材8は、他の方法で除去されてもよい。
 本実施形態によると、半導体装置A20は、導通部材5を第1電極21およびパッド部14に接合するときには、位置規定部材8を備えている。したがって、半導体装置A20は、半導体装置A10と同様に、主面121に対する導通部材5の高さ位置が一定の位置に制御される。また、半導体装置A20は、半導体装置A10と共通する構成をとることにより、半導体装置A10と同等の効果を奏する。さらに、本実施形態によると、半導体装置A20は、完成品において位置規定部材8を備えていない。したがって、半導体装置A20は、位置規定部材8と封止樹脂7との境界に空隙が形成されることがない。これにより、半導体装置A20は、位置規定部材8と封止樹脂7との境界の空隙に基づくクラックの発生を防止できる。
 なお、本実施形態では、位置規定部材8が熱可塑樹脂からなる場合について説明したが,これに限られない。位置規定部材8は水溶性樹脂からなってもよい。水溶性樹脂の例としては、ポリエチレンオキシド、ポリビニルアルコール、レゾール型フェノール樹脂、メチロール化ユリア(尿素)樹脂、メチロール化メラミン樹脂、 ポリアクリルアミド、カルボキシメチルセルロースなどがあげられる。この場合、位置規定部材8を除去する工程では、位置規定部材8は、水によって溶解されて除去される。
 第3実施形態:
 図23~図26は、本開示の第3実施形態に係る半導体装置A30を説明するための図である。図23は、半導体装置A30を示す断面図であり、図6に対応する図である。図24~図26は、半導体装置A30の製造方法の一例の一工程を示す断面図である。本実施形態の半導体装置A30は、位置規定部材8および導通部材5の形状が、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~2実施形態および各変形例の各部が任意に組み合わせられてもよい。
 本実施形態では、導通部材5は、突出部54をさらに備えている。突出部54は、素子側接合部51の端面513から第1方向xの一方側に突出している。突出部54は、厚さ方向zにおいて裏面512と同じ側(厚さ方向zの他方側)を向く第2裏面542を備えている。
 位置規定部材8は、第2部82を備えておらず、厚さ方向zに延びる板状の第1部81のみからなる。位置規定部材8は、厚さ方向zの他方側を向く端面81aが、ダイパッド12の主面121に接して接合されている。接合方法は限定されないが、たとえば、位置規定部材8およびダイパッド12(リードフレーム100)を加熱し圧力を加えて密着させる熱圧着があげられる。なお、金型に溶融した樹脂材料を注入して固化させることで、ダイパッド12の主面121に接する位置規定部材8を成形してもよい。また、位置規定部材8は、厚さ方向zの一方側を向く端面81bが、導通部材5の突出部54の第2裏面542に接している。つまり、位置規定部材8は、ダイパッド12の主面121および導通部材5の第2裏面542に接している。
 次に、半導体装置A20の製造方法の一例について、図24~図26を参照しつつ、以下に説明する。図24~図26はそれぞれ、半導体装置A20の製造方法の一工程を示す断面図であって、図6に示す断面図と同様の断面図である。
 まず、図24に示すリードフレーム100および位置規定部材8を準備する。次に、図24に示すように、位置規定部材8をリードフレーム100の主面101のうちダイパッド12の主面121になる部分に、熱圧着により接合する。これにより、位置規定部材8およびダイパッド12(リードフレーム100)が一体に固定される。なお、金型にリードフレーム100を配置し、溶融した樹脂材料を注入して固化させることで、リードフレーム100の主面101に接する位置規定部材8を成形してもよい。また、別途、導通部材5および半導体素子2を準備する。
 次に、リードフレーム100の主面101のうちダイパッド12の主面121になる部分に、はんだペースト60を塗布し、はんだペースト60上に半導体素子2を載置する。次に、図25に示すように、半導体素子2の第1電極21上と、リードフレーム100のうちリード1Bのパッド部14になる部分の表面とに、はんだペースト60を塗布する。
 次に、図26に示すように、はんだペースト60上に、導通部材5を載置する。このとき、第1電極21上に塗布されたはんだペースト60上には、導通部材5の素子側接合部51が配置され、リードフレーム100のパッド部14になる部分に塗布されたはんだペースト60上には、導通部材5のリード側接合部52が配置される。また、導通部材5は、突出部54の第2裏面542が、リードフレーム100と一体となっている位置規定部材8の端面81bに接した状態になるように、載置される。その後の処理は、第1実施形態と同様である。
