WO2024114648A1 - 换热扁管及换热器 - Google Patents

换热扁管及换热器 Download PDF

Info

Publication number
WO2024114648A1
WO2024114648A1 PCT/CN2023/134830 CN2023134830W WO2024114648A1 WO 2024114648 A1 WO2024114648 A1 WO 2024114648A1 CN 2023134830 W CN2023134830 W CN 2023134830W WO 2024114648 A1 WO2024114648 A1 WO 2024114648A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
flat tube
symmetry plane
wall
ribs
Prior art date
Application number
PCT/CN2023/134830
Other languages
English (en)
French (fr)
Inventor
吴振鑫
王冠军
朱丽星
马彦婷
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Publication of WO2024114648A1 publication Critical patent/WO2024114648A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present application relates to the technical field of heat exchangers, and in particular to a heat exchange flat tube and a heat exchanger.
  • the thickness of the partition ribs in the heat exchange flat tubes in the prior art are all the same. It is known from experiments and simulation verification that when the heat exchanger is working, the middle part of the heat exchange flat tubes is subjected to greater force, and the middle partition ribs in the heat exchange flat tubes or the partition ribs near the middle of the heat exchange holes are easy to break, affecting the overall pressure bearing capacity of the heat exchange flat tubes. If the thickness of all the partition ribs is increased, the pressure bearing capacity of the heat exchange flat tubes will be improved, but the heat exchange performance of the heat exchange flat tubes will be affected.
  • the present application provides a heat exchange flat tube and a heat exchanger to improve the pressure bearing capacity of the heat exchange flat tube in the prior art.
  • the thickness of the n partition ribs gradually increases in the direction from the outer periphery of the heat exchange flat tube toward the symmetry plane.
  • n 3 ⁇ 3 wherein, when n is an odd number, one of the partition bars is located on the symmetry plane, and the remaining partition bars are symmetrically distributed relative to the symmetry plane; when n is an even number, the n partition bars are symmetrically distributed relative to the symmetry plane.
  • the thickness of the rib is L, and 0.2 mm ⁇ L ⁇ 0.5 mm.
  • the plurality of partition ribs are parallel to the symmetry plane.
  • the cross-sectional shape of the heat exchange flat tube perpendicular to the extension direction is waist-shaped, elliptical or semicircular.
  • the heat exchange hole has a plurality of heat exchange ribs, which are distributed on the inner wall of the heat exchange hole at intervals along the circumference of the heat exchange hole, and the extension direction of the plurality of heat exchange ribs is the same as the extension direction of the heat exchange hole.
  • the heat exchange hole has a first inner wall and a second inner wall which are parallel to each other, and a first arcuate wall and a second arcuate wall which are symmetrical with respect to the symmetry plane, and two ends of the first arcuate wall are respectively connected to one end of the first inner wall and the second inner wall which are located on the same side of the symmetry plane.
  • the two ends of the second arc-shaped wall are respectively connected to the other ends of the first inner wall and the second inner wall located on the other side of the symmetry plane, and the partition ribs are connected to the first inner wall and the second inner wall.
  • a heat exchanger comprising a heat exchange fin and a plurality of the above-mentioned heat exchange flat tubes, the heat exchange fin having a plurality of placement grooves arranged at intervals, and the plurality of heat exchange flat tubes being arranged in the plurality of placement grooves in a one-to-one correspondence.
  • FIG1 shows a schematic structural diagram of a heat exchange flat tube without heat exchange ribs provided inside, according to a first embodiment of the present application
  • FIG2 is a schematic diagram showing the structure of the heat exchange flat tube of FIG1 when heat exchange convex ribs are provided inside;
  • FIG3 shows a schematic structural diagram of a heat exchanger provided in Example 2 of the present application.
  • FIG4 shows a schematic structural diagram of a double-row heat exchanger provided in Embodiment 3 of the present application.
  • FIG5 shows a schematic structural diagram of a double-row heat exchanger provided in Embodiment 4 of the present application.
  • the partition rib 12 closest to the symmetry plane 30 bears greater pressure than the other partition ribs 12, and the partition rib 12 closest to the symmetry plane 30 is easily damaged by pressure is avoided, thereby improving the pressure-bearing capacity of the heat exchange flat tube 10.
  • the thickness of the n partition ribs 12 gradually increases in the direction from the outer periphery of the heat exchange flat tube 10 toward the symmetry plane 30. In this way, the closer the partition ribs 12 are to the symmetry plane 30, the thicker they are, ensuring the support capacity of the multiple partition ribs 12 for different positions of the heat exchange flat tube 10, further enhancing the pressure bearing capacity of the heat exchange flat tube 10. Specifically, as shown in the cross section of the heat exchange flat tube 10 in FIG. 1 and FIG. 2 , the thickness of the multiple partition ribs 12 gradually increases in the direction from the left and right sides toward the middle symmetry plane 30.
  • n ⁇ 3 wherein, when n is an odd number, one of the partition ribs 12 is located on the symmetry plane 30, and the remaining partition ribs 12 are symmetrically distributed relative to the symmetry plane 30; when n is an even number, the n partition ribs 12 are symmetrically distributed relative to the symmetry plane 30.
  • This arrangement achieves the symmetrical distribution of the plurality of partition ribs 12 in the heat exchange hole 11 relative to the symmetry plane 30, ensures the supporting effect of the partition ribs 12 on the heat exchange hole 11, and facilitates the processing of the plurality of partition ribs 12.
  • the thickness of the two partition ribs 12 closest to the symmetry plane 30 is L2
  • the thickness of the other two partition ribs is L1, and L2>L1.
  • the number of the ribs 12 of the heat exchange flat tube 10 is n, which has an impact on the heat exchange efficiency of the heat exchanger and the strength of the heat exchange flat tube 10. It is necessary to avoid the situation where n is too large, resulting in a smaller and smaller flow area of the heat exchange hole, and then the flow resistance of the heat exchange flat tube 10 increases; at the same time, it is necessary to avoid the situation where n is too small, resulting in a large channel of the heat exchange flat tube 10, a low refrigerant flow rate, and a low heat exchange efficiency, and the situation where n is too small, resulting in a low strength of the heat exchange flat tube 10.
  • 3 ⁇ n ⁇ 7 This setting improves the heat exchange performance of the heat exchange flat tube 10 while ensuring the strength of the heat exchange flat tube 10.
  • the thickness of the partition rib 12 is L, and 0.2mm ⁇ L ⁇ 0.5mm. Specifically, when the thickness of the partition rib 12 is less than 0.2mm, the structural strength of the partition rib 12 is relatively weak, and the heat exchange flat tube 10 of the heat exchanger using the partition rib 12 is prone to damage during operation; when the thickness of the partition rib 12 is greater than 0.5mm, the space occupied by the partition rib 12 is relatively large, affecting the heat exchange efficiency of the heat exchanger.
  • the thickness of the partition rib 12 is set to 0.2mm ⁇ 0.5mm, which ensures the supporting effect of the partition rib 12 while reducing the processing cost of the partition rib 12 and increasing the flow area of the sub-hole, thereby avoiding the situation where the thickness of the partition rib 12 is too small, resulting in insufficient structural strength of the partition rib 12 and easy damage, and at the same time avoiding the situation where the thickness of the partition rib 12 is too large, resulting in a smaller flow area of the sub-hole and reduced flow effect.
  • the plurality of partition ribs 12 are parallel to the symmetry plane 30. This arrangement facilitates the processing of the plurality of partition ribs 12, avoids the situation that the partition ribs 12 are difficult to process when the inclination angles of the plurality of partition ribs 12 are different, and also avoids the situation that the flow area of the processed sub-hole and the supporting effect of the partition ribs 12 cannot be guaranteed when the inclination angles of the plurality of partition ribs 12 are different.