 本実施形態によると、半導体装置A30は、位置規定部材8を備えている。位置規定部材8は、端面81aがダイパッド12の主面121に接して接合されて、ダイパッド12と一体に固定されている。そして、導通部材5は、突出部54の第2裏面542が、ダイパッド12(リードフレーム100)と一体となっている位置規定部材8の端面81bに接した状態で固定されている。これにより、主面121に対する導通部材5の高さ位置(厚さ方向zの位置)は、位置規定部材8の厚さ方向zの寸法に応じた位置に規定される。したがって、主面121に対する導通部材5の高さ位置は、導電性接合材61,62の厚さ寸法(厚さ方向zの寸法)に関係なく、一定の位置に制御される。また、本実施形態によると、位置規定部材8は、厚さ方向zに延びている。したがって、位置規定部材8は、端面81bを突出部54の第2裏面542に接しつつ、端面81aをダイパッド12の主面121に接することができる。また、半導体装置A30は、半導体装置A10と共通する構成をとることにより、半導体装置A10と同等の効果を奏する。
 なお、本実施形態では、先に、位置規定部材8をダイパッド12と一体に固定する場合について説明したが、これに限られない。先に、位置規定部材8の端面81bを突出部54の第2裏面542に接合して、位置規定部材8と導通部材5とを一体に固定してもよい。また、導通部材5は、突出部54を備えず、素子側接合部51が半導体素子2の第1方向xの一方側まで延び、位置規定部材8が裏面512に接してもよい。
 第3実施形態の第1変形例:
 図27は、第3実施形態の第1変形例に係る半導体装置A31を説明するための図である。図27は、半導体装置A31の拡大断面図であり、図6に対応する図の部分拡大図である。本変形例に係る導通部材5の突出部54は、第2裏面542が凹部542bを備えている。凹部542bは、厚さ方向zの一方側に凹む凹部である。厚さ方向zに見て、凹部542bの形状は、位置規定部材8の端面81bの形状と一致(あるいは略一致)する。導通部材5は、凹部542bに位置規定部材8の厚さ方向zの一方側端部がはめ込まれるようにして載置される。これにより、導通部材5を載置する際のxy平面(厚さ方向zに直交する平面)上の位置合わせが容易になる。また、導通部材5が半導体素子2への接合時に、厚さ方向zに延びる中心軸まわりの回転による位置ずれをより抑制できる。
 第3実施形態の第2変形例:
 図28は、第3実施形態の第2変形例に係る半導体装置A32を説明するための図である。図28は、半導体装置A32の拡大断面図であり、図6に対応する図の部分拡大図である。本変形例に係る位置規定部材8の第1部81は、たとえばセラミックスからなる。位置規定部材8は、接合部材83をさらに備えている。接合部材83は、たとえばDAFなどの接着フィルムである。なお、接合部材83は、厚さ方向zの寸法が変化しない接合部材であれば限定されない。また、接合部材83は、導電性があってもよいし、なくてもよい。接合部材83は、ダイパッド12の主面121に対向する端面81aに配置されている。位置規定部材8は、接合部材83によって、ダイパッド12の主面121に接合されている。このように、位置規定部材8の材料は合成樹脂以外の絶縁材料であってもよく、また、位置規定部材8と導通部材5との接合方法も限定されない。
 第4実施形態:
 図29は、本開示の第4実施形態に係る半導体装置A40を説明するための図である。図29は、半導体装置A40を示す断面図であり、図6に対応する図である。本実施形態の半導体装置A40は、封止樹脂7の樹脂主面71から露出する導熱部材9を備えている点で、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~3実施形態および各変形例の各部が任意に組み合わせられてもよい。
 本実施形態では、半導体装置A40は、導熱部材9をさらに備えている。導熱部材9は、絶縁板9aおよび2個の金属層9bを備えている。絶縁板9aは、板状であり、厚さ方向zに見た形状がたとえば矩形状である。絶縁板9aの構成材料は、熱伝導性に優れたセラミックスであり、本実施形態では、たとえば窒化アルミニウム(AlN)である。なお、絶縁板9aの形状および構成材料は限定されない。2個の金属層9bはそれぞれ、導熱部材9の厚さ方向zを向く面に配置されている。各金属層9bは、厚さ方向zに見た形状および大きさが絶縁板9aと同じである。各金属層9bの構成材料は、特に限定されず、たとえば銅(Cu)、銀(Ag)、金(Au)、およびこれらを含む合金などである。本実施形態では、銅(Cu)である場合について説明する。本実施形態では、導熱部材9は、いわゆるDBC(Direct Bonded Copper)基板である。DBC基板は、セラミックスの板の両面にそれぞれ、銅箔が接合された基板である。