  • the cross-sectional shape of the heat exchange flat tube 10 perpendicular to the extension direction is waist-shaped, elliptical or semicircular. This arrangement improves the applicable range of the arrangement of the partition ribs 12, wherein the cross-sectional shape of the heat exchange flat tube 10 includes but is not limited to the above shapes.
  • the heat exchange hole 11 is further provided with a plurality of heat exchange ribs 13, which are distributed on the inner wall of the heat exchange hole 11 at intervals along the circumference of the heat exchange hole 11, and the extension direction of the plurality of heat exchange ribs 13 is the same as the extension direction of the heat exchange hole 11.
  • the heat exchange area of each sub-hole is increased by the plurality of heat exchange ribs 13, and the flow performance of the heat exchange flat tube 10 is improved.
  • the plurality of heat exchange ribs 13 arranged in the heat exchange hole 11 can also increase the turbulence of the refrigerant flowing through the heat exchange hole 11, and improve the heat exchange efficiency.
  • the heat exchange hole 11 has a first inner wall and a second inner wall which are parallel to each other, and a first arcuate wall and a second arcuate wall which are symmetrical with respect to the symmetry plane 30.
  • the two ends of the first arcuate wall are respectively connected to one end of the first inner wall and the second inner wall which are located on the same side of the symmetry plane 30, and the two ends of the second arcuate wall are respectively connected to the other end of the first inner wall and the second inner wall which are located on the other side of the symmetry plane 30.
  • the partition rib 12 is connected to the first inner wall and the second inner wall. This arrangement facilitates the integrated processing of the heat exchange hole 11 and the partition rib 12.
  • the second embodiment of the present application provides a heat exchanger, which includes a heat exchange fin 20 and a plurality of the above-mentioned heat exchange flat tubes 10 .
  • the heat exchange fin 20 has a plurality of placement grooves arranged at intervals, and the plurality of heat exchange flat tubes 10 are arranged in the plurality of placement grooves in a one-to-one correspondence.
  • the pressure bearing capacity of the heat exchange flat tube 10 is improved by increasing the thickness of the partition rib 12 closest to the symmetry plane 30.
  • the situation in the prior art where the pressure bearing capacity of the heat exchange flat tube 10 is improved by increasing the thickness of all the partition ribs 12, which results in a smaller sub-hole area and a poorer flow capacity of the heat exchange flat tube 10, is avoided, thereby ensuring the flow performance of the heat exchange flat tube 10 and further ensuring the heat exchange effect of the heat exchanger.
  • the heat exchanger provided in the third and fourth embodiments of the present application is a double-row heat exchanger, and the double-row heat exchanger includes two heat exchange fins 20, and the two heat exchange fins 20 are stacked.
  • the double-row heat exchanger shown in FIG. 4 is the double-row heat exchanger provided in the third embodiment of the present application, and the two groups of placement grooves of the two heat exchange fins 20 correspond one to one in the stacking direction.
  • the double-row heat exchanger shown in FIG. 5 is the double-row heat exchanger provided in the fourth embodiment of the present application, and the two groups of placement grooves of the two heat exchange fins 20 are offset in a direction perpendicular to the stacking direction.
  • the heat exchange flat tubes 10 of the present solution can all be directly applied to a heat exchange system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本申请提供了一种换热扁管及换热器,换热扁管具有换热孔和设置在换热孔内的n个隔筋,n≥2,n个隔筋的延伸方向和换热孔的延伸方向相同,n个隔筋将换热孔分隔为n+1个独立的子孔,换热扁管具有对称面,对称面将换热孔划分为对称的两部分,距离对称面最近的隔筋的厚度大于其余隔筋的厚度,其中,在n=2的情况下,两个隔筋距对称面的距离不同。采用该方案,通过增大距离对称面最近的隔筋的厚度,提高了换热扁管的承压能力,同时避免了现有技术中通过增大所有隔筋厚度提高换热扁管的承压能力时,会导致换热扁管的子孔面积变小,流通能力变差的情况,保证了换热扁管的换流通性能。