 導熱部材9は、主面91および裏面92を有する。主面91および裏面92は、厚さ方向zにおいて互いに反対側を向く。主面91は厚さ方向zの一方側を向いており、裏面92は主面91とは反対側(厚さ方向zの他方側)を向く。導熱部材9は、裏面92が導通部材5の素子側接合部51の主面511に接合されている。導熱部材9の主面91は、封止樹脂7から露出している。
 なお、導熱部材9は、DBC基板に限定されない。たとえば、導熱部材9は、セラミックスの板の両面にそれぞれ銅めっきを形成したいわゆるDPC(Direct Plated Copper)基板であってもよい。また、導熱部材9は、たとえば銅などからなるめっき層であってもよいし、TIM(Thermal Interface Material)などの熱伝導性材料であってもよい。
 本実施形態においても、半導体装置A40は、位置規定部材8を備えている。したがって、半導体装置A40は、半導体装置A10と同様に、主面121に対する導通部材5の高さ位置が一定の位置に制御される。また、本実施形態によると、導熱部材9の主面91が封止樹脂7から露出している。これにより、半導体装置A40は、半導体素子2が発する熱を、導通部材5を介して、導熱部材9の主面91から放熱できる。また、半導体装置A40は、半導体装置A10と共通する構成をとることにより、半導体装置A10と同等の効果を奏する。
 第5実施形態:
 図30は、本開示の第5実施形態に係る半導体装置A50を説明するための図である。図30は、半導体装置A50を示す断面図であり、図6に対応する図である。本実施形態の半導体装置A50は、導通部材5が封止樹脂7に覆われており、樹脂主面71から露出していない点で、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~4実施形態および各変形例の各部が任意に組み合わせられてもよい。
 本実施形態では、半導体装置A50は、導通部材5の全体が封止樹脂7に覆われており、素子側接合部51の主面511が封止樹脂7の樹脂主面71から露出していない。また、半導体装置A50は、半導体装置A40が備えている導熱部材9も備えていない。
 本実施形態においても、半導体装置A50は、位置規定部材8を備えている。したがって、半導体装置A50は、半導体装置A10と同様に、主面121に対する導通部材5の高さ位置が一定の位置に制御される。また、半導体装置A50は、半導体装置A10と共通する構成をとることにより、半導体装置A10と同等の効果を奏する。
 第6実施形態:
 図31は、本開示の第6実施形態に係る半導体装置A60を説明するための図である。図31は、半導体装置A60を示す断面図であり、図6に対応する図である。本実施形態の半導体装置A60は、リード側接合部52がパッド部14に直接接合されている点で、第1実施形態と異なっている。本実施形態の他の部分の構成および動作は、第1実施形態と同様である。なお、上記の第1~5実施形態および各変形例の各部が任意に組み合わせられてもよい。
 本実施形態では、リード側接合部52が、導電性接合材63を介さずに、リード1Bのパッド部14に直接導通接合されている。本実施形態では、リード側接合部52とパッド部14とが超音波接合されており、リード側接合部52とパッド部14との間には、固相接合界面59が形成されている。固相接合界面59は、超音波接合において付加される超音波振動および圧力によって、リード側接合部52とパッド部14とが固相接合されたことにより生じた界面である。なお、リード側接合部52とパッド部14とは、直接接合されていればよく、その他の方法(たとえばレーザ溶接など)で接合されてもよい。
 本実施形態においても、半導体装置A60は、位置規定部材8を備えている。したがって、半導体装置A60は、半導体装置A10と同様に、主面121に対する導通部材5の高さ位置が一定の位置に制御される。また、半導体装置A60は、半導体装置A10と共通する構成をとることにより、半導体装置A10と同等の効果を奏する。さらに、本実施形態によると、リード側接合部52がパッド部14に直接接合されている。したがって、リード側接合部52とパッド部14との間に導電性接合材63が介在する場合と比較して、リード側接合部52の高さ位置がより正確な位置に規定される。これにより、半導体装置A60は、主面121に対する導通部材5の高さ位置をより正確な位置に制御できる。
 本開示に係る半導体装置および半導体装置の製造方法は、上述した実施形態に限定されるものではない。本開示に係る半導体装置の各部の具体的な構成、および、本開示に係る半導体装置の製造方法の各工程の具体的な処理は、種々に設計変更自在である。
 本開示は、以下の付記に記載された実施形態を含む。
 付記1.
 厚さ方向(z)の一方側を向くダイパッド主面(121)を有するダイパッド(12)を含む第1リード(1A)と、
 前記厚さ方向の一方側を向く素子主面(201)、および、前記素子主面に配置された第1電極(21)を有し、かつ、前記ダイパッド主面に搭載された半導体素子(2)と、
 前記ダイパッドの少なくとも一部、および、前記半導体素子を覆う封止樹脂(7)と、
 前記第1電極に導通接合されている導通部材(5)と、
 絶縁材料からなり、かつ、前記導通部材および前記ダイパッド主面に接している位置規定部材(8)と、を備えている、半導体装置(A1)。
 付記2.
 前記導通部材は、前記厚さ方向に直交する第1方向(x)の一方側を向く導通部材端面(513)を備え、
 前記位置規定部材は、前記ダイパッド主面に接し、かつ、前記厚さ方向に延びる第1部(81)と、前記導通部材端面に接し、かつ、前記第1方向に延びる第2部(82)とを備えている、付記1に記載の半導体装置。
 付記3.(第3実施形態、図23)
 前記導通部材は、前記厚さ方向の他方側を向く導通部材裏面(542)を備え、
 前記位置規定部材は、前記ダイパッド主面および前記導通部材裏面に接し、前記厚さ方向に延びている、付記1に記載の半導体装置。
 付記4.(第3実施形態第2変形例、図28)
 前記位置規定部材は、前記ダイパッド主面に対向する部分に配置されたフィルム状の接合部材(83)を備えている、付記1ないし3のいずれかに記載の半導体装置。
 付記5.
 前記位置規定部材は、合成樹脂を含んでいる、付記1ないし4のいずれかに記載の半導体装置。
 付記6.
 前記位置規定部材は、セラミックスを含んでいる、付記1ないし4のいずれかに記載の半導体装置。
 付記7.
 前記第1リードから、前記厚さ方向に直交する第1方向の他方側に離間して配置された第2リード(1B)をさらに備え、
 前記導通部材は、前記第2リードに導通接合されており、
 前記位置規定部材は、前記第1方向において前記半導体素子に対して前記第2リードとは反対側に配置されている、付記1ないし6のいずれかに記載の半導体装置。
 付記8.(第1実施形態第4~7変形例、図17~図21)
 絶縁材料からなり、かつ、前記導通部材および前記ダイパッド主面に接している第2の位置規定部材をさらに備えている、付記1ないし7のいずれかに記載の半導体装置。
 付記9.(第1実施形態第1変形例、図14)
 前記導通部材は、前記位置規定部材に接する面に、凹凸部(513a)が配置されている、付記1ないし8のいずれかに記載の半導体装置。
 付記10.
 前記導通部材は、前記厚さ方向の一方側を向く導通部材主面(511)を備え、
 前記導通部材主面は前記封止樹脂から露出している、付記1ないし9のいずれかに記載の半導体装置。
 付記11.(第4実施形態、図29)
 前記導通部材に接合された導熱部材(9)をさらに備え、
 前記導通部材は、前記厚さ方向の一方側を向く導通部材主面を備え、
 前記導熱部材は、前記導通部材主面に接合され、かつ、前記封止樹脂から露出している、付記1ないし9のいずれかに記載の半導体装置。
 付記12.