Description

换热扁管及换热器
本申请要求于2022年11月30日提交至中国国家知识产权局,申请号为202223204677.6发明名称为“换热扁管及换热器”的专利申请的优先权。
技术领域
本申请涉换热器技术领域,具体而言,涉及一种换热扁管及换热器。
背景技术
现有技术中的换热扁管内的隔筋的厚度均相同,经试验与模拟验证可知,换热器工作时,换热扁管中部受力较大,换热扁管内的中部隔筋或靠近换热孔中部的隔筋易断裂,影响换热扁管的整体的承压能力,若增大所有隔筋的厚度,换热扁管的承压能力会提升,但会影响换热扁管的换热性能。
发明内容
本申请提供了一种换热扁管及换热器,以提高现有技术中的换热扁管的承压能力。
为了实现上述目的,根据本申请的一个方面,本申请提供了一种换热扁管,换热扁管具有换热孔和设置在换热孔内的n个隔筋,n≥2,n个隔筋的延伸方向和换热孔的延伸方向相同,n个隔筋将换热孔分隔为n+1个独立的子孔,换热扁管具有对称面,对称面将换热孔划分为对称的两部分,距离对称面最近的隔筋的厚度大于其余隔筋的厚度,其中,在n=2的情况下,两个隔筋距对称面的距离不同。
进一步地,n个隔筋的厚度在换热扁管外周朝向对称面的方向上逐渐增大。
进一步地,n≥3,其中,在n为奇数的情况下,其中一个隔筋位于对称面上,其余隔筋相对于对称面对称分布;在n为偶数的情况下,n个隔筋相对于对称面对称分布。
进一步地,3≤n≤7。
进一步地,隔筋的厚度为L,且0.2mm≤L≤0.5mm。
进一步地,多个隔筋均平行于对称面。
进一步地,换热扁管垂直于延伸方向的截面形状为腰形、椭圆形或半圆形。
进一步地,换热孔内还具有多个换热凸筋,多个换热凸筋沿换热孔的周向间隔分布在换热孔的内壁上,多个换热凸筋的延伸方向和换热孔的延伸方向相同。
进一步地,换热孔具有相互平行的第一内壁、第二内壁以及相对于对称面对称的第一弧形壁、第二弧形壁,第一弧形壁的两端分别和位于对称面同一侧的第一内壁、第二内壁的一 端连接,第二弧形壁的两端分别和位于对称面另一侧的第一内壁、第二内壁的另一端连接,隔筋和第一内壁、第二内壁连接。
根据本申请的另一方面,提供了一种换热器,换热器包括换热翅片和多个上述的换热扁管,换热翅片具有多个间隔设置的放置槽,多个换热扁管一一对应地设置在多个放置槽内。
应用本申请的技术方案,提供了一种换热扁管,换热扁管具有换热孔和设置在换热孔内的n个隔筋,n≥2,n个隔筋的延伸方向和换热孔的延伸方向相同,n个隔筋将换热孔分隔为n+1个独立的子孔,换热扁管具有对称面,对称面将换热孔划分为对称的两部分,距离对称面最近的隔筋的厚度大于其余隔筋的厚度,其中,在n=2的情况下,两个隔筋距对称面的距离不同。采用该方案,通过增大距离对称面最近的隔筋的厚度,避免了现有技术中的换热扁管内的多个隔筋厚度均相同时,距离对称面最近的隔筋承压较其余隔筋承压大,距离对称面最近的隔筋易受压损坏的情况,提高了换热扁管的承压能力,同时避免了现有技术中通过增大所有隔筋厚度提高换热扁管的承压能力时,会导致换热扁管的子孔面积变小,流通能力变差的情况,保证了换热扁管的换流通性能。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了本申请的实施例一提供的内部未设置有换热凸筋的换热扁管的结构示意图;
图2示出了图1的换热扁管内部设置有换热凸筋时的结构示意图;
图3示出了本申请的实施例二提供的换热器的结构示意图;
图4示出了本申请的实施例三提供的双排换热器的结构示意图;
图5示出了本申请的实施例四提供的双排换热器的结构示意图。
其中,上述附图包括以下附图标记:
10、换热扁管;11、换热孔;12、隔筋;13、换热凸筋;20、换热翅片;30、对称面。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1和图2所示,本申请的实施例一提供了一种换热扁管10,换热扁管10具有换热孔11和设置在换热孔11内的n个隔筋12,n≥2,n个隔筋12的延伸方向和换热孔11的延伸方向相同,n个隔筋12将换热孔11分隔为n+1个独立的子孔,换热扁管10具有对称面30,对称面30将换热孔划分为对称的两部分,距离对称面30最近的隔筋12的厚度大于其余隔筋12的厚度,其中,在n=2的情况下,两个隔筋12距对称面30的距离不同。