 前記ダイパッドは、前記厚さ方向の他方側を向くダイパッド裏面(122)をさらに備え、
 前記ダイパッド裏面は、前記封止樹脂から露出している、付記1ないし11のいずれかに記載の半導体装置。
 付記13.(図12)
 位置規定部材が導通部材およびダイパッドのダイパッド主面に接した状態になるように、前記ダイパッド主面上に配置された半導体素子の第1電極に配置された接合部材(60)上に、前記導通部材を載置する工程と、
 加熱によって、前記接合部材を固化させる工程と、
 前記半導体素子を覆う封止樹脂を形成する工程と、
を備えている、半導体装置の製造方法。
 付記14.(図9)
 前記導通部材を載置する工程の前に、一体に固定された前記導通部材および前記位置規定部材を準備する工程をさらに備えている、付記13に記載の半導体装置の製造方法。
 付記15.(図24)
 前記導通部材を載置する工程の前に、一体に固定された前記ダイパッドおよび前記位置規定部材を準備する工程をさらに備えている、付記13に記載の半導体装置の製造方法。
 付記16.(第2実施形態、図22)
 前記封止樹脂を形成する工程の前に、前記位置規定部材を除去する工程をさらに備えている、付記13ないし15のいずれかに記載の半導体装置の製造方法。
A10~A17,A20,A30~A32,A40,A50,A60:半導体装置
1A,1B,1C:リード    12:ダイパッド
121:主面    122:裏面
13:第1端子部    131:裏面実装部
14:パッド部    141:主面
15:第2端子部    151:裏面実装部
16:屈曲部    17:パッド部
18:第2端子部    181:裏面実装部
19:屈曲部    2:半導体素子
20:素子本体    201:素子主面
202:素子裏面    21:第1電極
212:第1電極パッド部    22:第2電極
23:第3電極    3:絶縁部
4:金属積層部    5:導通部材
51:素子側接合部    511:主面
512:裏面    513,516:端面
513a:凹凸部    513b:凹部
514,515:側面    52:リード側接合部
523:端面    53:中間部
54:突出部    542:第2裏面
542b:凹部    59:固相接合界面
61,62,63:導電性接合材    65:ワイヤ
7:封止樹脂    71:樹脂主面
72:樹脂裏面    73,74,75,76:樹脂側面
8:位置規定部材    81:第1部
81a,81b:端面    82:第2部
82a:端面    83:接合部材
9:導熱部材    91:主面
92:裏面    9a:絶縁板
9b:金属層    100:リードフレーム
101:主面    60:はんだペースト

Claims (16)

  1.  厚さ方向の一方側を向くダイパッド主面を有するダイパッドを含む第1リードと、
     前記厚さ方向の一方側を向く素子主面、および、前記素子主面に配置された第1電極を有し、かつ、前記ダイパッド主面に搭載された半導体素子と、
     前記ダイパッドの少なくとも一部、および、前記半導体素子を覆う封止樹脂と、
     前記第1電極に導通接合されている導通部材と、
     絶縁材料を含み、かつ、前記導通部材および前記ダイパッド主面に接している位置規定部材と、
    を備えている、半導体装置。
  2.  前記導通部材は、前記厚さ方向に直交する第1方向の一方側を向く導通部材端面を備え、
     前記位置規定部材は、前記ダイパッド主面に接し、かつ、前記厚さ方向に延びる第1部と、前記導通部材端面に接し、かつ、前記第1方向に延びる第2部とを備えている、請求項1に記載の半導体装置。
  3.  前記導通部材は、前記厚さ方向の他方側を向く導通部材裏面を備え、
     前記位置規定部材は、前記ダイパッド主面および前記導通部材裏面に接し、前記厚さ方向に延びている、請求項1に記載の半導体装置。
  4.  前記位置規定部材は、前記ダイパッド主面に対向する部分に配置されたフィルム状の接合部材を備えている、請求項1ないし3のいずれかに記載の半導体装置。
  5.  前記位置規定部材は、合成樹脂を含んでいる、請求項1ないし4のいずれかに記載の半導体装置。
  6.  前記位置規定部材は、セラミックスを含んでいる、請求項1ないし4のいずれかに記載の半導体装置。
  7.  前記第1リードから、前記厚さ方向に直交する第1方向の他方側に離間して配置された第2リードをさらに備え、
     前記導通部材は、前記第2リードに導通接合されており、
     前記位置規定部材は、前記第1方向において前記半導体素子に対して前記第2リードとは反対側に配置されている、請求項1ないし6のいずれかに記載の半導体装置。
  8.  絶縁材料を含み、かつ、前記導通部材および前記ダイパッド主面に接している第2の位置規定部材をさらに備えている、請求項1ないし7のいずれかに記載の半導体装置。
  9.  前記導通部材は、前記位置規定部材に接する面に、凹凸部が配置されている、請求項1ないし8のいずれかに記載の半導体装置。
  10.  前記導通部材は、前記厚さ方向の一方側を向く導通部材主面を備え、
     前記導通部材主面は前記封止樹脂から露出している、請求項1ないし9のいずれかに記載の半導体装置。
  11.  前記導通部材に接合された導熱部材をさらに備え、
     前記導通部材は、前記厚さ方向の一方側を向く導通部材主面を備え、
     前記導熱部材は、前記導通部材主面に接合され、かつ、前記封止樹脂から露出している、請求項1ないし9のいずれかに記載の半導体装置。
  12.  前記ダイパッドは、前記厚さ方向の他方側を向くダイパッド裏面をさらに備え、
     前記ダイパッド裏面は、前記封止樹脂から露出している、請求項1ないし11のいずれかに記載の半導体装置。
  13.  位置規定部材が導通部材およびダイパッドのダイパッド主面に接した状態になるように、前記ダイパッド主面上に配置された半導体素子の第1電極に配置された接合部材上に、前記導通部材を載置する工程と、
     加熱によって、前記接合部材を固化させる工程と、
     前記半導体素子を覆う封止樹脂を形成する工程と、
    を備えている、半導体装置の製造方法。
  14.  前記導通部材を載置する工程の前に、一体に固定された前記導通部材および前記位置規定部材を準備する工程をさらに備えている、請求項13に記載の半導体装置の製造方法。
  15.  前記導通部材を載置する工程の前に、一体に固定された前記ダイパッドおよび前記位置規定部材を準備する工程をさらに備えている、請求項13に記載の半導体装置の製造方法。
  16.  前記封止樹脂を形成する工程の前に、前記位置規定部材を除去する工程をさらに備えている、請求項13ないし15のいずれかに記載の半導体装置の製造方法。
PCT/JP2023/041573 2022-12-02 2023-11-20 半導体装置、および、半導体装置の製造方法 WO2024116924A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-193473 2022-12-02
JP2022193473 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024116924A1 true WO2024116924A1 (ja) 2024-06-06

Family

ID=91323694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041573 WO2024116924A1 (ja) 2022-12-02 2023-11-20 半導体装置、および、半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2024116924A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156748A (ja) * 2004-11-30 2006-06-15 Renesas Technology Corp 半導体装置
JP2017050441A (ja) * 2015-09-03 2017-03-09 ローム株式会社 半導体装置
WO2019098368A1 (ja) * 2017-11-20 2019-05-23 ローム株式会社 半導体装置
JP2021190505A (ja) * 2020-05-27 2021-12-13 ローム株式会社 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156748A (ja) * 2004-11-30 2006-06-15 Renesas Technology Corp 半導体装置
JP2017050441A (ja) * 2015-09-03 2017-03-09 ローム株式会社 半導体装置
WO2019098368A1 (ja) * 2017-11-20 2019-05-23 ローム株式会社 半導体装置
JP2021190505A (ja) * 2020-05-27 2021-12-13 ローム株式会社 半導体装置

Similar Documents

Publication Publication Date Title
US9368432B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7215020B2 (en) Semiconductor device having metal plates and semiconductor chip
KR101928681B1 (ko) 전력용 반도체 장치 및 그 제조 방법
JP2007165425A (ja) 半導体装置
EP3285288B1 (en) Semiconductor device
JPH09260550A (ja) 半導体装置
US6608369B2 (en) Lead frame, semiconductor device and manufacturing method thereof, circuit board and electronic equipment
KR20090050752A (ko) 반도체 패키지 및 그의 제조방법
WO2014188632A1 (ja) 放熱構造を有する半導体装置および半導体装置の積層体
KR101644913B1 (ko) 초음파 용접을 이용한 반도체 패키지 및 제조 방법
JPH09232341A (ja) 半導体装置
KR20190005736A (ko) 반도체 모듈
WO2024116924A1 (ja) 半導体装置、および、半導体装置の製造方法
EP2688098B1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2024116933A1 (ja) 半導体装置、および、半導体装置の製造方法
JP5056105B2 (ja) 半導体装置およびその製造方法
JP2002329828A (ja) 半導体装置
WO2021039816A1 (ja) 電気回路基板及びパワーモジュール
JP2022143167A (ja) 半導体装置
JP2017191807A (ja) パワー半導体装置およびパワー半導体装置の製造方法
WO2017154072A1 (ja) 半導体装置および半導体装置の製造方法
US8159835B2 (en) Laser apparatus
JP2010050288A (ja) 樹脂封止型半導体装置およびその製造方法
JPH05166979A (ja) 半導体装置及びその製造方法
JP4067386B2 (ja) 樹脂封止金型およびそれを用いた半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897572

Country of ref document: EP

Kind code of ref document: A1