在本实施例中,通过增大距离对称面30最近的隔筋12的厚度,避免了现有技术中的换热扁管10内的多个隔筋12厚度均相同时,距离对称面30最近的隔筋12承压较其余隔筋12承压大,距离对称面30最近的隔筋12易受压损坏的情况,提高了换热扁管10的承压能力,同时避免了现有技术中通过增大所有隔筋12厚度提高换热扁管10的承压能力时,会导致换热扁管10的子孔面积变小,流通能力变差的情况,保证了换热扁管10的流通性能。
具体地,n个隔筋12的厚度在换热扁管10外周朝向对称面30的方向上逐渐增大。这样设置,越靠近对称面30的隔筋12厚度越厚,保证多个隔筋12对换热扁管10不同位置的支撑能力,进一步增强了换热扁管10的承压能力。具体地,如图1和图2所示换热扁管10的截面,多个隔筋12的厚度在左右两侧朝中间的对称面30的方向上逐渐增大。
进一步地,n≥3,其中,在n为奇数的情况下,其中一个隔筋12位于对称面30上,其余隔筋12相对于对称面30对称分布;在n为偶数的情况下,n个隔筋12相对于对称面30对称分布。这样设置,实现多个隔筋12在换热孔11内相对于对称面30的对称分布,保证隔筋12对换热孔11的支撑效果,同时便于多个隔筋12的加工。具体地,如图1和图2所示,当n-4时,距离对称面30最近的两个隔筋12的厚度为L2,另外两个的隔筋厚度为L1,L2>L1。
需要说明的是,换热扁管10的隔筋12设置为个数n,对换热器的换热效率及换热扁管10强度存在影响,需避免n过大导致换热孔的流通面积越来越小,进而导致换热扁管10流动阻力增大的情况;同时需避免n过小导致换热扁管10通道大,制冷剂流速低,换热效率低,且n过小导致换热扁管10的强度低的情况。在本实施例中,3≤n≤7。这样设置,在提高换热扁管10的换热性能的同时保证换热扁管10的强度。
具体地,隔筋12的厚度为L,且0.2mm≤L≤0.5mm。具体地,当隔筋12的厚度小于0.2mm时,隔筋12的结构强度较弱,应用该换热扁管10的换热器在工作过程中易出现换热扁管10破损的情况;当隔筋12厚度大于0.5mm时,隔筋12占用的空间较大,影响换热器的换热效率。隔筋12的厚度设置为0.2mm~0.5mm,保证隔筋12的支撑效果的同时,降低了隔筋12的加工成本,并增大了子孔的流通面积,避免了隔筋12厚度过小导致隔筋12的结构强度不足,易损坏的情况,同时避免了隔筋12厚度过大导致子孔的流通面积变小,流通效果降低的情况。
进一步地,多个隔筋12均平行于对称面30。这样设置,便于多个隔筋12加工,避免存在多个隔筋12的倾斜角度不同时,隔筋12加工困难的情况,同时避免存在多个隔筋12的倾斜角度不同时,无法保证加工后的子孔的流通面积和隔筋12的支撑效果的情况。
具体地,换热扁管10垂直于延伸方向的截面形状为腰形、椭圆形或半圆形。这样设置,提高了隔筋12的设置方式的适用范围,其中,换热扁管10的截面形状包括但不限于上述形状。
如图2所示,换热孔11内还具有多个换热凸筋13,多个换热凸筋13沿换热孔11的周向间隔分布在换热孔11的内壁上,多个换热凸筋13的延伸方向和换热孔11的延伸方向相同。这样设置,通过多个换热凸筋13增大每个子孔的换热面积,提高换热扁管10的流通性能,同时,通过在换热孔11内设置的多个换热凸筋13,还能增加流经换热孔11的制冷剂的紊流,提高换热效率。
如图1和图2所示,换热孔11具有相互平行的第一内壁、第二内壁以及相对于对称面30对称的第一弧形壁、第二弧形壁,第一弧形壁的两端分别和位于对称面30同一侧的第一内壁、第二内壁的一端连接,第二弧形壁的两端分别和位于对称面30另一侧的第一内壁、第二内壁的另一端连接,隔筋12和第一内壁、第二内壁连接。这样设置,便于换热孔11和隔筋12的一体加工。
如图3所示,本申请的实施例二提供了一种换热器,换热器包括换热翅片20和多个上述的换热扁管10,换热翅片20具有多个间隔设置的放置槽,多个换热扁管10一一对应地设置在多个放置槽内。
在本实施例中,通过增大距离对称面30最近的隔筋12的厚度,提高了换热扁管10的承压能力,同时避免了现有技术中通过增大所有隔筋12厚度提高换热扁管10的承压能力时,会导致换热扁管10的子孔面积变小,流通能力变差的情况,保证了换热扁管10的流通性能,进而保证了换热器的换热效果。
可选地,如图4和图5所示,本申请的实施例三和实施例四提供的换热器为双排换热器,双排换热器包括两个换热翅片20,两个换热翅片20堆叠设置。其中,图4所示的双排换热器为本申请的实施例三提供的双排换热器,其中的两个换热翅片20的两组放置槽在堆叠方向上一一对应。图5所示的双排换热器为本申请的实施例四提供的双排换热器,其中的两个换热翅片20的两组放置槽在垂直与堆叠方向的方向上错位。
进一步地,本方案的换热扁管10、具有该换热扁管10的换热器、具有该换热扁管10的双排换热器均可直接应用于换热***。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种换热扁管,其特征在于,所述换热扁管具有换热孔(11)和设置在所述换热孔(11)内的n个隔筋(12),n≥2,n个所述隔筋(12)的延伸方向和所述换热孔(11)的延伸方向相同,n个所述隔筋(12)将所述换热孔(11)分隔为n+1个独立的子孔,所述换热扁管具有对称面(30),所述对称面(30)将所述换热孔划分为对称的两部分,距离所述对称面(30)最近的所述隔筋(12)的厚度大于其余所述隔筋(12)的厚度,其中,在n=2的情况下,两个所述隔筋(12)距所述对称面(30)的距离不同。
  2. 根据权利要求1所述的换热扁管,其特征在于,n个所述隔筋(12)的厚度在所述换热扁管外周朝向所述对称面(30)的方向上逐渐增大。
  3. 根据权利要求1所述的换热扁管,其特征在于,n≥3,其中,
    在n为奇数的情况下,其中一个所述隔筋(12)位于所述对称面(30)上,其余所述隔筋(12)相对于所述对称面(30)对称分布;
    在n为偶数的情况下,n个所述隔筋(12)相对于所述对称面(30)对称分布。
  4. 根据权利要求1所述的换热扁管,其特征在于,3≤n≤7。
  5. 根据权利要求1所述的换热扁管,其特征在于,所述隔筋(12)的厚度为L,且0.2mm≤L≤0.5mm。
  6. 根据权利要求1所述的换热扁管,其特征在于,多个所述隔筋(12)均平行于所述对称面(30)。
  7. 根据权利要求1所述的换热扁管,其特征在于,所述换热扁管垂直于延伸方向的截面形状为腰形、椭圆形或半圆形。
  8. 根据权利要求1所述的换热扁管,其特征在于,所述换热孔(11)内还具有多个换热凸筋(13),多个所述换热凸筋(13)沿所述换热孔(11)的周向间隔分布在所述换热孔(11)的内壁上,多个所述换热凸筋(13)的延伸方向和所述换热孔(11)的延伸方向相同。
  9. 根据权利要求1所述的换热扁管,其特征在于,所述换热孔(11)具有相互平行的第一内壁、第二内壁以及相对于所述对称面(30)对称的第一弧形壁、第二弧形壁,所述第一弧形壁的两端分别和位于所述对称面(30)同一侧的所述第一内壁、所述第二内壁的一端连接,所述第二弧形壁的两端分别和位于所述对称面(30)另一侧的所述第一内壁、第二内壁的另一端连接,所述隔筋(12)和所述第一内壁、所述第二内壁连接。
  10. 一种换热器,其特征在于,所述换热器包括换热翅片(20)和多个权利要求1至9中任意一项所述的换热扁管,所述换热翅片(20)具有多个间隔设置的放置槽,多个所述换热扁管一一对应地设置在多个所述放置槽内。
PCT/CN2023/134830 2022-11-30 2023-11-28 换热扁管及换热器 WO2024114648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223204677.6 2022-11-30
CN202223204677.6U CN219347479U (zh) 2022-11-30 2022-11-30 换热扁管及换热器

Publications (1)

Publication Number Publication Date
WO2024114648A1 true WO2024114648A1 (zh) 2024-06-06

Family

ID=87102421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/134830 WO2024114648A1 (zh) 2022-11-30 2023-11-28 换热扁管及换热器

Country Status (2)

Country Link
CN (1) CN219347479U (zh)
WO (1) WO2024114648A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219347479U (zh) * 2022-11-30 2023-07-14 浙江盾安热工科技有限公司 换热扁管及换热器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473599A (ja) * 1990-07-13 1992-03-09 Sanden Corp 熱交換器
JPH04105734A (ja) * 1990-08-24 1992-04-07 Showa Alum Corp 熱交換器の製造方法
JP2005201491A (ja) * 2004-01-14 2005-07-28 Matsushita Electric Ind Co Ltd 熱交換器
CN101405557A (zh) * 2006-01-19 2009-04-08 摩丁制造公司 扁平管道、扁平管道热交换器及其制造方法
CN101405560A (zh) * 2006-01-19 2009-04-08 摩丁制造公司 扁平管道、扁平管道热交换器及其制造方法
CN101548149A (zh) * 2006-11-22 2009-09-30 摩丁制造公司 用于冷凝器和/或蒸发器的焊接平管
CN203274572U (zh) * 2013-03-11 2013-11-06 三花控股集团有限公司 适于折弯的扁管和具有该扁管的换热器
JP2014001882A (ja) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp 熱交換器および空気調和機
JP2017215057A (ja) * 2016-05-30 2017-12-07 昭和電工株式会社 液冷式冷却装置およびその製造方法
CN217383937U (zh) * 2022-04-19 2022-09-06 浙江盾安热工科技有限公司 扁管及换热器
CN219347479U (zh) * 2022-11-30 2023-07-14 浙江盾安热工科技有限公司 换热扁管及换热器

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473599A (ja) * 1990-07-13 1992-03-09 Sanden Corp 熱交換器
JPH04105734A (ja) * 1990-08-24 1992-04-07 Showa Alum Corp 熱交換器の製造方法
JP2005201491A (ja) * 2004-01-14 2005-07-28 Matsushita Electric Ind Co Ltd 熱交換器
CN101437646A (zh) * 2006-01-19 2009-05-20 摩丁制造公司 扁平管道、扁平管道热交换器及其制造方法
CN101405560A (zh) * 2006-01-19 2009-04-08 摩丁制造公司 扁平管道、扁平管道热交换器及其制造方法
CN101405556A (zh) * 2006-01-19 2009-04-08 摩丁制造公司 扁平管道、扁平管道热交换器及其制造方法
CN101405557A (zh) * 2006-01-19 2009-04-08 摩丁制造公司 扁平管道、扁平管道热交换器及其制造方法
CN101450355A (zh) * 2006-01-19 2009-06-10 摩丁制造公司 扁平管道、扁平管道热交换器及其制造方法
CN101548149A (zh) * 2006-11-22 2009-09-30 摩丁制造公司 用于冷凝器和/或蒸发器的焊接平管
JP2014001882A (ja) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp 熱交換器および空気調和機
CN203274572U (zh) * 2013-03-11 2013-11-06 三花控股集团有限公司 适于折弯的扁管和具有该扁管的换热器
JP2017215057A (ja) * 2016-05-30 2017-12-07 昭和電工株式会社 液冷式冷却装置およびその製造方法
CN217383937U (zh) * 2022-04-19 2022-09-06 浙江盾安热工科技有限公司 扁管及换热器
CN219347479U (zh) * 2022-11-30 2023-07-14 浙江盾安热工科技有限公司 换热扁管及换热器

Also Published As

Publication number Publication date
CN219347479U (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2024114648A1 (zh) 换热扁管及换热器
CN213120197U (zh) 双排折弯式换热器
EP1500894A2 (en) Fin-and-tube type heat exchanger
JPH06300473A (ja) 偏平冷媒管
AU2004241397A1 (en) Plate fin tube-type heat exchanger
US20130248150A1 (en) Fin and heat exchanger using the same
US11226161B2 (en) Heat exchanger
JP2007192474A (ja) 熱交換器
JP2020094791A5 (zh)
US20100000726A1 (en) Heat exchanger
EP2977697A2 (en) Heat exchanger and heat exchanging unit
EP2956728B1 (en) Multiple bank flattened tube heat exchanger
CN110887395A (zh) 散热管及散热器
EP1531309A2 (en) Condenser
JP3373940B2 (ja) 熱交換器
WO2013094162A1 (ja) フィン付き熱交換器
JP7068574B2 (ja) 伝熱管ユニットを有する熱交換器
EP3444553B1 (en) Heat exchanger
CN211527190U (zh) 散热管及散热器
WO2021082618A1 (zh) 换热器
JP3947833B2 (ja) 熱交換器
US10041742B2 (en) Heat exchanger side plate with fin
US20220049903A1 (en) Heat Exchanger and Air Conditioner with Heat Exchanger
CN217979358U (zh) 换热器
CN212109070U (zh) 换热器